i965/fs: Allocate more register classes on gen7.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "glsl/glsl_types.h"
30 #include "glsl/ir_optimization.h"
31
32 static void
33 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
34 {
35 if (reg->file == GRF) {
36 assert(reg->reg_offset >= 0);
37 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
38 reg->reg_offset = 0;
39 }
40 }
41
42 void
43 fs_visitor::assign_regs_trivial()
44 {
45 int hw_reg_mapping[this->virtual_grf_count + 1];
46 int i;
47 int reg_width = dispatch_width / 8;
48
49 /* Note that compressed instructions require alignment to 2 registers. */
50 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
51 for (i = 1; i <= this->virtual_grf_count; i++) {
52 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
53 this->virtual_grf_sizes[i - 1] * reg_width);
54 }
55 this->grf_used = hw_reg_mapping[this->virtual_grf_count];
56
57 foreach_list(node, &this->instructions) {
58 fs_inst *inst = (fs_inst *)node;
59
60 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
61 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
62 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
63 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
64 }
65
66 if (this->grf_used >= max_grf) {
67 fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 this->grf_used, max_grf);
69 }
70
71 }
72
73 static void
74 brw_alloc_reg_set(struct brw_context *brw, int reg_width)
75 {
76 int base_reg_count = BRW_MAX_GRF / reg_width;
77 int index = reg_width - 1;
78
79 /* The registers used to make up almost all values handled in the compiler
80 * are a scalar value occupying a single register (or 2 registers in the
81 * case of 16-wide, which is handled by dividing base_reg_count by 2 and
82 * multiplying allocated register numbers by 2). Things that were
83 * aggregates of scalar values at the GLSL level were split to scalar
84 * values by split_virtual_grfs().
85 *
86 * However, texture SEND messages return a series of contiguous registers
87 * to write into. We currently always ask for 4 registers, but we may
88 * convert that to use less some day.
89 *
90 * Additionally, on gen5 we need aligned pairs of registers for the PLN
91 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
92 * texturing.
93 *
94 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
95 * and we add in '3' to make indexing the array easier for the common case
96 * (since we'll probably want it for texturing later).
97 *
98 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
99 * means that we may need any size up to the sampler message size limit (11
100 * regs).
101 */
102 int class_count;
103 int class_sizes[BRW_MAX_MRF];
104
105 if (brw->gen >= 7) {
106 for (class_count = 0; class_count < 11; class_count++)
107 class_sizes[class_count] = class_count + 1;
108 } else {
109 for (class_count = 0; class_count < 4; class_count++)
110 class_sizes[class_count] = class_count + 1;
111 class_sizes[class_count++] = 8;
112 }
113
114 /* Compute the total number of registers across all classes. */
115 int ra_reg_count = 0;
116 for (int i = 0; i < class_count; i++) {
117 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
118 }
119
120 uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
121 struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count);
122 if (brw->gen >= 6)
123 ra_set_allocate_round_robin(regs);
124 int *classes = ralloc_array(brw, int, class_count);
125 int aligned_pairs_class = -1;
126
127 /* Now, add the registers to their classes, and add the conflicts
128 * between them and the base GRF registers (and also each other).
129 */
130 int reg = 0;
131 int pairs_base_reg = 0;
132 int pairs_reg_count = 0;
133 for (int i = 0; i < class_count; i++) {
134 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
135 classes[i] = ra_alloc_reg_class(regs);
136
137 /* Save this off for the aligned pair class at the end. */
138 if (class_sizes[i] == 2) {
139 pairs_base_reg = reg;
140 pairs_reg_count = class_reg_count;
141 }
142
143 for (int j = 0; j < class_reg_count; j++) {
144 ra_class_add_reg(regs, classes[i], reg);
145
146 ra_reg_to_grf[reg] = j;
147
148 for (int base_reg = j;
149 base_reg < j + class_sizes[i];
150 base_reg++) {
151 ra_add_transitive_reg_conflict(regs, base_reg, reg);
152 }
153
154 reg++;
155 }
156 }
157 assert(reg == ra_reg_count);
158
159 /* Add a special class for aligned pairs, which we'll put delta_x/y
160 * in on gen5 so that we can do PLN.
