i965: fix alpha test for MRT
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_fs.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50
51 void
52 fs_visitor::visit(ir_variable *ir)
53 {
54 fs_reg *reg = NULL;
55
56 if (variable_storage(ir))
57 return;
58
59 if (ir->mode == ir_var_shader_in) {
60 if (!strcmp(ir->name, "gl_FragCoord")) {
61 reg = emit_fragcoord_interpolation(ir);
62 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
63 reg = emit_frontfacing_interpolation(ir);
64 } else {
65 reg = emit_general_interpolation(ir);
66 }
67 assert(reg);
68 hash_table_insert(this->variable_ht, reg, ir);
69 return;
70 } else if (ir->mode == ir_var_shader_out) {
71 reg = new(this->mem_ctx) fs_reg(this, ir->type);
72
73 if (ir->index > 0) {
74 assert(ir->location == FRAG_RESULT_DATA0);
75 assert(ir->index == 1);
76 this->dual_src_output = *reg;
77 } else if (ir->location == FRAG_RESULT_COLOR) {
78 /* Writing gl_FragColor outputs to all color regions. */
79 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
80 this->outputs[i] = *reg;
81 this->output_components[i] = 4;
82 }
83 } else if (ir->location == FRAG_RESULT_DEPTH) {
84 this->frag_depth = *reg;
85 } else {
86 /* gl_FragData or a user-defined FS output */
87 assert(ir->location >= FRAG_RESULT_DATA0 &&
88 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
89
90 int vector_elements =
91 ir->type->is_array() ? ir->type->fields.array->vector_elements
92 : ir->type->vector_elements;
93
94 /* General color output. */
95 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
96 int output = ir->location - FRAG_RESULT_DATA0 + i;
97 this->outputs[output] = *reg;
98 this->outputs[output].reg_offset += vector_elements * i;
99 this->output_components[output] = vector_elements;
100 }
101 }
102 } else if (ir->mode == ir_var_uniform) {
103 int param_index = c->prog_data.nr_params;
104
105 /* Thanks to the lower_ubo_reference pass, we will see only
106 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
107 * variables, so no need for them to be in variable_ht.
108 */
109 if (ir->is_in_uniform_block())
110 return;
111
112 if (dispatch_width == 16) {
113 if (!variable_storage(ir)) {
114 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
115 }
116 return;
117 }
118
119 param_size[param_index] = type_size(ir->type);
120 if (!strncmp(ir->name, "gl_", 3)) {
121 setup_builtin_uniform_values(ir);
122 } else {
123 setup_uniform_values(ir);
124 }
125
126 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
127 reg->type = brw_type_for_base_type(ir->type);
128 }
129
130 if (!reg)
131 reg = new(this->mem_ctx) fs_reg(this, ir->type);
132
133 hash_table_insert(this->variable_ht, reg, ir);
134 }
135
136 void
137 fs_visitor::visit(ir_dereference_variable *ir)
138 {
139 fs_reg *reg = variable_storage(ir->var);
140 this->result = *reg;
141 }
142
143 void
144 fs_visitor::visit(ir_dereference_record *ir)
145 {
146 const glsl_type *struct_type = ir->record->type;
147
148 ir->record->accept(this);
149
150 unsigned int offset = 0;
151 for (unsigned int i = 0; i < struct_type->length; i++) {
152 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
153 break;
154 offset += type_size(struct_type->fields.structure[i].type);
155 }
156 this->result.reg_offset += offset;
157 this->result.type = brw_type_for_base_type(ir->type);
158 }
159
160 void
161 fs_visitor::visit(ir_dereference_array *ir)
162 {
163 ir_constant *constant_index;
164 fs_reg src;
165 int element_size = type_size(ir->type);
166
167 constant_index = ir->array_index->as_constant();
168
169 ir->array->accept(this);
170 src = this->result;
171 src.type = brw_type_for_base_type(ir->type);
172
173 if (constant_index) {
174 assert(src.file == UNIFORM || src.file == GRF);
175 src.reg_offset += constant_index->value.i[0] * element_size;
176 } else {
177 /* Variable index array dereference. We attach the variable index
178 * component to the reg as a pointer to a register containing the
179 * offset. Currently only uniform arrays are supported in this patch,
180 * and that reladdr pointer is resolved by
181 * move_uniform_array_access_to_pull_constants(). All other array types
182 * are lowered by lower_variable_index_to_cond_assign().
183 */
184 ir->array_index->accept(this);
185
186 fs_reg index_reg;
187 index_reg = fs_reg(this, glsl_type::int_type);
188 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
189
190 if (src.reladdr) {
191 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
192 }
193
194 src.reladdr = ralloc(mem_ctx, fs_reg);
195 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
196 }
197 this->result = src;
198 }
199
200 void
201 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
202 {
203 if (intel->gen < 6 ||
204 !x.is_valid_3src() ||
205 !y.is_valid_3src() ||
206 !a.is_valid_3src()) {
207 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
208 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
209 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
210 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
211
212 emit(MUL(y_times_a, y, a));
213
214 a.negate = !a.negate;
215 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
216 emit(MUL(x_times_one_minus_a, x, one_minus_a));
217
218 emit(ADD(dst, x_times_one_minus_a, y_times_a));
219 } else {
220 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
221 * we need to reorder the operands.
222 */
223 emit(LRP(dst, a, y, x));
224 }
225 }
226
227 void
228 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
229 fs_reg src0, fs_reg src1)
230 {
231 fs_inst *inst;
232
233 if (intel->gen >= 6) {
234 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
235 inst->conditional_mod = conditionalmod;
236 } else {
237 emit(CMP(reg_null_d, src0, src1, conditionalmod));
238
239 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
240 inst->predicate = BRW_PREDICATE_NORMAL;
241 }
242 }
243
244 /* Instruction selection: Produce a MOV.sat instead of
245 * MIN(MAX(val, 0), 1) when possible.
246 */
247 bool
248 fs_visitor::try_emit_saturate(ir_expression *ir)
249 {
250 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
251
252 if (!sat_val)
253 return false;
254
255 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
256
257 sat_val->accept(this);
258 fs_reg src = this->result;
259
260 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
261
262 /* If the last instruction from our accept() didn't generate our
263 * src, generate a saturated MOV
264 */
265 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
266 if (!modify || modify->regs_written != 1) {
267 this->result = fs_reg(this, ir->type);
268 fs_inst *inst = emit(MOV(this->result, src));
269 inst->saturate = true;
270 } else {
271 modify->saturate = true;
272 this->result = src;
273 }
274
275
276 return true;
277 }
278
279 bool
280 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
281 {
282 /* 3-src instructions were introduced in gen6. */
283 if (intel->gen < 6)
284 return false;
285
286 /* MAD can only handle floating-point data. */
287 if (ir->type != glsl_type::float_type)
288 return false;
289
290 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
291 ir_expression *mul = ir->operands[mul_arg]->as_expression();
292
293 if (!mul || mul->operation != ir_binop_mul)
294 return false;
295
296 if (nonmul->as_constant() ||
297 mul->operands[0]->as_constant() ||
298 mul->operands[1]->as_constant())
299 return false;
300
301 nonmul->accept(this);
302 fs_reg src0 = this->result;
303
304 mul->operands[0]->accept(this);
305 fs_reg src1 = this->result;
306
307 mul->operands[1]->accept(this);
308 fs_reg src2 = this->result;
309
310 this->result = fs_reg(this, ir->type);
311 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
312
313 return true;
314 }
315
316 void
317 fs_visitor::visit(ir_expression *ir)
318 {
319 unsigned int operand;
320 fs_reg op[3], temp;
321 fs_inst *inst;
322
323 assert(ir->get_num_operands() <= 3);
324
325 if (try_emit_saturate(ir))
326 return;
327 if (ir->operation == ir_binop_add) {
328 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
329 return;
330 }
331
332 for (operand = 0; operand < ir->get_num_operands(); operand++) {
333 ir->operands[operand]->accept(this);
334 if (this->result.file == BAD_FILE) {
335 fail("Failed to get tree for expression operand:\n");
336 ir->operands[operand]->print();
337 printf("\n");
338 }
339 op[operand] = this->result;
340
341 /* Matrix expression operands should have been broken down to vector
342 * operations already.
343 */
344 assert(!ir->operands[operand]->type->is_matrix());
345 /* And then those vector operands should have been broken down to scalar.
346 */
347 assert(!ir->operands[operand]->type->is_vector());
348 }
349
350 /* Storage for our result. If our result goes into an assignment, it will
351 * just get copy-propagated out, so no worries.
352 */
353 this->result = fs_reg(this, ir->type);
354
355 switch (ir->operation) {
356 case ir_unop_logic_not:
357 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
358 * ones complement of the whole register, not just bit 0.
