i965: Convert PIPELINE_SELECT to OUT_BATCH style.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 extern "C" {
29
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "main/uniforms.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "program/prog_optimize.h"
38 #include "program/register_allocate.h"
39 #include "program/sampler.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 }
45 #include "brw_fs.h"
46 #include "../glsl/glsl_types.h"
47 #include "../glsl/ir_optimization.h"
48 #include "../glsl/ir_print_visitor.h"
49
50 static void
51 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
52 {
53 if (reg->file == GRF && reg->reg != 0) {
54 assert(reg->reg_offset >= 0);
55 reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
56 reg->reg = 0;
57 }
58 }
59
60 void
61 fs_visitor::assign_regs_trivial()
62 {
63 int last_grf = 0;
64 int hw_reg_mapping[this->virtual_grf_next];
65 int i;
66 int reg_width = c->dispatch_width / 8;
67
68 hw_reg_mapping[0] = 0;
69 /* Note that compressed instructions require alignment to 2 registers. */
70 hw_reg_mapping[1] = ALIGN(this->first_non_payload_grf, reg_width);
71 for (i = 2; i < this->virtual_grf_next; i++) {
72 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
73 this->virtual_grf_sizes[i - 1] * reg_width);
74 }
75 last_grf = hw_reg_mapping[i - 1] + (this->virtual_grf_sizes[i - 1] *
76 reg_width);
77
78 foreach_iter(exec_list_iterator, iter, this->instructions) {
79 fs_inst *inst = (fs_inst *)iter.get();
80
81 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
82 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
83 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
84 }
85
86 if (last_grf >= BRW_MAX_GRF) {
87 fail("Ran out of regs on trivial allocator (%d/%d)\n",
88 last_grf, BRW_MAX_GRF);
89 }
90
91 this->grf_used = last_grf + reg_width;
92 }
93
94 bool
95 fs_visitor::assign_regs()
96 {
97 /* Most of this allocation was written for a reg_width of 1
98 * (dispatch_width == 8). In extending to 16-wide, the code was
99 * left in place and it was converted to have the hardware
100 * registers it's allocating be contiguous physical pairs of regs
101 * for reg_width == 2.
102 */
103 int reg_width = c->dispatch_width / 8;
104 int hw_reg_mapping[this->virtual_grf_next + 1];
105 int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width);
106 int base_reg_count = (BRW_MAX_GRF - first_assigned_grf) / reg_width;
107 int class_sizes[base_reg_count];
108 int class_count = 0;
109 int aligned_pair_class = -1;
110
111 calculate_live_intervals();
112
113 /* Set up the register classes.
114 *
115 * The base registers store a scalar value. For texture samples,
116 * we get virtual GRFs composed of 4 contiguous hw register. For
117 * structures and arrays, we store them as contiguous larger things
118 * than that, though we should be able to do better most of the
119 * time.
120 */
121 class_sizes[class_count++] = 1;
122 if (brw->has_pln && intel->gen < 6) {
123 /* Always set up the (unaligned) pairs for gen5, so we can find
124 * them for making the aligned pair class.
125 */
126 class_sizes[class_count++] = 2;
127 }
128 for (int r = 1; r < this->virtual_grf_next; r++) {
129 int i;
130
131 for (i = 0; i < class_count; i++) {
132 if (class_sizes[i] == this->virtual_grf_sizes[r])
133 break;
134 }
135 if (i == class_count) {
136 if (this->virtual_grf_sizes[r] >= base_reg_count) {
137 fail("Object too large to register allocate.\n");
138 }
139
140 class_sizes[class_count++] = this->virtual_grf_sizes[r];
141 }
142 }
143
144 int ra_reg_count = 0;
145 int class_base_reg[class_count];
146 int class_reg_count[class_count];
147 int classes[class_count + 1];
148
149 for (int i = 0; i < class_count; i++) {
150 class_base_reg[i] = ra_reg_count;
151 class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
152 ra_reg_count += class_reg_count[i];
153 }
154
155 struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
156 for (int i = 0; i < class_count; i++) {
157 classes[i] = ra_alloc_reg_class(regs);
158
159 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
160 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
161 }
162
163 /* Add conflicts between our contiguous registers aliasing
164 * base regs and other register classes' contiguous registers
165 * that alias base regs, or the base regs themselves for classes[0].
