i965/fs: Add support for sub-register byte offsets to the FS back-end IR.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31
32 static void
33 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
34 {
35 if (reg->file == GRF) {
36 assert(reg->reg_offset >= 0);
37 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
38 reg->reg_offset = 0;
39 }
40 }
41
42 void
43 fs_visitor::assign_regs_trivial()
44 {
45 int hw_reg_mapping[this->virtual_grf_count + 1];
46 int i;
47 int reg_width = dispatch_width / 8;
48
49 /* Note that compressed instructions require alignment to 2 registers. */
50 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
51 for (i = 1; i <= this->virtual_grf_count; i++) {
52 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
53 this->virtual_grf_sizes[i - 1] * reg_width);
54 }
55 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
56
57 foreach_list(node, &this->instructions) {
58 fs_inst *inst = (fs_inst *)node;
59
60 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
61 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
62 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
63 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
64 }
65
66 if (this->grf_used >= max_grf) {
67 fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 this->grf_used, max_grf);
69 }
70
71 }
72
73 static void
74 brw_alloc_reg_set(struct brw_context *brw, int reg_width)
75 {
76 int base_reg_count = BRW_MAX_GRF / reg_width;
77 int index = reg_width - 1;
78
79 /* The registers used to make up almost all values handled in the compiler
80 * are a scalar value occupying a single register (or 2 registers in the
81 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
82 * multiplying allocated register numbers by 2). Things that were
83 * aggregates of scalar values at the GLSL level were split to scalar
84 * values by split_virtual_grfs().
85 *
86 * However, texture SEND messages return a series of contiguous registers
87 * to write into. We currently always ask for 4 registers, but we may
88 * convert that to use less some day.
89 *
90 * Additionally, on gen5 we need aligned pairs of registers for the PLN
91 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
92 * texturing.
93 *
94 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
95 * and we add in '3' to make indexing the array easier for the common case
96 * (since we'll probably want it for texturing later).
97 *
98 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
99 * means that we may need any size up to the sampler message size limit (11
100 * regs).
101 */
102 int class_count;
103 int class_sizes[BRW_MAX_MRF];
104
105 if (brw->gen >= 7) {
106 for (class_count = 0; class_count < MAX_SAMPLER_MESSAGE_SIZE;
107 class_count++)
108 class_sizes[class_count] = class_count + 1;
109 } else {
110 for (class_count = 0; class_count < 4; class_count++)
111 class_sizes[class_count] = class_count + 1;
112 class_sizes[class_count++] = 8;
113 }
114
115 /* Compute the total number of registers across all classes. */
116 int ra_reg_count = 0;
117 for (int i = 0; i < class_count; i++) {
118 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
119 }
120
121 uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
122 struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count);
123 if (brw->gen >= 6)
124 ra_set_allocate_round_robin(regs);
125 int *classes = ralloc_array(brw, int, class_count);
126 int aligned_pairs_class = -1;
127
128 /* Now, add the registers to their classes, and add the conflicts
129 * between them and the base GRF registers (and also each other).
130 */
131 int reg = 0;
132 int pairs_base_reg = 0;
133 int pairs_reg_count = 0;
134 for (int i = 0; i < class_count; i++) {
135 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
136 classes[i] = ra_alloc_reg_class(regs);
137
138 /* Save this off for the aligned pair class at the end. */
139 if (class_sizes[i] == 2) {
140 pairs_base_reg = reg;
141 pairs_reg_count = class_reg_count;
142 }
143
144 for (int j = 0; j < class_reg_count; j++) {
145 ra_class_add_reg(regs, classes[i], reg);
146
147 ra_reg_to_grf[reg] = j;
148
149 for (int base_reg = j;
150 base_reg < j + class_sizes[i];
151 base_reg++) {
152 ra_add_transitive_reg_conflict(regs, base_reg, reg);
153 }
154
155 reg++;
156 }
157 }
158 assert(reg == ra_reg_count);
159
160 /* Add a special class for aligned pairs, which we'll put delta_x/y
161 * in on gen5 so that we can do PLN.
