ra: cleanup the public API
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31
32 static void
33 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
34 {
35 if (reg->file == GRF) {
36 assert(reg->reg_offset >= 0);
37 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
38 reg->reg_offset = 0;
39 }
40 }
41
42 void
43 fs_visitor::assign_regs_trivial()
44 {
45 int hw_reg_mapping[this->virtual_grf_count + 1];
46 int i;
47 int reg_width = dispatch_width / 8;
48
49 /* Note that compressed instructions require alignment to 2 registers. */
50 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
51 for (i = 1; i <= this->virtual_grf_count; i++) {
52 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
53 this->virtual_grf_sizes[i - 1] * reg_width);
54 }
55 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
56
57 foreach_in_list(fs_inst, inst, &instructions) {
58 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
59 for (i = 0; i < inst->sources; i++) {
60 assign_reg(hw_reg_mapping, &inst->src[i], reg_width);
61 }
62 }
63
64 if (this->grf_used >= max_grf) {
65 fail("Ran out of regs on trivial allocator (%d/%d)\n",
66 this->grf_used, max_grf);
67 } else {
68 this->virtual_grf_count = this->grf_used;
69 }
70
71 }
72
73 static void
74 brw_alloc_reg_set(struct intel_screen *screen, int reg_width)
75 {
76 const struct brw_device_info *devinfo = screen->devinfo;
77 int base_reg_count = BRW_MAX_GRF / reg_width;
78 int index = reg_width - 1;
79
80 /* The registers used to make up almost all values handled in the compiler
81 * are a scalar value occupying a single register (or 2 registers in the
82 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
83 * multiplying allocated register numbers by 2). Things that were
84 * aggregates of scalar values at the GLSL level were split to scalar
85 * values by split_virtual_grfs().
86 *
87 * However, texture SEND messages return a series of contiguous registers
88 * to write into. We currently always ask for 4 registers, but we may
89 * convert that to use less some day.
90 *
91 * Additionally, on gen5 we need aligned pairs of registers for the PLN
92 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
93 * texturing.
94 *
95 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
96 * and we add in '3' to make indexing the array easier for the common case
97 * (since we'll probably want it for texturing later).
98 *
99 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
100 * means that we may need any size up to the sampler message size limit (11
101 * regs).
102 */
103 int class_count;
104 int class_sizes[BRW_MAX_MRF];
105
106 if (devinfo->gen >= 7) {
107 for (class_count = 0; class_count < MAX_SAMPLER_MESSAGE_SIZE;
108 class_count++)
109 class_sizes[class_count] = class_count + 1;
110 } else {
111 for (class_count = 0; class_count < 4; class_count++)
112 class_sizes[class_count] = class_count + 1;
113 class_sizes[class_count++] = 8;
114 }
115
116 /* Compute the total number of registers across all classes. */
117 int ra_reg_count = 0;
118 for (int i = 0; i < class_count; i++) {
119 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
120 }
121
122 uint8_t *ra_reg_to_grf = ralloc_array(screen, uint8_t, ra_reg_count);
123 struct ra_regs *regs = ra_alloc_reg_set(screen, ra_reg_count);
124 if (devinfo->gen >= 6)
125 ra_set_allocate_round_robin(regs);
126 int *classes = ralloc_array(screen, int, class_count);
127 int aligned_pairs_class = -1;
128
129 /* Now, add the registers to their classes, and add the conflicts
130 * between them and the base GRF registers (and also each other).
131 */
132 int reg = 0;
133 int pairs_base_reg = 0;
134 int pairs_reg_count = 0;
135 for (int i = 0; i < class_count; i++) {
136 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
137 classes[i] = ra_alloc_reg_class(regs);
138
139 /* Save this off for the aligned pair class at the end. */
140 if (class_sizes[i] == 2) {
141 pairs_base_reg = reg;
142 pairs_reg_count = class_reg_count;
143 }
144
145 for (int j = 0; j < class_reg_count; j++) {
146 ra_class_add_reg(regs, classes[i], reg);
147
148 ra_reg_to_grf[reg] = j;
149
150 for (int base_reg = j;
151 base_reg < j + class_sizes[i];
152 base_reg++) {
153 ra_add_transitive_reg_conflict(regs, base_reg, reg);
154 }
155
156 reg++;
157 }
158 }
159 assert(reg == ra_reg_count);
160
161 /* Add a special class for aligned pairs, which we'll put delta_x/y
162 * in on gen5 so that we can do PLN.