161 */
162 if (brw->has_pln && reg_width == 1 && brw->gen < 6) {
163 aligned_pairs_class = ra_alloc_reg_class(regs);
164
165 for (int i = 0; i < pairs_reg_count; i++) {
166 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
167 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
168 }
169 }
170 }
171
172 ra_set_finalize(regs, NULL);
173
174 brw->wm.reg_sets[index].regs = regs;
175 for (unsigned i = 0; i < ARRAY_SIZE(brw->wm.reg_sets[index].classes); i++)
176 brw->wm.reg_sets[index].classes[i] = -1;
177 for (int i = 0; i < class_count; i++)
178 brw->wm.reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
179 brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
180 brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class;
181 }
182
183 void
184 brw_fs_alloc_reg_sets(struct brw_context *brw)
185 {
186 brw_alloc_reg_set(brw, 1);
187 brw_alloc_reg_set(brw, 2);
188 }
189
190 int
191 count_to_loop_end(fs_inst *do_inst)
192 {
193 int depth = 1;
194 int ip = 1;
195 for (fs_inst *inst = (fs_inst *)do_inst->next;
196 depth > 0;
197 inst = (fs_inst *)inst->next) {
198 switch (inst->opcode) {
199 case BRW_OPCODE_DO:
200 depth++;
201 break;
202 case BRW_OPCODE_WHILE:
203 depth--;
204 break;
205 default:
206 break;
207 }
208 ip++;
209 }
210 return ip;
211 }
212
213 /**
214 * Sets up interference between thread payload registers and the virtual GRFs
215 * to be allocated for program temporaries.
216 *
217 * We want to be able to reallocate the payload for our virtual GRFs, notably
218 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
219 * our 128 registers.
220 *
221 * The layout of the payload registers is:
222 *
223 * 0..nr_payload_regs-1: fixed function setup (including bary coordinates).
224 * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data
225 * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
226 *
227 * And we have payload_node_count nodes covering these registers in order
228 * (note that in 16-wide, a node is two registers).
229 */
230 void
231 fs_visitor::setup_payload_interference(struct ra_graph *g,
232 int payload_node_count,
233 int first_payload_node)
234 {
235 int reg_width = dispatch_width / 8;
236 int loop_depth = 0;
237 int loop_end_ip = 0;
238
239 int payload_last_use_ip[payload_node_count];
240 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
241 int ip = 0;
242 foreach_list(node, &this->instructions) {
243 fs_inst *inst = (fs_inst *)node;
244
245 switch (inst->opcode) {
246 case BRW_OPCODE_DO:
247 loop_depth++;
248
249 /* Since payload regs are deffed only at the start of the shader
250 * execution, any uses of the payload within a loop mean the live
251 * interval extends to the end of the outermost loop. Find the ip of
252 * the end now.
253 */
254 if (loop_depth == 1)
255 loop_end_ip = ip + count_to_loop_end(inst);
256 break;
257 case BRW_OPCODE_WHILE:
258 loop_depth--;
259 break;
260 default:
261 break;
262 }
263
264 int use_ip;
265 if (loop_depth > 0)
266 use_ip = loop_end_ip;
267 else
268 use_ip = ip;
269
270 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
271 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
272 * the start (see interp_reg()).
273 */
274 for (int i = 0; i < 3; i++) {
275 if (inst->src[i].file == HW_REG &&
276 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
277 int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
278 if (node_nr >= payload_node_count)
279 continue;
280
281 payload_last_use_ip[node_nr] = use_ip;
282 }
283 }
284
285 /* Special case instructions which have extra implied registers used. */
286 switch (inst->opcode) {
287 case FS_OPCODE_FB_WRITE:
288 /* We could omit this for the !inst->header_present case, except that
289 * the simulator apparently incorrectly reads from g0/g1 instead of
290 * sideband. It also really freaks out driver developers to see g0
291 * used in unusual places, so just always reserve it.