359 */
360 emit(XOR(this->result, op[0], fs_reg(1)));
361 break;
362 case ir_unop_neg:
363 op[0].negate = !op[0].negate;
364 this->result = op[0];
365 break;
366 case ir_unop_abs:
367 op[0].abs = true;
368 op[0].negate = false;
369 this->result = op[0];
370 break;
371 case ir_unop_sign:
372 temp = fs_reg(this, ir->type);
373
374 emit(MOV(this->result, fs_reg(0.0f)));
375
376 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
377 inst = emit(MOV(this->result, fs_reg(1.0f)));
378 inst->predicate = BRW_PREDICATE_NORMAL;
379
380 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
381 inst = emit(MOV(this->result, fs_reg(-1.0f)));
382 inst->predicate = BRW_PREDICATE_NORMAL;
383
384 break;
385 case ir_unop_rcp:
386 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
387 break;
388
389 case ir_unop_exp2:
390 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
391 break;
392 case ir_unop_log2:
393 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
394 break;
395 case ir_unop_exp:
396 case ir_unop_log:
397 assert(!"not reached: should be handled by ir_explog_to_explog2");
398 break;
399 case ir_unop_sin:
400 case ir_unop_sin_reduced:
401 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
402 break;
403 case ir_unop_cos:
404 case ir_unop_cos_reduced:
405 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
406 break;
407
408 case ir_unop_dFdx:
409 emit(FS_OPCODE_DDX, this->result, op[0]);
410 break;
411 case ir_unop_dFdy:
412 emit(FS_OPCODE_DDY, this->result, op[0]);
413 break;
414
415 case ir_binop_add:
416 emit(ADD(this->result, op[0], op[1]));
417 break;
418 case ir_binop_sub:
419 assert(!"not reached: should be handled by ir_sub_to_add_neg");
420 break;
421
422 case ir_binop_mul:
423 if (ir->type->is_integer()) {
424 /* For integer multiplication, the MUL uses the low 16 bits
425 * of one of the operands (src0 on gen6, src1 on gen7). The
426 * MACH accumulates in the contribution of the upper 16 bits
427 * of that operand.
428 *
429 * FINISHME: Emit just the MUL if we know an operand is small
430 * enough.
431 */
432 if (intel->gen >= 7 && dispatch_width == 16)
433 fail("16-wide explicit accumulator operands unsupported\n");
434
435 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
436
437 emit(MUL(acc, op[0], op[1]));
438 emit(MACH(reg_null_d, op[0], op[1]));
439 emit(MOV(this->result, fs_reg(acc)));
440 } else {
441 emit(MUL(this->result, op[0], op[1]));
442 }
443 break;
444 case ir_binop_div:
445 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
446 assert(ir->type->is_integer());
447 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
448 break;
449 case ir_binop_mod:
450 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
451 assert(ir->type->is_integer());
452 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
453 break;
454
455 case ir_binop_less:
456 case ir_binop_greater:
457 case ir_binop_lequal:
458 case ir_binop_gequal:
459 case ir_binop_equal:
460 case ir_binop_all_equal:
461 case ir_binop_nequal:
462 case ir_binop_any_nequal:
463 resolve_bool_comparison(ir->operands[0], &op[0]);
464 resolve_bool_comparison(ir->operands[1], &op[1]);
465
466 emit(CMP(this->result, op[0], op[1],
467 brw_conditional_for_comparison(ir->operation)));
468 break;
469
470 case ir_binop_logic_xor:
471 emit(XOR(this->result, op[0], op[1]));
472 break;
473
474 case ir_binop_logic_or:
475 emit(OR(this->result, op[0], op[1]));
476 break;
477
478 case ir_binop_logic_and:
479 emit(AND(this->result, op[0], op[1]));
480 break;
481
482 case ir_binop_dot:
483 case ir_unop_any:
484 assert(!"not reached: should be handled by brw_fs_channel_expressions");
485 break;
486
487 case ir_unop_noise:
488 assert(!"not reached: should be handled by lower_noise");
489 break;
490
491 case ir_quadop_vector:
492 assert(!"not reached: should be handled by lower_quadop_vector");
493 break;
494
495 case ir_binop_vector_extract:
496 assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
497 break;
498
499 case ir_triop_vector_insert:
500 assert(!"not reached: should be handled by lower_vector_insert()");
501 break;
502
503 case ir_unop_sqrt:
504 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
505 break;
506
507 case ir_unop_rsq:
508 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
509 break;
510
511 case ir_unop_bitcast_i2f:
512 case ir_unop_bitcast_u2f:
513 op[0].type = BRW_REGISTER_TYPE_F;
514 this->result = op[0];
515 break;
516 case ir_unop_i2u:
517 case ir_unop_bitcast_f2u:
518 op[0].type = BRW_REGISTER_TYPE_UD;
519 this->result = op[0];
520 break;
521 case ir_unop_u2i:
522 case ir_unop_bitcast_f2i:
523 op[0].type = BRW_REGISTER_TYPE_D;
524 this->result = op[0];
525 break;
526 case ir_unop_i2f:
527 case ir_unop_u2f:
528 case ir_unop_f2i:
529 case ir_unop_f2u:
530 emit(MOV(this->result, op[0]));
531 break;
532
533 case ir_unop_b2i:
534 emit(AND(this->result, op[0], fs_reg(1)));
535 break;
536 case ir_unop_b2f:
537 temp = fs_reg(this, glsl_type::int_type);
538 emit(AND(temp, op[0], fs_reg(1)));
539 emit(MOV(this->result, temp));
540 break;
541
542 case ir_unop_f2b:
543 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
544 break;
545 case ir_unop_i2b:
546 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
547 break;
548
549 case ir_unop_trunc:
550 emit(RNDZ(this->result, op[0]));
551 break;
552 case ir_unop_ceil:
553 op[0].negate = !op[0].negate;
554 emit(RNDD(this->result, op[0]));
555 this->result.negate = true;
556 break;
557 case ir_unop_floor:
558 emit(RNDD(this->result, op[0]));
559 break;
560 case ir_unop_fract:
561 emit(FRC(this->result, op[0]));
562 break;
563 case ir_unop_round_even:
564 emit(RNDE(this->result, op[0]));
565 break;
566
567 case ir_binop_min:
568 case ir_binop_max:
569 resolve_ud_negate(&op[0]);
570 resolve_ud_negate(&op[1]);
571 emit_minmax(ir->operation == ir_binop_min ?
572 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
573 this->result, op[0], op[1]);
574 break;
575 case ir_unop_pack_snorm_2x16:
576 case ir_unop_pack_snorm_4x8:
577 case ir_unop_pack_unorm_2x16:
578 case ir_unop_pack_unorm_4x8:
579 case ir_unop_unpack_snorm_2x16:
580 case ir_unop_unpack_snorm_4x8:
581 case ir_unop_unpack_unorm_2x16:
582 case ir_unop_unpack_unorm_4x8:
583 case ir_unop_unpack_half_2x16:
584 case ir_unop_pack_half_2x16:
585 assert(!"not reached: should be handled by lower_packing_builtins");
586 break;
587 case ir_unop_unpack_half_2x16_split_x:
588 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
589 break;
590 case ir_unop_unpack_half_2x16_split_y:
591 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
592 break;
593 case ir_binop_pow:
594 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
595 break;
596
597 case ir_unop_bitfield_reverse:
598 emit(BFREV(this->result, op[0]));
599 break;
600 case ir_unop_bit_count:
601 emit(CBIT(this->result, op[0]));
602 break;
603 case ir_unop_find_msb:
604 temp = fs_reg(this, glsl_type::uint_type);
605 emit(FBH(temp, op[0]));
606
607 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
608 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
609 * subtract the result from 31 to convert the MSB count into an LSB count.
610 */
611
612 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
613 emit(MOV(this->result, temp));
614 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
615
616 temp.negate = true;
617 inst = emit(ADD(this->result, temp, fs_reg(31)));
618 inst->predicate = BRW_PREDICATE_NORMAL;
619 break;
620 case ir_unop_find_lsb:
621 emit(FBL(this->result, op[0]));
622 break;
623 case ir_triop_bitfield_extract:
624 /* Note that the instruction's argument order is reversed from GLSL
625 * and the IR.
626 */
627 emit(BFE(this->result, op[2], op[1], op[0]));
628 break;
629 case ir_binop_bfm:
630 emit(BFI1(this->result, op[0], op[1]));
631 break;
632 case ir_triop_bfi:
633 emit(BFI2(this->result, op[0], op[1], op[2]));
634 break;
635 case ir_quadop_bitfield_insert:
636 assert(!"not reached: should be handled by "
637 "lower_instructions::bitfield_insert_to_bfm_bfi");
638 break;
639
640 case ir_unop_bit_not:
641 emit(NOT(this->result, op[0]));
642 break;
643 case ir_binop_bit_and:
644 emit(AND(this->result, op[0], op[1]));
645 break;
646 case ir_binop_bit_xor:
647 emit(XOR(this->result, op[0], op[1]));
648 break;
649 case ir_binop_bit_or:
650 emit(OR(this->result, op[0], op[1]));
651 break;
652
653 case ir_binop_lshift:
654 emit(SHL(this->result, op[0], op[1]));
655 break;
656
657 case ir_binop_rshift:
658 if (ir->type->base_type == GLSL_TYPE_INT)
659 emit(ASR(this->result, op[0], op[1]));
660 else
661 emit(SHR(this->result, op[0], op[1]));
662 break;
663 case ir_binop_pack_half_2x16_split:
664 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
665 break;
666 case ir_binop_ubo_load: {
667 /* This IR node takes a constant uniform block and a constant or
668 * variable byte offset within the block and loads a vector from that.
