i965/fs: Move message header and texture offset setup to generate_tex().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (ir->mode == ir_var_in) {
62 if (!strcmp(ir->name, "gl_FragCoord")) {
63 reg = emit_fragcoord_interpolation(ir);
64 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65 reg = emit_frontfacing_interpolation(ir);
66 } else {
67 reg = emit_general_interpolation(ir);
68 }
69 assert(reg);
70 hash_table_insert(this->variable_ht, reg, ir);
71 return;
72 } else if (ir->mode == ir_var_out) {
73 reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75 if (ir->index > 0) {
76 assert(ir->location == FRAG_RESULT_DATA0);
77 assert(ir->index == 1);
78 this->dual_src_output = *reg;
79 } else if (ir->location == FRAG_RESULT_COLOR) {
80 /* Writing gl_FragColor outputs to all color regions. */
81 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82 this->outputs[i] = *reg;
83 this->output_components[i] = 4;
84 }
85 } else if (ir->location == FRAG_RESULT_DEPTH) {
86 this->frag_depth = ir;
87 } else {
88 /* gl_FragData or a user-defined FS output */
89 assert(ir->location >= FRAG_RESULT_DATA0 &&
90 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92 int vector_elements =
93 ir->type->is_array() ? ir->type->fields.array->vector_elements
94 : ir->type->vector_elements;
95
96 /* General color output. */
97 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98 int output = ir->location - FRAG_RESULT_DATA0 + i;
99 this->outputs[output] = *reg;
100 this->outputs[output].reg_offset += vector_elements * i;
101 this->output_components[output] = vector_elements;
102 }
103 }
104 } else if (ir->mode == ir_var_uniform) {
105 int param_index = c->prog_data.nr_params;
106
107 if (c->dispatch_width == 16) {
108 if (!variable_storage(ir)) {
109 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
110 }
111 return;
112 }
113
114 if (!strncmp(ir->name, "gl_", 3)) {
115 setup_builtin_uniform_values(ir);
116 } else {
117 setup_uniform_values(ir->location, ir->type);
118 }
119
120 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
121 reg->type = brw_type_for_base_type(ir->type);
122 }
123
124 if (!reg)
125 reg = new(this->mem_ctx) fs_reg(this, ir->type);
126
127 hash_table_insert(this->variable_ht, reg, ir);
128 }
129
130 void
131 fs_visitor::visit(ir_dereference_variable *ir)
132 {
133 fs_reg *reg = variable_storage(ir->var);
134 this->result = *reg;
135 }
136
137 void
138 fs_visitor::visit(ir_dereference_record *ir)
139 {
140 const glsl_type *struct_type = ir->record->type;
141
142 ir->record->accept(this);
143
144 unsigned int offset = 0;
145 for (unsigned int i = 0; i < struct_type->length; i++) {
146 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
147 break;
148 offset += type_size(struct_type->fields.structure[i].type);
149 }
150 this->result.reg_offset += offset;
151 this->result.type = brw_type_for_base_type(ir->type);
152 }
153
154 void
155 fs_visitor::visit(ir_dereference_array *ir)
156 {
157 ir_constant *index;
158 int element_size;
159
160 ir->array->accept(this);
161 index = ir->array_index->as_constant();
162
163 element_size = type_size(ir->type);
164 this->result.type = brw_type_for_base_type(ir->type);
165
166 if (index) {
167 assert(this->result.file == UNIFORM || this->result.file == GRF);
168 this->result.reg_offset += index->value.i[0] * element_size;
169 } else {
170 assert(!"FINISHME: non-constant array element");
171 }
172 }
173
174 /* Instruction selection: Produce a MOV.sat instead of
175 * MIN(MAX(val, 0), 1) when possible.
176 */
177 bool
178 fs_visitor::try_emit_saturate(ir_expression *ir)
179 {
180 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
181
182 if (!sat_val)
183 return false;
184
185 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
186
187 sat_val->accept(this);
188 fs_reg src = this->result;
189
190 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
191
192 /* If the last instruction from our accept() didn't generate our
193 * src, generate a saturated MOV
194 */
195 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
196 if (!modify || modify->regs_written() != 1) {
197 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
198 inst->saturate = true;
199 } else {
200 modify->saturate = true;
201 this->result = src;
202 }
203
204
205 return true;
206 }
207
208 bool
209 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
210 {
211 /* 3-src instructions were introduced in gen6. */
212 if (intel->gen < 6)
213 return false;
214
215 /* MAD can only handle floating-point data. */
216 if (ir->type != glsl_type::float_type)
217 return false;
218
219 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
220 ir_expression *mul = ir->operands[mul_arg]->as_expression();
221
222 if (!mul || mul->operation != ir_binop_mul)
223 return false;
224
225 if (nonmul->as_constant() ||
226 mul->operands[0]->as_constant() ||
227 mul->operands[1]->as_constant())
228 return false;
229
230 nonmul->accept(this);
231 fs_reg src0 = this->result;
232
233 mul->operands[0]->accept(this);
234 fs_reg src1 = this->result;
235
236 mul->operands[1]->accept(this);
237 fs_reg src2 = this->result;
238
239 this->result = fs_reg(this, ir->type);
240 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
241
242 return true;
243 }
244
245 void
246 fs_visitor::visit(ir_expression *ir)
247 {
248 unsigned int operand;
249 fs_reg op[2], temp;
250 fs_inst *inst;
251
252 assert(ir->get_num_operands() <= 2);
253
254 if (try_emit_saturate(ir))
255 return;
256 if (ir->operation == ir_binop_add) {
257 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
258 return;
259 }
260
261 for (operand = 0; operand < ir->get_num_operands(); operand++) {
262 ir->operands[operand]->accept(this);
263 if (this->result.file == BAD_FILE) {
264 ir_print_visitor v;
265 fail("Failed to get tree for expression operand:\n");
266 ir->operands[operand]->accept(&v);
267 }
268 op[operand] = this->result;
269
270 /* Matrix expression operands should have been broken down to vector
271 * operations already.
272 */
273 assert(!ir->operands[operand]->type->is_matrix());
274 /* And then those vector operands should have been broken down to scalar.
275 */
276 assert(!ir->operands[operand]->type->is_vector());
277 }
278
279 /* Storage for our result. If our result goes into an assignment, it will
280 * just get copy-propagated out, so no worries.
281 */
282 this->result = fs_reg(this, ir->type);
283
284 switch (ir->operation) {
285 case ir_unop_logic_not:
286 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
287 * ones complement of the whole register, not just bit 0.
288 */
289 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
290 break;
291 case ir_unop_neg:
292 op[0].negate = !op[0].negate;
293 this->result = op[0];
294 break;
295 case ir_unop_abs:
296 op[0].abs = true;
297 op[0].negate = false;
298 this->result = op[0];
299 break;
300 case ir_unop_sign:
301 temp = fs_reg(this, ir->type);
302
303 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
304
305 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
306 inst->conditional_mod = BRW_CONDITIONAL_G;
307 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
308 inst->predicated = true;
309
310 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
311 inst->conditional_mod = BRW_CONDITIONAL_L;
312 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
313 inst->predicated = true;
314
315 break;
316 case ir_unop_rcp:
317 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
318 break;
319
320 case ir_unop_exp2:
321 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
322 break;
323 case ir_unop_log2:
324 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
325 break;
326 case ir_unop_exp:
327 case ir_unop_log:
328 assert(!"not reached: should be handled by ir_explog_to_explog2");
329 break;
330 case ir_unop_sin:
331 case ir_unop_sin_reduced:
332 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
333 break;
334 case ir_unop_cos:
335 case ir_unop_cos_reduced:
336 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
337 break;
338
339 case ir_unop_dFdx:
340 emit(FS_OPCODE_DDX, this->result, op[0]);
341 break;
342 case ir_unop_dFdy:
343 emit(FS_OPCODE_DDY, this->result, op[0]);
344 break;
345
346 case ir_binop_add:
347 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
348 break;
349 case ir_binop_sub:
350 assert(!"not reached: should be handled by ir_sub_to_add_neg");
351 break;
352
353 case ir_binop_mul:
354 if (ir->type->is_integer()) {
355 /* For integer multiplication, the MUL uses the low 16 bits
356 * of one of the operands (src0 on gen6, src1 on gen7). The
357 * MACH accumulates in the contribution of the upper 16 bits
358 * of that operand.