292 */
293 payload_last_use_ip[0 / reg_width] = use_ip;
294 payload_last_use_ip[1 / reg_width] = use_ip;
295 break;
296
297 case FS_OPCODE_LINTERP:
298 /* On gen6+ in 16-wide, there are 4 adjacent registers (so 2 nodes)
299 * used by PLN's sourcing of the deltas, while we list only the first
300 * two in the arguments (1 node). Pre-gen6, the deltas are computed
301 * in normal VGRFs.
302 */
303 if (brw->gen >= 6) {
304 int delta_x_arg = 0;
305 if (inst->src[delta_x_arg].file == HW_REG &&
306 inst->src[delta_x_arg].fixed_hw_reg.file ==
307 BRW_GENERAL_REGISTER_FILE) {
308 int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
309 reg_width) + 1;
310 assert(sechalf_node < payload_node_count);
311 payload_last_use_ip[sechalf_node] = use_ip;
312 }
313 }
314 break;
315
316 default:
317 break;
318 }
319
320 ip++;
321 }
322
323 for (int i = 0; i < payload_node_count; i++) {
324 /* Mark the payload node as interfering with any virtual grf that is
325 * live between the start of the program and our last use of the payload
326 * node.
327 */
328 for (int j = 0; j < this->virtual_grf_count; j++) {
329 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
330 * in order to not have to worry about the uniform issue described in
331 * calculate_live_intervals().
332 */
333 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
334 ra_add_node_interference(g, first_payload_node + i, j);
335 }
336 }
337 }
338
339 for (int i = 0; i < payload_node_count; i++) {
340 /* Mark each payload node as being allocated to its physical register.
341 *
342 * The alternative would be to have per-physical-register classes, which
343 * would just be silly.
344 */
345 ra_set_node_reg(g, first_payload_node + i, i);
346 }
347 }
348
349 /**
350 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
351 * messages (treated as MRFs in code generation).
352 */
353 void
354 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
355 {
356 int mrf_count = BRW_MAX_GRF - GEN7_MRF_HACK_START;
357 int reg_width = dispatch_width / 8;
358
359 /* Identify all the MRFs used in the program. */
360 bool mrf_used[mrf_count];
361 memset(mrf_used, 0, sizeof(mrf_used));
362 foreach_list(node, &this->instructions) {
363 fs_inst *inst = (fs_inst *)node;
364
365 if (inst->dst.file == MRF) {
366 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
367 mrf_used[reg] = true;
368 if (reg_width == 2) {
369 if (inst->dst.reg & BRW_MRF_COMPR4) {
370 mrf_used[reg + 4] = true;
371 } else {
372 mrf_used[reg + 1] = true;
373 }
374 }
375 }
376
377 if (inst->mlen > 0) {
378 for (int i = 0; i < implied_mrf_writes(inst); i++) {
379 mrf_used[inst->base_mrf + i] = true;
380 }
381 }
382 }
383
384 for (int i = 0; i < mrf_count; i++) {
385 /* Mark each payload reg node as being allocated to its physical register.
386 *
387 * The alternative would be to have per-physical-register classes, which
388 * would just be silly.
389 */
390 ra_set_node_reg(g, first_mrf_node + i,
391 (GEN7_MRF_HACK_START + i) / reg_width);
392
393 /* Since we don't have any live/dead analysis on the MRFs, just mark all
394 * that are used as conflicting with all virtual GRFs.
395 */
396 if (mrf_used[i]) {
397 for (int j = 0; j < this->virtual_grf_count; j++) {
398 ra_add_node_interference(g, first_mrf_node + i, j);
399 }
400 }
401 }
402 }
403
404 bool
405 fs_visitor::assign_regs()
406 {
407 /* Most of this allocation was written for a reg_width of 1
408 * (dispatch_width == 8). In extending to 16-wide, the code was
409 * left in place and it was converted to have the hardware
410 * registers it's allocating be contiguous physical pairs of regs
411 * for reg_width == 2.