669 */
670 ir_constant *uniform_block = ir->operands[0]->as_constant();
671 ir_constant *const_offset = ir->operands[1]->as_constant();
672 fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
673 if (const_offset) {
674 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
675 packed_consts.type = result.type;
676
677 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
678 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
679 packed_consts, surf_index, const_offset_reg));
680
681 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
682 for (int i = 0; i < ir->type->vector_elements; i++) {
683 /* UBO bools are any nonzero value. We consider bools to be
684 * values with the low bit set to 1. Convert them using CMP.
685 */
686 if (ir->type->base_type == GLSL_TYPE_BOOL) {
687 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
688 } else {
689 emit(MOV(result, packed_consts));
690 }
691
692 packed_consts.smear++;
693 result.reg_offset++;
694
695 /* The std140 packing rules don't allow vectors to cross 16-byte
696 * boundaries, and a reg is 32 bytes.
697 */
698 assert(packed_consts.smear < 8);
699 }
700 } else {
701 /* Turn the byte offset into a dword offset. */
702 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
703 emit(SHR(base_offset, op[1], fs_reg(2)));
704
705 for (int i = 0; i < ir->type->vector_elements; i++) {
706 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
707 base_offset, i));
708
709 if (ir->type->base_type == GLSL_TYPE_BOOL)
710 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
711
712 result.reg_offset++;
713 }
714 }
715
716 result.reg_offset = 0;
717 break;
718 }
719
720 case ir_triop_lrp:
721 emit_lrp(this->result, op[0], op[1], op[2]);
722 break;
723 }
724 }
725
726 void
727 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
728 const glsl_type *type, bool predicated)
729 {
730 switch (type->base_type) {
731 case GLSL_TYPE_FLOAT:
732 case GLSL_TYPE_UINT:
733 case GLSL_TYPE_INT:
734 case GLSL_TYPE_BOOL:
735 for (unsigned int i = 0; i < type->components(); i++) {
736 l.type = brw_type_for_base_type(type);
737 r.type = brw_type_for_base_type(type);
738
739 if (predicated || !l.equals(r)) {
740 fs_inst *inst = emit(MOV(l, r));
741 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
742 }
743
744 l.reg_offset++;
745 r.reg_offset++;
746 }
747 break;
748 case GLSL_TYPE_ARRAY:
749 for (unsigned int i = 0; i < type->length; i++) {
750 emit_assignment_writes(l, r, type->fields.array, predicated);
751 }
752 break;
753
754 case GLSL_TYPE_STRUCT:
755 for (unsigned int i = 0; i < type->length; i++) {
756 emit_assignment_writes(l, r, type->fields.structure[i].type,
757 predicated);
758 }
759 break;
760
761 case GLSL_TYPE_SAMPLER:
762 break;
763
764 case GLSL_TYPE_VOID:
765 case GLSL_TYPE_ERROR:
766 case GLSL_TYPE_INTERFACE:
767 assert(!"not reached");
768 break;
769 }
770 }
771
772 /* If the RHS processing resulted in an instruction generating a
773 * temporary value, and it would be easy to rewrite the instruction to
774 * generate its result right into the LHS instead, do so. This ends
775 * up reliably removing instructions where it can be tricky to do so
776 * later without real UD chain information.
777 */
778 bool
779 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
780 fs_reg dst,
781 fs_reg src,
782 fs_inst *pre_rhs_inst,
783 fs_inst *last_rhs_inst)
784 {
785 /* Only attempt if we're doing a direct assignment. */
786 if (ir->condition ||
787 !(ir->lhs->type->is_scalar() ||
788 (ir->lhs->type->is_vector() &&
789 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
790 return false;
791
792 /* Make sure the last instruction generated our source reg. */
793 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
794 last_rhs_inst,
795 src);
796 if (!modify)
797 return false;
798
799 /* If last_rhs_inst wrote a different number of components than our LHS,
800 * we can't safely rewrite it.
801 */
802 if (virtual_grf_sizes[dst.reg] != modify->regs_written)
803 return false;
804
805 /* Success! Rewrite the instruction. */
806 modify->dst = dst;
807
808 return true;
809 }
810
811 void
812 fs_visitor::visit(ir_assignment *ir)
813 {
814 fs_reg l, r;
815 fs_inst *inst;
816
817 /* FINISHME: arrays on the lhs */
818 ir->lhs->accept(this);
819 l = this->result;
820
821 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
822
823 ir->rhs->accept(this);
824 r = this->result;
825
826 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
827
828 assert(l.file != BAD_FILE);
829 assert(r.file != BAD_FILE);
830
831 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
832 return;
833
834 if (ir->condition) {
835 emit_bool_to_cond_code(ir->condition);
836 }
837
838 if (ir->lhs->type->is_scalar() ||
839 ir->lhs->type->is_vector()) {
840 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
841 if (ir->write_mask & (1 << i)) {
842 inst = emit(MOV(l, r));
843 if (ir->condition)
844 inst->predicate = BRW_PREDICATE_NORMAL;
845 r.reg_offset++;
846 }
847 l.reg_offset++;
848 }
849 } else {
850 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
851 }
852 }
853
854 fs_inst *
855 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
856 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
857 {
858 int mlen;
859 int base_mrf = 1;
860 bool simd16 = false;
861 fs_reg orig_dst;
862
863 /* g0 header. */
864 mlen = 1;
865
866 if (ir->shadow_comparitor) {
867 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
868 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
869 coordinate.reg_offset++;
870 }
871 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
872 mlen += 3;
873
874 if (ir->op == ir_tex) {
875 /* There's no plain shadow compare message, so we use shadow
876 * compare with a bias of 0.0.
877 */
878 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
879 mlen++;
880 } else if (ir->op == ir_txb || ir->op == ir_txl) {
881 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
882 mlen++;
883 } else {
884 assert(!"Should not get here.");
885 }
886
887 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
888 mlen++;
889 } else if (ir->op == ir_tex) {
890 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
891 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
892 coordinate.reg_offset++;
893 }
894 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
895 mlen += 3;
896 } else if (ir->op == ir_txd) {
897 fs_reg &dPdx = lod;
898
899 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
900 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
901 coordinate.reg_offset++;
902 }
903 /* the slots for u and v are always present, but r is optional */
904 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
905
906 /* P = u, v, r
907 * dPdx = dudx, dvdx, drdx
908 * dPdy = dudy, dvdy, drdy
909 *
910 * 1-arg: Does not exist.
911 *
912 * 2-arg: dudx dvdx dudy dvdy
913 * dPdx.x dPdx.y dPdy.x dPdy.y
914 * m4 m5 m6 m7
915 *
916 * 3-arg: dudx dvdx drdx dudy dvdy drdy
917 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
918 * m5 m6 m7 m8 m9 m10
919 */
920 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
921 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
922 dPdx.reg_offset++;
923 }
924 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
925
926 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
927 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
928 dPdy.reg_offset++;
929 }
930 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
931 } else if (ir->op == ir_txs) {
932 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
933 simd16 = true;
934 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
935 mlen += 2;
936 } else {
937 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
938 * instructions. We'll need to do SIMD16 here.
939 */
940 simd16 = true;
941 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
942
943 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
944 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
945 coordinate));
946 coordinate.reg_offset++;
947 }
948
949 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
950 * be necessary for TXF (ld), but seems wise to do for all messages.
951 */
952 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
953 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
954 }
955
956 /* lod/bias appears after u/v/r. */
957 mlen += 6;
958
959 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
960 mlen++;
961
962 /* The unused upper half. */
963 mlen++;
964 }
965
966 if (simd16) {
967 /* Now, since we're doing simd16, the return is 2 interleaved
968 * vec4s where the odd-indexed ones are junk. We'll need to move
969 * this weirdness around to the expected layout.
970 */
971 orig_dst = dst;
972 dst = fs_reg(GRF, virtual_grf_alloc(8),
973 (intel->is_g4x ?
