Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_cfg.h"
31 #include "util/register_allocate.h"
32
33 using namespace brw;
34
35 static void
36 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
37 {
38 if (reg->file == VGRF) {
39 reg->nr = reg_hw_locations[reg->nr] + reg->reg_offset;
40 reg->reg_offset = 0;
41 }
42 }
43
44 void
45 fs_visitor::assign_regs_trivial()
46 {
47 unsigned hw_reg_mapping[this->alloc.count + 1];
48 unsigned i;
49 int reg_width = dispatch_width / 8;
50
51 /* Note that compressed instructions require alignment to 2 registers. */
52 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
53 for (i = 1; i <= this->alloc.count; i++) {
54 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
55 this->alloc.sizes[i - 1]);
56 }
57 this->grf_used = hw_reg_mapping[this->alloc.count];
58
59 foreach_block_and_inst(block, fs_inst, inst, cfg) {
60 assign_reg(hw_reg_mapping, &inst->dst);
61 for (i = 0; i < inst->sources; i++) {
62 assign_reg(hw_reg_mapping, &inst->src[i]);
63 }
64 }
65
66 if (this->grf_used >= max_grf) {
67 fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 this->grf_used, max_grf);
69 } else {
70 this->alloc.count = this->grf_used;
71 }
72
73 }
74
75 static void
76 brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
77 {
78 const struct brw_device_info *devinfo = compiler->devinfo;
79 int base_reg_count = BRW_MAX_GRF;
80 int index = (dispatch_width / 8) - 1;
81
82 if (dispatch_width > 8 && devinfo->gen >= 7) {
83 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
84 * SIMD16. Therefore, we can use the exact same register sets for
85 * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
86 */
87 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
88 return;
89 }
90
91 /* The registers used to make up almost all values handled in the compiler
92 * are a scalar value occupying a single register (or 2 registers in the
93 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
94 * multiplying allocated register numbers by 2). Things that were
95 * aggregates of scalar values at the GLSL level were split to scalar
96 * values by split_virtual_grfs().
97 *
98 * However, texture SEND messages return a series of contiguous registers
99 * to write into. We currently always ask for 4 registers, but we may
100 * convert that to use less some day.
101 *
102 * Additionally, on gen5 we need aligned pairs of registers for the PLN
103 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
104 * texturing.
105 *
106 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
107 * and we add in '3' to make indexing the array easier for the common case
108 * (since we'll probably want it for texturing later).
109 *
110 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
111 * means that we may need any size up to the sampler message size limit (11
112 * regs).
113 */
114 int class_count;
115 int class_sizes[MAX_VGRF_SIZE];
116
117 if (devinfo->gen >= 7) {
118 for (class_count = 0; class_count < MAX_VGRF_SIZE; class_count++)
119 class_sizes[class_count] = class_count + 1;
120 } else {
121 for (class_count = 0; class_count < 4; class_count++)
122 class_sizes[class_count] = class_count + 1;
123 class_sizes[class_count++] = 8;
124 }
125
126 memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
127 sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
128 int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
129
130 /* Compute the total number of registers across all classes. */
131 int ra_reg_count = 0;
132 for (int i = 0; i < class_count; i++) {
133 if (devinfo->gen <= 5 && dispatch_width == 16) {
134 /* From the G45 PRM:
135 *
136 * In order to reduce the hardware complexity, the following
137 * rules and restrictions apply to the compressed instruction:
138 * ...
139 * * Operand Alignment Rule: With the exceptions listed below, a
140 * source/destination operand in general should be aligned to
141 * even 256-bit physical register with a region size equal to
142 * two 256-bit physical register
143 */
144 ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
145 } else {
146 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
147 }
148 /* Mark the last register. We'll fill in the beginnings later. */
149 class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
150 }
151
152 /* Fill out the rest of the range markers */
153 for (int i = 1; i < 17; ++i) {
154 if (class_to_ra_reg_range[i] == 0)
155 class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
156 }
157
158 uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
159 struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
160 if (devinfo->gen >= 6)
161 ra_set_allocate_round_robin(regs);
162 int *classes = ralloc_array(compiler, int, class_count);
163 int aligned_pairs_class = -1;
164
165 /* Allocate space for q values. We allocate class_count + 1 because we
166 * want to leave room for the aligned pairs class if we have it. */
167 unsigned int **q_values = ralloc_array(compiler, unsigned int *,
168 class_count + 1);
169 for (int i = 0; i < class_count + 1; ++i)
170 q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
171
172 /* Now, add the registers to their classes, and add the conflicts
173 * between them and the base GRF registers (and also each other).