166 */
167 for (int c = 0; c <= i; c++) {
168 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
169 for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
170 c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
171 c_r++) {
172
173 if (0) {
174 printf("%d/%d conflicts %d/%d\n",
175 class_sizes[i], first_assigned_grf + i_r,
176 class_sizes[c], first_assigned_grf + c_r);
177 }
178
179 ra_add_reg_conflict(regs,
180 class_base_reg[i] + i_r,
181 class_base_reg[c] + c_r);
182 }
183 }
184 }
185 }
186
187 /* Add a special class for aligned pairs, which we'll put delta_x/y
188 * in on gen5 so that we can do PLN.
189 */
190 if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
191 int reg_count = (base_reg_count - 1) / 2;
192 int unaligned_pair_class = 1;
193 assert(class_sizes[unaligned_pair_class] == 2);
194
195 aligned_pair_class = class_count;
196 classes[aligned_pair_class] = ra_alloc_reg_class(regs);
197 class_sizes[aligned_pair_class] = 2;
198 class_base_reg[aligned_pair_class] = 0;
199 class_reg_count[aligned_pair_class] = 0;
200 int start = (first_assigned_grf & 1) ? 1 : 0;
201
202 for (int i = 0; i < reg_count; i++) {
203 ra_class_add_reg(regs, classes[aligned_pair_class],
204 class_base_reg[unaligned_pair_class] + i * 2 + start);
205 }
206 class_count++;
207 }
208
209 ra_set_finalize(regs);
210
211 struct ra_graph *g = ra_alloc_interference_graph(regs,
212 this->virtual_grf_next);
213 /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
214 * with nodes.
215 */
216 ra_set_node_class(g, 0, classes[0]);
217
218 for (int i = 1; i < this->virtual_grf_next; i++) {
219 for (int c = 0; c < class_count; c++) {
220 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
221 if (aligned_pair_class >= 0 &&
222 this->delta_x.reg == i) {
223 ra_set_node_class(g, i, classes[aligned_pair_class]);
224 } else {
225 ra_set_node_class(g, i, classes[c]);
226 }
227 break;
228 }
229 }
230
231 for (int j = 1; j < i; j++) {
232 if (virtual_grf_interferes(i, j)) {
233 ra_add_node_interference(g, i, j);
234 }
235 }
236 }
237
238 if (!ra_allocate_no_spills(g)) {
239 /* Failed to allocate registers. Spill a reg, and the caller will
240 * loop back into here to try again.
241 */
242 int reg = choose_spill_reg(g);
243
244 if (reg == -1) {
245 fail("no register to spill\n");
246 } else if (intel->gen >= 7) {
247 fail("no spilling support on gen7 yet\n");
248 } else if (c->dispatch_width == 16) {
249 fail("no spilling support on 16-wide yet\n");
250 } else {
251 spill_reg(reg);
252 }
253
254
255 ralloc_free(g);
256 ralloc_free(regs);
257
258 return false;
259 }
260
261 /* Get the chosen virtual registers for each node, and map virtual
262 * regs in the register classes back down to real hardware reg
263 * numbers.
264 */
265 this->grf_used = first_assigned_grf;
266 hw_reg_mapping[0] = 0; /* unused */
267 for (int i = 1; i < this->virtual_grf_next; i++) {
268 int reg = ra_get_node_reg(g, i);
269 int hw_reg = -1;
270
271 for (int c = 0; c < class_count; c++) {
272 if (reg >= class_base_reg[c] &&
273 reg < class_base_reg[c] + class_reg_count[c]) {
274 hw_reg = reg - class_base_reg[c];
275 break;
276 }
277 }
278
279 assert(hw_reg >= 0);
280 hw_reg_mapping[i] = first_assigned_grf + hw_reg * reg_width;
281 this->grf_used = MAX2(this->grf_used,
282 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
283 reg_width);
284 }
285
286 foreach_iter(exec_list_iterator, iter, this->instructions) {
287 fs_inst *inst = (fs_inst *)iter.get();
288
289 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
290 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
291 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
292 }
293
294 ralloc_free(g);
295 ralloc_free(regs);
296
297 return true;
298 }
299
300 void
301 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
302 {
303 int size = virtual_grf_sizes[dst.reg];
304 dst.reg_offset = 0;
305
306 for (int chan = 0; chan < size; chan++) {
307 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL,
308 dst);
309 dst.reg_offset++;
310 unspill_inst->offset = spill_offset + chan * REG_SIZE;
311 unspill_inst->ir = inst->ir;
312 unspill_inst->annotation = inst->annotation;
313
314 /* Choose a MRF that won't conflict with an MRF that's live across the
315 * spill. Nothing else will make it up to MRF 14/15.