974 brw_type_for_base_type(ir->type) :
975 BRW_REGISTER_TYPE_F));
976 }
977
978 fs_inst *inst = NULL;
979 switch (ir->op) {
980 case ir_tex:
981 inst = emit(SHADER_OPCODE_TEX, dst);
982 break;
983 case ir_txb:
984 inst = emit(FS_OPCODE_TXB, dst);
985 break;
986 case ir_txl:
987 inst = emit(SHADER_OPCODE_TXL, dst);
988 break;
989 case ir_txd:
990 inst = emit(SHADER_OPCODE_TXD, dst);
991 break;
992 case ir_txs:
993 inst = emit(SHADER_OPCODE_TXS, dst);
994 break;
995 case ir_txf:
996 inst = emit(SHADER_OPCODE_TXF, dst);
997 break;
998 default:
999 fail("unrecognized texture opcode");
1000 }
1001 inst->base_mrf = base_mrf;
1002 inst->mlen = mlen;
1003 inst->header_present = true;
1004 inst->regs_written = simd16 ? 8 : 4;
1005
1006 if (simd16) {
1007 for (int i = 0; i < 4; i++) {
1008 emit(MOV(orig_dst, dst));
1009 orig_dst.reg_offset++;
1010 dst.reg_offset += 2;
1011 }
1012 }
1013
1014 return inst;
1015 }
1016
1017 /* gen5's sampler has slots for u, v, r, array index, then optional
1018 * parameters like shadow comparitor or LOD bias. If optional
1019 * parameters aren't present, those base slots are optional and don't
1020 * need to be included in the message.
1021 *
1022 * We don't fill in the unnecessary slots regardless, which may look
1023 * surprising in the disassembly.
1024 */
1025 fs_inst *
1026 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1027 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1028 fs_reg sample_index)
1029 {
1030 int mlen = 0;
1031 int base_mrf = 2;
1032 int reg_width = dispatch_width / 8;
1033 bool header_present = false;
1034 const int vector_elements =
1035 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
1036
1037 if (ir->offset != NULL && ir->op == ir_txf) {
1038 /* It appears that the ld instruction used for txf does its
1039 * address bounds check before adding in the offset. To work
1040 * around this, just add the integer offset to the integer texel
1041 * coordinate, and don't put the offset in the header.
1042 */
1043 ir_constant *offset = ir->offset->as_constant();
1044 for (int i = 0; i < vector_elements; i++) {
1045 emit(ADD(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1046 coordinate,
1047 offset->value.i[i]));
1048 coordinate.reg_offset++;
1049 }
1050 } else {
1051 if (ir->offset) {
1052 /* The offsets set up by the ir_texture visitor are in the
1053 * m1 header, so we can't go headerless.
1054 */
1055 header_present = true;
1056 mlen++;
1057 base_mrf--;
1058 }
1059
1060 for (int i = 0; i < vector_elements; i++) {
1061 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1062 coordinate));
1063 coordinate.reg_offset++;
1064 }
1065 }
1066 mlen += vector_elements * reg_width;
1067
1068 if (ir->shadow_comparitor) {
1069 mlen = MAX2(mlen, header_present + 4 * reg_width);
1070
1071 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1072 mlen += reg_width;
1073 }
1074
1075 fs_inst *inst = NULL;
1076 switch (ir->op) {
1077 case ir_tex:
1078 inst = emit(SHADER_OPCODE_TEX, dst);
1079 break;
1080 case ir_txb:
1081 mlen = MAX2(mlen, header_present + 4 * reg_width);
1082 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1083 mlen += reg_width;
1084
1085 inst = emit(FS_OPCODE_TXB, dst);
1086 break;
1087 case ir_txl:
1088 mlen = MAX2(mlen, header_present + 4 * reg_width);
1089 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1090 mlen += reg_width;
1091
1092 inst = emit(SHADER_OPCODE_TXL, dst);
1093 break;
1094 case ir_txd: {
1095 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1096
1097 /**
1098 * P = u, v, r
1099 * dPdx = dudx, dvdx, drdx
1100 * dPdy = dudy, dvdy, drdy
1101 *
1102 * Load up these values:
1103 * - dudx dudy dvdx dvdy drdx drdy
1104 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1105 */
1106 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1107 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1108 lod.reg_offset++;
1109 mlen += reg_width;
1110
1111 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1112 lod2.reg_offset++;
1113 mlen += reg_width;
1114 }
1115
1116 inst = emit(SHADER_OPCODE_TXD, dst);
1117 break;
1118 }
1119 case ir_txs:
1120 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1121 mlen += reg_width;
1122 inst = emit(SHADER_OPCODE_TXS, dst);
1123 break;
1124 case ir_txf:
1125 mlen = header_present + 4 * reg_width;
1126 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1127 inst = emit(SHADER_OPCODE_TXF, dst);
1128 break;
1129 case ir_txf_ms:
1130 mlen = header_present + 4 * reg_width;
1131
1132 /* lod */
1133 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1134 /* sample index */
1135 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1136 mlen += reg_width;
1137 inst = emit(SHADER_OPCODE_TXF_MS, dst);
1138 break;
1139 case ir_lod:
1140 inst = emit(SHADER_OPCODE_LOD, dst);
1141 break;
1142 }
1143 inst->base_mrf = base_mrf;
1144 inst->mlen = mlen;
1145 inst->header_present = header_present;
1146 inst->regs_written = 4;
1147
1148 if (mlen > 11) {
1149 fail("Message length >11 disallowed by hardware\n");
1150 }
1151
1152 return inst;
1153 }
1154
1155 fs_inst *
1156 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1157 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1158 fs_reg sample_index)
1159 {
1160 int mlen = 0;
1161 int base_mrf = 2;
1162 int reg_width = dispatch_width / 8;
1163 bool header_present = false;
1164 int offsets[3];
1165
1166 if (ir->offset && ir->op != ir_txf) {
1167 /* The offsets set up by the ir_texture visitor are in the
1168 * m1 header, so we can't go headerless.
1169 */
1170 header_present = true;
1171 mlen++;
1172 base_mrf--;
1173 }
1174
1175 if (ir->shadow_comparitor) {
1176 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1177 mlen += reg_width;
1178 }
1179
1180 /* Set up the LOD info */
1181 switch (ir->op) {
1182 case ir_tex:
1183 case ir_lod:
1184 break;
1185 case ir_txb:
1186 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1187 mlen += reg_width;
1188 break;
1189 case ir_txl:
1190 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1191 mlen += reg_width;
1192 break;
1193 case ir_txd: {
1194 if (dispatch_width == 16)
1195 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1196
1197 /* Load dPdx and the coordinate together:
1198 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1199 */
1200 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1201 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1202 coordinate.reg_offset++;
1203 mlen += reg_width;
1204
1205 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1206 * only derivatives for (u, v, r).
1207 */
1208 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1209 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1210 lod.reg_offset++;
1211 mlen += reg_width;
1212
1213 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1214 lod2.reg_offset++;
1215 mlen += reg_width;
1216 }
1217 }
1218 break;
1219 }
1220 case ir_txs:
1221 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1222 mlen += reg_width;
1223 break;
1224 case ir_txf:
1225 /* It appears that the ld instruction used for txf does its
1226 * address bounds check before adding in the offset. To work
1227 * around this, just add the integer offset to the integer texel
1228 * coordinate, and don't put the offset in the header.
1229 */
1230 if (ir->offset) {
1231 ir_constant *offset = ir->offset->as_constant();
1232 offsets[0] = offset->value.i[0];
1233 offsets[1] = offset->value.i[1];
1234 offsets[2] = offset->value.i[2];
1235 } else {
1236 memset(offsets, 0, sizeof(offsets));
1237 }
1238
1239 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1240 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1241 coordinate, offsets[0]));
1242 coordinate.reg_offset++;
1243 mlen += reg_width;
1244
1245 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod));
1246 mlen += reg_width;
1247
1248 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1249 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1250 coordinate, offsets[i]));
1251 coordinate.reg_offset++;
1252 mlen += reg_width;
1253 }
1254 break;
1255 case ir_txf_ms:
1256 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1257 mlen += reg_width;
1258
1259 /* constant zero MCS; we arrange to never actually have a compressed
1260 * multisample surface here for now. TODO: issue ld_mcs to get this first,
1261 * if we ever support texturing from compressed multisample surfaces
1262 */
1263 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1264 mlen += reg_width;
1265
1266 /* there is no offsetting for this message; just copy in the integer
1267 * texture coordinates
1268 */
1269 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1270 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1271 coordinate));
1272 coordinate.reg_offset++;
1273 mlen += reg_width;
1274 }
1275 break;
1276 }
1277
1278 /* Set up the coordinate (except for cases where it was done above) */
1279 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf && ir->op != ir_txf_ms) {
1280 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1281 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1282 coordinate.reg_offset++;
1283 mlen += reg_width;
1284 }
1285 }
1286
1287 /* Generate the SEND */
1288 fs_inst *inst = NULL;
1289 switch (ir->op) {
1290 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1291 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1292 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1293 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1294 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1295 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst); break;
1296 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1297 case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst); break;
1298 }
1299 inst->base_mrf = base_mrf;
1300 inst->mlen = mlen;
1301 inst->header_present = header_present;
1302 inst->regs_written = 4;
1303
1304 if (mlen > 11) {
1305 fail("Message length >11 disallowed by hardware\n");
1306 }
1307
1308 return inst;
1309 }
1310
1311 fs_reg
1312 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1313 bool is_rect, int sampler, int texunit)
1314 {
1315 fs_inst *inst = NULL;
1316 bool needs_gl_clamp = true;
1317 fs_reg scale_x, scale_y;
1318
1319 /* The 965 requires the EU to do the normalization of GL rectangle
1320 * texture coordinates. We use the program parameter state
1321 * tracking to get the scaling factor.
