i965/fs: Implement lowering of logical texturing opcodes on Gen4.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_fs.h"
45 #include "main/uniforms.h"
46 #include "glsl/glsl_types.h"
47 #include "glsl/ir_optimization.h"
48 #include "program/sampler.h"
49
50 using namespace brw;
51
52 fs_reg *
53 fs_visitor::emit_vs_system_value(int location)
54 {
55 fs_reg *reg = new(this->mem_ctx)
56 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
57 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
58
59 switch (location) {
60 case SYSTEM_VALUE_BASE_VERTEX:
61 reg->reg_offset = 0;
62 vs_prog_data->uses_vertexid = true;
63 break;
64 case SYSTEM_VALUE_VERTEX_ID:
65 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
66 reg->reg_offset = 2;
67 vs_prog_data->uses_vertexid = true;
68 break;
69 case SYSTEM_VALUE_INSTANCE_ID:
70 reg->reg_offset = 3;
71 vs_prog_data->uses_instanceid = true;
72 break;
73 default:
74 unreachable("not reached");
75 }
76
77 return reg;
78 }
79
80 fs_inst *
81 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
82 fs_reg coordinate, int coord_components,
83 fs_reg shadow_c,
84 fs_reg lod, fs_reg dPdy, int grad_components,
85 uint32_t sampler)
86 {
87 int mlen;
88 int base_mrf = 1;
89 bool simd16 = false;
90 fs_reg orig_dst;
91
92 /* g0 header. */
93 mlen = 1;
94
95 if (shadow_c.file != BAD_FILE) {
96 for (int i = 0; i < coord_components; i++) {
97 bld.MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate);
98 coordinate = offset(coordinate, bld, 1);
99 }
100
101 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
102 * the unused slots must be zeroed.
103 */
104 for (int i = coord_components; i < 3; i++) {
105 bld.MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f));
106 }
107 mlen += 3;
108
109 if (op == ir_tex) {
110 /* There's no plain shadow compare message, so we use shadow
111 * compare with a bias of 0.0.
112 */
113 bld.MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
114 mlen++;
115 } else if (op == ir_txb || op == ir_txl) {
116 bld.MOV(fs_reg(MRF, base_mrf + mlen), lod);
117 mlen++;
118 } else {
119 unreachable("Should not get here.");
120 }
121
122 bld.MOV(fs_reg(MRF, base_mrf + mlen), shadow_c);
123 mlen++;
124 } else if (op == ir_tex) {
125 for (int i = 0; i < coord_components; i++) {
126 bld.MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate);
127 coordinate = offset(coordinate, bld, 1);
128 }
129 /* zero the others. */
130 for (int i = coord_components; i<3; i++) {
131 bld.MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f));
132 }
133 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
134 mlen += 3;
135 } else if (op == ir_txd) {
136 fs_reg &dPdx = lod;
137
138 for (int i = 0; i < coord_components; i++) {
139 bld.MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate);
140 coordinate = offset(coordinate, bld, 1);
141 }
142 /* the slots for u and v are always present, but r is optional */
143 mlen += MAX2(coord_components, 2);
144
145 /* P = u, v, r
146 * dPdx = dudx, dvdx, drdx
147 * dPdy = dudy, dvdy, drdy
148 *
149 * 1-arg: Does not exist.
150 *
151 * 2-arg: dudx dvdx dudy dvdy
152 * dPdx.x dPdx.y dPdy.x dPdy.y
153 * m4 m5 m6 m7
154 *
155 * 3-arg: dudx dvdx drdx dudy dvdy drdy
156 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
157 * m5 m6 m7 m8 m9 m10
158 */
159 for (int i = 0; i < grad_components; i++) {
160 bld.MOV(fs_reg(MRF, base_mrf + mlen), dPdx);
161 dPdx = offset(dPdx, bld, 1);
162 }
163 mlen += MAX2(grad_components, 2);
164
165 for (int i = 0; i < grad_components; i++) {
166 bld.MOV(fs_reg(MRF, base_mrf + mlen), dPdy);
167 dPdy = offset(dPdy, bld, 1);
168 }
169 mlen += MAX2(grad_components, 2);
170 } else if (op == ir_txs) {
171 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
172 simd16 = true;
173 bld.MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
174 mlen += 2;
175 } else {
176 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
177 * instructions. We'll need to do SIMD16 here.