359 *
360 * FINISHME: Emit just the MUL if we know an operand is small
361 * enough.
362 */
363 if (intel->gen >= 7 && c->dispatch_width == 16)
364 fail("16-wide explicit accumulator operands unsupported\n");
365
366 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
367
368 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
369 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
370 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
371 } else {
372 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
373 }
374 break;
375 case ir_binop_div:
376 if (intel->gen >= 7 && c->dispatch_width == 16)
377 fail("16-wide INTDIV unsupported\n");
378
379 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
380 assert(ir->type->is_integer());
381 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
382 break;
383 case ir_binop_mod:
384 if (intel->gen >= 7 && c->dispatch_width == 16)
385 fail("16-wide INTDIV unsupported\n");
386
387 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
388 assert(ir->type->is_integer());
389 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
390 break;
391
392 case ir_binop_less:
393 case ir_binop_greater:
394 case ir_binop_lequal:
395 case ir_binop_gequal:
396 case ir_binop_equal:
397 case ir_binop_all_equal:
398 case ir_binop_nequal:
399 case ir_binop_any_nequal:
400 temp = this->result;
401 /* original gen4 does implicit conversion before comparison. */
402 if (intel->gen < 5)
403 temp.type = op[0].type;
404
405 resolve_ud_negate(&op[0]);
406 resolve_ud_negate(&op[1]);
407
408 resolve_bool_comparison(ir->operands[0], &op[0]);
409 resolve_bool_comparison(ir->operands[1], &op[1]);
410
411 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
412 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
413 break;
414
415 case ir_binop_logic_xor:
416 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
417 break;
418
419 case ir_binop_logic_or:
420 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
421 break;
422
423 case ir_binop_logic_and:
424 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
425 break;
426
427 case ir_binop_dot:
428 case ir_unop_any:
429 assert(!"not reached: should be handled by brw_fs_channel_expressions");
430 break;
431
432 case ir_unop_noise:
433 assert(!"not reached: should be handled by lower_noise");
434 break;
435
436 case ir_quadop_vector:
437 assert(!"not reached: should be handled by lower_quadop_vector");
438 break;
439
440 case ir_unop_sqrt:
441 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
442 break;
443
444 case ir_unop_rsq:
445 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
446 break;
447
448 case ir_unop_bitcast_i2f:
449 case ir_unop_bitcast_u2f:
450 op[0].type = BRW_REGISTER_TYPE_F;
451 this->result = op[0];
452 break;
453 case ir_unop_i2u:
454 case ir_unop_bitcast_f2u:
455 op[0].type = BRW_REGISTER_TYPE_UD;
456 this->result = op[0];
457 break;
458 case ir_unop_u2i:
459 case ir_unop_bitcast_f2i:
460 op[0].type = BRW_REGISTER_TYPE_D;
461 this->result = op[0];
462 break;
463 case ir_unop_i2f:
464 case ir_unop_u2f:
465 case ir_unop_f2i:
466 case ir_unop_f2u:
467 emit(BRW_OPCODE_MOV, this->result, op[0]);
468 break;
469
470 case ir_unop_b2i:
471 inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
472 break;
473 case ir_unop_b2f:
474 temp = fs_reg(this, glsl_type::int_type);
475 emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
476 emit(BRW_OPCODE_MOV, this->result, temp);
477 break;
478
479 case ir_unop_f2b:
480 inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f));
481 inst->conditional_mod = BRW_CONDITIONAL_NZ;
482 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
483 break;
484 case ir_unop_i2b:
485 assert(op[0].type == BRW_REGISTER_TYPE_D);
486
487 inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0));
488 inst->conditional_mod = BRW_CONDITIONAL_NZ;
489 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
490 break;
491
492 case ir_unop_trunc:
493 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
494 break;
495 case ir_unop_ceil:
496 op[0].negate = !op[0].negate;
497 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
498 this->result.negate = true;
499 break;
500 case ir_unop_floor:
501 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
502 break;
503 case ir_unop_fract:
504 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
505 break;
506 case ir_unop_round_even:
507 emit(BRW_OPCODE_RNDE, this->result, op[0]);
508 break;
509
510 case ir_binop_min:
511 resolve_ud_negate(&op[0]);
512 resolve_ud_negate(&op[1]);
513
514 if (intel->gen >= 6) {
515 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516 inst->conditional_mod = BRW_CONDITIONAL_L;
517 } else {
518 /* Unalias the destination */
519 this->result = fs_reg(this, ir->type);
520
521 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522 inst->conditional_mod = BRW_CONDITIONAL_L;
523
524 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525 inst->predicated = true;
526 }
527 break;
528 case ir_binop_max:
529 resolve_ud_negate(&op[0]);
530 resolve_ud_negate(&op[1]);
531
532 if (intel->gen >= 6) {
533 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
534 inst->conditional_mod = BRW_CONDITIONAL_GE;
535 } else {
536 /* Unalias the destination */
537 this->result = fs_reg(this, ir->type);
538
539 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
540 inst->conditional_mod = BRW_CONDITIONAL_G;
541
542 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
543 inst->predicated = true;
544 }
545 break;
546
547 case ir_binop_pow:
548 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
549 break;
550
551 case ir_unop_bit_not:
552 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
553 break;
554 case ir_binop_bit_and:
555 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
556 break;
557 case ir_binop_bit_xor:
558 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
559 break;
560 case ir_binop_bit_or:
561 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
562 break;
563
564 case ir_binop_lshift:
565 inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
566 break;
567
568 case ir_binop_rshift:
569 if (ir->type->base_type == GLSL_TYPE_INT)
570 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
571 else
572 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
573 break;
574 }
575 }
576
577 void
578 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
579 const glsl_type *type, bool predicated)
580 {
581 switch (type->base_type) {
582 case GLSL_TYPE_FLOAT:
583 case GLSL_TYPE_UINT:
584 case GLSL_TYPE_INT:
585 case GLSL_TYPE_BOOL:
586 for (unsigned int i = 0; i < type->components(); i++) {
587 l.type = brw_type_for_base_type(type);
588 r.type = brw_type_for_base_type(type);
589
590 if (predicated || !l.equals(r)) {
591 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
592 inst->predicated = predicated;
593 }
594
595 l.reg_offset++;
596 r.reg_offset++;
597 }
598 break;
599 case GLSL_TYPE_ARRAY:
600 for (unsigned int i = 0; i < type->length; i++) {
601 emit_assignment_writes(l, r, type->fields.array, predicated);
602 }
603 break;
604
605 case GLSL_TYPE_STRUCT:
606 for (unsigned int i = 0; i < type->length; i++) {
607 emit_assignment_writes(l, r, type->fields.structure[i].type,
608 predicated);
609 }
610 break;
611
612 case GLSL_TYPE_SAMPLER:
613 break;
614
615 default:
616 assert(!"not reached");
617 break;
618 }
619 }
620
621 /* If the RHS processing resulted in an instruction generating a
622 * temporary value, and it would be easy to rewrite the instruction to
623 * generate its result right into the LHS instead, do so. This ends
624 * up reliably removing instructions where it can be tricky to do so
625 * later without real UD chain information.