162 */
163 if (brw->has_pln && reg_width == 1 && brw->gen < 6) {
164 aligned_pairs_class = ra_alloc_reg_class(regs);
165
166 for (int i = 0; i < pairs_reg_count; i++) {
167 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
168 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
169 }
170 }
171 }
172
173 ra_set_finalize(regs, NULL);
174
175 brw->wm.reg_sets[index].regs = regs;
176 for (unsigned i = 0; i < ARRAY_SIZE(brw->wm.reg_sets[index].classes); i++)
177 brw->wm.reg_sets[index].classes[i] = -1;
178 for (int i = 0; i < class_count; i++)
179 brw->wm.reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
180 brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
181 brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class;
182 }
183
184 void
185 brw_fs_alloc_reg_sets(struct brw_context *brw)
186 {
187 brw_alloc_reg_set(brw, 1);
188 brw_alloc_reg_set(brw, 2);
189 }
190
191 int
192 count_to_loop_end(fs_inst *do_inst)
193 {
194 int depth = 1;
195 int ip = 1;
196 for (fs_inst *inst = (fs_inst *)do_inst->next;
197 depth > 0;
198 inst = (fs_inst *)inst->next) {
199 switch (inst->opcode) {
200 case BRW_OPCODE_DO:
201 depth++;
202 break;
203 case BRW_OPCODE_WHILE:
204 depth--;
205 break;
206 default:
207 break;
208 }
209 ip++;
210 }
211 return ip;
212 }
213
214 /**
215 * Sets up interference between thread payload registers and the virtual GRFs
216 * to be allocated for program temporaries.
217 *
218 * We want to be able to reallocate the payload for our virtual GRFs, notably
219 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
220 * our 128 registers.
221 *
222 * The layout of the payload registers is:
223 *
224 * 0..nr_payload_regs-1: fixed function setup (including bary coordinates).
225 * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data
226 * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
227 *
228 * And we have payload_node_count nodes covering these registers in order
229 * (note that in SIMD16, a node is two registers).
230 */
231 void
232 fs_visitor::setup_payload_interference(struct ra_graph *g,
233 int payload_node_count,
234 int first_payload_node)
235 {
236 int reg_width = dispatch_width / 8;
237 int loop_depth = 0;
238 int loop_end_ip = 0;
239
240 int payload_last_use_ip[payload_node_count];
241 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
242 int ip = 0;
243 foreach_list(node, &this->instructions) {
244 fs_inst *inst = (fs_inst *)node;
245
246 switch (inst->opcode) {
247 case BRW_OPCODE_DO:
248 loop_depth++;
249
250 /* Since payload regs are deffed only at the start of the shader
251 * execution, any uses of the payload within a loop mean the live
252 * interval extends to the end of the outermost loop. Find the ip of
253 * the end now.
254 */
255 if (loop_depth == 1)
256 loop_end_ip = ip + count_to_loop_end(inst);
257 break;
258 case BRW_OPCODE_WHILE:
259 loop_depth--;
260 break;
261 default:
262 break;
263 }
264
265 int use_ip;
266 if (loop_depth > 0)
267 use_ip = loop_end_ip;
268 else
269 use_ip = ip;
270
271 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
272 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
273 * the start (see interp_reg()).
274 */
275 for (int i = 0; i < 3; i++) {
276 if (inst->src[i].file == HW_REG &&
277 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
278 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
279 if (node_nr >= payload_node_count)
280 continue;
281
282 payload_last_use_ip[node_nr] = use_ip;
283 }
284 }
285
286 /* Special case instructions which have extra implied registers used. */
287 switch (inst->opcode) {
288 case FS_OPCODE_FB_WRITE:
289 /* We could omit this for the !inst->header_present case, except that
290 * the simulator apparently incorrectly reads from g0/g1 instead of
291 * sideband. It also really freaks out driver developers to see g0
292 * used in unusual places, so just always reserve it.
293 */
294 payload_last_use_ip[0 / reg_width] = use_ip;
295 payload_last_use_ip[1 / reg_width] = use_ip;
296 break;
297
298 case FS_OPCODE_LINTERP:
299 /* On gen6+ in SIMD16, there are 4 adjacent registers (so 2 nodes)
300 * used by PLN's sourcing of the deltas, while we list only the first
301 * two in the arguments (1 node). Pre-gen6, the deltas are computed
302 * in normal VGRFs.
303 */
304 if (brw->gen >= 6) {
305 int delta_x_arg = 0;
306 if (inst->src[delta_x_arg].file == HW_REG &&
307 inst->src[delta_x_arg].fixed_hw_reg.file ==
308 BRW_GENERAL_REGISTER_FILE) {
309 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
310 reg_width) + 1;
311 assert(sechalf_node < payload_node_count);
312 payload_last_use_ip[sechalf_node] = use_ip;
313 }
314 }
315 break;
316
317 default:
318 break;
319 }
320
321 ip++;
322 }
323
324 for (int i = 0; i < payload_node_count; i++) {
325 /* Mark the payload node as interfering with any virtual grf that is
326 * live between the start of the program and our last use of the payload
327 * node.