163 */
164 if (devinfo->has_pln && reg_width == 1 && devinfo->gen < 6) {
165 aligned_pairs_class = ra_alloc_reg_class(regs);
166
167 for (int i = 0; i < pairs_reg_count; i++) {
168 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
169 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
170 }
171 }
172 }
173
174 ra_set_finalize(regs, NULL);
175
176 screen->wm_reg_sets[index].regs = regs;
177 for (unsigned i = 0; i < ARRAY_SIZE(screen->wm_reg_sets[index].classes); i++)
178 screen->wm_reg_sets[index].classes[i] = -1;
179 for (int i = 0; i < class_count; i++)
180 screen->wm_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
181 screen->wm_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
182 screen->wm_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
183 }
184
185 void
186 brw_fs_alloc_reg_sets(struct intel_screen *screen)
187 {
188 brw_alloc_reg_set(screen, 1);
189 brw_alloc_reg_set(screen, 2);
190 }
191
192 int
193 count_to_loop_end(fs_inst *do_inst)
194 {
195 int depth = 1;
196 int ip = 1;
197 for (fs_inst *inst = (fs_inst *)do_inst->next;
198 depth > 0;
199 inst = (fs_inst *)inst->next) {
200 switch (inst->opcode) {
201 case BRW_OPCODE_DO:
202 depth++;
203 break;
204 case BRW_OPCODE_WHILE:
205 depth--;
206 break;
207 default:
208 break;
209 }
210 ip++;
211 }
212 return ip;
213 }
214
215 /**
216 * Sets up interference between thread payload registers and the virtual GRFs
217 * to be allocated for program temporaries.
218 *
219 * We want to be able to reallocate the payload for our virtual GRFs, notably
220 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
221 * our 128 registers.
222 *
223 * The layout of the payload registers is:
224 *
225 * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
226 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
227 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
228 *
229 * And we have payload_node_count nodes covering these registers in order
230 * (note that in SIMD16, a node is two registers).
231 */
232 void
233 fs_visitor::setup_payload_interference(struct ra_graph *g,
234 int payload_node_count,
235 int first_payload_node)
236 {
237 int reg_width = dispatch_width / 8;
238 int loop_depth = 0;
239 int loop_end_ip = 0;
240
241 int payload_last_use_ip[payload_node_count];
242 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
243 int ip = 0;
244 foreach_in_list(fs_inst, inst, &instructions) {
245 switch (inst->opcode) {
246 case BRW_OPCODE_DO:
247 loop_depth++;
248
249 /* Since payload regs are deffed only at the start of the shader
250 * execution, any uses of the payload within a loop mean the live
251 * interval extends to the end of the outermost loop. Find the ip of
252 * the end now.
253 */
254 if (loop_depth == 1)
255 loop_end_ip = ip + count_to_loop_end(inst);
256 break;
257 case BRW_OPCODE_WHILE:
258 loop_depth--;
259 break;
260 default:
261 break;
262 }
263
264 int use_ip;
265 if (loop_depth > 0)
266 use_ip = loop_end_ip;
267 else
268 use_ip = ip;
269
270 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
271 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
272 * the start (see interp_reg()).
273 */
274 for (int i = 0; i < inst->sources; i++) {
275 if (inst->src[i].file == HW_REG &&
276 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
277 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
278 if (node_nr >= payload_node_count)
279 continue;
280
281 payload_last_use_ip[node_nr] = use_ip;
282 }
283 }
284
285 /* Special case instructions which have extra implied registers used. */
286 switch (inst->opcode) {
287 case FS_OPCODE_FB_WRITE:
288 /* We could omit this for the !inst->header_present case, except that
289 * the simulator apparently incorrectly reads from g0/g1 instead of
290 * sideband. It also really freaks out driver developers to see g0
291 * used in unusual places, so just always reserve it.
292 */
293 payload_last_use_ip[0 / reg_width] = use_ip;
294 payload_last_use_ip[1 / reg_width] = use_ip;
295 break;
296
297 case FS_OPCODE_LINTERP:
298 /* On gen6+ in SIMD16, there are 4 adjacent registers (so 2 nodes)
299 * used by PLN's sourcing of the deltas, while we list only the first
300 * two in the arguments (1 node). Pre-gen6, the deltas are computed
301 * in normal VGRFs.
302 */
303 if (brw->gen >= 6) {
304 int delta_x_arg = 0;
305 if (inst->src[delta_x_arg].file == HW_REG &&
306 inst->src[delta_x_arg].fixed_hw_reg.file ==
307 BRW_GENERAL_REGISTER_FILE) {
308 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
309 reg_width) + 1;
310 assert(sechalf_node < payload_node_count);
311 payload_last_use_ip[sechalf_node] = use_ip;
312 }
313 }
314 break;
315
316 default:
317 break;
318 }
319
320 ip++;
321 }
322
323 for (int i = 0; i < payload_node_count; i++) {
324 /* Mark the payload node as interfering with any virtual grf that is
325 * live between the start of the program and our last use of the payload
326 * node.