174 */
175 int reg = 0;
176 int pairs_base_reg = 0;
177 int pairs_reg_count = 0;
178 for (int i = 0; i < class_count; i++) {
179 int class_reg_count;
180 if (devinfo->gen <= 5 && dispatch_width == 16) {
181 class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
182
183 /* See comment below. The only difference here is that we are
184 * dealing with pairs of registers instead of single registers.
185 * Registers of odd sizes simply get rounded up. */
186 for (int j = 0; j < class_count; j++)
187 q_values[i][j] = (class_sizes[i] + 1) / 2 +
188 (class_sizes[j] + 1) / 2 - 1;
189 } else {
190 class_reg_count = base_reg_count - (class_sizes[i] - 1);
191
192 /* From register_allocate.c:
193 *
194 * q(B,C) (indexed by C, B is this register class) in
195 * Runeson/Nyström paper. This is "how many registers of B could
196 * the worst choice register from C conflict with".
197 *
198 * If we just let the register allocation algorithm compute these
199 * values, is extremely expensive. However, since all of our
200 * registers are laid out, we can very easily compute them
201 * ourselves. View the register from C as fixed starting at GRF n
202 * somwhere in the middle, and the register from B as sliding back
203 * and forth. Then the first register to conflict from B is the
204 * one starting at n - class_size[B] + 1 and the last register to
205 * conflict will start at n + class_size[B] - 1. Therefore, the
206 * number of conflicts from B is class_size[B] + class_size[C] - 1.
207 *
208 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
209 * B | | | | | |n| --> | | | | | | |
210 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
211 * +-+-+-+-+-+
212 * C |n| | | | |
213 * +-+-+-+-+-+
214 */
215 for (int j = 0; j < class_count; j++)
216 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
217 }
218 classes[i] = ra_alloc_reg_class(regs);
219
220 /* Save this off for the aligned pair class at the end. */
221 if (class_sizes[i] == 2) {
222 pairs_base_reg = reg;
223 pairs_reg_count = class_reg_count;
224 }
225
226 if (devinfo->gen <= 5 && dispatch_width == 16) {
227 for (int j = 0; j < class_reg_count; j++) {
228 ra_class_add_reg(regs, classes[i], reg);
229
230 ra_reg_to_grf[reg] = j * 2;
231
232 for (int base_reg = j;
233 base_reg < j + (class_sizes[i] + 1) / 2;
234 base_reg++) {
235 ra_add_reg_conflict(regs, base_reg, reg);
236 }
237
238 reg++;
239 }
240 } else {
241 for (int j = 0; j < class_reg_count; j++) {
242 ra_class_add_reg(regs, classes[i], reg);
243
244 ra_reg_to_grf[reg] = j;
245
246 for (int base_reg = j;
247 base_reg < j + class_sizes[i];
248 base_reg++) {
249 ra_add_reg_conflict(regs, base_reg, reg);
250 }
251
252 reg++;
253 }
254 }
255 }
256 assert(reg == ra_reg_count);
257
258 /* Applying transitivity to all of the base registers gives us the
259 * appropreate register conflict relationships everywhere.
260 */
261 for (int reg = 0; reg < base_reg_count; reg++)
262 ra_make_reg_conflicts_transitive(regs, reg);
263
264 /* Add a special class for aligned pairs, which we'll put delta_xy
265 * in on Gen <= 6 so that we can do PLN.
266 */
267 if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) {
268 aligned_pairs_class = ra_alloc_reg_class(regs);
269
270 for (int i = 0; i < pairs_reg_count; i++) {
271 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
272 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
273 }
274 }
275
276 for (int i = 0; i < class_count; i++) {
277 /* These are a little counter-intuitive because the pair registers
278 * are required to be aligned while the register they are
279 * potentially interferring with are not. In the case where the
280 * size is even, the worst-case is that the register is
281 * odd-aligned. In the odd-size case, it doesn't matter.