626 */
627 bool
628 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
629 fs_reg dst,
630 fs_reg src,
631 fs_inst *pre_rhs_inst,
632 fs_inst *last_rhs_inst)
633 {
634 /* Only attempt if we're doing a direct assignment. */
635 if (ir->condition ||
636 !(ir->lhs->type->is_scalar() ||
637 (ir->lhs->type->is_vector() &&
638 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
639 return false;
640
641 /* Make sure the last instruction generated our source reg. */
642 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
643 last_rhs_inst,
644 src);
645 if (!modify)
646 return false;
647
648 /* If last_rhs_inst wrote a different number of components than our LHS,
649 * we can't safely rewrite it.
650 */
651 if (ir->lhs->type->vector_elements != modify->regs_written())
652 return false;
653
654 /* Success! Rewrite the instruction. */
655 modify->dst = dst;
656
657 return true;
658 }
659
660 void
661 fs_visitor::visit(ir_assignment *ir)
662 {
663 fs_reg l, r;
664 fs_inst *inst;
665
666 /* FINISHME: arrays on the lhs */
667 ir->lhs->accept(this);
668 l = this->result;
669
670 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
671
672 ir->rhs->accept(this);
673 r = this->result;
674
675 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
676
677 assert(l.file != BAD_FILE);
678 assert(r.file != BAD_FILE);
679
680 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
681 return;
682
683 if (ir->condition) {
684 emit_bool_to_cond_code(ir->condition);
685 }
686
687 if (ir->lhs->type->is_scalar() ||
688 ir->lhs->type->is_vector()) {
689 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
690 if (ir->write_mask & (1 << i)) {
691 inst = emit(BRW_OPCODE_MOV, l, r);
692 if (ir->condition)
693 inst->predicated = true;
694 r.reg_offset++;
695 }
696 l.reg_offset++;
697 }
698 } else {
699 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
700 }
701 }
702
703 fs_inst *
704 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
705 int sampler)
706 {
707 int mlen;
708 int base_mrf = 1;
709 bool simd16 = false;
710 fs_reg orig_dst;
711
712 /* g0 header. */
713 mlen = 1;
714
715 if (ir->shadow_comparitor) {
716 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
717 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
718 coordinate.reg_offset++;
719 }
720 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
721 mlen += 3;
722
723 if (ir->op == ir_tex) {
724 /* There's no plain shadow compare message, so we use shadow
725 * compare with a bias of 0.0.
726 */
727 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
728 mlen++;
729 } else if (ir->op == ir_txb) {
730 ir->lod_info.bias->accept(this);
731 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
732 mlen++;
733 } else {
734 assert(ir->op == ir_txl);
735 ir->lod_info.lod->accept(this);
736 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
737 mlen++;
738 }
739
740 ir->shadow_comparitor->accept(this);
741 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
742 mlen++;
743 } else if (ir->op == ir_tex) {
744 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
745 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
746 coordinate.reg_offset++;
747 }
748 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
749 mlen += 3;
750 } else if (ir->op == ir_txd) {
751 ir->lod_info.grad.dPdx->accept(this);
752 fs_reg dPdx = this->result;
753
754 ir->lod_info.grad.dPdy->accept(this);
755 fs_reg dPdy = this->result;
756
757 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
758 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
759 coordinate.reg_offset++;
760 }
761 /* the slots for u and v are always present, but r is optional */
762 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
763
764 /* P = u, v, r
765 * dPdx = dudx, dvdx, drdx
766 * dPdy = dudy, dvdy, drdy
767 *
768 * 1-arg: Does not exist.
769 *
770 * 2-arg: dudx dvdx dudy dvdy
771 * dPdx.x dPdx.y dPdy.x dPdy.y
772 * m4 m5 m6 m7
773 *
774 * 3-arg: dudx dvdx drdx dudy dvdy drdy
775 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
776 * m5 m6 m7 m8 m9 m10
777 */
778 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
779 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
780 dPdx.reg_offset++;
781 }
782 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
783
784 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
785 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
786 dPdy.reg_offset++;
787 }
788 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
789 } else if (ir->op == ir_txs) {
790 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
791 simd16 = true;
792 ir->lod_info.lod->accept(this);
793 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
794 mlen += 2;
795 } else {
796 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
797 * instructions. We'll need to do SIMD16 here.
798 */
799 simd16 = true;
800 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
801
802 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
803 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
804 coordinate);
805 coordinate.reg_offset++;
806 }
807
808 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
809 * be necessary for TXF (ld), but seems wise to do for all messages.
810 */
811 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
812 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
813 }
814
815 /* lod/bias appears after u/v/r. */
816 mlen += 6;
817
818 if (ir->op == ir_txb) {
819 ir->lod_info.bias->accept(this);
820 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
821 mlen++;
822 } else {
823 ir->lod_info.lod->accept(this);
824 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
825 this->result);
826 mlen++;
827 }
828
829 /* The unused upper half. */
830 mlen++;
831 }
832
833 if (simd16) {
834 /* Now, since we're doing simd16, the return is 2 interleaved
835 * vec4s where the odd-indexed ones are junk. We'll need to move
836 * this weirdness around to the expected layout.
837 */
838 orig_dst = dst;
839 const glsl_type *vec_type =
840 glsl_type::get_instance(ir->type->base_type, 4, 1);
841 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
842 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
843 : BRW_REGISTER_TYPE_F;
844 }
845
846 fs_inst *inst = NULL;
847 switch (ir->op) {
848 case ir_tex:
849 inst = emit(SHADER_OPCODE_TEX, dst);
850 break;
851 case ir_txb:
852 inst = emit(FS_OPCODE_TXB, dst);
853 break;
854 case ir_txl:
855 inst = emit(SHADER_OPCODE_TXL, dst);
856 break;
857 case ir_txd:
858 inst = emit(SHADER_OPCODE_TXD, dst);
859 break;
860 case ir_txs:
861 inst = emit(SHADER_OPCODE_TXS, dst);
862 break;
863 case ir_txf:
864 inst = emit(SHADER_OPCODE_TXF, dst);
865 break;
866 }
867 inst->base_mrf = base_mrf;
868 inst->mlen = mlen;
869 inst->header_present = true;
870
871 if (simd16) {
872 for (int i = 0; i < 4; i++) {
873 emit(BRW_OPCODE_MOV, orig_dst, dst);
874 orig_dst.reg_offset++;
875 dst.reg_offset += 2;
876 }
877 }
878
879 return inst;
880 }
881
882 /* gen5's sampler has slots for u, v, r, array index, then optional
883 * parameters like shadow comparitor or LOD bias. If optional
884 * parameters aren't present, those base slots are optional and don't
885 * need to be included in the message.
886 *
887 * We don't fill in the unnecessary slots regardless, which may look
888 * surprising in the disassembly.
889 */
890 fs_inst *
891 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
892 int sampler)
893 {
894 int mlen = 0;
895 int base_mrf = 2;
896 int reg_width = c->dispatch_width / 8;
897 bool header_present = false;
898 const int vector_elements =
899 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
900
901 if (ir->offset != NULL && ir->op == ir_txf) {
902 /* It appears that the ld instruction used for txf does its
903 * address bounds check before adding in the offset. To work
904 * around this, just add the integer offset to the integer texel
905 * coordinate, and don't put the offset in the header.
