i965/fs: Make count_to_loop_end() use basic blocks.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_cfg.h"
30 #include "glsl/glsl_types.h"
31 #include "glsl/ir_optimization.h"
32
33 static void
34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
35 {
36 if (reg->file == GRF) {
37 assert(reg->reg_offset >= 0);
38 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
39 reg->reg_offset = 0;
40 }
41 }
42
43 void
44 fs_visitor::assign_regs_trivial()
45 {
46 int hw_reg_mapping[this->virtual_grf_count + 1];
47 int i;
48 int reg_width = dispatch_width / 8;
49
50 /* Note that compressed instructions require alignment to 2 registers. */
51 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
52 for (i = 1; i <= this->virtual_grf_count; i++) {
53 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
54 this->virtual_grf_sizes[i - 1] * reg_width);
55 }
56 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
57
58 foreach_block_and_inst(block, fs_inst, inst, cfg) {
59 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
60 for (i = 0; i < inst->sources; i++) {
61 assign_reg(hw_reg_mapping, &inst->src[i], reg_width);
62 }
63 }
64
65 if (this->grf_used >= max_grf) {
66 fail("Ran out of regs on trivial allocator (%d/%d)\n",
67 this->grf_used, max_grf);
68 } else {
69 this->virtual_grf_count = this->grf_used;
70 }
71
72 }
73
74 static void
75 brw_alloc_reg_set(struct intel_screen *screen, int reg_width)
76 {
77 const struct brw_device_info *devinfo = screen->devinfo;
78 int base_reg_count = BRW_MAX_GRF / reg_width;
79 int index = reg_width - 1;
80
81 /* The registers used to make up almost all values handled in the compiler
82 * are a scalar value occupying a single register (or 2 registers in the
83 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
84 * multiplying allocated register numbers by 2). Things that were
85 * aggregates of scalar values at the GLSL level were split to scalar
86 * values by split_virtual_grfs().
87 *
88 * However, texture SEND messages return a series of contiguous registers
89 * to write into. We currently always ask for 4 registers, but we may
90 * convert that to use less some day.
91 *
92 * Additionally, on gen5 we need aligned pairs of registers for the PLN
93 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
94 * texturing.
95 *
96 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
97 * and we add in '3' to make indexing the array easier for the common case
98 * (since we'll probably want it for texturing later).
99 *
100 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
101 * means that we may need any size up to the sampler message size limit (11
102 * regs).
103 */
104 int class_count;
105 int class_sizes[BRW_MAX_MRF];
106
107 if (devinfo->gen >= 7) {
108 for (class_count = 0; class_count < MAX_SAMPLER_MESSAGE_SIZE;
109 class_count++)
110 class_sizes[class_count] = class_count + 1;
111 } else {
112 for (class_count = 0; class_count < 4; class_count++)
113 class_sizes[class_count] = class_count + 1;
114 class_sizes[class_count++] = 8;
115 }
116
117 /* Compute the total number of registers across all classes. */
118 int ra_reg_count = 0;
119 for (int i = 0; i < class_count; i++) {
120 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
121 }
122
123 uint8_t *ra_reg_to_grf = ralloc_array(screen, uint8_t, ra_reg_count);
124 struct ra_regs *regs = ra_alloc_reg_set(screen, ra_reg_count);
125 if (devinfo->gen >= 6)
126 ra_set_allocate_round_robin(regs);
127 int *classes = ralloc_array(screen, int, class_count);
128 int aligned_pairs_class = -1;
129
130 /* Now, add the registers to their classes, and add the conflicts
131 * between them and the base GRF registers (and also each other).