328 */
329 for (int j = 0; j < this->virtual_grf_count; j++) {
330 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
331 * in order to not have to worry about the uniform issue described in
332 * calculate_live_intervals().
333 */
334 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
335 ra_add_node_interference(g, first_payload_node + i, j);
336 }
337 }
338 }
339
340 for (int i = 0; i < payload_node_count; i++) {
341 /* Mark each payload node as being allocated to its physical register.
342 *
343 * The alternative would be to have per-physical-register classes, which
344 * would just be silly.
345 */
346 ra_set_node_reg(g, first_payload_node + i, i);
347 }
348 }
349
350 /**
351 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
352 *
353 * This is used in assign_regs() to decide which of the GRFs that we use as
354 * MRFs on gen7 get normally register allocated, and in register spilling to
355 * see if we can actually use MRFs to do spills without overwriting normal MRF
356 * contents.
357 */
358 void
359 fs_visitor::get_used_mrfs(bool *mrf_used)
360 {
361 int reg_width = dispatch_width / 8;
362
363 memset(mrf_used, 0, BRW_MAX_MRF * sizeof(bool));
364
365 foreach_list(node, &this->instructions) {
366 fs_inst *inst = (fs_inst *)node;
367
368 if (inst->dst.file == MRF) {
369 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
370 mrf_used[reg] = true;
371 if (reg_width == 2) {
372 if (inst->dst.reg & BRW_MRF_COMPR4) {
373 mrf_used[reg + 4] = true;
374 } else {
375 mrf_used[reg + 1] = true;
376 }
377 }
378 }
379
380 if (inst->mlen > 0) {
381 for (int i = 0; i < implied_mrf_writes(inst); i++) {
382 mrf_used[inst->base_mrf + i] = true;
383 }
384 }
385 }
386 }
387
388 /**
389 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
390 * messages (treated as MRFs in code generation).
391 */
392 void
393 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
394 {
395 int reg_width = dispatch_width / 8;
396
397 bool mrf_used[BRW_MAX_MRF];
398 get_used_mrfs(mrf_used);
399
400 for (int i = 0; i < BRW_MAX_MRF; i++) {
401 /* Mark each MRF reg node as being allocated to its physical register.
402 *
403 * The alternative would be to have per-physical-register classes, which
404 * would just be silly.
405 */
406 ra_set_node_reg(g, first_mrf_node + i,
407 (GEN7_MRF_HACK_START + i) / reg_width);
408
409 /* Since we don't have any live/dead analysis on the MRFs, just mark all
410 * that are used as conflicting with all virtual GRFs.
411 */
412 if (mrf_used[i]) {
413 for (int j = 0; j < this->virtual_grf_count; j++) {
414 ra_add_node_interference(g, first_mrf_node + i, j);
415 }
416 }
417 }
418 }
419
420 bool
421 fs_visitor::assign_regs(bool allow_spilling)
422 {
423 /* Most of this allocation was written for a reg_width of 1
424 * (dispatch_width == 8). In extending to SIMD16, the code was
425 * left in place and it was converted to have the hardware
426 * registers it's allocating be contiguous physical pairs of regs
427 * for reg_width == 2.
428 */
429 int reg_width = dispatch_width / 8;
430 int hw_reg_mapping[this->virtual_grf_count];
431 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
432 reg_width);
433 int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */
434 calculate_live_intervals();
435
436 int node_count = this->virtual_grf_count;
437 int first_payload_node = node_count;
438 node_count += payload_node_count;
439 int first_mrf_hack_node = node_count;
440 if (brw->gen >= 7)
441 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
442 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs,
443 node_count);
444
445 for (int i = 0; i < this->virtual_grf_count; i++) {
446 unsigned size = this->virtual_grf_sizes[i];
447 int c;
448
449 assert(size <= ARRAY_SIZE(brw->wm.reg_sets[rsi].classes) &&
450 "Register allocation relies on split_virtual_grfs()");
451 c = brw->wm.reg_sets[rsi].classes[size - 1];
452
453 /* Special case: on pre-GEN6 hardware that supports PLN, the
454 * second operand of a PLN instruction needs to be an
455 * even-numbered register, so we have a special register class
456 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
457 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
458 * second operand of a PLN instruction (since it doesn't support
459 * any other interpolation modes). So all we need to do is find
460 * that register and set it to the appropriate class.