282 */
283 q_values[class_count][i] = class_sizes[i] / 2 + 1;
284 q_values[i][class_count] = class_sizes[i] + 1;
285 }
286 q_values[class_count][class_count] = 1;
287 }
288
289 ra_set_finalize(regs, q_values);
290
291 ralloc_free(q_values);
292
293 compiler->fs_reg_sets[index].regs = regs;
294 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
295 compiler->fs_reg_sets[index].classes[i] = -1;
296 for (int i = 0; i < class_count; i++)
297 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
298 compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
299 compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
300 }
301
302 void
303 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
304 {
305 brw_alloc_reg_set(compiler, 8);
306 brw_alloc_reg_set(compiler, 16);
307 }
308
309 static int
310 count_to_loop_end(const bblock_t *block)
311 {
312 if (block->end()->opcode == BRW_OPCODE_WHILE)
313 return block->end_ip;
314
315 int depth = 1;
316 /* Skip the first block, since we don't want to count the do the calling
317 * function found.
318 */
319 for (block = block->next();
320 depth > 0;
321 block = block->next()) {
322 if (block->start()->opcode == BRW_OPCODE_DO)
323 depth++;
324 if (block->end()->opcode == BRW_OPCODE_WHILE) {
325 depth--;
326 if (depth == 0)
327 return block->end_ip;
328 }
329 }
330 unreachable("not reached");
331 }
332
333 void fs_visitor::calculate_payload_ranges(int payload_node_count,
334 int *payload_last_use_ip)
335 {
336 int loop_depth = 0;
337 int loop_end_ip = 0;
338
339 for (int i = 0; i < payload_node_count; i++)
340 payload_last_use_ip[i] = -1;
341
342 int ip = 0;
343 foreach_block_and_inst(block, fs_inst, inst, cfg) {
344 switch (inst->opcode) {
345 case BRW_OPCODE_DO:
346 loop_depth++;
347
348 /* Since payload regs are deffed only at the start of the shader
349 * execution, any uses of the payload within a loop mean the live
350 * interval extends to the end of the outermost loop. Find the ip of
351 * the end now.
352 */
353 if (loop_depth == 1)
354 loop_end_ip = count_to_loop_end(block);
355 break;
356 case BRW_OPCODE_WHILE:
357 loop_depth--;
358 break;
359 default:
360 break;
361 }
362
363 int use_ip;
364 if (loop_depth > 0)
365 use_ip = loop_end_ip;
366 else
367 use_ip = ip;
368
369 /* Note that UNIFORM args have been turned into FIXED_GRF by
370 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
371 * the start (see interp_reg()).
372 */
373 for (int i = 0; i < inst->sources; i++) {
374 if (inst->src[i].file == FIXED_GRF) {
375 int node_nr = inst->src[i].nr;
376 if (node_nr >= payload_node_count)
377 continue;
378
379 for (int j = 0; j < inst->regs_read(i); j++) {
380 payload_last_use_ip[node_nr + j] = use_ip;
381 assert(node_nr + j < payload_node_count);
382 }
383 }
384 }
385
386 /* Special case instructions which have extra implied registers used. */
387 switch (inst->opcode) {
388 case CS_OPCODE_CS_TERMINATE:
389 payload_last_use_ip[0] = use_ip;
390 break;
391
392 default:
393 if (inst->eot) {
394 /* We could omit this for the !inst->header_present case, except
395 * that the simulator apparently incorrectly reads from g0/g1
396 * instead of sideband. It also really freaks out driver
397 * developers to see g0 used in unusual places, so just always
398 * reserve it.
399 */
400 payload_last_use_ip[0] = use_ip;
401 payload_last_use_ip[1] = use_ip;
402 }
403 break;
404 }
405
406 ip++;
407 }
408 }
409
410
411 /**
412 * Sets up interference between thread payload registers and the virtual GRFs
413 * to be allocated for program temporaries.
414 *
415 * We want to be able to reallocate the payload for our virtual GRFs, notably
416 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
417 * our 128 registers.
418 *
419 * The layout of the payload registers is:
420 *
421 * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
422 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
423 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
424 *
425 * And we have payload_node_count nodes covering these registers in order
426 * (note that in SIMD16, a node is two registers).