132 */
133 int reg = 0;
134 int pairs_base_reg = 0;
135 int pairs_reg_count = 0;
136 for (int i = 0; i < class_count; i++) {
137 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
138 classes[i] = ra_alloc_reg_class(regs);
139
140 /* Save this off for the aligned pair class at the end. */
141 if (class_sizes[i] == 2) {
142 pairs_base_reg = reg;
143 pairs_reg_count = class_reg_count;
144 }
145
146 for (int j = 0; j < class_reg_count; j++) {
147 ra_class_add_reg(regs, classes[i], reg);
148
149 ra_reg_to_grf[reg] = j;
150
151 for (int base_reg = j;
152 base_reg < j + class_sizes[i];
153 base_reg++) {
154 ra_add_transitive_reg_conflict(regs, base_reg, reg);
155 }
156
157 reg++;
158 }
159 }
160 assert(reg == ra_reg_count);
161
162 /* Add a special class for aligned pairs, which we'll put delta_x/y
163 * in on gen5 so that we can do PLN.
164 */
165 if (devinfo->has_pln && reg_width == 1 && devinfo->gen < 6) {
166 aligned_pairs_class = ra_alloc_reg_class(regs);
167
168 for (int i = 0; i < pairs_reg_count; i++) {
169 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
170 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
171 }
172 }
173 }
174
175 ra_set_finalize(regs, NULL);
176
177 screen->wm_reg_sets[index].regs = regs;
178 for (unsigned i = 0; i < ARRAY_SIZE(screen->wm_reg_sets[index].classes); i++)
179 screen->wm_reg_sets[index].classes[i] = -1;
180 for (int i = 0; i < class_count; i++)
181 screen->wm_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
182 screen->wm_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
183 screen->wm_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
184 }
185
186 void
187 brw_fs_alloc_reg_sets(struct intel_screen *screen)
188 {
189 brw_alloc_reg_set(screen, 1);
190 brw_alloc_reg_set(screen, 2);
191 }
192
193 static int
194 count_to_loop_end(const bblock_t *block)
195 {
196 if (block->end->opcode == BRW_OPCODE_WHILE)
197 return block->end_ip;
198
199 int depth = 1;
200 /* Skip the first block, since we don't want to count the do the calling
201 * function found.
202 */
203 for (block = (bblock_t *)block->link.next;
204 depth > 0;
205 block = (bblock_t *)block->link.next) {
206 if (block->start->opcode == BRW_OPCODE_DO)
207 depth++;
208 if (block->end->opcode == BRW_OPCODE_WHILE) {
209 depth--;
210 if (depth == 0)
211 return block->end_ip;
212 }
213 }
214 unreachable("not reached");
215 }
216
217 /**
218 * Sets up interference between thread payload registers and the virtual GRFs
219 * to be allocated for program temporaries.
220 *
221 * We want to be able to reallocate the payload for our virtual GRFs, notably
222 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
223 * our 128 registers.
224 *
225 * The layout of the payload registers is:
226 *
227 * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
228 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
229 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
230 *
231 * And we have payload_node_count nodes covering these registers in order
232 * (note that in SIMD16, a node is two registers).
233 */
234 void
235 fs_visitor::setup_payload_interference(struct ra_graph *g,
236 int payload_node_count,
237 int first_payload_node)
238 {
239 int reg_width = dispatch_width / 8;
240 int loop_depth = 0;
241 int loop_end_ip = 0;
242
243 int payload_last_use_ip[payload_node_count];
244 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
245 int ip = 0;
246 foreach_block_and_inst(block, fs_inst, inst, cfg) {
247 switch (inst->opcode) {
248 case BRW_OPCODE_DO:
249 loop_depth++;
250
251 /* Since payload regs are deffed only at the start of the shader
252 * execution, any uses of the payload within a loop mean the live
253 * interval extends to the end of the outermost loop. Find the ip of
254 * the end now.
255 */
256 if (loop_depth == 1)
257 loop_end_ip = count_to_loop_end(block);
258 break;
259 case BRW_OPCODE_WHILE:
260 loop_depth--;
261 break;
262 default:
263 break;
264 }
265
266 int use_ip;
267 if (loop_depth > 0)
268 use_ip = loop_end_ip;
269 else
270 use_ip = ip;
271
272 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
273 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
274 * the start (see interp_reg()).
