i965: Ask the register allocator to round-robin through registers.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31 #include "glsl/ir_print_visitor.h"
32
33 static void
34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
35 {
36 if (reg->file == GRF) {
37 assert(reg->reg_offset >= 0);
38 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
39 reg->reg_offset = 0;
40 }
41 }
42
43 void
44 fs_visitor::assign_regs_trivial()
45 {
46 int hw_reg_mapping[this->virtual_grf_count + 1];
47 int i;
48 int reg_width = dispatch_width / 8;
49
50 /* Note that compressed instructions require alignment to 2 registers. */
51 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
52 for (i = 1; i <= this->virtual_grf_count; i++) {
53 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
54 this->virtual_grf_sizes[i - 1] * reg_width);
55 }
56 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
57
58 foreach_list(node, &this->instructions) {
59 fs_inst *inst = (fs_inst *)node;
60
61 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
62 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
63 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
64 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
65 }
66
67 if (this->grf_used >= max_grf) {
68 fail("Ran out of regs on trivial allocator (%d/%d)\n",
69 this->grf_used, max_grf);
70 }
71
72 }
73
74 static void
75 brw_alloc_reg_set(struct brw_context *brw, int reg_width)
76 {
77 struct intel_context *intel = &brw->intel;
78 int base_reg_count = BRW_MAX_GRF / reg_width;
79 int index = reg_width - 1;
80
81 /* The registers used to make up almost all values handled in the compiler
82 * are a scalar value occupying a single register (or 2 registers in the
83 * case of 16-wide, which is handled by dividing base_reg_count by 2 and
84 * multiplying allocated register numbers by 2). Things that were
85 * aggregates of scalar values at the GLSL level were split to scalar
86 * values by split_virtual_grfs().
87 *
88 * However, texture SEND messages return a series of contiguous registers.
89 * We currently always ask for 4 registers, but we may convert that to use
90 * less some day.
91 *
92 * Additionally, on gen5 we need aligned pairs of registers for the PLN
93 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
94 * texturing.
95 *
96 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
97 * and we add in '3' to make indexing the array easier for the common case
98 * (since we'll probably want it for texturing later).
99 */
100 const int class_count = 5;
101 const int class_sizes[class_count] = {1, 2, 3, 4, 8};
102
103 /* Compute the total number of registers across all classes. */
104 int ra_reg_count = 0;
105 for (int i = 0; i < class_count; i++) {
106 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
107 }
108
109 uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
110 struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count);
111 if (intel->gen >= 6)
112 ra_set_allocate_round_robin(regs);
113 int *classes = ralloc_array(brw, int, class_count);
114 int aligned_pairs_class = -1;
115
116 /* Now, add the registers to their classes, and add the conflicts
117 * between them and the base GRF registers (and also each other).
118 */
119 int reg = 0;
120 int pairs_base_reg = 0;
121 int pairs_reg_count = 0;
122 for (int i = 0; i < class_count; i++) {
123 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
124 classes[i] = ra_alloc_reg_class(regs);
125
126 /* Save this off for the aligned pair class at the end. */
127 if (class_sizes[i] == 2) {
128 pairs_base_reg = reg;
129 pairs_reg_count = class_reg_count;
130 }
131
132 for (int j = 0; j < class_reg_count; j++) {
133 ra_class_add_reg(regs, classes[i], reg);
134
135 ra_reg_to_grf[reg] = j;
136
137 for (int base_reg = j;
138 base_reg < j + class_sizes[i];
139 base_reg++) {
140 ra_add_transitive_reg_conflict(regs, base_reg, reg);
141 }
142
143 reg++;
144 }
145 }
146 assert(reg == ra_reg_count);
147
148 /* Add a special class for aligned pairs, which we'll put delta_x/y
149 * in on gen5 so that we can do PLN.