327 */
328 for (int j = 0; j < this->virtual_grf_count; j++) {
329 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
330 * in order to not have to worry about the uniform issue described in
331 * calculate_live_intervals().
332 */
333 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
334 ra_add_node_interference(g, first_payload_node + i, j);
335 }
336 }
337 }
338
339 for (int i = 0; i < payload_node_count; i++) {
340 /* Mark each payload node as being allocated to its physical register.
341 *
342 * The alternative would be to have per-physical-register classes, which
343 * would just be silly.
344 */
345 ra_set_node_reg(g, first_payload_node + i, i);
346 }
347 }
348
349 /**
350 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
351 *
352 * This is used in assign_regs() to decide which of the GRFs that we use as
353 * MRFs on gen7 get normally register allocated, and in register spilling to
354 * see if we can actually use MRFs to do spills without overwriting normal MRF
355 * contents.
356 */
357 void
358 fs_visitor::get_used_mrfs(bool *mrf_used)
359 {
360 int reg_width = dispatch_width / 8;
361
362 memset(mrf_used, 0, BRW_MAX_MRF * sizeof(bool));
363
364 foreach_in_list(fs_inst, inst, &instructions) {
365 if (inst->dst.file == MRF) {
366 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
367 mrf_used[reg] = true;
368 if (reg_width == 2) {
369 if (inst->dst.reg & BRW_MRF_COMPR4) {
370 mrf_used[reg + 4] = true;
371 } else {
372 mrf_used[reg + 1] = true;
373 }
374 }
375 }
376
377 if (inst->mlen > 0) {
378 for (int i = 0; i < implied_mrf_writes(inst); i++) {
379 mrf_used[inst->base_mrf + i] = true;
380 }
381 }
382 }
383 }
384
385 /**
386 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
387 * messages (treated as MRFs in code generation).
388 */
389 void
390 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
391 {
392 int reg_width = dispatch_width / 8;
393
394 bool mrf_used[BRW_MAX_MRF];
395 get_used_mrfs(mrf_used);
396
397 for (int i = 0; i < BRW_MAX_MRF; i++) {
398 /* Mark each MRF reg node as being allocated to its physical register.
399 *
400 * The alternative would be to have per-physical-register classes, which
401 * would just be silly.
402 */
403 ra_set_node_reg(g, first_mrf_node + i,
404 (GEN7_MRF_HACK_START + i) / reg_width);
405
406 /* Since we don't have any live/dead analysis on the MRFs, just mark all
407 * that are used as conflicting with all virtual GRFs.
408 */
409 if (mrf_used[i]) {
410 for (int j = 0; j < this->virtual_grf_count; j++) {
411 ra_add_node_interference(g, first_mrf_node + i, j);
412 }
413 }
414 }
415 }
416
417 bool
418 fs_visitor::assign_regs(bool allow_spilling)
419 {
420 struct intel_screen *screen = brw->intelScreen;
421 /* Most of this allocation was written for a reg_width of 1
422 * (dispatch_width == 8). In extending to SIMD16, the code was
423 * left in place and it was converted to have the hardware
424 * registers it's allocating be contiguous physical pairs of regs
425 * for reg_width == 2.
426 */
427 int reg_width = dispatch_width / 8;
428 int hw_reg_mapping[this->virtual_grf_count];
429 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
430 reg_width);
431 int rsi = reg_width - 1; /* Which screen->wm_reg_sets[] to use */
432 calculate_live_intervals();
433
434 int node_count = this->virtual_grf_count;
435 int first_payload_node = node_count;
436 node_count += payload_node_count;
437 int first_mrf_hack_node = node_count;
438 if (brw->gen >= 7)
439 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
440 struct ra_graph *g = ra_alloc_interference_graph(screen->wm_reg_sets[rsi].regs,
441 node_count);
442
443 for (int i = 0; i < this->virtual_grf_count; i++) {
444 unsigned size = this->virtual_grf_sizes[i];
445 int c;
446
447 assert(size <= ARRAY_SIZE(screen->wm_reg_sets[rsi].classes) &&
448 "Register allocation relies on split_virtual_grfs()");
449 c = screen->wm_reg_sets[rsi].classes[size - 1];
450
451 /* Special case: on pre-GEN6 hardware that supports PLN, the
452 * second operand of a PLN instruction needs to be an
453 * even-numbered register, so we have a special register class
454 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
455 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
456 * second operand of a PLN instruction (since it doesn't support
457 * any other interpolation modes). So all we need to do is find
458 * that register and set it to the appropriate class.