275 */
276 for (int i = 0; i < inst->sources; i++) {
277 if (inst->src[i].file == HW_REG &&
278 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
279 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
280 if (node_nr >= payload_node_count)
281 continue;
282
283 payload_last_use_ip[node_nr] = use_ip;
284 }
285 }
286
287 /* Special case instructions which have extra implied registers used. */
288 switch (inst->opcode) {
289 case FS_OPCODE_FB_WRITE:
290 /* We could omit this for the !inst->header_present case, except that
291 * the simulator apparently incorrectly reads from g0/g1 instead of
292 * sideband. It also really freaks out driver developers to see g0
293 * used in unusual places, so just always reserve it.
294 */
295 payload_last_use_ip[0 / reg_width] = use_ip;
296 payload_last_use_ip[1 / reg_width] = use_ip;
297 break;
298
299 case FS_OPCODE_LINTERP:
300 /* On gen6+ in SIMD16, there are 4 adjacent registers (so 2 nodes)
301 * used by PLN's sourcing of the deltas, while we list only the first
302 * two in the arguments (1 node). Pre-gen6, the deltas are computed
303 * in normal VGRFs.
304 */
305 if (brw->gen >= 6) {
306 int delta_x_arg = 0;
307 if (inst->src[delta_x_arg].file == HW_REG &&
308 inst->src[delta_x_arg].fixed_hw_reg.file ==
309 BRW_GENERAL_REGISTER_FILE) {
310 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
311 reg_width) + 1;
312 assert(sechalf_node < payload_node_count);
313 payload_last_use_ip[sechalf_node] = use_ip;
314 }
315 }
316 break;
317
318 default:
319 break;
320 }
321
322 ip++;
323 }
324
325 for (int i = 0; i < payload_node_count; i++) {
326 /* Mark the payload node as interfering with any virtual grf that is
327 * live between the start of the program and our last use of the payload
328 * node.
329 */
330 for (int j = 0; j < this->virtual_grf_count; j++) {
331 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
332 * in order to not have to worry about the uniform issue described in
333 * calculate_live_intervals().
334 */
335 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
336 ra_add_node_interference(g, first_payload_node + i, j);
337 }
338 }
339 }
340
341 for (int i = 0; i < payload_node_count; i++) {
342 /* Mark each payload node as being allocated to its physical register.
343 *
344 * The alternative would be to have per-physical-register classes, which
345 * would just be silly.
346 */
347 ra_set_node_reg(g, first_payload_node + i, i);
348 }
349 }
350
351 /**
352 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
353 *
354 * This is used in assign_regs() to decide which of the GRFs that we use as
355 * MRFs on gen7 get normally register allocated, and in register spilling to
356 * see if we can actually use MRFs to do spills without overwriting normal MRF
357 * contents.
358 */
359 void
360 fs_visitor::get_used_mrfs(bool *mrf_used)
361 {
362 int reg_width = dispatch_width / 8;
363
364 memset(mrf_used, 0, BRW_MAX_MRF * sizeof(bool));
365
366 foreach_block_and_inst(block, fs_inst, inst, cfg) {
367 if (inst->dst.file == MRF) {
368 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
369 mrf_used[reg] = true;
370 if (reg_width == 2) {
371 if (inst->dst.reg & BRW_MRF_COMPR4) {
372 mrf_used[reg + 4] = true;
373 } else {
374 mrf_used[reg + 1] = true;
375 }
376 }
377 }
378
379 if (inst->mlen > 0) {
380 for (int i = 0; i < implied_mrf_writes(inst); i++) {
381 mrf_used[inst->base_mrf + i] = true;
382 }
383 }
384 }
385 }
386
387 /**
388 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
389 * messages (treated as MRFs in code generation).