427 */
428 void
429 fs_visitor::setup_payload_interference(struct ra_graph *g,
430 int payload_node_count,
431 int first_payload_node)
432 {
433 int payload_last_use_ip[payload_node_count];
434 calculate_payload_ranges(payload_node_count, payload_last_use_ip);
435
436 for (int i = 0; i < payload_node_count; i++) {
437 if (payload_last_use_ip[i] == -1)
438 continue;
439
440 /* Mark the payload node as interfering with any virtual grf that is
441 * live between the start of the program and our last use of the payload
442 * node.
443 */
444 for (unsigned j = 0; j < this->alloc.count; j++) {
445 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
446 * in order to not have to worry about the uniform issue described in
447 * calculate_live_intervals().
448 */
449 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
450 ra_add_node_interference(g, first_payload_node + i, j);
451 }
452 }
453 }
454
455 for (int i = 0; i < payload_node_count; i++) {
456 /* Mark each payload node as being allocated to its physical register.
457 *
458 * The alternative would be to have per-physical-register classes, which
459 * would just be silly.
460 */
461 if (devinfo->gen <= 5 && dispatch_width == 16) {
462 /* We have to divide by 2 here because we only have even numbered
463 * registers. Some of the payload registers will be odd, but
464 * that's ok because their physical register numbers have already
465 * been assigned. The only thing this is used for is interference.
466 */
467 ra_set_node_reg(g, first_payload_node + i, i / 2);
468 } else {
469 ra_set_node_reg(g, first_payload_node + i, i);
470 }
471 }
472 }
473
474 /**
475 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
476 *
477 * This is used in assign_regs() to decide which of the GRFs that we use as
478 * MRFs on gen7 get normally register allocated, and in register spilling to
479 * see if we can actually use MRFs to do spills without overwriting normal MRF
480 * contents.
481 */
482 static void
483 get_used_mrfs(fs_visitor *v, bool *mrf_used)
484 {
485 int reg_width = v->dispatch_width / 8;
486
487 memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));
488
489 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
490 if (inst->dst.file == MRF) {
491 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
492 mrf_used[reg] = true;
493 if (reg_width == 2) {
494 if (inst->dst.nr & BRW_MRF_COMPR4) {
495 mrf_used[reg + 4] = true;
496 } else {
497 mrf_used[reg + 1] = true;
498 }
499 }
500 }
501
502 if (inst->mlen > 0) {
503 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
504 mrf_used[inst->base_mrf + i] = true;
505 }
506 }
507 }
508 }
509
510 /**
511 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
512 * messages (treated as MRFs in code generation).
513 */
514 static void
515 setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g,
516 int first_mrf_node, int *first_used_mrf)
517 {
518 bool mrf_used[BRW_MAX_MRF(v->devinfo->gen)];
519 get_used_mrfs(v, mrf_used);
520
521 *first_used_mrf = BRW_MAX_MRF(v->devinfo->gen);
522 for (int i = 0; i < BRW_MAX_MRF(v->devinfo->gen); i++) {
523 /* Mark each MRF reg node as being allocated to its physical register.
524 *
525 * The alternative would be to have per-physical-register classes, which
526 * would just be silly.
527 */
528 ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i);
529
530 /* Since we don't have any live/dead analysis on the MRFs, just mark all
531 * that are used as conflicting with all virtual GRFs.
532 */
533 if (mrf_used[i]) {
534 if (i < *first_used_mrf)
535 *first_used_mrf = i;
536
537 for (unsigned j = 0; j < v->alloc.count; j++) {
538 ra_add_node_interference(g, first_mrf_node + i, j);
539 }
540 }
541 }
542 }
543
544 bool
545 fs_visitor::assign_regs(bool allow_spilling)
546 {
547 /* Most of this allocation was written for a reg_width of 1
548 * (dispatch_width == 8). In extending to SIMD16, the code was
549 * left in place and it was converted to have the hardware
550 * registers it's allocating be contiguous physical pairs of regs
551 * for reg_width == 2.