178 */
179 simd16 = true;
180 assert(op == ir_txb || op == ir_txl || op == ir_txf);
181
182 for (int i = 0; i < coord_components; i++) {
183 bld.MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
184 coordinate);
185 coordinate = offset(coordinate, bld, 1);
186 }
187
188 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
189 * be necessary for TXF (ld), but seems wise to do for all messages.
190 */
191 for (int i = coord_components; i < 3; i++) {
192 bld.MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
193 }
194
195 /* lod/bias appears after u/v/r. */
196 mlen += 6;
197
198 bld.MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod);
199 mlen++;
200
201 /* The unused upper half. */
202 mlen++;
203 }
204
205 if (simd16) {
206 /* Now, since we're doing simd16, the return is 2 interleaved
207 * vec4s where the odd-indexed ones are junk. We'll need to move
208 * this weirdness around to the expected layout.
209 */
210 orig_dst = dst;
211 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
212 }
213
214 enum opcode opcode;
215 switch (op) {
216 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
217 case ir_txb: opcode = FS_OPCODE_TXB; break;
218 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
219 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
220 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
221 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
222 default:
223 unreachable("not reached");
224 }
225
226 fs_inst *inst = bld.emit(opcode, dst, reg_undef, fs_reg(sampler));
227 inst->base_mrf = base_mrf;
228 inst->mlen = mlen;
229 inst->header_size = 1;
230 inst->regs_written = simd16 ? 8 : 4;
231
232 if (simd16) {
233 for (int i = 0; i < 4; i++) {
234 bld.MOV(orig_dst, dst);
235 orig_dst = offset(orig_dst, bld, 1);
236 dst = offset(dst, bld, 2);
237 }
238 }
239
240 return inst;
241 }
242
243 fs_inst *
244 fs_visitor::emit_texture_gen4_simd16(ir_texture_opcode op, fs_reg dst,
245 fs_reg coordinate, int vector_elements,
246 fs_reg shadow_c, fs_reg lod,
247 uint32_t sampler)
248 {
249 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
250 bool has_lod = op == ir_txl || op == ir_txb || op == ir_txf || op == ir_txs;
251
252 if (has_lod && shadow_c.file != BAD_FILE)
253 no16("TXB and TXL with shadow comparison unsupported in SIMD16.");
254
255 if (op == ir_txd)
256 no16("textureGrad unsupported in SIMD16.");
257
258 /* Copy the coordinates. */
259 for (int i = 0; i < vector_elements; i++) {
260 bld.MOV(retype(offset(message, bld, i), coordinate.type), coordinate);
261 coordinate = offset(coordinate, bld, 1);
262 }
263
264 fs_reg msg_end = offset(message, bld, vector_elements);
265
266 /* Messages other than sample and ld require all three components */
267 if (vector_elements > 0 && (has_lod || shadow_c.file != BAD_FILE)) {
268 for (int i = vector_elements; i < 3; i++) {
269 bld.MOV(offset(message, bld, i), fs_reg(0.0f));
270 }
271 msg_end = offset(message, bld, 3);
272 }
273
274 if (has_lod) {
275 fs_reg msg_lod = retype(msg_end, op == ir_txf ?
276 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
277 bld.MOV(msg_lod, lod);
278 msg_end = offset(msg_lod, bld, 1);
279 }
280
281 if (shadow_c.file != BAD_FILE) {
282 fs_reg msg_ref = offset(message, bld, 3 + has_lod);
283 bld.MOV(msg_ref, shadow_c);
284 msg_end = offset(msg_ref, bld, 1);
285 }
286
287 enum opcode opcode;
288 switch (op) {
289 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
290 case ir_txb: opcode = FS_OPCODE_TXB; break;
291 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
292 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
293 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
294 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
295 default: unreachable("not reached");
296 }
297
298 fs_inst *inst = bld.emit(opcode, dst, reg_undef, fs_reg(sampler));
299 inst->base_mrf = message.reg - 1;
300 inst->mlen = msg_end.reg - inst->base_mrf;
301 inst->header_size = 1;
302 inst->regs_written = 8;
303
304 return inst;
305 }
306
307 /* gen5's sampler has slots for u, v, r, array index, then optional
308 * parameters like shadow comparitor or LOD bias. If optional
309 * parameters aren't present, those base slots are optional and don't
310 * need to be included in the message.