390 */
391 void
392 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
393 {
394 int reg_width = dispatch_width / 8;
395
396 bool mrf_used[BRW_MAX_MRF];
397 get_used_mrfs(mrf_used);
398
399 for (int i = 0; i < BRW_MAX_MRF; i++) {
400 /* Mark each MRF reg node as being allocated to its physical register.
401 *
402 * The alternative would be to have per-physical-register classes, which
403 * would just be silly.
404 */
405 ra_set_node_reg(g, first_mrf_node + i,
406 (GEN7_MRF_HACK_START + i) / reg_width);
407
408 /* Since we don't have any live/dead analysis on the MRFs, just mark all
409 * that are used as conflicting with all virtual GRFs.
410 */
411 if (mrf_used[i]) {
412 for (int j = 0; j < this->virtual_grf_count; j++) {
413 ra_add_node_interference(g, first_mrf_node + i, j);
414 }
415 }
416 }
417 }
418
419 bool
420 fs_visitor::assign_regs(bool allow_spilling)
421 {
422 struct intel_screen *screen = brw->intelScreen;
423 /* Most of this allocation was written for a reg_width of 1
424 * (dispatch_width == 8). In extending to SIMD16, the code was
425 * left in place and it was converted to have the hardware
426 * registers it's allocating be contiguous physical pairs of regs
427 * for reg_width == 2.
428 */
429 int reg_width = dispatch_width / 8;
430 int hw_reg_mapping[this->virtual_grf_count];
431 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
432 reg_width);
433 int rsi = reg_width - 1; /* Which screen->wm_reg_sets[] to use */
434 calculate_live_intervals();
435
436 int node_count = this->virtual_grf_count;
437 int first_payload_node = node_count;
438 node_count += payload_node_count;
439 int first_mrf_hack_node = node_count;
440 if (brw->gen >= 7)
441 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
442 struct ra_graph *g = ra_alloc_interference_graph(screen->wm_reg_sets[rsi].regs,
443 node_count);
444
445 for (int i = 0; i < this->virtual_grf_count; i++) {
446 unsigned size = this->virtual_grf_sizes[i];
447 int c;
448
449 assert(size <= ARRAY_SIZE(screen->wm_reg_sets[rsi].classes) &&
450 "Register allocation relies on split_virtual_grfs()");
451 c = screen->wm_reg_sets[rsi].classes[size - 1];
452
453 /* Special case: on pre-GEN6 hardware that supports PLN, the
454 * second operand of a PLN instruction needs to be an
455 * even-numbered register, so we have a special register class
456 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
457 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
458 * second operand of a PLN instruction (since it doesn't support
459 * any other interpolation modes). So all we need to do is find
460 * that register and set it to the appropriate class.
461 */
462 if (screen->wm_reg_sets[rsi].aligned_pairs_class >= 0 &&
463 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF &&
464 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
465 c = screen->wm_reg_sets[rsi].aligned_pairs_class;
466 }
467
468 ra_set_node_class(g, i, c);
469
470 for (int j = 0; j < i; j++) {
471 if (virtual_grf_interferes(i, j)) {
472 ra_add_node_interference(g, i, j);
473 }
474 }
475 }
476
477 setup_payload_interference(g, payload_node_count, first_payload_node);
478 if (brw->gen >= 7)
479 setup_mrf_hack_interference(g, first_mrf_hack_node);
480
481 /* Debug of register spilling: Go spill everything. */
482 if (0) {
483 int reg = choose_spill_reg(g);
484
485 if (reg != -1) {
486 spill_reg(reg);
487 ralloc_free(g);
488 return false;
489 }
490 }
491
492 if (!ra_allocate(g)) {
493 /* Failed to allocate registers. Spill a reg, and the caller will
494 * loop back into here to try again.
495 */
496 int reg = choose_spill_reg(g);
497
498 if (reg == -1) {
499 fail("no register to spill:\n");
500 dump_instructions(NULL);
501 } else if (allow_spilling) {
502 spill_reg(reg);
503 }
504
505 ralloc_free(g);
506
507 return false;
508 }
509
510 /* Get the chosen virtual registers for each node, and map virtual
511 * regs in the register classes back down to real hardware reg
512 * numbers.