461 */
462 if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 &&
463 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
464 c = brw->wm.reg_sets[rsi].aligned_pairs_class;
465 }
466
467 ra_set_node_class(g, i, c);
468
469 for (int j = 0; j < i; j++) {
470 if (virtual_grf_interferes(i, j)) {
471 ra_add_node_interference(g, i, j);
472 }
473 }
474 }
475
476 setup_payload_interference(g, payload_node_count, first_payload_node);
477 if (brw->gen >= 7)
478 setup_mrf_hack_interference(g, first_mrf_hack_node);
479
480 /* Debug of register spilling: Go spill everything. */
481 if (0) {
482 int reg = choose_spill_reg(g);
483
484 if (reg != -1) {
485 spill_reg(reg);
486 ralloc_free(g);
487 return false;
488 }
489 }
490
491 if (!ra_allocate_no_spills(g)) {
492 /* Failed to allocate registers. Spill a reg, and the caller will
493 * loop back into here to try again.
494 */
495 int reg = choose_spill_reg(g);
496
497 if (reg == -1) {
498 fail("no register to spill:\n");
499 dump_instructions();
500 } else if (allow_spilling) {
501 spill_reg(reg);
502 }
503
504 ralloc_free(g);
505
506 return false;
507 }
508
509 /* Get the chosen virtual registers for each node, and map virtual
510 * regs in the register classes back down to real hardware reg
511 * numbers.
512 */
513 this->grf_used = payload_node_count * reg_width;
514 for (int i = 0; i < this->virtual_grf_count; i++) {
515 int reg = ra_get_node_reg(g, i);
516
517 hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
518 this->grf_used = MAX2(this->grf_used,
519 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
520 reg_width);
521 }
522
523 foreach_list(node, &this->instructions) {
524 fs_inst *inst = (fs_inst *)node;
525
526 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
527 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
528 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
529 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
530 }
531
532 ralloc_free(g);
533
534 return true;
535 }
536
537 void
538 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset,
539 int count)
540 {
541 for (int i = 0; i < count; i++) {
542 /* The gen7 descriptor-based offset is 12 bits of HWORD units. */
543 bool gen7_read = brw->gen >= 7 && spill_offset < (1 << 12) * REG_SIZE;
544
545 fs_inst *unspill_inst =
546 new(mem_ctx) fs_inst(gen7_read ?
547 SHADER_OPCODE_GEN7_SCRATCH_READ :
548 SHADER_OPCODE_GEN4_SCRATCH_READ,
549 dst);
550 unspill_inst->offset = spill_offset;
551 unspill_inst->ir = inst->ir;
552 unspill_inst->annotation = inst->annotation;
553
554 if (!gen7_read) {
555 unspill_inst->base_mrf = 14;
556 unspill_inst->mlen = 1; /* header contains offset */
557 }
558 inst->insert_before(unspill_inst);
559
560 dst.reg_offset++;
561 spill_offset += dispatch_width * sizeof(float);
562 }
563 }
564
565 int
566 fs_visitor::choose_spill_reg(struct ra_graph *g)
567 {
568 float loop_scale = 1.0;
569 float spill_costs[this->virtual_grf_count];
570 bool no_spill[this->virtual_grf_count];
571
572 for (int i = 0; i < this->virtual_grf_count; i++) {
573 spill_costs[i] = 0.0;
574 no_spill[i] = false;
575 }
576
577 /* Calculate costs for spilling nodes. Call it a cost of 1 per
578 * spill/unspill we'll have to do, and guess that the insides of
579 * loops run 10 times.
580 */
581 foreach_list(node, &this->instructions) {
582 fs_inst *inst = (fs_inst *)node;
583
584 for (unsigned int i = 0; i < 3; i++) {
585 if (inst->src[i].file == GRF) {
586 spill_costs[inst->src[i].reg] += loop_scale;
587
588 /* Register spilling logic assumes full-width registers; smeared
589 * registers have a width of 1 so if we try to spill them we'll
590 * generate invalid assembly. This shouldn't be a problem because
591 * smeared registers are only used as short-term temporaries when
592 * loading pull constants, so spilling them is unlikely to reduce
593 * register pressure anyhow.
