i965/fs: Bake regs_written into the IR instead of recomputing it later.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31 #include "glsl/ir_print_visitor.h"
32
33 static void
34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
35 {
36 if (reg->file == GRF) {
37 assert(reg->reg_offset >= 0);
38 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
39 reg->reg_offset = 0;
40 }
41 }
42
43 void
44 fs_visitor::assign_regs_trivial()
45 {
46 int hw_reg_mapping[this->virtual_grf_count + 1];
47 int i;
48 int reg_width = dispatch_width / 8;
49
50 /* Note that compressed instructions require alignment to 2 registers. */
51 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
52 for (i = 1; i <= this->virtual_grf_count; i++) {
53 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
54 this->virtual_grf_sizes[i - 1] * reg_width);
55 }
56 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
57
58 foreach_list(node, &this->instructions) {
59 fs_inst *inst = (fs_inst *)node;
60
61 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
62 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
63 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
64 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
65 }
66
67 if (this->grf_used >= max_grf) {
68 fail("Ran out of regs on trivial allocator (%d/%d)\n",
69 this->grf_used, max_grf);
70 }
71
72 }
73
74 static void
75 brw_alloc_reg_set(struct brw_context *brw, int reg_width)
76 {
77 struct intel_context *intel = &brw->intel;
78 int base_reg_count = BRW_MAX_GRF / reg_width;
79 int index = reg_width - 1;
80
81 /* The registers used to make up almost all values handled in the compiler
82 * are a scalar value occupying a single register (or 2 registers in the
83 * case of 16-wide, which is handled by dividing base_reg_count by 2 and
84 * multiplying allocated register numbers by 2). Things that were
85 * aggregates of scalar values at the GLSL level were split to scalar
86 * values by split_virtual_grfs().
87 *
88 * However, texture SEND messages return a series of contiguous registers.
89 * We currently always ask for 4 registers, but we may convert that to use
90 * less some day.
91 *
92 * Additionally, on gen5 we need aligned pairs of registers for the PLN
93 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
94 * texturing.
95 *
96 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
97 * and we add in '3' to make indexing the array easier for the common case
98 * (since we'll probably want it for texturing later).
99 */
100 const int class_count = 5;
101 const int class_sizes[class_count] = {1, 2, 3, 4, 8};
102
103 /* Compute the total number of registers across all classes. */
104 int ra_reg_count = 0;
105 for (int i = 0; i < class_count; i++) {
106 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
107 }
108
109 uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
110 struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count);
111 int *classes = ralloc_array(brw, int, class_count);
112 int aligned_pairs_class = -1;
113
114 /* Now, add the registers to their classes, and add the conflicts
115 * between them and the base GRF registers (and also each other).
116 */
117 int reg = 0;
118 int pairs_base_reg = 0;
119 int pairs_reg_count = 0;
120 for (int i = 0; i < class_count; i++) {
121 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
122 classes[i] = ra_alloc_reg_class(regs);
123
124 /* Save this off for the aligned pair class at the end. */
125 if (class_sizes[i] == 2) {
126 pairs_base_reg = reg;
127 pairs_reg_count = class_reg_count;
128 }
129
130 for (int j = 0; j < class_reg_count; j++) {
131 ra_class_add_reg(regs, classes[i], reg);
132
133 ra_reg_to_grf[reg] = j;
134
135 for (int base_reg = j;
136 base_reg < j + class_sizes[i];
137 base_reg++) {
138 ra_add_transitive_reg_conflict(regs, base_reg, reg);
139 }
140
141 reg++;
142 }
143 }
144 assert(reg == ra_reg_count);
145
146 /* Add a special class for aligned pairs, which we'll put delta_x/y
147 * in on gen5 so that we can do PLN.