513 */
514 this->grf_used = payload_node_count * reg_width;
515 for (int i = 0; i < this->virtual_grf_count; i++) {
516 int reg = ra_get_node_reg(g, i);
517
518 hw_reg_mapping[i] = screen->wm_reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
519 this->grf_used = MAX2(this->grf_used,
520 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
521 reg_width);
522 }
523
524 foreach_block_and_inst(block, fs_inst, inst, cfg) {
525 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
526 for (int i = 0; i < inst->sources; i++) {
527 assign_reg(hw_reg_mapping, &inst->src[i], reg_width);
528 }
529 }
530
531 this->virtual_grf_count = this->grf_used;
532
533 ralloc_free(g);
534
535 return true;
536 }
537
538 void
539 fs_visitor::emit_unspill(bblock_t *block, fs_inst *inst, fs_reg dst,
540 uint32_t spill_offset, int count)
541 {
542 for (int i = 0; i < count; i++) {
543 /* The gen7 descriptor-based offset is 12 bits of HWORD units. */
544 bool gen7_read = brw->gen >= 7 && spill_offset < (1 << 12) * REG_SIZE;
545
546 fs_inst *unspill_inst =
547 new(mem_ctx) fs_inst(gen7_read ?
548 SHADER_OPCODE_GEN7_SCRATCH_READ :
549 SHADER_OPCODE_GEN4_SCRATCH_READ,
550 dst);
551 unspill_inst->offset = spill_offset;
552 unspill_inst->ir = inst->ir;
553 unspill_inst->annotation = inst->annotation;
554
555 if (!gen7_read) {
556 unspill_inst->base_mrf = 14;
557 unspill_inst->mlen = 1; /* header contains offset */
558 }
559 inst->insert_before(block, unspill_inst);
560
561 dst.reg_offset++;
562 spill_offset += dispatch_width * sizeof(float);
563 }
564 }
565
566 int
567 fs_visitor::choose_spill_reg(struct ra_graph *g)
568 {
569 float loop_scale = 1.0;
570 float spill_costs[this->virtual_grf_count];
571 bool no_spill[this->virtual_grf_count];
572
573 for (int i = 0; i < this->virtual_grf_count; i++) {
574 spill_costs[i] = 0.0;
575 no_spill[i] = false;
576 }
577
578 /* Calculate costs for spilling nodes. Call it a cost of 1 per
579 * spill/unspill we'll have to do, and guess that the insides of
580 * loops run 10 times.
581 */
582 foreach_block_and_inst(block, fs_inst, inst, cfg) {
583 for (unsigned int i = 0; i < inst->sources; i++) {
584 if (inst->src[i].file == GRF) {
585 spill_costs[inst->src[i].reg] += loop_scale;
586
587 /* Register spilling logic assumes full-width registers; smeared
588 * registers have a width of 1 so if we try to spill them we'll
589 * generate invalid assembly. This shouldn't be a problem because
590 * smeared registers are only used as short-term temporaries when
591 * loading pull constants, so spilling them is unlikely to reduce
592 * register pressure anyhow.