594 */
595 if (inst->src[i].smear >= 0) {
596 no_spill[inst->src[i].reg] = true;
597 }
598 }
599 }
600
601 if (inst->dst.file == GRF) {
602 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
603
604 if (inst->dst.smear >= 0) {
605 no_spill[inst->dst.reg] = true;
606 }
607 }
608
609 switch (inst->opcode) {
610
611 case BRW_OPCODE_DO:
612 loop_scale *= 10;
613 break;
614
615 case BRW_OPCODE_WHILE:
616 loop_scale /= 10;
617 break;
618
619 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
620 if (inst->src[0].file == GRF)
621 no_spill[inst->src[0].reg] = true;
622 break;
623
624 case SHADER_OPCODE_GEN4_SCRATCH_READ:
625 case SHADER_OPCODE_GEN7_SCRATCH_READ:
626 if (inst->dst.file == GRF)
627 no_spill[inst->dst.reg] = true;
628 break;
629
630 default:
631 break;
632 }
633 }
634
635 for (int i = 0; i < this->virtual_grf_count; i++) {
636 if (!no_spill[i])
637 ra_set_node_spill_cost(g, i, spill_costs[i]);
638 }
639
640 return ra_get_best_spill_node(g);
641 }
642
643 void
644 fs_visitor::spill_reg(int spill_reg)
645 {
646 int reg_size = dispatch_width * sizeof(float);
647 int size = virtual_grf_sizes[spill_reg];
648 unsigned int spill_offset = c->last_scratch;
649 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
650 int spill_base_mrf = dispatch_width > 8 ? 13 : 14;
651
652 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
653 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
654 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
655 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
656 * depth), starting from m1. In summary: We may not be able to spill in
657 * SIMD16 mode, because we'd stomp the FB writes.
658 */
659 if (!spilled_any_registers) {
660 bool mrf_used[BRW_MAX_MRF];
661 get_used_mrfs(mrf_used);
662
663 for (int i = spill_base_mrf; i < BRW_MAX_MRF; i++) {
664 if (mrf_used[i]) {
665 fail("Register spilling not supported with m%d used", i);
666 return;
667 }
668 }
669
670 spilled_any_registers = true;
671 }
672
673 c->last_scratch += size * reg_size;
674
675 /* Generate spill/unspill instructions for the objects being
676 * spilled. Right now, we spill or unspill the whole thing to a
677 * virtual grf of the same size. For most instructions, though, we
678 * could just spill/unspill the GRF being accessed.
679 */
680 foreach_list(node, &this->instructions) {
681 fs_inst *inst = (fs_inst *)node;
682
683 for (unsigned int i = 0; i < 3; i++) {
684 if (inst->src[i].file == GRF &&
685 inst->src[i].reg == spill_reg) {
686 int regs_read = inst->regs_read(this, i);
687 int subset_spill_offset = (spill_offset +
688 reg_size * inst->src[i].reg_offset);
689 fs_reg unspill_dst(GRF, virtual_grf_alloc(regs_read));
690
691 inst->src[i].reg = unspill_dst.reg;
692 inst->src[i].reg_offset = 0;
693
694 emit_unspill(inst, unspill_dst, subset_spill_offset, regs_read);
695 }
696 }
697
698 if (inst->dst.file == GRF &&
699 inst->dst.reg == spill_reg) {
700 int subset_spill_offset = (spill_offset +
701 reg_size * inst->dst.reg_offset);
702 fs_reg spill_src(GRF, virtual_grf_alloc(inst->regs_written));
703
704 inst->dst.reg = spill_src.reg;
705 inst->dst.reg_offset = 0;
706
707 /* If our write is going to affect just part of the
708 * inst->regs_written(), then we need to unspill the destination
709 * since we write back out all of the regs_written().
710 */
711 if (inst->predicate || inst->force_uncompressed ||
712 inst->force_sechalf || inst->dst.subreg_offset) {
713 emit_unspill(inst, spill_src, subset_spill_offset,
714 inst->regs_written);
715 }
716
717 for (int chan = 0; chan < inst->regs_written; chan++) {
718 fs_inst *spill_inst =
719 new(mem_ctx) fs_inst(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
720 reg_null_f, spill_src);
721 spill_src.reg_offset++;
722 spill_inst->offset = subset_spill_offset + chan * reg_size;
723 spill_inst->ir = inst->ir;
724 spill_inst->annotation = inst->annotation;
725 spill_inst->mlen = 1 + dispatch_width / 8; /* header, value */
726 spill_inst->base_mrf = spill_base_mrf;
727 inst->insert_after(spill_inst);
728 }
729 }
730 }
731
732 invalidate_live_intervals();
733 }