459 */
460 if (screen->wm_reg_sets[rsi].aligned_pairs_class >= 0 &&
461 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
462 c = screen->wm_reg_sets[rsi].aligned_pairs_class;
463 }
464
465 ra_set_node_class(g, i, c);
466
467 for (int j = 0; j < i; j++) {
468 if (virtual_grf_interferes(i, j)) {
469 ra_add_node_interference(g, i, j);
470 }
471 }
472 }
473
474 setup_payload_interference(g, payload_node_count, first_payload_node);
475 if (brw->gen >= 7)
476 setup_mrf_hack_interference(g, first_mrf_hack_node);
477
478 /* Debug of register spilling: Go spill everything. */
479 if (0) {
480 int reg = choose_spill_reg(g);
481
482 if (reg != -1) {
483 spill_reg(reg);
484 ralloc_free(g);
485 return false;
486 }
487 }
488
489 if (!ra_allocate(g)) {
490 /* Failed to allocate registers. Spill a reg, and the caller will
491 * loop back into here to try again.
492 */
493 int reg = choose_spill_reg(g);
494
495 if (reg == -1) {
496 fail("no register to spill:\n");
497 dump_instructions(NULL);
498 } else if (allow_spilling) {
499 spill_reg(reg);
500 }
501
502 ralloc_free(g);
503
504 return false;
505 }
506
507 /* Get the chosen virtual registers for each node, and map virtual
508 * regs in the register classes back down to real hardware reg
509 * numbers.
510 */
511 this->grf_used = payload_node_count * reg_width;
512 for (int i = 0; i < this->virtual_grf_count; i++) {
513 int reg = ra_get_node_reg(g, i);
514
515 hw_reg_mapping[i] = screen->wm_reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
516 this->grf_used = MAX2(this->grf_used,
517 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
518 reg_width);
519 }
520
521 foreach_in_list(fs_inst, inst, &instructions) {
522 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
523 for (int i = 0; i < inst->sources; i++) {
524 assign_reg(hw_reg_mapping, &inst->src[i], reg_width);
525 }
526 }
527
528 this->virtual_grf_count = this->grf_used;
529
530 ralloc_free(g);
531
532 return true;
533 }
534
535 void
536 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset,
537 int count)
538 {
539 for (int i = 0; i < count; i++) {
540 /* The gen7 descriptor-based offset is 12 bits of HWORD units. */
541 bool gen7_read = brw->gen >= 7 && spill_offset < (1 << 12) * REG_SIZE;
542
543 fs_inst *unspill_inst =
544 new(mem_ctx) fs_inst(gen7_read ?
545 SHADER_OPCODE_GEN7_SCRATCH_READ :
546 SHADER_OPCODE_GEN4_SCRATCH_READ,
547 dst);
548 unspill_inst->offset = spill_offset;
549 unspill_inst->ir = inst->ir;
550 unspill_inst->annotation = inst->annotation;
551
552 if (!gen7_read) {
553 unspill_inst->base_mrf = 14;
554 unspill_inst->mlen = 1; /* header contains offset */
555 }
556 inst->insert_before(unspill_inst);
557
558 dst.reg_offset++;
559 spill_offset += dispatch_width * sizeof(float);
560 }
561 }
562
563 int
564 fs_visitor::choose_spill_reg(struct ra_graph *g)
565 {
566 float loop_scale = 1.0;
567 float spill_costs[this->virtual_grf_count];
568 bool no_spill[this->virtual_grf_count];
569
570 for (int i = 0; i < this->virtual_grf_count; i++) {
571 spill_costs[i] = 0.0;
572 no_spill[i] = false;
573 }
574
575 /* Calculate costs for spilling nodes. Call it a cost of 1 per
576 * spill/unspill we'll have to do, and guess that the insides of
577 * loops run 10 times.
578 */
579 foreach_in_list(fs_inst, inst, &instructions) {
580 for (unsigned int i = 0; i < inst->sources; i++) {
581 if (inst->src[i].file == GRF) {
582 spill_costs[inst->src[i].reg] += loop_scale;
583
584 /* Register spilling logic assumes full-width registers; smeared
585 * registers have a width of 1 so if we try to spill them we'll
586 * generate invalid assembly. This shouldn't be a problem because
587 * smeared registers are only used as short-term temporaries when
588 * loading pull constants, so spilling them is unlikely to reduce
589 * register pressure anyhow.