593 */
594 if (!inst->src[i].is_contiguous()) {
595 no_spill[inst->src[i].reg] = true;
596 }
597 }
598 }
599
600 if (inst->dst.file == GRF) {
601 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
602
603 if (!inst->dst.is_contiguous()) {
604 no_spill[inst->dst.reg] = true;
605 }
606 }
607
608 switch (inst->opcode) {
609
610 case BRW_OPCODE_DO:
611 loop_scale *= 10;
612 break;
613
614 case BRW_OPCODE_WHILE:
615 loop_scale /= 10;
616 break;
617
618 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
619 if (inst->src[0].file == GRF)
620 no_spill[inst->src[0].reg] = true;
621 break;
622
623 case SHADER_OPCODE_GEN4_SCRATCH_READ:
624 case SHADER_OPCODE_GEN7_SCRATCH_READ:
625 if (inst->dst.file == GRF)
626 no_spill[inst->dst.reg] = true;
627 break;
628
629 default:
630 break;
631 }
632 }
633
634 for (int i = 0; i < this->virtual_grf_count; i++) {
635 if (!no_spill[i])
636 ra_set_node_spill_cost(g, i, spill_costs[i]);
637 }
638
639 return ra_get_best_spill_node(g);
640 }
641
642 void
643 fs_visitor::spill_reg(int spill_reg)
644 {
645 int reg_size = dispatch_width * sizeof(float);
646 int size = virtual_grf_sizes[spill_reg];
647 unsigned int spill_offset = last_scratch;
648 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
649 int spill_base_mrf = dispatch_width > 8 ? 13 : 14;
650
651 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
652 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
653 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
654 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
655 * depth), starting from m1. In summary: We may not be able to spill in
656 * SIMD16 mode, because we'd stomp the FB writes.
657 */
658 if (!spilled_any_registers) {
659 bool mrf_used[BRW_MAX_MRF];
660 get_used_mrfs(mrf_used);
661
662 for (int i = spill_base_mrf; i < BRW_MAX_MRF; i++) {
663 if (mrf_used[i]) {
664 fail("Register spilling not supported with m%d used", i);
665 return;
666 }
667 }
668
669 spilled_any_registers = true;
670 }
671
672 last_scratch += size * reg_size;
673
674 /* Generate spill/unspill instructions for the objects being
675 * spilled. Right now, we spill or unspill the whole thing to a
676 * virtual grf of the same size. For most instructions, though, we
677 * could just spill/unspill the GRF being accessed.
678 */
679 foreach_block_and_inst (block, fs_inst, inst, cfg) {
680 for (unsigned int i = 0; i < inst->sources; i++) {
681 if (inst->src[i].file == GRF &&
682 inst->src[i].reg == spill_reg) {
683 int regs_read = inst->regs_read(this, i);
684 int subset_spill_offset = (spill_offset +
685 reg_size * inst->src[i].reg_offset);
686 fs_reg unspill_dst(GRF, virtual_grf_alloc(regs_read));
687
688 inst->src[i].reg = unspill_dst.reg;
689 inst->src[i].reg_offset = 0;
690
691 emit_unspill(block, inst, unspill_dst, subset_spill_offset,
692 regs_read);
693 }
694 }
695
696 if (inst->dst.file == GRF &&
697 inst->dst.reg == spill_reg) {
698 int subset_spill_offset = (spill_offset +
699 reg_size * inst->dst.reg_offset);
700 fs_reg spill_src(GRF, virtual_grf_alloc(inst->regs_written));
701
702 inst->dst.reg = spill_src.reg;
703 inst->dst.reg_offset = 0;
704
705 /* If our write is going to affect just part of the
706 * inst->regs_written(), then we need to unspill the destination
707 * since we write back out all of the regs_written().
708 */
709 if (inst->predicate || inst->force_uncompressed ||
710 inst->force_sechalf || inst->dst.subreg_offset) {
711 emit_unspill(block, inst, spill_src, subset_spill_offset,
712 inst->regs_written);
713 }
714
715 for (int chan = 0; chan < inst->regs_written; chan++) {
716 fs_inst *spill_inst =
717 new(mem_ctx) fs_inst(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
718 reg_null_f, spill_src);
719 spill_src.reg_offset++;
720 spill_inst->offset = subset_spill_offset + chan * reg_size;
721 spill_inst->ir = inst->ir;
722 spill_inst->annotation = inst->annotation;
723 spill_inst->mlen = 1 + dispatch_width / 8; /* header, value */
724 spill_inst->base_mrf = spill_base_mrf;
725 inst->insert_after(block, spill_inst);
726 }
727 }
728 }
729
730 invalidate_live_intervals();
731 }