552 */
553 int reg_width = dispatch_width / 8;
554 unsigned hw_reg_mapping[this->alloc.count];
555 int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width);
556 int rsi = reg_width - 1; /* Which compiler->fs_reg_sets[] to use */
557 calculate_live_intervals();
558
559 int node_count = this->alloc.count;
560 int first_payload_node = node_count;
561 node_count += payload_node_count;
562 int first_mrf_hack_node = node_count;
563 if (devinfo->gen >= 7)
564 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
565 struct ra_graph *g =
566 ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
567
568 for (unsigned i = 0; i < this->alloc.count; i++) {
569 unsigned size = this->alloc.sizes[i];
570 int c;
571
572 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
573 "Register allocation relies on split_virtual_grfs()");
574 c = compiler->fs_reg_sets[rsi].classes[size - 1];
575
576 /* Special case: on pre-GEN6 hardware that supports PLN, the
577 * second operand of a PLN instruction needs to be an
578 * even-numbered register, so we have a special register class
579 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
580 * uses this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
581 * second operand of a PLN instruction (since it doesn't support
582 * any other interpolation modes). So all we need to do is find
583 * that register and set it to the appropriate class.
584 */
585 if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
586 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == VGRF &&
587 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].nr == i) {
588 c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
589 }
590
591 ra_set_node_class(g, i, c);
592
593 for (unsigned j = 0; j < i; j++) {
594 if (virtual_grf_interferes(i, j)) {
595 ra_add_node_interference(g, i, j);
596 }
597 }
598 }
599
600 /* Certain instructions can't safely use the same register for their
601 * sources and destination. Add interference.
602 */
603 foreach_block_and_inst(block, fs_inst, inst, cfg) {
604 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
605 for (unsigned i = 0; i < 3; i++) {
606 if (inst->src[i].file == VGRF) {
607 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
608 }
609 }
610 }
611 }
612
613 setup_payload_interference(g, payload_node_count, first_payload_node);
614 if (devinfo->gen >= 7) {
615 int first_used_mrf = BRW_MAX_MRF(devinfo->gen);
616 setup_mrf_hack_interference(this, g, first_mrf_hack_node,
617 &first_used_mrf);
618
619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
620 /* When we do send-from-GRF for FB writes, we need to ensure that
621 * the last write instruction sends from a high register. This is
622 * because the vertex fetcher wants to start filling the low
623 * payload registers while the pixel data port is still working on
624 * writing out the memory. If we don't do this, we get rendering
625 * artifacts.
626 *
627 * We could just do "something high". Instead, we just pick the
628 * highest register that works.
629 */
630 if (inst->eot) {
631 int size = alloc.sizes[inst->src[0].nr];
632 int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
633
634 /* If something happened to spill, we want to push the EOT send
635 * register early enough in the register file that we don't
636 * conflict with any used MRF hack registers.
637 */
638 reg -= BRW_MAX_MRF(devinfo->gen) - first_used_mrf;
639
640 ra_set_node_reg(g, inst->src[0].nr, reg);
641 break;
642 }
643 }
644 }
645
646 if (dispatch_width > 8) {
647 /* In 16-wide dispatch we have an issue where a compressed
648 * instruction is actually two instructions executed simultaneiously.
649 * It's actually ok to have the source and destination registers be
650 * the same. In this case, each instruction over-writes its own
651 * source and there's no problem. The real problem here is if the
652 * source and destination registers are off by one. Then you can end
653 * up in a scenario where the first instruction over-writes the
654 * source of the second instruction. Since the compiler doesn't know
655 * about this level of granularity, we simply make the source and
656 * destination interfere.
657 */
658 foreach_block_and_inst(block, fs_inst, inst, cfg) {
659 if (inst->dst.file != VGRF)
660 continue;
661
662 for (int i = 0; i < inst->sources; ++i) {
663 if (inst->src[i].file == VGRF) {
664 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
665 }
666 }
667 }
668 }
669
670 /* Debug of register spilling: Go spill everything. */
671 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_FS)) {
672 int reg = choose_spill_reg(g);
673
674 if (reg != -1) {
675 spill_reg(reg);
676 ralloc_free(g);
677 return false;
678 }
679 }
680
681 if (!ra_allocate(g)) {
682 /* Failed to allocate registers. Spill a reg, and the caller will
683 * loop back into here to try again.
684 */
685 int reg = choose_spill_reg(g);
686
687 if (reg == -1) {
688 fail("no register to spill:\n");
689 dump_instructions(NULL);
690 } else if (allow_spilling) {
691 spill_reg(reg);
692 }
693
694 ralloc_free(g);
695
696 return false;
697 }
698
699 /* Get the chosen virtual registers for each node, and map virtual
700 * regs in the register classes back down to real hardware reg
701 * numbers.