150 */
151 if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
152 aligned_pairs_class = ra_alloc_reg_class(regs);
153
154 for (int i = 0; i < pairs_reg_count; i++) {
155 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
156 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
157 }
158 }
159 }
160
161 ra_set_finalize(regs, NULL);
162
163 brw->wm.reg_sets[index].regs = regs;
164 brw->wm.reg_sets[index].classes = classes;
165 brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
166 brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class;
167 }
168
169 void
170 brw_fs_alloc_reg_sets(struct brw_context *brw)
171 {
172 brw_alloc_reg_set(brw, 1);
173 brw_alloc_reg_set(brw, 2);
174 }
175
176 int
177 count_to_loop_end(fs_inst *do_inst)
178 {
179 int depth = 1;
180 int ip = 1;
181 for (fs_inst *inst = (fs_inst *)do_inst->next;
182 depth > 0;
183 inst = (fs_inst *)inst->next) {
184 switch (inst->opcode) {
185 case BRW_OPCODE_DO:
186 depth++;
187 break;
188 case BRW_OPCODE_WHILE:
189 depth--;
190 break;
191 default:
192 break;
193 }
194 ip++;
195 }
196 return ip;
197 }
198
199 /**
200 * Sets up interference between thread payload registers and the virtual GRFs
201 * to be allocated for program temporaries.
202 *
203 * We want to be able to reallocate the payload for our virtual GRFs, notably
204 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
205 * our 128 registers.
206 *
207 * The layout of the payload registers is:
208 *
209 * 0..nr_payload_regs-1: fixed function setup (including bary coordinates).
210 * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data
211 * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
212 *
213 * And we have payload_node_count nodes covering these registers in order
214 * (note that in 16-wide, a node is two registers).
215 */
216 void
217 fs_visitor::setup_payload_interference(struct ra_graph *g,
218 int payload_node_count,
219 int first_payload_node)
220 {
221 int reg_width = dispatch_width / 8;
222 int loop_depth = 0;
223 int loop_end_ip = 0;
224
225 int payload_last_use_ip[payload_node_count];
226 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
227 int ip = 0;
228 foreach_list(node, &this->instructions) {
229 fs_inst *inst = (fs_inst *)node;
230
231 switch (inst->opcode) {
232 case BRW_OPCODE_DO:
233 loop_depth++;
234
235 /* Since payload regs are deffed only at the start of the shader
236 * execution, any uses of the payload within a loop mean the live
237 * interval extends to the end of the outermost loop. Find the ip of
238 * the end now.
239 */
240 if (loop_depth == 1)
241 loop_end_ip = ip + count_to_loop_end(inst);
242 break;
243 case BRW_OPCODE_WHILE:
244 loop_depth--;
245 break;
246 default:
247 break;
248 }
249
250 int use_ip;
251 if (loop_depth > 0)
252 use_ip = loop_end_ip;
253 else
254 use_ip = ip;
255
256 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
257 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
258 * the start (see interp_reg()).
259 */
260 for (int i = 0; i < 3; i++) {
261 if (inst->src[i].file == FIXED_HW_REG &&
262 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
263 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
264 if (node_nr >= payload_node_count)
265 continue;
266
267 payload_last_use_ip[node_nr] = use_ip;
268 }
269 }
270
271 /* Special case instructions which have extra implied registers used. */
272 switch (inst->opcode) {
273 case FS_OPCODE_FB_WRITE:
274 /* We could omit this for the !inst->header_present case, except that
275 * the simulator apparently incorrectly reads from g0/g1 instead of
276 * sideband. It also really freaks out driver developers to see g0
277 * used in unusual places, so just always reserve it.
278 */
279 payload_last_use_ip[0 / reg_width] = use_ip;
280 payload_last_use_ip[1 / reg_width] = use_ip;
281 break;
282
283 case FS_OPCODE_LINTERP:
284 /* On gen6+ in 16-wide, there are 4 adjacent registers (so 2 nodes)
285 * used by PLN's sourcing of the deltas, while we list only the first
286 * two in the arguments (1 node). Pre-gen6, the deltas are computed
287 * in normal VGRFs.