412 */
413 int reg_width = dispatch_width / 8;
414 int hw_reg_mapping[this->virtual_grf_count];
415 int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
416 reg_width);
417 int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */
418 calculate_live_intervals();
419
420 int node_count = this->virtual_grf_count;
421 int first_payload_node = node_count;
422 node_count += payload_node_count;
423 int first_mrf_hack_node = node_count;
424 if (brw->gen >= 7)
425 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
426 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs,
427 node_count);
428
429 for (int i = 0; i < this->virtual_grf_count; i++) {
430 unsigned size = this->virtual_grf_sizes[i];
431 int c;
432
433 assert(size <= ARRAY_SIZE(brw->wm.reg_sets[rsi].classes) &&
434 "Register allocation relies on split_virtual_grfs()");
435 c = brw->wm.reg_sets[rsi].classes[size - 1];
436
437 /* Special case: on pre-GEN6 hardware that supports PLN, the
438 * second operand of a PLN instruction needs to be an
439 * even-numbered register, so we have a special register class
440 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
441 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
442 * second operand of a PLN instruction (since it doesn't support
443 * any other interpolation modes). So all we need to do is find
444 * that register and set it to the appropriate class.
445 */
446 if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 &&
447 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
448 c = brw->wm.reg_sets[rsi].aligned_pairs_class;
449 }
450
451 ra_set_node_class(g, i, c);
452
453 for (int j = 0; j < i; j++) {
454 if (virtual_grf_interferes(i, j)) {
455 ra_add_node_interference(g, i, j);
456 }
457 }
458 }
459
460 setup_payload_interference(g, payload_node_count, first_payload_node);
461 if (brw->gen >= 7)
462 setup_mrf_hack_interference(g, first_mrf_hack_node);
463
464 if (!ra_allocate_no_spills(g)) {
465 /* Failed to allocate registers. Spill a reg, and the caller will
466 * loop back into here to try again.
467 */
468 int reg = choose_spill_reg(g);
469
470 if (reg == -1) {
471 fail("no register to spill:\n");
472 dump_instructions();
473 } else if (dispatch_width == 16) {
474 fail("Failure to register allocate. Reduce number of live scalar "
475 "values to avoid this.");
476 } else {
477 spill_reg(reg);
478 }
479
480
481 ralloc_free(g);
482
483 return false;
484 }
485
486 /* Get the chosen virtual registers for each node, and map virtual
487 * regs in the register classes back down to real hardware reg
488 * numbers.
489 */
490 this->grf_used = payload_node_count * reg_width;
491 for (int i = 0; i < this->virtual_grf_count; i++) {
492 int reg = ra_get_node_reg(g, i);
493
494 hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
495 this->grf_used = MAX2(this->grf_used,
496 hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
497 reg_width);
498 }
499
500 foreach_list(node, &this->instructions) {
501 fs_inst *inst = (fs_inst *)node;
502
503 assign_reg(hw_reg_mapping, &inst->dst, reg_width);
504 assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
505 assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
506 assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
507 }
508
509 ralloc_free(g);
510
511 return true;
512 }
513
514 void
515 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
516 {
517 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
518 unspill_inst->offset = spill_offset;
519 unspill_inst->ir = inst->ir;
520 unspill_inst->annotation = inst->annotation;
521
522 /* Choose a MRF that won't conflict with an MRF that's live across the
523 * spill. Nothing else will make it up to MRF 14/15.
524 */
525 unspill_inst->base_mrf = 14;
526 unspill_inst->mlen = 1; /* header contains offset */
527 inst->insert_before(unspill_inst);
528 }
529
530 int
531 fs_visitor::choose_spill_reg(struct ra_graph *g)
532 {
533 float loop_scale = 1.0;
534 float spill_costs[this->virtual_grf_count];
535 bool no_spill[this->virtual_grf_count];
536
537 for (int i = 0; i < this->virtual_grf_count; i++) {
538 spill_costs[i] = 0.0;
539 no_spill[i] = false;
540 }
541
542 /* Calculate costs for spilling nodes. Call it a cost of 1 per
543 * spill/unspill we'll have to do, and guess that the insides of
544 * loops run 10 times.