148 */
149 if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
150 aligned_pairs_class = ra_alloc_reg_class(regs);
151
152 for (int i = 0; i < pairs_reg_count; i++) {
153 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
154 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
155 }
156 }
157 }
158
159 ra_set_finalize(regs, NULL);
160
161 brw->wm.reg_sets[index].regs = regs;
162 brw->wm.reg_sets[index].classes = classes;
163 brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
164 brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class;
165 }
166
167 void
168 brw_fs_alloc_reg_sets(struct brw_context *brw)
169 {
170 brw_alloc_reg_set(brw, 1);
171 brw_alloc_reg_set(brw, 2);
172 }
173
174 int
175 count_to_loop_end(fs_inst *do_inst)
176 {
177 int depth = 1;
178 int ip = 1;
179 for (fs_inst *inst = (fs_inst *)do_inst->next;
180 depth > 0;
181 inst = (fs_inst *)inst->next) {
182 switch (inst->opcode) {
183 case BRW_OPCODE_DO:
184 depth++;
185 break;
186 case BRW_OPCODE_WHILE:
187 depth--;
188 break;
189 default:
190 break;
191 }
192 ip++;
193 }
194 return ip;
195 }
196
197 /**
198 * Sets up interference between thread payload registers and the virtual GRFs
199 * to be allocated for program temporaries.
200 *
201 * We want to be able to reallocate the payload for our virtual GRFs, notably
202 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
203 * our 128 registers.
204 *
205 * The layout of the payload registers is:
206 *
207 * 0..nr_payload_regs-1: fixed function setup (including bary coordinates).
208 * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data
209 * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
210 *
211 * And we have payload_node_count nodes covering these registers in order
212 * (note that in 16-wide, a node is two registers).
213 */
214 void
215 fs_visitor::setup_payload_interference(struct ra_graph *g,
216 int payload_node_count,
217 int first_payload_node)
218 {
219 int reg_width = dispatch_width / 8;
220 int loop_depth = 0;
221 int loop_end_ip = 0;
222
223 int payload_last_use_ip[payload_node_count];
224 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
225 int ip = 0;
226 foreach_list(node, &this->instructions) {
227 fs_inst *inst = (fs_inst *)node;
228
229 switch (inst->opcode) {
230 case BRW_OPCODE_DO:
231 loop_depth++;
232
233 /* Since payload regs are deffed only at the start of the shader
234 * execution, any uses of the payload within a loop mean the live
235 * interval extends to the end of the outermost loop. Find the ip of
236 * the end now.
237 */
238 if (loop_depth == 1)
239 loop_end_ip = ip + count_to_loop_end(inst);
240 break;
241 case BRW_OPCODE_WHILE:
242 loop_depth--;
243 break;
244 default:
245 break;
246 }
247
248 int use_ip;
249 if (loop_depth > 0)
250 use_ip = loop_end_ip;
251 else
252 use_ip = ip;
253
254 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
255 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
256 * the start (see interp_reg()).
257 */
258 for (int i = 0; i < 3; i++) {
259 if (inst->src[i].file == FIXED_HW_REG &&
260 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
261 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
262 if (node_nr >= payload_node_count)
263 continue;
264
265 payload_last_use_ip[node_nr] = use_ip;
266 }
267 }
268
269 /* Special case instructions which have extra implied registers used. */
270 switch (inst->opcode) {
271 case FS_OPCODE_FB_WRITE:
272 /* We could omit this for the !inst->header_present case, except that
273 * the simulator apparently incorrectly reads from g0/g1 instead of
274 * sideband. It also really freaks out driver developers to see g0
275 * used in unusual places, so just always reserve it.
276 */
277 payload_last_use_ip[0 / reg_width] = use_ip;
278 payload_last_use_ip[1 / reg_width] = use_ip;
279 break;
280
281 case FS_OPCODE_LINTERP:
282 /* On gen6+ in 16-wide, there are 4 adjacent registers (so 2 nodes)
283 * used by PLN's sourcing of the deltas, while we list only the first
284 * two in the arguments (1 node). Pre-gen6, the deltas are computed
285 * in normal VGRFs.