1322 */
1323 if (is_rect &&
1324 (intel->gen < 6 ||
1325 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1326 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1327 struct gl_program_parameter_list *params = fp->Base.Parameters;
1328 int tokens[STATE_LENGTH] = {
1329 STATE_INTERNAL,
1330 STATE_TEXRECT_SCALE,
1331 texunit,
1332 0,
1333 0
1334 };
1335
1336 if (dispatch_width == 16) {
1337 fail("rectangle scale uniform setup not supported on 16-wide\n");
1338 return coordinate;
1339 }
1340
1341 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1342 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1343
1344 GLuint index = _mesa_add_state_reference(params,
1345 (gl_state_index *)tokens);
1346 c->prog_data.param[c->prog_data.nr_params++] =
1347 &fp->Base.Parameters->ParameterValues[index][0].f;
1348 c->prog_data.param[c->prog_data.nr_params++] =
1349 &fp->Base.Parameters->ParameterValues[index][1].f;
1350 }
1351
1352 /* The 965 requires the EU to do the normalization of GL rectangle
1353 * texture coordinates. We use the program parameter state
1354 * tracking to get the scaling factor.
1355 */
1356 if (intel->gen < 6 && is_rect) {
1357 fs_reg dst = fs_reg(this, ir->coordinate->type);
1358 fs_reg src = coordinate;
1359 coordinate = dst;
1360
1361 emit(MUL(dst, src, scale_x));
1362 dst.reg_offset++;
1363 src.reg_offset++;
1364 emit(MUL(dst, src, scale_y));
1365 } else if (is_rect) {
1366 /* On gen6+, the sampler handles the rectangle coordinates
1367 * natively, without needing rescaling. But that means we have
1368 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1369 * not [0, 1] like the default case below.
1370 */
1371 needs_gl_clamp = false;
1372
1373 for (int i = 0; i < 2; i++) {
1374 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1375 fs_reg chan = coordinate;
1376 chan.reg_offset += i;
1377
1378 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1379 inst->conditional_mod = BRW_CONDITIONAL_G;
1380
1381 /* Our parameter comes in as 1.0/width or 1.0/height,
1382 * because that's what people normally want for doing
1383 * texture rectangle handling. We need width or height
1384 * for clamping, but we don't care enough to make a new
1385 * parameter type, so just invert back.
1386 */
1387 fs_reg limit = fs_reg(this, glsl_type::float_type);
1388 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1389 emit(SHADER_OPCODE_RCP, limit, limit);
1390
1391 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1392 inst->conditional_mod = BRW_CONDITIONAL_L;
1393 }
1394 }
1395 }
1396
1397 if (ir->coordinate && needs_gl_clamp) {
1398 for (unsigned int i = 0;
1399 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1400 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1401 fs_reg chan = coordinate;
1402 chan.reg_offset += i;
1403
1404 fs_inst *inst = emit(MOV(chan, chan));
1405 inst->saturate = true;
1406 }
1407 }
1408 }
1409 return coordinate;
1410 }
1411
1412 void
1413 fs_visitor::visit(ir_texture *ir)
1414 {
1415 fs_inst *inst = NULL;
1416
1417 int sampler =
1418 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, &fp->Base);
1419 /* FINISHME: We're failing to recompile our programs when the sampler is
1420 * updated. This only matters for the texture rectangle scale parameters
1421 * (pre-gen6, or gen6+ with GL_CLAMP).
1422 */
1423 int texunit = fp->Base.SamplerUnits[sampler];
1424
1425 /* Should be lowered by do_lower_texture_projection */
1426 assert(!ir->projector);
1427
1428 /* Generate code to compute all the subexpression trees. This has to be
1429 * done before loading any values into MRFs for the sampler message since
1430 * generating these values may involve SEND messages that need the MRFs.
1431 */
1432 fs_reg coordinate;
1433 if (ir->coordinate) {
1434 ir->coordinate->accept(this);
1435
1436 coordinate = rescale_texcoord(ir, this->result,
1437 ir->sampler->type->sampler_dimensionality ==
1438 GLSL_SAMPLER_DIM_RECT,
1439 sampler, texunit);
1440 }
1441
1442 fs_reg shadow_comparitor;
1443 if (ir->shadow_comparitor) {
1444 ir->shadow_comparitor->accept(this);
1445 shadow_comparitor = this->result;
1446 }
1447
1448 fs_reg lod, lod2, sample_index;
1449 switch (ir->op) {
1450 case ir_tex:
1451 case ir_lod:
1452 break;
1453 case ir_txb:
1454 ir->lod_info.bias->accept(this);
1455 lod = this->result;
1456 break;
1457 case ir_txd:
1458 ir->lod_info.grad.dPdx->accept(this);
1459 lod = this->result;
1460
1461 ir->lod_info.grad.dPdy->accept(this);
1462 lod2 = this->result;
1463 break;
1464 case ir_txf:
1465 case ir_txl:
1466 case ir_txs:
1467 ir->lod_info.lod->accept(this);
1468 lod = this->result;
1469 break;
1470 case ir_txf_ms:
1471 ir->lod_info.sample_index->accept(this);
1472 sample_index = this->result;
1473 break;
1474 };
1475
1476 /* Writemasking doesn't eliminate channels on SIMD8 texture
1477 * samples, so don't worry about them.
1478 */
1479 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1480
1481 if (intel->gen >= 7) {
1482 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1483 lod, lod2, sample_index);
1484 } else if (intel->gen >= 5) {
1485 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1486 lod, lod2, sample_index);
1487 } else {
1488 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1489 lod, lod2);
1490 }
1491
1492 /* The header is set up by generate_tex() when necessary. */
1493 inst->src[0] = reg_undef;
1494
1495 if (ir->offset != NULL && ir->op != ir_txf)
1496 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1497
1498 inst->sampler = sampler;
1499
1500 if (ir->shadow_comparitor)
1501 inst->shadow_compare = true;
1502
1503 /* fixup #layers for cube map arrays */
1504 if (ir->op == ir_txs) {
1505 glsl_type const *type = ir->sampler->type;
1506 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1507 type->sampler_array) {
1508 fs_reg depth = dst;
1509 depth.reg_offset = 2;
1510 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1511 }
1512 }
1513
1514 swizzle_result(ir, dst, sampler);
1515 }
1516
1517 /**
1518 * Swizzle the result of a texture result. This is necessary for
1519 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1520 */
1521 void
1522 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1523 {
1524 this->result = orig_val;
1525
1526 if (ir->op == ir_txs || ir->op == ir_lod)
1527 return;
1528
1529 if (ir->type == glsl_type::float_type) {
1530 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1531 assert(ir->sampler->type->sampler_shadow);
1532 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1533 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1534
1535 for (int i = 0; i < 4; i++) {
1536 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1537 fs_reg l = swizzled_result;
1538 l.reg_offset += i;
1539
1540 if (swiz == SWIZZLE_ZERO) {
1541 emit(MOV(l, fs_reg(0.0f)));
1542 } else if (swiz == SWIZZLE_ONE) {
1543 emit(MOV(l, fs_reg(1.0f)));
1544 } else {
1545 fs_reg r = orig_val;
1546 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1547 emit(MOV(l, r));
1548 }
1549 }
1550 this->result = swizzled_result;
1551 }
1552 }
1553
1554 void
1555 fs_visitor::visit(ir_swizzle *ir)
1556 {
1557 ir->val->accept(this);
1558 fs_reg val = this->result;
1559
1560 if (ir->type->vector_elements == 1) {
1561 this->result.reg_offset += ir->mask.x;
1562 return;
1563 }
1564
1565 fs_reg result = fs_reg(this, ir->type);
1566 this->result = result;
1567
1568 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1569 fs_reg channel = val;
1570 int swiz = 0;
1571
1572 switch (i) {
1573 case 0:
1574 swiz = ir->mask.x;
1575 break;
1576 case 1:
1577 swiz = ir->mask.y;
1578 break;
1579 case 2:
1580 swiz = ir->mask.z;
1581 break;
1582 case 3:
1583 swiz = ir->mask.w;
1584 break;
1585 }
1586
1587 channel.reg_offset += swiz;
1588 emit(MOV(result, channel));
1589 result.reg_offset++;
1590 }
1591 }
1592
1593 void
1594 fs_visitor::visit(ir_discard *ir)
1595 {
1596 assert(ir->condition == NULL); /* FINISHME */
1597
1598 /* We track our discarded pixels in f0.1. By predicating on it, we can
1599 * update just the flag bits that aren't yet discarded. By emitting a
1600 * CMP of g0 != g0, all our currently executing channels will get turned
1601 * off.