288 */
289 if (intel->gen >= 6) {
290 int delta_x_arg = 0;
291 if (inst->src[delta_x_arg].file == FIXED_HW_REG &&
292 inst->src[delta_x_arg].fixed_hw_reg.file ==
293 BRW_GENERAL_REGISTER_FILE) {
294 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
295 reg_width) + 1;
296 assert(sechalf_node < payload_node_count);
297 payload_last_use_ip[sechalf_node] = use_ip;
298 }
299 }
300 break;
301
302 default:
303 break;
304 }
305
306 ip++;
307 }
308
309 for (int i = 0; i < payload_node_count; i++) {
310 /* Mark the payload node as interfering with any virtual grf that is
311 * live between the start of the program and our last use of the payload
312 * node.
313 */
314 for (int j = 0; j < this->virtual_grf_count; j++) {
315 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
316 * in order to not have to worry about the uniform issue described in
317 * calculate_live_intervals().
318 */
319 if (this->virtual_grf_def[j] <= payload_last_use_ip[i] ||
320 this->virtual_grf_use[j] <= payload_last_use_ip[i]) {
321 ra_add_node_interference(g, first_payload_node + i, j);
322 }
323 }
324 }
325
326 for (int i = 0; i < payload_node_count; i++) {
327 /* Mark each payload node as being allocated to its physical register.
328 *
329 * The alternative would be to have per-physical-register classes, which
330 * would just be silly.
331 */
332 ra_set_node_reg(g, first_payload_node + i, i);
333 }
334 }
335
336 /**
337 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
338 * messages (treated as MRFs in code generation).
339 */
340 void
341 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
342 {
343 int mrf_count = BRW_MAX_GRF - GEN7_MRF_HACK_START;
344 int reg_width = dispatch_width / 8;
345
346 /* Identify all the MRFs used in the program. */
347 bool mrf_used[mrf_count];
348 memset(mrf_used, 0, sizeof(mrf_used));
349 foreach_list(node, &this->instructions) {
350 fs_inst *inst = (fs_inst *)node;
351
352 if (inst->dst.file == MRF) {
353 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
354 mrf_used[reg] = true;
355 if (reg_width == 2) {
356 if (inst->dst.reg & BRW_MRF_COMPR4) {
357 mrf_used[reg + 4] = true;
358 } else {
359 mrf_used[reg + 1] = true;
360 }
361 }
362 }
363
364 if (inst->mlen > 0) {
365 for (int i = 0; i < implied_mrf_writes(inst); i++) {
366 mrf_used[inst->base_mrf + i] = true;
367 }
368 }
369 }
370
371 for (int i = 0; i < mrf_count; i++) {
372 /* Mark each payload reg node as being allocated to its physical register.
373 *
374 * The alternative would be to have per-physical-register classes, which
375 * would just be silly.
376 */
377 ra_set_node_reg(g, first_mrf_node + i,
378 (GEN7_MRF_HACK_START + i) / reg_width);
379
380 /* Since we don't have any live/dead analysis on the MRFs, just mark all
381 * that are used as conflicting with all virtual GRFs.
382 */
383 if (mrf_used[i]) {
384 for (int j = 0; j < this->virtual_grf_count; j++) {
385 ra_add_node_interference(g, first_mrf_node + i, j);
386 }
387 }
388 }
389 }
390
391 bool
392 fs_visitor::assign_regs()
393 {
394 /* Most of this allocation was written for a reg_width of 1
395 * (dispatch_width == 8). In extending to 16-wide, the code was
396 * left in place and it was converted to have the hardware
397 * registers it's allocating be contiguous physical pairs of regs
398 * for reg_width == 2.