906 */
907 ir_constant *offset = ir->offset->as_constant();
908 for (int i = 0; i < vector_elements; i++) {
909 emit(BRW_OPCODE_ADD,
910 fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
911 coordinate,
912 offset->value.i[i]);
913 coordinate.reg_offset++;
914 }
915 } else {
916 if (ir->offset) {
917 /* The offsets set up by the ir_texture visitor are in the
918 * m1 header, so we can't go headerless.
919 */
920 header_present = true;
921 mlen++;
922 base_mrf--;
923 }
924
925 for (int i = 0; i < vector_elements; i++) {
926 emit(BRW_OPCODE_MOV,
927 fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
928 coordinate);
929 coordinate.reg_offset++;
930 }
931 }
932 mlen += vector_elements * reg_width;
933
934 if (ir->shadow_comparitor) {
935 mlen = MAX2(mlen, header_present + 4 * reg_width);
936
937 ir->shadow_comparitor->accept(this);
938 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
939 mlen += reg_width;
940 }
941
942 fs_inst *inst = NULL;
943 switch (ir->op) {
944 case ir_tex:
945 inst = emit(SHADER_OPCODE_TEX, dst);
946 break;
947 case ir_txb:
948 ir->lod_info.bias->accept(this);
949 mlen = MAX2(mlen, header_present + 4 * reg_width);
950 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
951 mlen += reg_width;
952
953 inst = emit(FS_OPCODE_TXB, dst);
954
955 break;
956 case ir_txl:
957 ir->lod_info.lod->accept(this);
958 mlen = MAX2(mlen, header_present + 4 * reg_width);
959 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
960 mlen += reg_width;
961
962 inst = emit(SHADER_OPCODE_TXL, dst);
963 break;
964 case ir_txd: {
965 ir->lod_info.grad.dPdx->accept(this);
966 fs_reg dPdx = this->result;
967
968 ir->lod_info.grad.dPdy->accept(this);
969 fs_reg dPdy = this->result;
970
971 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
972
973 /**
974 * P = u, v, r
975 * dPdx = dudx, dvdx, drdx
976 * dPdy = dudy, dvdy, drdy
977 *
978 * Load up these values:
979 * - dudx dudy dvdx dvdy drdx drdy
980 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
981 */
982 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
983 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
984 dPdx.reg_offset++;
985 mlen += reg_width;
986
987 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
988 dPdy.reg_offset++;
989 mlen += reg_width;
990 }
991
992 inst = emit(SHADER_OPCODE_TXD, dst);
993 break;
994 }
995 case ir_txs:
996 ir->lod_info.lod->accept(this);
997 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
998 mlen += reg_width;
999 inst = emit(SHADER_OPCODE_TXS, dst);
1000 break;
1001 case ir_txf:
1002 mlen = header_present + 4 * reg_width;
1003
1004 ir->lod_info.lod->accept(this);
1005 emit(BRW_OPCODE_MOV,
1006 fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1007 this->result);
1008 inst = emit(SHADER_OPCODE_TXF, dst);
1009 break;
1010 }
1011 inst->base_mrf = base_mrf;
1012 inst->mlen = mlen;
1013 inst->header_present = header_present;
1014
1015 if (mlen > 11) {
1016 fail("Message length >11 disallowed by hardware\n");
1017 }
1018
1019 return inst;
1020 }
1021
1022 fs_inst *
1023 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1024 int sampler)
1025 {
1026 int mlen = 0;
1027 int base_mrf = 2;
1028 int reg_width = c->dispatch_width / 8;
1029 bool header_present = false;
1030 int offsets[3];
1031
1032 if (ir->offset && ir->op != ir_txf) {
1033 /* The offsets set up by the ir_texture visitor are in the
1034 * m1 header, so we can't go headerless.
1035 */
1036 header_present = true;
1037 mlen++;
1038 base_mrf--;
1039 }
1040
1041 if (ir->shadow_comparitor) {
1042 ir->shadow_comparitor->accept(this);
1043 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1044 mlen += reg_width;
1045 }
1046
1047 /* Set up the LOD info */
1048 switch (ir->op) {
1049 case ir_tex:
1050 break;
1051 case ir_txb:
1052 ir->lod_info.bias->accept(this);
1053 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1054 mlen += reg_width;
1055 break;
1056 case ir_txl:
1057 ir->lod_info.lod->accept(this);
1058 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1059 mlen += reg_width;
1060 break;
1061 case ir_txd: {
1062 if (c->dispatch_width == 16)
1063 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1064
1065 ir->lod_info.grad.dPdx->accept(this);
1066 fs_reg dPdx = this->result;
1067
1068 ir->lod_info.grad.dPdy->accept(this);
1069 fs_reg dPdy = this->result;
1070
1071 /* Load dPdx and the coordinate together:
1072 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1073 */
1074 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1075 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1076 coordinate.reg_offset++;
1077 mlen += reg_width;
1078
1079 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1080 dPdx.reg_offset++;
1081 mlen += reg_width;
1082
1083 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1084 dPdy.reg_offset++;
1085 mlen += reg_width;
1086 }
1087 break;
1088 }
1089 case ir_txs:
1090 ir->lod_info.lod->accept(this);
1091 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1092 mlen += reg_width;
1093 break;
1094 case ir_txf:
1095 /* It appears that the ld instruction used for txf does its
1096 * address bounds check before adding in the offset. To work
1097 * around this, just add the integer offset to the integer texel
1098 * coordinate, and don't put the offset in the header.
1099 */
1100 if (ir->offset) {
1101 ir_constant *offset = ir->offset->as_constant();
1102 offsets[0] = offset->value.i[0];
1103 offsets[1] = offset->value.i[1];
1104 offsets[2] = offset->value.i[2];
1105 } else {
1106 memset(offsets, 0, sizeof(offsets));
1107 }
1108
1109 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1110 emit(BRW_OPCODE_ADD,
1111 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1112 coordinate.reg_offset++;
1113 mlen += reg_width;
1114
1115 ir->lod_info.lod->accept(this);
1116 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1117 mlen += reg_width;
1118
1119 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1120 emit(BRW_OPCODE_ADD,
1121 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1122 coordinate.reg_offset++;
1123 mlen += reg_width;
1124 }
1125 break;
1126 }
1127
1128 /* Set up the coordinate (except for cases where it was done above) */
1129 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1130 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1131 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1132 coordinate.reg_offset++;
1133 mlen += reg_width;
1134 }
1135 }
1136
1137 /* Generate the SEND */
1138 fs_inst *inst = NULL;
1139 switch (ir->op) {
1140 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1141 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1142 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1143 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1144 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1145 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1146 }
1147 inst->base_mrf = base_mrf;
1148 inst->mlen = mlen;
1149 inst->header_present = header_present;
1150
1151 if (mlen > 11) {
1152 fail("Message length >11 disallowed by hardware\n");
1153 }
1154
1155 return inst;
1156 }
1157
1158 void
1159 fs_visitor::visit(ir_texture *ir)
1160 {
1161 fs_inst *inst = NULL;
1162
1163 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1164 sampler = fp->Base.SamplerUnits[sampler];
1165
1166 if (ir->coordinate)
1167 ir->coordinate->accept(this);
1168 fs_reg coordinate = this->result;
1169
1170 /* Should be lowered by do_lower_texture_projection */
1171 assert(!ir->projector);
1172
1173 bool needs_gl_clamp = true;
1174
1175 fs_reg scale_x, scale_y;
1176
1177 /* The 965 requires the EU to do the normalization of GL rectangle
1178 * texture coordinates. We use the program parameter state
1179 * tracking to get the scaling factor.