286 */
287 if (intel->gen >= 6) {
288 int delta_x_arg = 0;
289 if (inst->src[delta_x_arg].file == FIXED_HW_REG &&
290 inst->src[delta_x_arg].fixed_hw_reg.file ==
291 BRW_GENERAL_REGISTER_FILE) {
292 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
293 reg_width) + 1;
294 assert(sechalf_node < payload_node_count);
295 payload_last_use_ip[sechalf_node] = use_ip;
296 }
297 }
298 break;
299
300 default:
301 break;
302 }
303
304 ip++;
305 }
306
307 for (int i = 0; i < payload_node_count; i++) {
308 /* Mark the payload node as interfering with any virtual grf that is
309 * live between the start of the program and our last use of the payload
310 * node.
311 */
312 for (int j = 0; j < this->virtual_grf_count; j++) {
313 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
314 * in order to not have to worry about the uniform issue described in
315 * calculate_live_intervals().
316 */
317 if (this->virtual_grf_def[j] <= payload_last_use_ip[i] ||
318 this->virtual_grf_use[j] <= payload_last_use_ip[i]) {
319 ra_add_node_interference(g, first_payload_node + i, j);
320 }
321 }
322 }
323
324 for (int i = 0; i < payload_node_count; i++) {
325 /* Mark each payload node as being allocated to its physical register.
326 *
327 * The alternative would be to have per-physical-register classes, which
328 * would just be silly.
329 */
330 ra_set_node_reg(g, first_payload_node + i, i);
331 }
332 }
333
334 /**
335 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
336 * messages (treated as MRFs in code generation).
337 */
338 void
339 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
340 {
341 int mrf_count = BRW_MAX_GRF - GEN7_MRF_HACK_START;
342 int reg_width = dispatch_width / 8;
343
344 /* Identify all the MRFs used in the program. */
345 bool mrf_used[mrf_count];
346 memset(mrf_used, 0, sizeof(mrf_used));
347 foreach_list(node, &this->instructions) {
348 fs_inst *inst = (fs_inst *)node;
349
350 if (inst->dst.file == MRF) {
351 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
352 mrf_used[reg] = true;
353 if (reg_width == 2) {
354 if (inst->dst.reg & BRW_MRF_COMPR4) {
355 mrf_used[reg + 4] = true;
356 } else {
357 mrf_used[reg + 1] = true;
358 }
359 }
360 }
361
362 if (inst->mlen > 0) {
363 for (int i = 0; i < implied_mrf_writes(inst); i++) {
364 mrf_used[inst->base_mrf + i] = true;
365 }
366 }
367 }
368
369 for (int i = 0; i < mrf_count; i++) {
370 /* Mark each payload reg node as being allocated to its physical register.
371 *
372 * The alternative would be to have per-physical-register classes, which
373 * would just be silly.
374 */
375 ra_set_node_reg(g, first_mrf_node + i,
376 (GEN7_MRF_HACK_START + i) / reg_width);
377
378 /* Since we don't have any live/dead analysis on the MRFs, just mark all
379 * that are used as conflicting with all virtual GRFs.
380 */
381 if (mrf_used[i]) {
382 for (int j = 0; j < this->virtual_grf_count; j++) {
383 ra_add_node_interference(g, first_mrf_node + i, j);
384 }
385 }
386 }
387 }
388
389 bool
390 fs_visitor::assign_regs()
391 {
392 /* Most of this allocation was written for a reg_width of 1
393 * (dispatch_width == 8). In extending to 16-wide, the code was
394 * left in place and it was converted to have the hardware
395 * registers it's allocating be contiguous physical pairs of regs
396 * for reg_width == 2.