311 *
312 * We don't fill in the unnecessary slots regardless, which may look
313 * surprising in the disassembly.
314 */
315 fs_inst *
316 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
317 fs_reg coordinate, int vector_elements,
318 fs_reg shadow_c,
319 fs_reg lod, fs_reg lod2, int grad_components,
320 fs_reg sample_index, uint32_t sampler,
321 bool has_offset)
322 {
323 int reg_width = dispatch_width / 8;
324 unsigned header_size = 0;
325
326 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
327 fs_reg msg_coords = message;
328
329 if (has_offset) {
330 /* The offsets set up by the ir_texture visitor are in the
331 * m1 header, so we can't go headerless.
332 */
333 header_size = 1;
334 message.reg--;
335 }
336
337 for (int i = 0; i < vector_elements; i++) {
338 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
339 coordinate = offset(coordinate, bld, 1);
340 }
341 fs_reg msg_end = offset(msg_coords, bld, vector_elements);
342 fs_reg msg_lod = offset(msg_coords, bld, 4);
343
344 if (shadow_c.file != BAD_FILE) {
345 fs_reg msg_shadow = msg_lod;
346 bld.MOV(msg_shadow, shadow_c);
347 msg_lod = offset(msg_shadow, bld, 1);
348 msg_end = msg_lod;
349 }
350
351 enum opcode opcode;
352 switch (op) {
353 case ir_tex:
354 opcode = SHADER_OPCODE_TEX;
355 break;
356 case ir_txb:
357 bld.MOV(msg_lod, lod);
358 msg_end = offset(msg_lod, bld, 1);
359
360 opcode = FS_OPCODE_TXB;
361 break;
362 case ir_txl:
363 bld.MOV(msg_lod, lod);
364 msg_end = offset(msg_lod, bld, 1);
365
366 opcode = SHADER_OPCODE_TXL;
367 break;
368 case ir_txd: {
369 /**
370 * P = u, v, r
371 * dPdx = dudx, dvdx, drdx
372 * dPdy = dudy, dvdy, drdy
373 *
374 * Load up these values:
375 * - dudx dudy dvdx dvdy drdx drdy
376 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
377 */
378 msg_end = msg_lod;
379 for (int i = 0; i < grad_components; i++) {
380 bld.MOV(msg_end, lod);
381 lod = offset(lod, bld, 1);
382 msg_end = offset(msg_end, bld, 1);
383
384 bld.MOV(msg_end, lod2);
385 lod2 = offset(lod2, bld, 1);
386 msg_end = offset(msg_end, bld, 1);
387 }
388
389 opcode = SHADER_OPCODE_TXD;
390 break;
391 }
392 case ir_txs:
393 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
394 bld.MOV(msg_lod, lod);
395 msg_end = offset(msg_lod, bld, 1);
396
397 opcode = SHADER_OPCODE_TXS;
398 break;
399 case ir_query_levels:
400 msg_lod = msg_end;
401 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
402 msg_end = offset(msg_lod, bld, 1);
403
404 opcode = SHADER_OPCODE_TXS;
405 break;
406 case ir_txf:
407 msg_lod = offset(msg_coords, bld, 3);
408 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
409 msg_end = offset(msg_lod, bld, 1);
410
411 opcode = SHADER_OPCODE_TXF;
412 break;
413 case ir_txf_ms:
414 msg_lod = offset(msg_coords, bld, 3);
415 /* lod */
416 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
417 /* sample index */
418 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
419 msg_end = offset(msg_lod, bld, 2);
420
421 opcode = SHADER_OPCODE_TXF_CMS;
422 break;
423 case ir_lod:
424 opcode = SHADER_OPCODE_LOD;
425 break;
426 case ir_tg4:
427 opcode = SHADER_OPCODE_TG4;
428 break;
429 default:
430 unreachable("not reached");
431 }
432
433 fs_inst *inst = bld.emit(opcode, dst, reg_undef, fs_reg(sampler));
434 inst->base_mrf = message.reg;
435 inst->mlen = msg_end.reg - message.reg;
436 inst->header_size = header_size;
437 inst->regs_written = 4 * reg_width;
438
439 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
440 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
441 " disallowed by hardware\n");
442 }
443
444 return inst;
445 }
446
447 static bool
448 is_high_sampler(const struct brw_device_info *devinfo, fs_reg sampler)
449 {
450 if (devinfo->gen < 8 && !devinfo->is_haswell)
451 return false;
452
453 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
454 }
455
456 fs_inst *
457 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
458 fs_reg coordinate, int coord_components,
459 fs_reg shadow_c,
460 fs_reg lod, fs_reg lod2, int grad_components,
461 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
462 fs_reg offset_value)
463 {
464 int reg_width = dispatch_width / 8;
465 unsigned header_size = 0;
466
467 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
468 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
469 sources[i] = vgrf(glsl_type::float_type);
470 }
471 int length = 0;
472
473 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
474 is_high_sampler(devinfo, sampler)) {
475 /* For general texture offsets (no txf workaround), we need a header to
476 * put them in. Note that we're only reserving space for it in the
477 * message payload as it will be initialized implicitly by the
478 * generator.
479 *
480 * * ir4_tg4 needs to place its channel select in the header,
481 * for interaction with ARB_texture_swizzle
482 *
483 * The sampler index is only 4-bits, so for larger sampler numbers we
484 * need to offset the Sampler State Pointer in the header.
485 */
486 header_size = 1;
487 sources[0] = fs_reg();
488 length++;
489 }
490
491 if (shadow_c.file != BAD_FILE) {
492 bld.MOV(sources[length], shadow_c);
493 length++;
494 }
495
496 bool has_nonconstant_offset =
497 offset_value.file != BAD_FILE && offset_value.file != IMM;
498 bool coordinate_done = false;
499
500 /* The sampler can only meaningfully compute LOD for fragment shader
501 * messages. For all other stages, we change the opcode to ir_txl and
502 * hardcode the LOD to 0.
503 */
504 if (stage != MESA_SHADER_FRAGMENT && op == ir_tex) {
505 op = ir_txl;
506 lod = fs_reg(0.0f);
507 }
508
509 /* Set up the LOD info */
510 switch (op) {
511 case ir_tex:
512 case ir_lod:
513 break;
514 case ir_txb:
515 bld.MOV(sources[length], lod);
516 length++;
517 break;
518 case ir_txl:
519 bld.MOV(sources[length], lod);
520 length++;
521 break;
522 case ir_txd: {
523 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
524
525 /* Load dPdx and the coordinate together:
526 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
527 */
528 for (int i = 0; i < coord_components; i++) {
529 bld.MOV(sources[length], coordinate);
530 coordinate = offset(coordinate, bld, 1);
531 length++;
532
533 /* For cube map array, the coordinate is (u,v,r,ai) but there are
534 * only derivatives for (u, v, r).