1180 */
1181 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1182 (intel->gen < 6 ||
1183 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1184 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1185 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1186 int tokens[STATE_LENGTH] = {
1187 STATE_INTERNAL,
1188 STATE_TEXRECT_SCALE,
1189 sampler,
1190 0,
1191 0
1192 };
1193
1194 if (c->dispatch_width == 16) {
1195 fail("rectangle scale uniform setup not supported on 16-wide\n");
1196 this->result = fs_reg(this, ir->type);
1197 return;
1198 }
1199
1200 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1201 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1202
1203 GLuint index = _mesa_add_state_reference(params,
1204 (gl_state_index *)tokens);
1205
1206 this->param_index[c->prog_data.nr_params] = index;
1207 this->param_offset[c->prog_data.nr_params] = 0;
1208 c->prog_data.nr_params++;
1209 this->param_index[c->prog_data.nr_params] = index;
1210 this->param_offset[c->prog_data.nr_params] = 1;
1211 c->prog_data.nr_params++;
1212 }
1213
1214 /* The 965 requires the EU to do the normalization of GL rectangle
1215 * texture coordinates. We use the program parameter state
1216 * tracking to get the scaling factor.
1217 */
1218 if (intel->gen < 6 &&
1219 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1220 fs_reg dst = fs_reg(this, ir->coordinate->type);
1221 fs_reg src = coordinate;
1222 coordinate = dst;
1223
1224 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1225 dst.reg_offset++;
1226 src.reg_offset++;
1227 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1228 } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1229 /* On gen6+, the sampler handles the rectangle coordinates
1230 * natively, without needing rescaling. But that means we have
1231 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1232 * not [0, 1] like the default case below.
1233 */
1234 needs_gl_clamp = false;
1235
1236 for (int i = 0; i < 2; i++) {
1237 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1238 fs_reg chan = coordinate;
1239 chan.reg_offset += i;
1240
1241 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1242 inst->conditional_mod = BRW_CONDITIONAL_G;
1243
1244 /* Our parameter comes in as 1.0/width or 1.0/height,
1245 * because that's what people normally want for doing
1246 * texture rectangle handling. We need width or height
1247 * for clamping, but we don't care enough to make a new
1248 * parameter type, so just invert back.
1249 */
1250 fs_reg limit = fs_reg(this, glsl_type::float_type);
1251 emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1252 emit(SHADER_OPCODE_RCP, limit, limit);
1253
1254 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1255 inst->conditional_mod = BRW_CONDITIONAL_L;
1256 }
1257 }
1258 }
1259
1260 if (ir->coordinate && needs_gl_clamp) {
1261 for (unsigned int i = 0;
1262 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1263 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1264 fs_reg chan = coordinate;
1265 chan.reg_offset += i;
1266
1267 fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1268 inst->saturate = true;
1269 }
1270 }
1271 }
1272
1273 /* Writemasking doesn't eliminate channels on SIMD8 texture
1274 * samples, so don't worry about them.
1275 */
1276 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1277
1278 if (intel->gen >= 7) {
1279 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1280 } else if (intel->gen >= 5) {
1281 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1282 } else {
1283 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1284 }
1285
1286 /* The header is set up by generate_tex() when necessary. */
1287 inst->src[0] = reg_undef;
1288
1289 if (ir->offset != NULL && ir->op != ir_txf)
1290 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1291
1292 inst->sampler = sampler;
1293
1294 if (ir->shadow_comparitor)
1295 inst->shadow_compare = true;
1296
1297 swizzle_result(ir, dst, sampler);
1298 }
1299
1300 /**
1301 * Swizzle the result of a texture result. This is necessary for
1302 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1303 */
1304 void
1305 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1306 {
1307 this->result = orig_val;
1308
1309 if (ir->op == ir_txs)
1310 return;
1311
1312 if (ir->type == glsl_type::float_type) {
1313 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1314 assert(ir->sampler->type->sampler_shadow);
1315 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1316 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1317
1318 for (int i = 0; i < 4; i++) {
1319 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1320 fs_reg l = swizzled_result;
1321 l.reg_offset += i;
1322
1323 if (swiz == SWIZZLE_ZERO) {
1324 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1325 } else if (swiz == SWIZZLE_ONE) {
1326 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1327 } else {
1328 fs_reg r = orig_val;
1329 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1330 emit(BRW_OPCODE_MOV, l, r);
1331 }
1332 }
1333 this->result = swizzled_result;
1334 }
1335 }
1336
1337 void
1338 fs_visitor::visit(ir_swizzle *ir)
1339 {
1340 ir->val->accept(this);
1341 fs_reg val = this->result;
1342
1343 if (ir->type->vector_elements == 1) {
1344 this->result.reg_offset += ir->mask.x;
1345 return;
1346 }
1347
1348 fs_reg result = fs_reg(this, ir->type);
1349 this->result = result;
1350
1351 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1352 fs_reg channel = val;
1353 int swiz = 0;
1354
1355 switch (i) {
1356 case 0:
1357 swiz = ir->mask.x;
1358 break;
1359 case 1:
1360 swiz = ir->mask.y;
1361 break;
1362 case 2:
1363 swiz = ir->mask.z;
1364 break;
1365 case 3:
1366 swiz = ir->mask.w;
1367 break;
1368 }
1369
1370 channel.reg_offset += swiz;
1371 emit(BRW_OPCODE_MOV, result, channel);
1372 result.reg_offset++;
1373 }
1374 }
1375
1376 void
1377 fs_visitor::visit(ir_discard *ir)
1378 {
1379 assert(ir->condition == NULL); /* FINISHME */
1380
1381 emit(FS_OPCODE_DISCARD);
1382 }
1383
1384 void
1385 fs_visitor::visit(ir_constant *ir)
1386 {
1387 /* Set this->result to reg at the bottom of the function because some code
1388 * paths will cause this visitor to be applied to other fields. This will
1389 * cause the value stored in this->result to be modified.