399 */
400 int reg_width = dispatch_width / 8;
401 int hw_reg_mapping[this->virtual_grf_count];
402 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
403 reg_width);
404 int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */
405 calculate_live_intervals();
406
407 int node_count = this->virtual_grf_count;
408 int first_payload_node = node_count;
409 node_count += payload_node_count;
410 int first_mrf_hack_node = node_count;
411 if (intel->gen >= 7)
412 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
413 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs,
414 node_count);
415
416 for (int i = 0; i < this->virtual_grf_count; i++) {
417 int size = this->virtual_grf_sizes[i];
418 int c;
419
420 if (size == 8) {
421 c = 4;
422 } else {
423 assert(size >= 1 &&
424 size <= 4 &&
425 "Register allocation relies on split_virtual_grfs()");
426 c = brw->wm.reg_sets[rsi].classes[size - 1];
427 }
428
429 /* Special case: on pre-GEN6 hardware that supports PLN, the
430 * second operand of a PLN instruction needs to be an
431 * even-numbered register, so we have a special register class
432 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
433 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
434 * second operand of a PLN instruction (since it doesn't support
435 * any other interpolation modes). So all we need to do is find
436 * that register and set it to the appropriate class.
437 */
438 if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 &&
439 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
440 c = brw->wm.reg_sets[rsi].aligned_pairs_class;
441 }
442
443 ra_set_node_class(g, i, c);
444
445 for (int j = 0; j < i; j++) {
446 if (virtual_grf_interferes(i, j)) {
447 ra_add_node_interference(g, i, j);
448 }
449 }
450 }
451
452 setup_payload_interference(g, payload_node_count, first_payload_node);
453 if (intel->gen >= 7)
454 setup_mrf_hack_interference(g, first_mrf_hack_node);
455
456 if (!ra_allocate_no_spills(g)) {
457 /* Failed to allocate registers. Spill a reg, and the caller will
458 * loop back into here to try again.
459 */
460 int reg = choose_spill_reg(g);
461
462 if (reg == -1) {
463 fail("no register to spill\n");
464 } else if (dispatch_width == 16) {
465 fail("Failure to register allocate. Reduce number of live scalar "
466 "values to avoid this.");
467 } else {
468 spill_reg(reg);
469 }
470
471
472 ralloc_free(g);
473
474 return false;
475 }
476
477 /* Get the chosen virtual registers for each node, and map virtual
478 * regs in the register classes back down to real hardware reg
479 * numbers.
480 */
481 this->grf_used = payload_node_count * reg_width;
482 for (int i = 0; i < this->virtual_grf_count; i++) {
483 int reg = ra_get_node_reg(g, i);
484
485 hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
486 this->grf_used = MAX2(this->grf_used,
487 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
488 reg_width);
489 }
490
491 foreach_list(node, &this->instructions) {
492 fs_inst *inst = (fs_inst *)node;
493
494 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
495 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
496 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
497 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
498 }
499
500 ralloc_free(g);
501
502 return true;
503 }
504
505 void
506 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
507 {
508 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
509 unspill_inst->offset = spill_offset;
510 unspill_inst->ir = inst->ir;
511 unspill_inst->annotation = inst->annotation;
512
513 /* Choose a MRF that won't conflict with an MRF that's live across the
514 * spill. Nothing else will make it up to MRF 14/15.
515 */
516 unspill_inst->base_mrf = 14;
517 unspill_inst->mlen = 1; /* header contains offset */
518 inst->insert_before(unspill_inst);
519 }
520
521 int
522 fs_visitor::choose_spill_reg(struct ra_graph *g)
523 {
524 float loop_scale = 1.0;
525 float spill_costs[this->virtual_grf_count];
526 bool no_spill[this->virtual_grf_count];
527
528 for (int i = 0; i < this->virtual_grf_count; i++) {
529 spill_costs[i] = 0.0;
530 no_spill[i] = false;
531 }
532
533 /* Calculate costs for spilling nodes. Call it a cost of 1 per
534 * spill/unspill we'll have to do, and guess that the insides of
535 * loops run 10 times.
536 */
537 foreach_list(node, &this->instructions) {
538 fs_inst *inst = (fs_inst *)node;
539
540 for (unsigned int i = 0; i < 3; i++) {
541 if (inst->src[i].file == GRF) {
542 spill_costs[inst->src[i].reg] += loop_scale;
543
544 /* Register spilling logic assumes full-width registers; smeared
545 * registers have a width of 1 so if we try to spill them we'll
546 * generate invalid assembly. This shouldn't be a problem because
547 * smeared registers are only used as short-term temporaries when
548 * loading pull constants, so spilling them is unlikely to reduce
549 * register pressure anyhow.