545 */
546 foreach_list(node, &this->instructions) {
547 fs_inst *inst = (fs_inst *)node;
548
549 for (unsigned int i = 0; i < 3; i++) {
550 if (inst->src[i].file == GRF) {
551 spill_costs[inst->src[i].reg] += loop_scale;
552
553 /* Register spilling logic assumes full-width registers; smeared
554 * registers have a width of 1 so if we try to spill them we'll
555 * generate invalid assembly. This shouldn't be a problem because
556 * smeared registers are only used as short-term temporaries when
557 * loading pull constants, so spilling them is unlikely to reduce
558 * register pressure anyhow.
559 */
560 if (inst->src[i].smear >= 0) {
561 no_spill[inst->src[i].reg] = true;
562 }
563 }
564 }
565
566 if (inst->dst.file == GRF) {
567 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
568
569 if (inst->dst.smear >= 0) {
570 no_spill[inst->dst.reg] = true;
571 }
572 }
573
574 switch (inst->opcode) {
575
576 case BRW_OPCODE_DO:
577 loop_scale *= 10;
578 break;
579
580 case BRW_OPCODE_WHILE:
581 loop_scale /= 10;
582 break;
583
584 case FS_OPCODE_SPILL:
585 if (inst->src[0].file == GRF)
586 no_spill[inst->src[0].reg] = true;
587 break;
588
589 case FS_OPCODE_UNSPILL:
590 if (inst->dst.file == GRF)
591 no_spill[inst->dst.reg] = true;
592 break;
593
594 default:
595 break;
596 }
597 }
598
599 for (int i = 0; i < this->virtual_grf_count; i++) {
600 if (!no_spill[i])
601 ra_set_node_spill_cost(g, i, spill_costs[i]);
602 }
603
604 return ra_get_best_spill_node(g);
605 }
606
607 void
608 fs_visitor::spill_reg(int spill_reg)
609 {
610 int size = virtual_grf_sizes[spill_reg];
611 unsigned int spill_offset = c->last_scratch;
612 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
613 c->last_scratch += size * REG_SIZE;
614
615 /* Generate spill/unspill instructions for the objects being
616 * spilled. Right now, we spill or unspill the whole thing to a
617 * virtual grf of the same size. For most instructions, though, we
618 * could just spill/unspill the GRF being accessed.
619 */
620 foreach_list(node, &this->instructions) {
621 fs_inst *inst = (fs_inst *)node;
622
623 for (unsigned int i = 0; i < 3; i++) {
624 if (inst->src[i].file == GRF &&
625 inst->src[i].reg == spill_reg) {
626 inst->src[i].reg = virtual_grf_alloc(1);
627 emit_unspill(inst, inst->src[i],
628 spill_offset + REG_SIZE * inst->src[i].reg_offset);
629 }
630 }
631
632 if (inst->dst.file == GRF &&
633 inst->dst.reg == spill_reg) {
634 int subset_spill_offset = (spill_offset +
635 REG_SIZE * inst->dst.reg_offset);
636 inst->dst.reg = virtual_grf_alloc(inst->regs_written);
637 inst->dst.reg_offset = 0;
638
639 /* If our write is going to affect just part of the
640 * inst->regs_written(), then we need to unspill the destination
641 * since we write back out all of the regs_written().
642 */
643 if (inst->predicate || inst->force_uncompressed || inst->force_sechalf) {
644 fs_reg unspill_reg = inst->dst;
645 for (int chan = 0; chan < inst->regs_written; chan++) {
646 emit_unspill(inst, unspill_reg,
647 subset_spill_offset + REG_SIZE * chan);
648 unspill_reg.reg_offset++;
649 }
650 }
651
652 fs_reg spill_src = inst->dst;
653 spill_src.reg_offset = 0;
654 spill_src.abs = false;
655 spill_src.negate = false;
656 spill_src.smear = -1;
657
658 for (int chan = 0; chan < inst->regs_written; chan++) {
659 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
660 reg_null_f, spill_src);
661 spill_src.reg_offset++;
662 spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
663 spill_inst->ir = inst->ir;
664 spill_inst->annotation = inst->annotation;
665 spill_inst->base_mrf = 14;
666 spill_inst->mlen = 2; /* header, value */
667 inst->insert_after(spill_inst);
668 }
669 }
670 }
671
672 invalidate_live_intervals();
673 }