1390 *
1391 * Make reg constant so that it doesn't get accidentally modified along the
1392 * way. Yes, I actually had this problem. :(
1393 */
1394 const fs_reg reg(this, ir->type);
1395 fs_reg dst_reg = reg;
1396
1397 if (ir->type->is_array()) {
1398 const unsigned size = type_size(ir->type->fields.array);
1399
1400 for (unsigned i = 0; i < ir->type->length; i++) {
1401 ir->array_elements[i]->accept(this);
1402 fs_reg src_reg = this->result;
1403
1404 dst_reg.type = src_reg.type;
1405 for (unsigned j = 0; j < size; j++) {
1406 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1407 src_reg.reg_offset++;
1408 dst_reg.reg_offset++;
1409 }
1410 }
1411 } else if (ir->type->is_record()) {
1412 foreach_list(node, &ir->components) {
1413 ir_constant *const field = (ir_constant *) node;
1414 const unsigned size = type_size(field->type);
1415
1416 field->accept(this);
1417 fs_reg src_reg = this->result;
1418
1419 dst_reg.type = src_reg.type;
1420 for (unsigned j = 0; j < size; j++) {
1421 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1422 src_reg.reg_offset++;
1423 dst_reg.reg_offset++;
1424 }
1425 }
1426 } else {
1427 const unsigned size = type_size(ir->type);
1428
1429 for (unsigned i = 0; i < size; i++) {
1430 switch (ir->type->base_type) {
1431 case GLSL_TYPE_FLOAT:
1432 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1433 break;
1434 case GLSL_TYPE_UINT:
1435 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1436 break;
1437 case GLSL_TYPE_INT:
1438 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1439 break;
1440 case GLSL_TYPE_BOOL:
1441 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1442 break;
1443 default:
1444 assert(!"Non-float/uint/int/bool constant");
1445 }
1446 dst_reg.reg_offset++;
1447 }
1448 }
1449
1450 this->result = reg;
1451 }
1452
1453 void
1454 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1455 {
1456 ir_expression *expr = ir->as_expression();
1457
1458 if (expr) {
1459 fs_reg op[2];
1460 fs_inst *inst;
1461
1462 assert(expr->get_num_operands() <= 2);
1463 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1464 assert(expr->operands[i]->type->is_scalar());
1465
1466 expr->operands[i]->accept(this);
1467 op[i] = this->result;
1468
1469 resolve_ud_negate(&op[i]);
1470 }
1471
1472 switch (expr->operation) {
1473 case ir_unop_logic_not:
1474 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1475 inst->conditional_mod = BRW_CONDITIONAL_Z;
1476 break;
1477
1478 case ir_binop_logic_xor:
1479 case ir_binop_logic_or:
1480 case ir_binop_logic_and:
1481 goto out;
1482
1483 case ir_unop_f2b:
1484 if (intel->gen >= 6) {
1485 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1486 } else {
1487 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1488 }
1489 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1490 break;
1491
1492 case ir_unop_i2b:
1493 if (intel->gen >= 6) {
1494 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1495 } else {
1496 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1497 }
1498 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1499 break;
1500
1501 case ir_binop_greater:
1502 case ir_binop_gequal:
1503 case ir_binop_less:
1504 case ir_binop_lequal:
1505 case ir_binop_equal:
1506 case ir_binop_all_equal:
1507 case ir_binop_nequal:
1508 case ir_binop_any_nequal:
1509 resolve_bool_comparison(expr->operands[0], &op[0]);
1510 resolve_bool_comparison(expr->operands[1], &op[1]);
1511
1512 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1513 inst->conditional_mod =
1514 brw_conditional_for_comparison(expr->operation);
1515 break;
1516
1517 default:
1518 assert(!"not reached");
1519 fail("bad cond code\n");
1520 break;
1521 }
1522 return;
1523 }
1524
1525 out:
1526 ir->accept(this);
1527
1528 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1529 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1530 }
1531
1532 /**
1533 * Emit a gen6 IF statement with the comparison folded into the IF
1534 * instruction.
1535 */
1536 void
1537 fs_visitor::emit_if_gen6(ir_if *ir)
1538 {
1539 ir_expression *expr = ir->condition->as_expression();
1540
1541 if (expr) {
1542 fs_reg op[2];
1543 fs_inst *inst;
1544 fs_reg temp;
1545
1546 assert(expr->get_num_operands() <= 2);
1547 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1548 assert(expr->operands[i]->type->is_scalar());
1549
1550 expr->operands[i]->accept(this);
1551 op[i] = this->result;
1552 }
1553
1554 switch (expr->operation) {
1555 case ir_unop_logic_not:
1556 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1557 inst->conditional_mod = BRW_CONDITIONAL_Z;
1558 return;
1559
1560 case ir_binop_logic_xor:
1561 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1562 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1563 return;
1564
1565 case ir_binop_logic_or:
1566 temp = fs_reg(this, glsl_type::bool_type);
1567 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1568 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1569 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1570 return;
1571
1572 case ir_binop_logic_and:
1573 temp = fs_reg(this, glsl_type::bool_type);
1574 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1575 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1576 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1577 return;
1578
1579 case ir_unop_f2b:
1580 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1581 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1582 return;
1583
1584 case ir_unop_i2b:
1585 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1586 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1587 return;
1588
1589 case ir_binop_greater:
1590 case ir_binop_gequal:
1591 case ir_binop_less:
1592 case ir_binop_lequal:
1593 case ir_binop_equal:
1594 case ir_binop_all_equal:
1595 case ir_binop_nequal:
1596 case ir_binop_any_nequal:
1597 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1598 inst->conditional_mod =
1599 brw_conditional_for_comparison(expr->operation);
1600 return;
1601 default:
1602 assert(!"not reached");
1603 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1604 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1605 fail("bad condition\n");
1606 return;
1607 }
1608 return;
1609 }
1610
1611 ir->condition->accept(this);
1612
1613 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1614 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1615 }
1616
1617 void
1618 fs_visitor::visit(ir_if *ir)
1619 {
1620 fs_inst *inst;
1621
1622 if (intel->gen < 6 && c->dispatch_width == 16) {
1623 fail("Can't support (non-uniform) control flow on 16-wide\n");
1624 }
1625
1626 /* Don't point the annotation at the if statement, because then it plus
1627 * the then and else blocks get printed.
1628 */
1629 this->base_ir = ir->condition;
1630
1631 if (intel->gen == 6) {
1632 emit_if_gen6(ir);
1633 } else {
1634 emit_bool_to_cond_code(ir->condition);
1635
1636 inst = emit(BRW_OPCODE_IF);
1637 inst->predicated = true;
1638 }
1639
1640 foreach_list(node, &ir->then_instructions) {
1641 ir_instruction *ir = (ir_instruction *)node;
1642 this->base_ir = ir;
1643
1644 ir->accept(this);
1645 }
1646
1647 if (!ir->else_instructions.is_empty()) {
1648 emit(BRW_OPCODE_ELSE);
1649
1650 foreach_list(node, &ir->else_instructions) {
1651 ir_instruction *ir = (ir_instruction *)node;
1652 this->base_ir = ir;
1653
1654 ir->accept(this);
1655 }
1656 }
1657
1658 emit(BRW_OPCODE_ENDIF);
1659 }
1660
1661 void
1662 fs_visitor::visit(ir_loop *ir)
1663 {
1664 fs_reg counter = reg_undef;
1665
1666 if (intel->gen < 6 && c->dispatch_width == 16) {
1667 fail("Can't support (non-uniform) control flow on 16-wide\n");
1668 }
1669
1670 if (ir->counter) {
1671 this->base_ir = ir->counter;
1672 ir->counter->accept(this);
1673 counter = *(variable_storage(ir->counter));
1674
1675 if (ir->from) {
1676 this->base_ir = ir->from;
1677 ir->from->accept(this);
1678
1679 emit(BRW_OPCODE_MOV, counter, this->result);
1680 }
1681 }
1682
1683 this->base_ir = NULL;
1684 emit(BRW_OPCODE_DO);
1685
1686 if (ir->to) {
1687 this->base_ir = ir->to;
1688 ir->to->accept(this);
1689
1690 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1691 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1692
1693 inst = emit(BRW_OPCODE_BREAK);
1694 inst->predicated = true;
1695 }
1696
1697 foreach_list(node, &ir->body_instructions) {
1698 ir_instruction *ir = (ir_instruction *)node;
1699
1700 this->base_ir = ir;
1701 ir->accept(this);
1702 }
1703
1704 if (ir->increment) {
1705 this->base_ir = ir->increment;
1706 ir->increment->accept(this);
1707 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1708 }
1709
1710 this->base_ir = NULL;
1711 emit(BRW_OPCODE_WHILE);
1712 }
1713
1714 void
1715 fs_visitor::visit(ir_loop_jump *ir)
1716 {
1717 switch (ir->mode) {
1718 case ir_loop_jump::jump_break:
1719 emit(BRW_OPCODE_BREAK);
1720 break;
1721 case ir_loop_jump::jump_continue:
1722 emit(BRW_OPCODE_CONTINUE);
1723 break;
1724 }
1725 }
1726
1727 void
1728 fs_visitor::visit(ir_call *ir)
1729 {
1730 assert(!"FINISHME");
1731 }
1732
1733 void
1734 fs_visitor::visit(ir_return *ir)
1735 {
1736 assert(!"FINISHME");
1737 }
1738
1739 void
1740 fs_visitor::visit(ir_function *ir)
1741 {
1742 /* Ignore function bodies other than main() -- we shouldn't see calls to
1743 * them since they should all be inlined before we get to ir_to_mesa.