1602 */
1603 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1604 BRW_REGISTER_TYPE_UW));
1605 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1606 BRW_CONDITIONAL_NZ));
1607 cmp->predicate = BRW_PREDICATE_NORMAL;
1608 cmp->flag_subreg = 1;
1609
1610 if (intel->gen >= 6) {
1611 /* For performance, after a discard, jump to the end of the shader.
1612 * However, many people will do foliage by discarding based on a
1613 * texture's alpha mask, and then continue on to texture with the
1614 * remaining pixels. To avoid trashing the derivatives for those
1615 * texture samples, we'll only jump if all of the pixels in the subspan
1616 * have been discarded.
1617 */
1618 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1619 discard_jump->flag_subreg = 1;
1620 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1621 discard_jump->predicate_inverse = true;
1622 }
1623 }
1624
1625 void
1626 fs_visitor::visit(ir_constant *ir)
1627 {
1628 /* Set this->result to reg at the bottom of the function because some code
1629 * paths will cause this visitor to be applied to other fields. This will
1630 * cause the value stored in this->result to be modified.
1631 *
1632 * Make reg constant so that it doesn't get accidentally modified along the
1633 * way. Yes, I actually had this problem. :(
1634 */
1635 const fs_reg reg(this, ir->type);
1636 fs_reg dst_reg = reg;
1637
1638 if (ir->type->is_array()) {
1639 const unsigned size = type_size(ir->type->fields.array);
1640
1641 for (unsigned i = 0; i < ir->type->length; i++) {
1642 ir->array_elements[i]->accept(this);
1643 fs_reg src_reg = this->result;
1644
1645 dst_reg.type = src_reg.type;
1646 for (unsigned j = 0; j < size; j++) {
1647 emit(MOV(dst_reg, src_reg));
1648 src_reg.reg_offset++;
1649 dst_reg.reg_offset++;
1650 }
1651 }
1652 } else if (ir->type->is_record()) {
1653 foreach_list(node, &ir->components) {
1654 ir_constant *const field = (ir_constant *) node;
1655 const unsigned size = type_size(field->type);
1656
1657 field->accept(this);
1658 fs_reg src_reg = this->result;
1659
1660 dst_reg.type = src_reg.type;
1661 for (unsigned j = 0; j < size; j++) {
1662 emit(MOV(dst_reg, src_reg));
1663 src_reg.reg_offset++;
1664 dst_reg.reg_offset++;
1665 }
1666 }
1667 } else {
1668 const unsigned size = type_size(ir->type);
1669
1670 for (unsigned i = 0; i < size; i++) {
1671 switch (ir->type->base_type) {
1672 case GLSL_TYPE_FLOAT:
1673 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1674 break;
1675 case GLSL_TYPE_UINT:
1676 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1677 break;
1678 case GLSL_TYPE_INT:
1679 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1680 break;
1681 case GLSL_TYPE_BOOL:
1682 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1683 break;
1684 default:
1685 assert(!"Non-float/uint/int/bool constant");
1686 }
1687 dst_reg.reg_offset++;
1688 }
1689 }
1690
1691 this->result = reg;
1692 }
1693
1694 void
1695 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1696 {
1697 ir_expression *expr = ir->as_expression();
1698
1699 if (expr) {
1700 fs_reg op[2];
1701 fs_inst *inst;
1702
1703 assert(expr->get_num_operands() <= 2);
1704 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1705 assert(expr->operands[i]->type->is_scalar());
1706
1707 expr->operands[i]->accept(this);
1708 op[i] = this->result;
1709
1710 resolve_ud_negate(&op[i]);
1711 }
1712
1713 switch (expr->operation) {
1714 case ir_unop_logic_not:
1715 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1716 inst->conditional_mod = BRW_CONDITIONAL_Z;
1717 break;
1718
1719 case ir_binop_logic_xor:
1720 case ir_binop_logic_or:
1721 case ir_binop_logic_and:
1722 goto out;
1723
1724 case ir_unop_f2b:
1725 if (intel->gen >= 6) {
1726 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1727 } else {
1728 inst = emit(MOV(reg_null_f, op[0]));
1729 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1730 }
1731 break;
1732
1733 case ir_unop_i2b:
1734 if (intel->gen >= 6) {
1735 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1736 } else {
1737 inst = emit(MOV(reg_null_d, op[0]));
1738 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1739 }
1740 break;
1741
1742 case ir_binop_greater:
1743 case ir_binop_gequal:
1744 case ir_binop_less:
1745 case ir_binop_lequal:
1746 case ir_binop_equal:
1747 case ir_binop_all_equal:
1748 case ir_binop_nequal:
1749 case ir_binop_any_nequal:
1750 resolve_bool_comparison(expr->operands[0], &op[0]);
1751 resolve_bool_comparison(expr->operands[1], &op[1]);
1752
1753 emit(CMP(reg_null_d, op[0], op[1],
1754 brw_conditional_for_comparison(expr->operation)));
1755 break;
1756
1757 default:
1758 assert(!"not reached");
1759 fail("bad cond code\n");
1760 break;
1761 }
1762 return;
1763 }
1764
1765 out:
1766 ir->accept(this);
1767
1768 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1769 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1770 }
1771
1772 /**
1773 * Emit a gen6 IF statement with the comparison folded into the IF
1774 * instruction.
1775 */
1776 void
1777 fs_visitor::emit_if_gen6(ir_if *ir)
1778 {
1779 ir_expression *expr = ir->condition->as_expression();
1780
1781 if (expr) {
1782 fs_reg op[2];
1783 fs_inst *inst;
1784 fs_reg temp;
1785
1786 assert(expr->get_num_operands() <= 2);
1787 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1788 assert(expr->operands[i]->type->is_scalar());
1789
1790 expr->operands[i]->accept(this);
1791 op[i] = this->result;
1792 }
1793
1794 switch (expr->operation) {
1795 case ir_unop_logic_not:
1796 case ir_binop_logic_xor:
1797 case ir_binop_logic_or:
1798 case ir_binop_logic_and:
1799 /* For operations on bool arguments, only the low bit of the bool is
1800 * valid, and the others are undefined. Fall back to the condition
1801 * code path.
1802 */
1803 break;
1804
1805 case ir_unop_f2b:
1806 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1807 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1808 return;
1809
1810 case ir_unop_i2b:
1811 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1812 return;
1813
1814 case ir_binop_greater:
1815 case ir_binop_gequal:
1816 case ir_binop_less:
1817 case ir_binop_lequal:
1818 case ir_binop_equal:
1819 case ir_binop_all_equal:
1820 case ir_binop_nequal:
1821 case ir_binop_any_nequal:
1822 resolve_bool_comparison(expr->operands[0], &op[0]);
1823 resolve_bool_comparison(expr->operands[1], &op[1]);
1824
1825 emit(IF(op[0], op[1],
1826 brw_conditional_for_comparison(expr->operation)));
1827 return;
1828 default:
1829 assert(!"not reached");
1830 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1831 fail("bad condition\n");
1832 return;
1833 }
1834 }
1835
1836 emit_bool_to_cond_code(ir->condition);
1837 fs_inst *inst = emit(BRW_OPCODE_IF);
1838 inst->predicate = BRW_PREDICATE_NORMAL;
1839 }
1840
1841 void
1842 fs_visitor::visit(ir_if *ir)
1843 {
1844 if (intel->gen < 6 && dispatch_width == 16) {
1845 fail("Can't support (non-uniform) control flow on 16-wide\n");
1846 }
1847
1848 /* Don't point the annotation at the if statement, because then it plus
1849 * the then and else blocks get printed.