316 */
317 unspill_inst->base_mrf = 14;
318 unspill_inst->mlen = 1; /* header contains offset */
319 inst->insert_before(unspill_inst);
320 }
321 }
322
323 int
324 fs_visitor::choose_spill_reg(struct ra_graph *g)
325 {
326 float loop_scale = 1.0;
327 float spill_costs[this->virtual_grf_next];
328 bool no_spill[this->virtual_grf_next];
329
330 for (int i = 0; i < this->virtual_grf_next; i++) {
331 spill_costs[i] = 0.0;
332 no_spill[i] = false;
333 }
334
335 /* Calculate costs for spilling nodes. Call it a cost of 1 per
336 * spill/unspill we'll have to do, and guess that the insides of
337 * loops run 10 times.
338 */
339 foreach_iter(exec_list_iterator, iter, this->instructions) {
340 fs_inst *inst = (fs_inst *)iter.get();
341
342 for (unsigned int i = 0; i < 3; i++) {
343 if (inst->src[i].file == GRF) {
344 int size = virtual_grf_sizes[inst->src[i].reg];
345 spill_costs[inst->src[i].reg] += size * loop_scale;
346 }
347 }
348
349 if (inst->dst.file == GRF) {
350 int size = virtual_grf_sizes[inst->dst.reg];
351 spill_costs[inst->dst.reg] += size * loop_scale;
352 }
353
354 switch (inst->opcode) {
355
356 case BRW_OPCODE_DO:
357 loop_scale *= 10;
358 break;
359
360 case BRW_OPCODE_WHILE:
361 loop_scale /= 10;
362 break;
363
364 case FS_OPCODE_SPILL:
365 if (inst->src[0].file == GRF)
366 no_spill[inst->src[0].reg] = true;
367 break;
368
369 case FS_OPCODE_UNSPILL:
370 if (inst->dst.file == GRF)
371 no_spill[inst->dst.reg] = true;
372 break;
373 }
374 }
375
376 for (int i = 0; i < this->virtual_grf_next; i++) {
377 if (!no_spill[i])
378 ra_set_node_spill_cost(g, i, spill_costs[i]);
379 }
380
381 return ra_get_best_spill_node(g);
382 }
383
384 void
385 fs_visitor::spill_reg(int spill_reg)
386 {
387 int size = virtual_grf_sizes[spill_reg];
388 unsigned int spill_offset = c->last_scratch;
389 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
390 c->last_scratch += size * REG_SIZE;
391
392 /* Generate spill/unspill instructions for the objects being
393 * spilled. Right now, we spill or unspill the whole thing to a
394 * virtual grf of the same size. For most instructions, though, we
395 * could just spill/unspill the GRF being accessed.
396 */
397 foreach_iter(exec_list_iterator, iter, this->instructions) {
398 fs_inst *inst = (fs_inst *)iter.get();
399
400 for (unsigned int i = 0; i < 3; i++) {
401 if (inst->src[i].file == GRF &&
402 inst->src[i].reg == spill_reg) {
403 inst->src[i].reg = virtual_grf_alloc(size);
404 emit_unspill(inst, inst->src[i], spill_offset);
405 }
406 }
407
408 if (inst->dst.file == GRF &&
409 inst->dst.reg == spill_reg) {
410 inst->dst.reg = virtual_grf_alloc(size);
411
412 /* Since we spill/unspill the whole thing even if we access
413 * just a component, we may need to unspill before the
414 * instruction we're spilling for.
415 */
416 if (size != 1 || inst->predicated) {
417 emit_unspill(inst, inst->dst, spill_offset);
418 }
419
420 fs_reg spill_src = inst->dst;
421 spill_src.reg_offset = 0;
422 spill_src.abs = false;
423 spill_src.negate = false;
424 spill_src.smear = -1;
425
426 for (int chan = 0; chan < size; chan++) {
427 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
428 reg_null_f, spill_src);
429 spill_src.reg_offset++;
430 spill_inst->offset = spill_offset + chan * REG_SIZE;
431 spill_inst->ir = inst->ir;
432 spill_inst->annotation = inst->annotation;
433 spill_inst->base_mrf = 14;
434 spill_inst->mlen = 2; /* header, value */
435 inst->insert_after(spill_inst);
436 }
437 }
438 }
439
440 this->live_intervals_valid = false;
441 }