1744 */
1745 if (strcmp(ir->name, "main") == 0) {
1746 const ir_function_signature *sig;
1747 exec_list empty;
1748
1749 sig = ir->matching_signature(&empty);
1750
1751 assert(sig);
1752
1753 foreach_list(node, &sig->body) {
1754 ir_instruction *ir = (ir_instruction *)node;
1755 this->base_ir = ir;
1756
1757 ir->accept(this);
1758 }
1759 }
1760 }
1761
1762 void
1763 fs_visitor::visit(ir_function_signature *ir)
1764 {
1765 assert(!"not reached");
1766 (void)ir;
1767 }
1768
1769 fs_inst *
1770 fs_visitor::emit(fs_inst inst)
1771 {
1772 fs_inst *list_inst = new(mem_ctx) fs_inst;
1773 *list_inst = inst;
1774
1775 if (force_uncompressed_stack > 0)
1776 list_inst->force_uncompressed = true;
1777 else if (force_sechalf_stack > 0)
1778 list_inst->force_sechalf = true;
1779
1780 list_inst->annotation = this->current_annotation;
1781 list_inst->ir = this->base_ir;
1782
1783 this->instructions.push_tail(list_inst);
1784
1785 return list_inst;
1786 }
1787
1788 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1789 void
1790 fs_visitor::emit_dummy_fs()
1791 {
1792 int reg_width = c->dispatch_width / 8;
1793
1794 /* Everyone's favorite color. */
1795 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1796 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1797 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1798 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1799
1800 fs_inst *write;
1801 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1802 write->base_mrf = 2;
1803 write->mlen = 4 * reg_width;
1804 write->eot = true;
1805 }
1806
1807 /* The register location here is relative to the start of the URB
1808 * data. It will get adjusted to be a real location before
1809 * generate_code() time.
1810 */
1811 struct brw_reg
1812 fs_visitor::interp_reg(int location, int channel)
1813 {
1814 int regnr = urb_setup[location] * 2 + channel / 2;
1815 int stride = (channel & 1) * 4;
1816
1817 assert(urb_setup[location] != -1);
1818
1819 return brw_vec1_grf(regnr, stride);
1820 }
1821
1822 /** Emits the interpolation for the varying inputs. */
1823 void
1824 fs_visitor::emit_interpolation_setup_gen4()
1825 {
1826 this->current_annotation = "compute pixel centers";
1827 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1828 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1829 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1830 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1831
1832 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1833 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1834
1835 this->current_annotation = "compute pixel deltas from v0";
1836 if (brw->has_pln) {
1837 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1838 fs_reg(this, glsl_type::vec2_type);
1839 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1840 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1841 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1842 } else {
1843 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1844 fs_reg(this, glsl_type::float_type);
1845 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1846 fs_reg(this, glsl_type::float_type);
1847 }
1848 emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1849 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1850 emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1851 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1852
1853 this->current_annotation = "compute pos.w and 1/pos.w";
1854 /* Compute wpos.w. It's always in our setup, since it's needed to
1855 * interpolate the other attributes.
1856 */
1857 this->wpos_w = fs_reg(this, glsl_type::float_type);
1858 emit(FS_OPCODE_LINTERP, wpos_w,
1859 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1860 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1861 interp_reg(FRAG_ATTRIB_WPOS, 3));
1862 /* Compute the pixel 1/W value from wpos.w. */
1863 this->pixel_w = fs_reg(this, glsl_type::float_type);
1864 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1865 this->current_annotation = NULL;
1866 }
1867
1868 /** Emits the interpolation for the varying inputs. */
1869 void
1870 fs_visitor::emit_interpolation_setup_gen6()
1871 {
1872 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1873
1874 /* If the pixel centers end up used, the setup is the same as for gen4. */
1875 this->current_annotation = "compute pixel centers";
1876 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1877 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1878 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1879 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1880 emit(BRW_OPCODE_ADD,
1881 int_pixel_x,
1882 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1883 fs_reg(brw_imm_v(0x10101010)));
1884 emit(BRW_OPCODE_ADD,
1885 int_pixel_y,
1886 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1887 fs_reg(brw_imm_v(0x11001100)));
1888
1889 /* As of gen6, we can no longer mix float and int sources. We have
1890 * to turn the integer pixel centers into floats for their actual
1891 * use.
1892 */
1893 this->pixel_x = fs_reg(this, glsl_type::float_type);
1894 this->pixel_y = fs_reg(this, glsl_type::float_type);
1895 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1896 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1897
1898 this->current_annotation = "compute pos.w";
1899 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1900 this->wpos_w = fs_reg(this, glsl_type::float_type);
1901 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1902
1903 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1904 uint8_t reg = c->barycentric_coord_reg[i];
1905 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1906 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1907 }
1908
1909 this->current_annotation = NULL;
1910 }
1911
1912 void
1913 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1914 {
1915 int reg_width = c->dispatch_width / 8;
1916 fs_inst *inst;
1917 fs_reg color = outputs[target];
1918 fs_reg mrf;
1919
1920 /* If there's no color data to be written, skip it. */
1921 if (color.file == BAD_FILE)
1922 return;
1923
1924 color.reg_offset += index;
1925
1926 if (c->dispatch_width == 8 || intel->gen >= 6) {
1927 /* SIMD8 write looks like:
1928 * m + 0: r0
1929 * m + 1: r1
1930 * m + 2: g0
1931 * m + 3: g1
1932 *
1933 * gen6 SIMD16 DP write looks like:
1934 * m + 0: r0
1935 * m + 1: r1
1936 * m + 2: g0
1937 * m + 3: g1
1938 * m + 4: b0
1939 * m + 5: b1
1940 * m + 6: a0
1941 * m + 7: a1
1942 */
1943 inst = emit(BRW_OPCODE_MOV,
1944 fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1945 color);
1946 inst->saturate = c->key.clamp_fragment_color;
1947 } else {
1948 /* pre-gen6 SIMD16 single source DP write looks like:
1949 * m + 0: r0
1950 * m + 1: g0
1951 * m + 2: b0
1952 * m + 3: a0
1953 * m + 4: r1
1954 * m + 5: g1
1955 * m + 6: b1
1956 * m + 7: a1
1957 */
1958 if (brw->has_compr4) {
1959 /* By setting the high bit of the MRF register number, we
1960 * indicate that we want COMPR4 mode - instead of doing the
1961 * usual destination + 1 for the second half we get
1962 * destination + 4.
1963 */
1964 inst = emit(BRW_OPCODE_MOV,
1965 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1966 color.type),
1967 color);
1968 inst->saturate = c->key.clamp_fragment_color;
1969 } else {
1970 push_force_uncompressed();
1971 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1972 color.type),
1973 color);
1974 inst->saturate = c->key.clamp_fragment_color;
1975 pop_force_uncompressed();
1976
1977 push_force_sechalf();
1978 color.sechalf = true;
1979 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1980 color.type),
1981 color);
1982 inst->saturate = c->key.clamp_fragment_color;
1983 pop_force_sechalf();
1984 color.sechalf = false;
1985 }
1986 }
1987 }
1988
1989 void
1990 fs_visitor::emit_fb_writes()
1991 {
1992 this->current_annotation = "FB write header";
1993 bool header_present = true;
1994 /* We can potentially have a message length of up to 15, so we have to set
1995 * base_mrf to either 0 or 1 in order to fit in m0..m15.