702 */
703 this->grf_used = payload_node_count;
704 for (unsigned i = 0; i < this->alloc.count; i++) {
705 int reg = ra_get_node_reg(g, i);
706
707 hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
708 this->grf_used = MAX2(this->grf_used,
709 hw_reg_mapping[i] + this->alloc.sizes[i]);
710 }
711
712 foreach_block_and_inst(block, fs_inst, inst, cfg) {
713 assign_reg(hw_reg_mapping, &inst->dst);
714 for (int i = 0; i < inst->sources; i++) {
715 assign_reg(hw_reg_mapping, &inst->src[i]);
716 }
717 }
718
719 this->alloc.count = this->grf_used;
720
721 ralloc_free(g);
722
723 return true;
724 }
725
726 void
727 fs_visitor::emit_unspill(bblock_t *block, fs_inst *inst, fs_reg dst,
728 uint32_t spill_offset, int count)
729 {
730 int reg_size = 1;
731 if (dispatch_width == 16 && count % 2 == 0)
732 reg_size = 2;
733
734 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
735 .group(reg_size * 8, 0)
736 .at(block, inst);
737
738 for (int i = 0; i < count / reg_size; i++) {
739 /* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because
740 * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
741 * it would cause the DC to do an IA-coherent read, what largely
742 * outweighs the slight advantage from not having to provide the address
743 * as part of the message header, so we're better off using plain old
744 * oword block reads.
745 */
746 bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
747 spill_offset < (1 << 12) * REG_SIZE);
748 fs_inst *unspill_inst = ibld.emit(gen7_read ?
749 SHADER_OPCODE_GEN7_SCRATCH_READ :
750 SHADER_OPCODE_GEN4_SCRATCH_READ,
751 dst);
752 unspill_inst->offset = spill_offset;
753 unspill_inst->regs_written = reg_size;
754 unspill_inst->force_writemask_all = true;
755
756 if (!gen7_read) {
757 unspill_inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
758 unspill_inst->mlen = 1; /* header contains offset */
759 }
760
761 dst.reg_offset += reg_size;
762 spill_offset += reg_size * REG_SIZE;
763 }
764 }
765
766 void
767 fs_visitor::emit_spill(bblock_t *block, fs_inst *inst, fs_reg src,
768 uint32_t spill_offset, int count, bool we_all)
769 {
770 int reg_size = 1;
771 int spill_base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
772 if (inst->exec_size == 16 && count % 2 == 0) {
773 spill_base_mrf = FIRST_SPILL_MRF(devinfo->gen);
774 reg_size = 2;
775 }
776
777 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
778 .group(reg_size * 8, 0)
779 .at(block, inst->next);
780
781 for (int i = 0; i < count / reg_size; i++) {
782 fs_inst *spill_inst =
783 ibld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, ibld.null_reg_f(), src);
784 src.reg_offset += reg_size;
785 spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
786 spill_inst->mlen = 1 + reg_size; /* header, value */
787 spill_inst->base_mrf = spill_base_mrf;
788 spill_inst->force_writemask_all = we_all;
789 spill_inst->force_sechalf = inst->force_sechalf;
790 }
791 }
792
793 int
794 fs_visitor::choose_spill_reg(struct ra_graph *g)
795 {
796 float loop_scale = 1.0;
797 float spill_costs[this->alloc.count];
798 bool no_spill[this->alloc.count];
799
800 for (unsigned i = 0; i < this->alloc.count; i++) {
801 spill_costs[i] = 0.0;
802 no_spill[i] = false;
803 }
804
805 /* Calculate costs for spilling nodes. Call it a cost of 1 per
806 * spill/unspill we'll have to do, and guess that the insides of
807 * loops run 10 times.