397 */
398 int reg_width = dispatch_width / 8;
399 int hw_reg_mapping[this->virtual_grf_count];
400 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
401 reg_width);
402 int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */
403 calculate_live_intervals();
404
405 int node_count = this->virtual_grf_count;
406 int first_payload_node = node_count;
407 node_count += payload_node_count;
408 int first_mrf_hack_node = node_count;
409 if (intel->gen >= 7)
410 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
411 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs,
412 node_count);
413
414 for (int i = 0; i < this->virtual_grf_count; i++) {
415 int size = this->virtual_grf_sizes[i];
416 int c;
417
418 if (size == 8) {
419 c = 4;
420 } else {
421 assert(size >= 1 &&
422 size <= 4 &&
423 "Register allocation relies on split_virtual_grfs()");
424 c = brw->wm.reg_sets[rsi].classes[size - 1];
425 }
426
427 /* Special case: on pre-GEN6 hardware that supports PLN, the
428 * second operand of a PLN instruction needs to be an
429 * even-numbered register, so we have a special register class
430 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
431 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
432 * second operand of a PLN instruction (since it doesn't support
433 * any other interpolation modes). So all we need to do is find
434 * that register and set it to the appropriate class.
435 */
436 if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 &&
437 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
438 c = brw->wm.reg_sets[rsi].aligned_pairs_class;
439 }
440
441 ra_set_node_class(g, i, c);
442
443 for (int j = 0; j < i; j++) {
444 if (virtual_grf_interferes(i, j)) {
445 ra_add_node_interference(g, i, j);
446 }
447 }
448 }
449
450 setup_payload_interference(g, payload_node_count, first_payload_node);
451 if (intel->gen >= 7)
452 setup_mrf_hack_interference(g, first_mrf_hack_node);
453
454 if (!ra_allocate_no_spills(g)) {
455 /* Failed to allocate registers. Spill a reg, and the caller will
456 * loop back into here to try again.
457 */
458 int reg = choose_spill_reg(g);
459
460 if (reg == -1) {
461 fail("no register to spill\n");
462 } else if (dispatch_width == 16) {
463 fail("Failure to register allocate. Reduce number of live scalar "
464 "values to avoid this.");
465 } else {
466 spill_reg(reg);
467 }
468
469
470 ralloc_free(g);
471
472 return false;
473 }
474
475 /* Get the chosen virtual registers for each node, and map virtual
476 * regs in the register classes back down to real hardware reg
477 * numbers.
478 */
479 this->grf_used = payload_node_count * reg_width;
480 for (int i = 0; i < this->virtual_grf_count; i++) {
481 int reg = ra_get_node_reg(g, i);
482
483 hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
484 this->grf_used = MAX2(this->grf_used,
485 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
486 reg_width);
487 }
488
489 foreach_list(node, &this->instructions) {
490 fs_inst *inst = (fs_inst *)node;
491
492 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
493 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
494 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
495 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
496 }
497
498 ralloc_free(g);
499
500 return true;
501 }
502
503 void
504 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
505 {
506 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
507 unspill_inst->offset = spill_offset;
508 unspill_inst->ir = inst->ir;
509 unspill_inst->annotation = inst->annotation;
510
511 /* Choose a MRF that won't conflict with an MRF that's live across the
512 * spill. Nothing else will make it up to MRF 14/15.
513 */
514 unspill_inst->base_mrf = 14;
515 unspill_inst->mlen = 1; /* header contains offset */
516 inst->insert_before(unspill_inst);
517 }
518
519 int
520 fs_visitor::choose_spill_reg(struct ra_graph *g)
521 {
522 float loop_scale = 1.0;
523 float spill_costs[this->virtual_grf_count];
524 bool no_spill[this->virtual_grf_count];
525
526 for (int i = 0; i < this->virtual_grf_count; i++) {
527 spill_costs[i] = 0.0;
528 no_spill[i] = false;
529 }
530
531 /* Calculate costs for spilling nodes. Call it a cost of 1 per
532 * spill/unspill we'll have to do, and guess that the insides of
533 * loops run 10 times.
534 */
535 foreach_list(node, &this->instructions) {
536 fs_inst *inst = (fs_inst *)node;
537
538 for (unsigned int i = 0; i < 3; i++) {
539 if (inst->src[i].file == GRF) {
540 spill_costs[inst->src[i].reg] += loop_scale;
541
542 /* Register spilling logic assumes full-width registers; smeared
543 * registers have a width of 1 so if we try to spill them we'll
544 * generate invalid assembly. This shouldn't be a problem because
545 * smeared registers are only used as short-term temporaries when
546 * loading pull constants, so spilling them is unlikely to reduce
547 * register pressure anyhow.