1996 */
1997 int base_mrf = 1;
1998 int nr = base_mrf;
1999 int reg_width = c->dispatch_width / 8;
2000 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2001
2002 if (c->dispatch_width == 16 && do_dual_src) {
2003 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2004 do_dual_src = false;
2005 }
2006
2007 /* From the Sandy Bridge PRM, volume 4, page 198:
2008 *
2009 * "Dispatched Pixel Enables. One bit per pixel indicating
2010 * which pixels were originally enabled when the thread was
2011 * dispatched. This field is only required for the end-of-
2012 * thread message and on all dual-source messages."
2013 */
2014 if (intel->gen >= 6 &&
2015 !this->fp->UsesKill &&
2016 !do_dual_src &&
2017 c->key.nr_color_regions == 1) {
2018 header_present = false;
2019 }
2020
2021 if (header_present) {
2022 /* m2, m3 header */
2023 nr += 2;
2024 }
2025
2026 if (c->aa_dest_stencil_reg) {
2027 push_force_uncompressed();
2028 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2029 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2030 pop_force_uncompressed();
2031 }
2032
2033 /* Reserve space for color. It'll be filled in per MRT below. */
2034 int color_mrf = nr;
2035 nr += 4 * reg_width;
2036 if (do_dual_src)
2037 nr += 4;
2038
2039 if (c->source_depth_to_render_target) {
2040 if (intel->gen == 6 && c->dispatch_width == 16) {
2041 /* For outputting oDepth on gen6, SIMD8 writes have to be
2042 * used. This would require 8-wide moves of each half to
2043 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2044 * Just bail on doing so for now.
2045 */
2046 fail("Missing support for simd16 depth writes on gen6\n");
2047 }
2048
2049 if (c->computes_depth) {
2050 /* Hand over gl_FragDepth. */
2051 assert(this->frag_depth);
2052 fs_reg depth = *(variable_storage(this->frag_depth));
2053
2054 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2055 } else {
2056 /* Pass through the payload depth. */
2057 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2058 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2059 }
2060 nr += reg_width;
2061 }
2062
2063 if (c->dest_depth_reg) {
2064 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2065 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2066 nr += reg_width;
2067 }
2068
2069 if (do_dual_src) {
2070 fs_reg src0 = this->outputs[0];
2071 fs_reg src1 = this->dual_src_output;
2072
2073 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2074 "FB write src0");
2075 for (int i = 0; i < 4; i++) {
2076 fs_inst *inst = emit(BRW_OPCODE_MOV,
2077 fs_reg(MRF, color_mrf + i, src0.type),
2078 src0);
2079 src0.reg_offset++;
2080 inst->saturate = c->key.clamp_fragment_color;
2081 }
2082
2083 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2084 "FB write src1");
2085 for (int i = 0; i < 4; i++) {
2086 fs_inst *inst = emit(BRW_OPCODE_MOV,
2087 fs_reg(MRF, color_mrf + 4 + i, src1.type),
2088 src1);
2089 src1.reg_offset++;
2090 inst->saturate = c->key.clamp_fragment_color;
2091 }
2092
2093 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2094 inst->target = 0;
2095 inst->base_mrf = base_mrf;
2096 inst->mlen = nr - base_mrf;
2097 inst->eot = true;
2098 inst->header_present = header_present;
2099
2100 c->prog_data.dual_src_blend = true;
2101 this->current_annotation = NULL;
2102 return;
2103 }
2104
2105 for (int target = 0; target < c->key.nr_color_regions; target++) {
2106 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2107 "FB write target %d",
2108 target);
2109 for (unsigned i = 0; i < this->output_components[target]; i++)
2110 emit_color_write(target, i, color_mrf);
2111
2112 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2113 inst->target = target;
2114 inst->base_mrf = base_mrf;
2115 inst->mlen = nr - base_mrf;
2116 if (target == c->key.nr_color_regions - 1)
2117 inst->eot = true;
2118 inst->header_present = header_present;
2119 }
2120
2121 if (c->key.nr_color_regions == 0) {
2122 /* Even if there's no color buffers enabled, we still need to send
2123 * alpha out the pipeline to our null renderbuffer to support
2124 * alpha-testing, alpha-to-coverage, and so on.
2125 */
2126 emit_color_write(0, 3, color_mrf);
2127
2128 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2129 inst->base_mrf = base_mrf;
2130 inst->mlen = nr - base_mrf;
2131 inst->eot = true;
2132 inst->header_present = header_present;
2133 }
2134
2135 this->current_annotation = NULL;
2136 }
2137
2138 void
2139 fs_visitor::resolve_ud_negate(fs_reg *reg)
2140 {
2141 if (reg->type != BRW_REGISTER_TYPE_UD ||
2142 !reg->negate)
2143 return;
2144
2145 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2146 emit(BRW_OPCODE_MOV, temp, *reg);
2147 *reg = temp;
2148 }
2149
2150 void
2151 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2152 {
2153 if (rvalue->type != glsl_type::bool_type)
2154 return;
2155
2156 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2157 emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2158 *reg = temp;
2159 }
2160
2161 fs_visitor::fs_visitor(struct brw_wm_compile *c, struct gl_shader_program *prog,
2162 struct brw_shader *shader)
2163 {
2164 this->c = c;
2165 this->p = &c->func;
2166 this->brw = p->brw;
2167 this->fp = (struct gl_fragment_program *)
2168 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2169 this->prog = prog;
2170 this->intel = &brw->intel;
2171 this->ctx = &intel->ctx;
2172 this->mem_ctx = ralloc_context(NULL);
2173 this->shader = shader;
2174 this->failed = false;
2175 this->variable_ht = hash_table_ctor(0,
2176 hash_table_pointer_hash,
2177 hash_table_pointer_compare);
2178
2179 /* There's a question that appears to be left open in the spec:
2180 * How do implicit dst conversions interact with the CMP
2181 * instruction or conditional mods? On gen6, the instruction:
2182 *
2183 * CMP null<d> src0<f> src1<f>
2184 *
2185 * will do src1 - src0 and compare that result as if it was an
2186 * integer. On gen4, it will do src1 - src0 as float, convert
2187 * the result to int, and compare as int. In between, it
2188 * appears that it does src1 - src0 and does the compare in the
2189 * execution type so dst type doesn't matter.
2190 */
2191 if (this->intel->gen > 4)
2192 this->reg_null_cmp = reg_null_d;
2193 else
2194 this->reg_null_cmp = reg_null_f;
2195
2196 this->frag_depth = NULL;
2197 memset(this->outputs, 0, sizeof(this->outputs));
2198 this->first_non_payload_grf = 0;
2199 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2200
2201 this->current_annotation = NULL;
2202 this->base_ir = NULL;
2203
2204 this->virtual_grf_sizes = NULL;
2205 this->virtual_grf_count = 0;
2206 this->virtual_grf_array_size = 0;
2207 this->virtual_grf_def = NULL;
2208 this->virtual_grf_use = NULL;
2209 this->live_intervals_valid = false;
2210
2211 this->force_uncompressed_stack = 0;
2212 this->force_sechalf_stack = 0;
2213 }
2214
2215 fs_visitor::~fs_visitor()
2216 {
2217 ralloc_free(this->mem_ctx);
2218 hash_table_dtor(this->variable_ht);
2219 }