550 */
551 if (inst->src[i].smear >= 0) {
552 no_spill[inst->src[i].reg] = true;
553 }
554 }
555 }
556
557 if (inst->dst.file == GRF) {
558 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
559
560 if (inst->dst.smear >= 0) {
561 no_spill[inst->dst.reg] = true;
562 }
563 }
564
565 switch (inst->opcode) {
566
567 case BRW_OPCODE_DO:
568 loop_scale *= 10;
569 break;
570
571 case BRW_OPCODE_WHILE:
572 loop_scale /= 10;
573 break;
574
575 case FS_OPCODE_SPILL:
576 if (inst->src[0].file == GRF)
577 no_spill[inst->src[0].reg] = true;
578 break;
579
580 case FS_OPCODE_UNSPILL:
581 if (inst->dst.file == GRF)
582 no_spill[inst->dst.reg] = true;
583 break;
584
585 default:
586 break;
587 }
588 }
589
590 for (int i = 0; i < this->virtual_grf_count; i++) {
591 if (!no_spill[i])
592 ra_set_node_spill_cost(g, i, spill_costs[i]);
593 }
594
595 return ra_get_best_spill_node(g);
596 }
597
598 void
599 fs_visitor::spill_reg(int spill_reg)
600 {
601 int size = virtual_grf_sizes[spill_reg];
602 unsigned int spill_offset = c->last_scratch;
603 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
604 c->last_scratch += size * REG_SIZE;
605
606 /* Generate spill/unspill instructions for the objects being
607 * spilled. Right now, we spill or unspill the whole thing to a
608 * virtual grf of the same size. For most instructions, though, we
609 * could just spill/unspill the GRF being accessed.
610 */
611 foreach_list(node, &this->instructions) {
612 fs_inst *inst = (fs_inst *)node;
613
614 for (unsigned int i = 0; i < 3; i++) {
615 if (inst->src[i].file == GRF &&
616 inst->src[i].reg == spill_reg) {
617 inst->src[i].reg = virtual_grf_alloc(1);
618 emit_unspill(inst, inst->src[i],
619 spill_offset + REG_SIZE * inst->src[i].reg_offset);
620 }
621 }
622
623 if (inst->dst.file == GRF &&
624 inst->dst.reg == spill_reg) {
625 int subset_spill_offset = (spill_offset +
626 REG_SIZE * inst->dst.reg_offset);
627 inst->dst.reg = virtual_grf_alloc(inst->regs_written);
628 inst->dst.reg_offset = 0;
629
630 /* If our write is going to affect just part of the
631 * inst->regs_written(), then we need to unspill the destination
632 * since we write back out all of the regs_written().
633 */
634 if (inst->predicate || inst->force_uncompressed || inst->force_sechalf) {
635 fs_reg unspill_reg = inst->dst;
636 for (int chan = 0; chan < inst->regs_written; chan++) {
637 emit_unspill(inst, unspill_reg,
638 subset_spill_offset + REG_SIZE * chan);
639 unspill_reg.reg_offset++;
640 }
641 }
642
643 fs_reg spill_src = inst->dst;
644 spill_src.reg_offset = 0;
645 spill_src.abs = false;
646 spill_src.negate = false;
647 spill_src.smear = -1;
648
649 for (int chan = 0; chan < inst->regs_written; chan++) {
650 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
651 reg_null_f, spill_src);
652 spill_src.reg_offset++;
653 spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
654 spill_inst->ir = inst->ir;
655 spill_inst->annotation = inst->annotation;
656 spill_inst->base_mrf = 14;
657 spill_inst->mlen = 2; /* header, value */
658 inst->insert_after(spill_inst);
659 }
660 }
661 }
662
663 this->live_intervals_valid = false;
664 }