1850 */
1851 this->base_ir = ir->condition;
1852
1853 if (intel->gen == 6) {
1854 emit_if_gen6(ir);
1855 } else {
1856 emit_bool_to_cond_code(ir->condition);
1857
1858 emit(IF(BRW_PREDICATE_NORMAL));
1859 }
1860
1861 foreach_list(node, &ir->then_instructions) {
1862 ir_instruction *ir = (ir_instruction *)node;
1863 this->base_ir = ir;
1864
1865 ir->accept(this);
1866 }
1867
1868 if (!ir->else_instructions.is_empty()) {
1869 emit(BRW_OPCODE_ELSE);
1870
1871 foreach_list(node, &ir->else_instructions) {
1872 ir_instruction *ir = (ir_instruction *)node;
1873 this->base_ir = ir;
1874
1875 ir->accept(this);
1876 }
1877 }
1878
1879 emit(BRW_OPCODE_ENDIF);
1880 }
1881
1882 void
1883 fs_visitor::visit(ir_loop *ir)
1884 {
1885 fs_reg counter = reg_undef;
1886
1887 if (intel->gen < 6 && dispatch_width == 16) {
1888 fail("Can't support (non-uniform) control flow on 16-wide\n");
1889 }
1890
1891 if (ir->counter) {
1892 this->base_ir = ir->counter;
1893 ir->counter->accept(this);
1894 counter = *(variable_storage(ir->counter));
1895
1896 if (ir->from) {
1897 this->base_ir = ir->from;
1898 ir->from->accept(this);
1899
1900 emit(MOV(counter, this->result));
1901 }
1902 }
1903
1904 this->base_ir = NULL;
1905 emit(BRW_OPCODE_DO);
1906
1907 if (ir->to) {
1908 this->base_ir = ir->to;
1909 ir->to->accept(this);
1910
1911 emit(CMP(reg_null_d, counter, this->result,
1912 brw_conditional_for_comparison(ir->cmp)));
1913
1914 fs_inst *inst = emit(BRW_OPCODE_BREAK);
1915 inst->predicate = BRW_PREDICATE_NORMAL;
1916 }
1917
1918 foreach_list(node, &ir->body_instructions) {
1919 ir_instruction *ir = (ir_instruction *)node;
1920
1921 this->base_ir = ir;
1922 ir->accept(this);
1923 }
1924
1925 if (ir->increment) {
1926 this->base_ir = ir->increment;
1927 ir->increment->accept(this);
1928 emit(ADD(counter, counter, this->result));
1929 }
1930
1931 this->base_ir = NULL;
1932 emit(BRW_OPCODE_WHILE);
1933 }
1934
1935 void
1936 fs_visitor::visit(ir_loop_jump *ir)
1937 {
1938 switch (ir->mode) {
1939 case ir_loop_jump::jump_break:
1940 emit(BRW_OPCODE_BREAK);
1941 break;
1942 case ir_loop_jump::jump_continue:
1943 emit(BRW_OPCODE_CONTINUE);
1944 break;
1945 }
1946 }
1947
1948 void
1949 fs_visitor::visit(ir_call *ir)
1950 {
1951 assert(!"FINISHME");
1952 }
1953
1954 void
1955 fs_visitor::visit(ir_return *ir)
1956 {
1957 assert(!"FINISHME");
1958 }
1959
1960 void
1961 fs_visitor::visit(ir_function *ir)
1962 {
1963 /* Ignore function bodies other than main() -- we shouldn't see calls to
1964 * them since they should all be inlined before we get to ir_to_mesa.
1965 */
1966 if (strcmp(ir->name, "main") == 0) {
1967 const ir_function_signature *sig;
1968 exec_list empty;
1969
1970 sig = ir->matching_signature(&empty);
1971
1972 assert(sig);
1973
1974 foreach_list(node, &sig->body) {
1975 ir_instruction *ir = (ir_instruction *)node;
1976 this->base_ir = ir;
1977
1978 ir->accept(this);
1979 }
1980 }
1981 }
1982
1983 void
1984 fs_visitor::visit(ir_function_signature *ir)
1985 {
1986 assert(!"not reached");
1987 (void)ir;
1988 }
1989
1990 fs_inst *
1991 fs_visitor::emit(fs_inst inst)
1992 {
1993 fs_inst *list_inst = new(mem_ctx) fs_inst;
1994 *list_inst = inst;
1995 emit(list_inst);
1996 return list_inst;
1997 }
1998
1999 fs_inst *
2000 fs_visitor::emit(fs_inst *inst)
2001 {
2002 if (force_uncompressed_stack > 0)
2003 inst->force_uncompressed = true;
2004 else if (force_sechalf_stack > 0)
2005 inst->force_sechalf = true;
2006
2007 inst->annotation = this->current_annotation;
2008 inst->ir = this->base_ir;
2009
2010 this->instructions.push_tail(inst);
2011
2012 return inst;
2013 }
2014
2015 void
2016 fs_visitor::emit(exec_list list)
2017 {
2018 foreach_list_safe(node, &list) {
2019 fs_inst *inst = (fs_inst *)node;
2020 inst->remove();
2021 emit(inst);
2022 }
2023 }
2024
2025 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
2026 void
2027 fs_visitor::emit_dummy_fs()
2028 {
2029 int reg_width = dispatch_width / 8;
2030
2031 /* Everyone's favorite color. */
2032 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
2033 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
2034 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
2035 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
2036
2037 fs_inst *write;
2038 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
2039 write->base_mrf = 2;
2040 write->mlen = 4 * reg_width;
2041 write->eot = true;
2042 }
2043
2044 /* The register location here is relative to the start of the URB
2045 * data. It will get adjusted to be a real location before
2046 * generate_code() time.
2047 */
2048 struct brw_reg
2049 fs_visitor::interp_reg(int location, int channel)
2050 {
2051 int regnr = urb_setup[location] * 2 + channel / 2;
2052 int stride = (channel & 1) * 4;
2053
2054 assert(urb_setup[location] != -1);
2055
2056 return brw_vec1_grf(regnr, stride);
2057 }
2058
2059 /** Emits the interpolation for the varying inputs. */
2060 void
2061 fs_visitor::emit_interpolation_setup_gen4()
2062 {
2063 this->current_annotation = "compute pixel centers";
2064 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2065 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2066 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2067 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2068
2069 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2070 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2071
2072 this->current_annotation = "compute pixel deltas from v0";
2073 if (brw->has_pln) {
2074 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2075 fs_reg(this, glsl_type::vec2_type);
2076 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2077 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2078 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2079 } else {
2080 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2081 fs_reg(this, glsl_type::float_type);
2082 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2083 fs_reg(this, glsl_type::float_type);
2084 }
2085 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2086 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2087 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2088 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2089
2090 this->current_annotation = "compute pos.w and 1/pos.w";
2091 /* Compute wpos.w. It's always in our setup, since it's needed to
2092 * interpolate the other attributes.
2093 */
2094 this->wpos_w = fs_reg(this, glsl_type::float_type);
2095 emit(FS_OPCODE_LINTERP, wpos_w,
2096 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2097 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2098 interp_reg(VARYING_SLOT_POS, 3));
2099 /* Compute the pixel 1/W value from wpos.w. */
2100 this->pixel_w = fs_reg(this, glsl_type::float_type);
2101 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2102 this->current_annotation = NULL;
2103 }
2104
2105 /** Emits the interpolation for the varying inputs. */
2106 void
2107 fs_visitor::emit_interpolation_setup_gen6()
2108 {
2109 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2110
2111 /* If the pixel centers end up used, the setup is the same as for gen4. */
2112 this->current_annotation = "compute pixel centers";
2113 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2114 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2115 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2116 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2117 emit(ADD(int_pixel_x,
2118 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2119 fs_reg(brw_imm_v(0x10101010))));
2120 emit(ADD(int_pixel_y,
2121 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2122 fs_reg(brw_imm_v(0x11001100))));
2123
2124 /* As of gen6, we can no longer mix float and int sources. We have
2125 * to turn the integer pixel centers into floats for their actual
2126 * use.
2127 */
2128 this->pixel_x = fs_reg(this, glsl_type::float_type);
2129 this->pixel_y = fs_reg(this, glsl_type::float_type);
2130 emit(MOV(this->pixel_x, int_pixel_x));
2131 emit(MOV(this->pixel_y, int_pixel_y));
2132
2133 this->current_annotation = "compute pos.w";
2134 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2135 this->wpos_w = fs_reg(this, glsl_type::float_type);
2136 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2137
2138 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2139 uint8_t reg = c->barycentric_coord_reg[i];
2140 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2141 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2142 }
2143
2144 this->current_annotation = NULL;
2145 }
2146
2147 void
2148 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2149 {
2150 int reg_width = dispatch_width / 8;
2151 fs_inst *inst;
2152 fs_reg color = outputs[target];
2153 fs_reg mrf;
2154
2155 /* If there's no color data to be written, skip it. */
2156 if (color.file == BAD_FILE)
2157 return;
2158
2159 color.reg_offset += index;
2160
2161 if (dispatch_width == 8 || intel->gen >= 6) {
2162 /* SIMD8 write looks like:
2163 * m + 0: r0
2164 * m + 1: r1
2165 * m + 2: g0
2166 * m + 3: g1
2167 *
2168 * gen6 SIMD16 DP write looks like:
2169 * m + 0: r0
2170 * m + 1: r1
2171 * m + 2: g0
2172 * m + 3: g1
2173 * m + 4: b0
2174 * m + 5: b1
2175 * m + 6: a0
2176 * m + 7: a1
2177 */
2178 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2179 color.type),
2180 color));
2181 inst->saturate = c->key.clamp_fragment_color;
2182 } else {
2183 /* pre-gen6 SIMD16 single source DP write looks like:
2184 * m + 0: r0
2185 * m + 1: g0
2186 * m + 2: b0
2187 * m + 3: a0
2188 * m + 4: r1
2189 * m + 5: g1
2190 * m + 6: b1
2191 * m + 7: a1
2192 */
2193 if (brw->has_compr4) {
2194 /* By setting the high bit of the MRF register number, we
2195 * indicate that we want COMPR4 mode - instead of doing the
2196 * usual destination + 1 for the second half we get
2197 * destination + 4.