590 */
591 if (!inst->src[i].is_contiguous()) {
592 no_spill[inst->src[i].reg] = true;
593 }
594 }
595 }
596
597 if (inst->dst.file == GRF) {
598 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
599
600 if (!inst->dst.is_contiguous()) {
601 no_spill[inst->dst.reg] = true;
602 }
603 }
604
605 switch (inst->opcode) {
606
607 case BRW_OPCODE_DO:
608 loop_scale *= 10;
609 break;
610
611 case BRW_OPCODE_WHILE:
612 loop_scale /= 10;
613 break;
614
615 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
616 if (inst->src[0].file == GRF)
617 no_spill[inst->src[0].reg] = true;
618 break;
619
620 case SHADER_OPCODE_GEN4_SCRATCH_READ:
621 case SHADER_OPCODE_GEN7_SCRATCH_READ:
622 if (inst->dst.file == GRF)
623 no_spill[inst->dst.reg] = true;
624 break;
625
626 default:
627 break;
628 }
629 }
630
631 for (int i = 0; i < this->virtual_grf_count; i++) {
632 if (!no_spill[i])
633 ra_set_node_spill_cost(g, i, spill_costs[i]);
634 }
635
636 return ra_get_best_spill_node(g);
637 }
638
639 void
640 fs_visitor::spill_reg(int spill_reg)
641 {
642 int reg_size = dispatch_width * sizeof(float);
643 int size = virtual_grf_sizes[spill_reg];
644 unsigned int spill_offset = last_scratch;
645 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
646 int spill_base_mrf = dispatch_width > 8 ? 13 : 14;
647
648 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
649 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
650 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
651 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
652 * depth), starting from m1. In summary: We may not be able to spill in
653 * SIMD16 mode, because we'd stomp the FB writes.
654 */
655 if (!spilled_any_registers) {
656 bool mrf_used[BRW_MAX_MRF];
657 get_used_mrfs(mrf_used);
658
659 for (int i = spill_base_mrf; i < BRW_MAX_MRF; i++) {
660 if (mrf_used[i]) {
661 fail("Register spilling not supported with m%d used", i);
662 return;
663 }
664 }
665
666 spilled_any_registers = true;
667 }
668
669 last_scratch += size * reg_size;
670
671 /* Generate spill/unspill instructions for the objects being
672 * spilled. Right now, we spill or unspill the whole thing to a
673 * virtual grf of the same size. For most instructions, though, we
674 * could just spill/unspill the GRF being accessed.
675 */
676 foreach_in_list(fs_inst, inst, &instructions) {
677 for (unsigned int i = 0; i < inst->sources; i++) {
678 if (inst->src[i].file == GRF &&
679 inst->src[i].reg == spill_reg) {
680 int regs_read = inst->regs_read(this, i);
681 int subset_spill_offset = (spill_offset +
682 reg_size * inst->src[i].reg_offset);
683 fs_reg unspill_dst(GRF, virtual_grf_alloc(regs_read));
684
685 inst->src[i].reg = unspill_dst.reg;
686 inst->src[i].reg_offset = 0;
687
688 emit_unspill(inst, unspill_dst, subset_spill_offset, regs_read);
689 }
690 }
691
692 if (inst->dst.file == GRF &&
693 inst->dst.reg == spill_reg) {
694 int subset_spill_offset = (spill_offset +
695 reg_size * inst->dst.reg_offset);
696 fs_reg spill_src(GRF, virtual_grf_alloc(inst->regs_written));
697
698 inst->dst.reg = spill_src.reg;
699 inst->dst.reg_offset = 0;
700
701 /* If our write is going to affect just part of the
702 * inst->regs_written(), then we need to unspill the destination
703 * since we write back out all of the regs_written().
704 */
705 if (inst->predicate || inst->force_uncompressed ||
706 inst->force_sechalf || inst->dst.subreg_offset) {
707 emit_unspill(inst, spill_src, subset_spill_offset,
708 inst->regs_written);
709 }
710
711 for (int chan = 0; chan < inst->regs_written; chan++) {
712 fs_inst *spill_inst =
713 new(mem_ctx) fs_inst(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
714 reg_null_f, spill_src);
715 spill_src.reg_offset++;
716 spill_inst->offset = subset_spill_offset + chan * reg_size;
717 spill_inst->ir = inst->ir;
718 spill_inst->annotation = inst->annotation;
719 spill_inst->mlen = 1 + dispatch_width / 8; /* header, value */
720 spill_inst->base_mrf = spill_base_mrf;
721 inst->insert_after(spill_inst);
722 }
723 }
724 }
725
726 invalidate_live_intervals();
727 }