535 */
536 if (i < grad_components) {
537 bld.MOV(sources[length], lod);
538 lod = offset(lod, bld, 1);
539 length++;
540
541 bld.MOV(sources[length], lod2);
542 lod2 = offset(lod2, bld, 1);
543 length++;
544 }
545 }
546
547 coordinate_done = true;
548 break;
549 }
550 case ir_txs:
551 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
552 length++;
553 break;
554 case ir_query_levels:
555 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u));
556 length++;
557 break;
558 case ir_txf:
559 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
560 * On Gen9 they are u, v, lod, r
561 */
562
563 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
564 coordinate = offset(coordinate, bld, 1);
565 length++;
566
567 if (devinfo->gen >= 9) {
568 if (coord_components >= 2) {
569 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
570 coordinate = offset(coordinate, bld, 1);
571 }
572 length++;
573 }
574
575 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
576 length++;
577
578 for (int i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
579 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
580 coordinate = offset(coordinate, bld, 1);
581 length++;
582 }
583
584 coordinate_done = true;
585 break;
586 case ir_txf_ms:
587 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
588 length++;
589
590 /* data from the multisample control surface */
591 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
592 length++;
593
594 /* there is no offsetting for this message; just copy in the integer
595 * texture coordinates
596 */
597 for (int i = 0; i < coord_components; i++) {
598 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
599 coordinate = offset(coordinate, bld, 1);
600 length++;
601 }
602
603 coordinate_done = true;
604 break;
605 case ir_tg4:
606 if (has_nonconstant_offset) {
607 if (shadow_c.file != BAD_FILE)
608 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
609
610 /* More crazy intermixing */
611 for (int i = 0; i < 2; i++) { /* u, v */
612 bld.MOV(sources[length], coordinate);
613 coordinate = offset(coordinate, bld, 1);
614 length++;
615 }
616
617 for (int i = 0; i < 2; i++) { /* offu, offv */
618 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
619 offset_value = offset(offset_value, bld, 1);
620 length++;
621 }
622
623 if (coord_components == 3) { /* r if present */
624 bld.MOV(sources[length], coordinate);
625 coordinate = offset(coordinate, bld, 1);
626 length++;
627 }
628
629 coordinate_done = true;
630 }
631 break;
632 }
633
634 /* Set up the coordinate (except for cases where it was done above) */
635 if (!coordinate_done) {
636 for (int i = 0; i < coord_components; i++) {
637 bld.MOV(sources[length], coordinate);
638 coordinate = offset(coordinate, bld, 1);
639 length++;
640 }
641 }
642
643 int mlen;
644 if (reg_width == 2)
645 mlen = length * reg_width - header_size;
646 else
647 mlen = length * reg_width;
648
649 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
650 BRW_REGISTER_TYPE_F);
651 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
652
653 /* Generate the SEND */
654 enum opcode opcode;
655 switch (op) {
656 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
657 case ir_txb: opcode = FS_OPCODE_TXB; break;
658 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
659 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
660 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
661 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
662 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
663 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
664 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
665 case ir_tg4:
666 if (has_nonconstant_offset)
667 opcode = SHADER_OPCODE_TG4_OFFSET;
668 else
669 opcode = SHADER_OPCODE_TG4;
670 break;
671 default:
672 unreachable("not reached");
673 }
674 fs_inst *inst = bld.emit(opcode, dst, src_payload, sampler);
675 inst->base_mrf = -1;
676 inst->mlen = mlen;
677 inst->header_size = header_size;
678 inst->regs_written = 4 * reg_width;
679
680 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
681 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
682 " disallowed by hardware\n");
683 }
684
685 return inst;
686 }
687
688 fs_reg
689 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
690 bool is_rect, uint32_t sampler, int texunit)
691 {
692 bool needs_gl_clamp = true;
693 fs_reg scale_x, scale_y;
694
695 /* The 965 requires the EU to do the normalization of GL rectangle
696 * texture coordinates. We use the program parameter state
697 * tracking to get the scaling factor.
698 */
699 if (is_rect &&
700 (devinfo->gen < 6 ||
701 (devinfo->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
702 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
703 struct gl_program_parameter_list *params = prog->Parameters;
704 int tokens[STATE_LENGTH] = {
705 STATE_INTERNAL,
706 STATE_TEXRECT_SCALE,
707 texunit,
708 0,
709 0
710 };
711
712 no16("rectangle scale uniform setup not supported on SIMD16\n");
713 if (dispatch_width == 16) {
714 return coordinate;
715 }
716
717 GLuint index = _mesa_add_state_reference(params,
718 (gl_state_index *)tokens);
719 /* Try to find existing copies of the texrect scale uniforms. */
720 for (unsigned i = 0; i < uniforms; i++) {
721 if (stage_prog_data->param[i] ==
722 &prog->Parameters->ParameterValues[index][0]) {
723 scale_x = fs_reg(UNIFORM, i);
724 scale_y = fs_reg(UNIFORM, i + 1);
725 break;
726 }
727 }
728
729 /* If we didn't already set them up, do so now. */
730 if (scale_x.file == BAD_FILE) {
731 scale_x = fs_reg(UNIFORM, uniforms);
732 scale_y = fs_reg(UNIFORM, uniforms + 1);
733
734 stage_prog_data->param[uniforms++] =
735 &prog->Parameters->ParameterValues[index][0];
736 stage_prog_data->param[uniforms++] =
737 &prog->Parameters->ParameterValues[index][1];
738 }
739 }
740
741 /* The 965 requires the EU to do the normalization of GL rectangle
742 * texture coordinates. We use the program parameter state
743 * tracking to get the scaling factor.