2198 */
2199 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2200 color.type),
2201 color));
2202 inst->saturate = c->key.clamp_fragment_color;
2203 } else {
2204 push_force_uncompressed();
2205 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2206 color));
2207 inst->saturate = c->key.clamp_fragment_color;
2208 pop_force_uncompressed();
2209
2210 push_force_sechalf();
2211 color.sechalf = true;
2212 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2213 color));
2214 inst->saturate = c->key.clamp_fragment_color;
2215 pop_force_sechalf();
2216 color.sechalf = false;
2217 }
2218 }
2219 }
2220
2221 void
2222 fs_visitor::emit_fb_writes()
2223 {
2224 this->current_annotation = "FB write header";
2225 bool header_present = true;
2226 /* We can potentially have a message length of up to 15, so we have to set
2227 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2228 */
2229 int base_mrf = 1;
2230 int nr = base_mrf;
2231 int reg_width = dispatch_width / 8;
2232 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2233 bool src0_alpha_to_render_target = false;
2234
2235 if (dispatch_width == 16 && do_dual_src) {
2236 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2237 do_dual_src = false;
2238 }
2239
2240 /* From the Sandy Bridge PRM, volume 4, page 198:
2241 *
2242 * "Dispatched Pixel Enables. One bit per pixel indicating
2243 * which pixels were originally enabled when the thread was
2244 * dispatched. This field is only required for the end-of-
2245 * thread message and on all dual-source messages."
2246 */
2247 if (intel->gen >= 6 &&
2248 !this->fp->UsesKill &&
2249 !do_dual_src &&
2250 c->key.nr_color_regions == 1) {
2251 header_present = false;
2252 }
2253
2254 if (header_present) {
2255 src0_alpha_to_render_target = intel->gen >= 6 &&
2256 !do_dual_src &&
2257 c->key.replicate_alpha;
2258 /* m2, m3 header */
2259 nr += 2;
2260 }
2261
2262 if (c->aa_dest_stencil_reg) {
2263 push_force_uncompressed();
2264 emit(MOV(fs_reg(MRF, nr++),
2265 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2266 pop_force_uncompressed();
2267 }
2268
2269 /* Reserve space for color. It'll be filled in per MRT below. */
2270 int color_mrf = nr;
2271 nr += 4 * reg_width;
2272 if (do_dual_src)
2273 nr += 4;
2274 if (src0_alpha_to_render_target)
2275 nr += reg_width;
2276
2277 if (c->source_depth_to_render_target) {
2278 if (intel->gen == 6 && dispatch_width == 16) {
2279 /* For outputting oDepth on gen6, SIMD8 writes have to be
2280 * used. This would require 8-wide moves of each half to
2281 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2282 * Just bail on doing so for now.
2283 */
2284 fail("Missing support for simd16 depth writes on gen6\n");
2285 }
2286
2287 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2288 /* Hand over gl_FragDepth. */
2289 assert(this->frag_depth.file != BAD_FILE);
2290 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2291 } else {
2292 /* Pass through the payload depth. */
2293 emit(MOV(fs_reg(MRF, nr),
2294 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2295 }
2296 nr += reg_width;
2297 }
2298
2299 if (c->dest_depth_reg) {
2300 emit(MOV(fs_reg(MRF, nr),
2301 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2302 nr += reg_width;
2303 }
2304
2305 if (do_dual_src) {
2306 fs_reg src0 = this->outputs[0];
2307 fs_reg src1 = this->dual_src_output;
2308
2309 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2310 "FB write src0");
2311 for (int i = 0; i < 4; i++) {
2312 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2313 src0.reg_offset++;
2314 inst->saturate = c->key.clamp_fragment_color;
2315 }
2316
2317 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2318 "FB write src1");
2319 for (int i = 0; i < 4; i++) {
2320 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2321 src1));
2322 src1.reg_offset++;
2323 inst->saturate = c->key.clamp_fragment_color;
2324 }
2325
2326 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2327 emit_shader_time_end();
2328
2329 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2330 inst->target = 0;
2331 inst->base_mrf = base_mrf;
2332 inst->mlen = nr - base_mrf;
2333 inst->eot = true;
2334 inst->header_present = header_present;
2335
2336 c->prog_data.dual_src_blend = true;
2337 this->current_annotation = NULL;
2338 return;
2339 }
2340
2341 for (int target = 0; target < c->key.nr_color_regions; target++) {
2342 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2343 "FB write target %d",
2344 target);
2345 /* If src0_alpha_to_render_target is true, include source zero alpha
2346 * data in RenderTargetWrite message for targets > 0.
2347 */
2348 int write_color_mrf = color_mrf;
2349 if (src0_alpha_to_render_target && target != 0) {
2350 fs_inst *inst;
2351 fs_reg color = outputs[0];
2352 color.reg_offset += 3;
2353
2354 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2355 color));
2356 inst->saturate = c->key.clamp_fragment_color;
2357 write_color_mrf = color_mrf + reg_width;
2358 }
2359
2360 for (unsigned i = 0; i < this->output_components[target]; i++)
2361 emit_color_write(target, i, write_color_mrf);
2362
2363 bool eot = false;
2364 if (target == c->key.nr_color_regions - 1) {
2365 eot = true;
2366
2367 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2368 emit_shader_time_end();
2369 }
2370
2371 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2372 inst->target = target;
2373 inst->base_mrf = base_mrf;
2374 if (src0_alpha_to_render_target && target == 0)
2375 inst->mlen = nr - base_mrf - reg_width;
2376 else
2377 inst->mlen = nr - base_mrf;
2378 inst->eot = eot;
2379 inst->header_present = header_present;
2380 }
2381
2382 if (c->key.nr_color_regions == 0) {
2383 /* Even if there's no color buffers enabled, we still need to send
2384 * alpha out the pipeline to our null renderbuffer to support
2385 * alpha-testing, alpha-to-coverage, and so on.
2386 */
2387 emit_color_write(0, 3, color_mrf);
2388
2389 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2390 emit_shader_time_end();
2391
2392 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2393 inst->base_mrf = base_mrf;
2394 inst->mlen = nr - base_mrf;
2395 inst->eot = true;
2396 inst->header_present = header_present;
2397 }
2398
2399 this->current_annotation = NULL;
2400 }
2401
2402 void
2403 fs_visitor::resolve_ud_negate(fs_reg *reg)
2404 {
2405 if (reg->type != BRW_REGISTER_TYPE_UD ||
2406 !reg->negate)
2407 return;
2408
2409 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2410 emit(MOV(temp, *reg));
2411 *reg = temp;
2412 }
2413
2414 void
2415 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2416 {
2417 if (rvalue->type != glsl_type::bool_type)
2418 return;
2419
2420 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2421 emit(AND(temp, *reg, fs_reg(1)));
2422 *reg = temp;
2423 }
2424
2425 fs_visitor::fs_visitor(struct brw_context *brw,
2426 struct brw_wm_compile *c,
2427 struct gl_shader_program *shader_prog,
2428 struct gl_fragment_program *fp,
2429 unsigned dispatch_width)
2430 : dispatch_width(dispatch_width)
2431 {
2432 this->c = c;
2433 this->brw = brw;
2434 this->fp = fp;
2435 this->shader_prog = shader_prog;
2436 this->intel = &brw->intel;
2437 this->ctx = &intel->ctx;
2438 this->mem_ctx = ralloc_context(NULL);
2439 if (shader_prog)
2440 shader = (struct brw_shader *)
2441 shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2442 else
2443 shader = NULL;
2444 this->failed = false;
2445 this->variable_ht = hash_table_ctor(0,
2446 hash_table_pointer_hash,
2447 hash_table_pointer_compare);
2448
2449 memset(this->outputs, 0, sizeof(this->outputs));
2450 memset(this->output_components, 0, sizeof(this->output_components));
2451 this->first_non_payload_grf = 0;
2452 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2453
2454 this->current_annotation = NULL;
2455 this->base_ir = NULL;
2456
2457 this->virtual_grf_sizes = NULL;
2458 this->virtual_grf_count = 0;
2459 this->virtual_grf_array_size = 0;
2460 this->virtual_grf_start = NULL;
2461 this->virtual_grf_end = NULL;
2462 this->live_intervals_valid = false;
2463
2464 this->params_remap = NULL;
2465 this->nr_params_remap = 0;
2466
2467 this->force_uncompressed_stack = 0;
2468 this->force_sechalf_stack = 0;
2469
2470 memset(&this->param_size, 0, sizeof(this->param_size));
2471 }
2472
2473 fs_visitor::~fs_visitor()
2474 {
2475 ralloc_free(this->mem_ctx);
2476 hash_table_dtor(this->variable_ht);
2477 }