808 */
809 foreach_block_and_inst(block, fs_inst, inst, cfg) {
810 for (unsigned int i = 0; i < inst->sources; i++) {
811 if (inst->src[i].file == VGRF)
812 spill_costs[inst->src[i].nr] += loop_scale;
813 }
814
815 if (inst->dst.file == VGRF)
816 spill_costs[inst->dst.nr] += inst->regs_written * loop_scale;
817
818 switch (inst->opcode) {
819
820 case BRW_OPCODE_DO:
821 loop_scale *= 10;
822 break;
823
824 case BRW_OPCODE_WHILE:
825 loop_scale /= 10;
826 break;
827
828 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
829 if (inst->src[0].file == VGRF)
830 no_spill[inst->src[0].nr] = true;
831 break;
832
833 case SHADER_OPCODE_GEN4_SCRATCH_READ:
834 case SHADER_OPCODE_GEN7_SCRATCH_READ:
835 if (inst->dst.file == VGRF)
836 no_spill[inst->dst.nr] = true;
837 break;
838
839 default:
840 break;
841 }
842 }
843
844 for (unsigned i = 0; i < this->alloc.count; i++) {
845 if (!no_spill[i])
846 ra_set_node_spill_cost(g, i, spill_costs[i]);
847 }
848
849 return ra_get_best_spill_node(g);
850 }
851
852 void
853 fs_visitor::spill_reg(int spill_reg)
854 {
855 int size = alloc.sizes[spill_reg];
856 unsigned int spill_offset = last_scratch;
857 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
858 int spill_base_mrf = dispatch_width > 8 ? FIRST_SPILL_MRF(devinfo->gen) :
859 FIRST_SPILL_MRF(devinfo->gen) + 1;
860
861 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
862 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
863 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
864 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
865 * depth), starting from m1. In summary: We may not be able to spill in
866 * SIMD16 mode, because we'd stomp the FB writes.
867 */
868 if (!spilled_any_registers) {
869 bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
870 get_used_mrfs(this, mrf_used);
871
872 for (int i = spill_base_mrf; i < BRW_MAX_MRF(devinfo->gen); i++) {
873 if (mrf_used[i]) {
874 fail("Register spilling not supported with m%d used", i);
875 return;
876 }
877 }
878
879 spilled_any_registers = true;
880 }
881
882 last_scratch += size * REG_SIZE;
883
884 /* Generate spill/unspill instructions for the objects being
885 * spilled. Right now, we spill or unspill the whole thing to a
886 * virtual grf of the same size. For most instructions, though, we
887 * could just spill/unspill the GRF being accessed.
888 */
889 foreach_block_and_inst (block, fs_inst, inst, cfg) {
890 for (unsigned int i = 0; i < inst->sources; i++) {
891 if (inst->src[i].file == VGRF &&
892 inst->src[i].nr == spill_reg) {
893 int regs_read = inst->regs_read(i);
894 int subset_spill_offset = (spill_offset +
895 REG_SIZE * inst->src[i].reg_offset);
896 fs_reg unspill_dst(VGRF, alloc.allocate(regs_read));
897
898 inst->src[i].nr = unspill_dst.nr;
899 inst->src[i].reg_offset = 0;
900
901 emit_unspill(block, inst, unspill_dst, subset_spill_offset,
902 regs_read);
903 }
904 }
905
906 if (inst->dst.file == VGRF &&
907 inst->dst.nr == spill_reg) {
908 int subset_spill_offset = (spill_offset +
909 REG_SIZE * inst->dst.reg_offset);
910 fs_reg spill_src(VGRF, alloc.allocate(inst->regs_written));
911
912 inst->dst.nr = spill_src.nr;
913 inst->dst.reg_offset = 0;
914
915 /* If we're immediately spilling the register, we should not use
916 * destination dependency hints. Doing so will cause the GPU do
917 * try to read and write the register at the same time and may
918 * hang the GPU.
919 */
920 inst->no_dd_clear = false;
921 inst->no_dd_check = false;
922
923 /* If our write is going to affect just part of the
924 * inst->regs_written(), then we need to unspill the destination
925 * since we write back out all of the regs_written().
926 */
927 bool need_unspill = inst->is_partial_write() ||
928 type_sz(inst->dst.type) != 4;
929 if (need_unspill)
930 emit_unspill(block, inst, spill_src, subset_spill_offset,
931 inst->regs_written);
932
933 emit_spill(block, inst, spill_src, subset_spill_offset,
934 inst->regs_written,
935 need_unspill || inst->force_writemask_all);
936 }
937 }
938
939 invalidate_live_intervals();
940 }