548 */
549 if (inst->src[i].smear >= 0) {
550 no_spill[inst->src[i].reg] = true;
551 }
552 }
553 }
554
555 if (inst->dst.file == GRF) {
556 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
557
558 if (inst->dst.smear >= 0) {
559 no_spill[inst->dst.reg] = true;
560 }
561 }
562
563 switch (inst->opcode) {
564
565 case BRW_OPCODE_DO:
566 loop_scale *= 10;
567 break;
568
569 case BRW_OPCODE_WHILE:
570 loop_scale /= 10;
571 break;
572
573 case FS_OPCODE_SPILL:
574 if (inst->src[0].file == GRF)
575 no_spill[inst->src[0].reg] = true;
576 break;
577
578 case FS_OPCODE_UNSPILL:
579 if (inst->dst.file == GRF)
580 no_spill[inst->dst.reg] = true;
581 break;
582
583 default:
584 break;
585 }
586 }
587
588 for (int i = 0; i < this->virtual_grf_count; i++) {
589 if (!no_spill[i])
590 ra_set_node_spill_cost(g, i, spill_costs[i]);
591 }
592
593 return ra_get_best_spill_node(g);
594 }
595
596 void
597 fs_visitor::spill_reg(int spill_reg)
598 {
599 int size = virtual_grf_sizes[spill_reg];
600 unsigned int spill_offset = c->last_scratch;
601 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
602 c->last_scratch += size * REG_SIZE;
603
604 /* Generate spill/unspill instructions for the objects being
605 * spilled. Right now, we spill or unspill the whole thing to a
606 * virtual grf of the same size. For most instructions, though, we
607 * could just spill/unspill the GRF being accessed.
608 */
609 foreach_list(node, &this->instructions) {
610 fs_inst *inst = (fs_inst *)node;
611
612 for (unsigned int i = 0; i < 3; i++) {
613 if (inst->src[i].file == GRF &&
614 inst->src[i].reg == spill_reg) {
615 inst->src[i].reg = virtual_grf_alloc(1);
616 emit_unspill(inst, inst->src[i],
617 spill_offset + REG_SIZE * inst->src[i].reg_offset);
618 }
619 }
620
621 if (inst->dst.file == GRF &&
622 inst->dst.reg == spill_reg) {
623 int subset_spill_offset = (spill_offset +
624 REG_SIZE * inst->dst.reg_offset);
625 inst->dst.reg = virtual_grf_alloc(inst->regs_written);
626 inst->dst.reg_offset = 0;
627
628 /* If our write is going to affect just part of the
629 * inst->regs_written(), then we need to unspill the destination
630 * since we write back out all of the regs_written().
631 */
632 if (inst->predicate || inst->force_uncompressed || inst->force_sechalf) {
633 fs_reg unspill_reg = inst->dst;
634 for (int chan = 0; chan < inst->regs_written; chan++) {
635 emit_unspill(inst, unspill_reg,
636 subset_spill_offset + REG_SIZE * chan);
637 unspill_reg.reg_offset++;
638 }
639 }
640
641 fs_reg spill_src = inst->dst;
642 spill_src.reg_offset = 0;
643 spill_src.abs = false;
644 spill_src.negate = false;
645 spill_src.smear = -1;
646
647 for (int chan = 0; chan < inst->regs_written; chan++) {
648 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
649 reg_null_f, spill_src);
650 spill_src.reg_offset++;
651 spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
652 spill_inst->ir = inst->ir;
653 spill_inst->annotation = inst->annotation;
654 spill_inst->base_mrf = 14;
655 spill_inst->mlen = 2; /* header, value */
656 inst->insert_after(spill_inst);
657 }
658 }
659 }
660
661 this->live_intervals_valid = false;
662 }