744 */
745 if (devinfo->gen < 6 && is_rect) {
746 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
747 fs_reg src = coordinate;
748 coordinate = dst;
749
750 bld.MUL(dst, src, scale_x);
751 dst = offset(dst, bld, 1);
752 src = offset(src, bld, 1);
753 bld.MUL(dst, src, scale_y);
754 } else if (is_rect) {
755 /* On gen6+, the sampler handles the rectangle coordinates
756 * natively, without needing rescaling. But that means we have
757 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
758 * not [0, 1] like the default case below.
759 */
760 needs_gl_clamp = false;
761
762 for (int i = 0; i < 2; i++) {
763 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
764 fs_reg chan = coordinate;
765 chan = offset(chan, bld, i);
766
767 set_condmod(BRW_CONDITIONAL_GE,
768 bld.emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f)));
769
770 /* Our parameter comes in as 1.0/width or 1.0/height,
771 * because that's what people normally want for doing
772 * texture rectangle handling. We need width or height
773 * for clamping, but we don't care enough to make a new
774 * parameter type, so just invert back.
775 */
776 fs_reg limit = vgrf(glsl_type::float_type);
777 bld.MOV(limit, i == 0 ? scale_x : scale_y);
778 bld.emit(SHADER_OPCODE_RCP, limit, limit);
779
780 set_condmod(BRW_CONDITIONAL_L,
781 bld.emit(BRW_OPCODE_SEL, chan, chan, limit));
782 }
783 }
784 }
785
786 if (coord_components > 0 && needs_gl_clamp) {
787 for (int i = 0; i < MIN2(coord_components, 3); i++) {
788 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
789 fs_reg chan = coordinate;
790 chan = offset(chan, bld, i);
791 set_saturate(true, bld.MOV(chan, chan));
792 }
793 }
794 }
795 return coordinate;
796 }
797
798 /* Sample from the MCS surface attached to this multisample texture. */
799 fs_reg
800 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
801 {
802 int reg_width = dispatch_width / 8;
803 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
804 BRW_REGISTER_TYPE_F);
805 fs_reg dest = vgrf(glsl_type::uvec4_type);
806 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
807
808 /* parameters are: u, v, r; missing parameters are treated as zero */
809 for (int i = 0; i < components; i++) {
810 sources[i] = vgrf(glsl_type::float_type);
811 bld.MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate);
812 coordinate = offset(coordinate, bld, 1);
813 }
814
815 bld.LOAD_PAYLOAD(payload, sources, components, 0);
816
817 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
818 inst->base_mrf = -1;
819 inst->mlen = components * reg_width;
820 inst->header_size = 0;
821 inst->regs_written = 4 * reg_width; /* we only care about one reg of
822 * response, but the sampler always
823 * writes 4/8
824 */
825
826 return dest;
827 }
828
829 void
830 fs_visitor::emit_texture(ir_texture_opcode op,
831 const glsl_type *dest_type,
832 fs_reg coordinate, int coord_components,
833 fs_reg shadow_c,
834 fs_reg lod, fs_reg lod2, int grad_components,
835 fs_reg sample_index,
836 fs_reg offset_value,
837 fs_reg mcs,
838 int gather_component,
839 bool is_cube_array,
840 bool is_rect,
841 uint32_t sampler,
842 fs_reg sampler_reg, int texunit)
843 {
844 fs_inst *inst = NULL;
845
846 if (op == ir_tg4) {
847 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
848 * emitting anything other than setting up the constant result.
849 */
850 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
851 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
852
853 fs_reg res = vgrf(glsl_type::vec4_type);
854 this->result = res;
855
856 for (int i=0; i<4; i++) {
857 bld.MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f));
858 res = offset(res, bld, 1);
859 }
860 return;
861 }
862 }
863
864 if (coordinate.file != BAD_FILE) {
865 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
866 * samplers. This should only be a problem with GL_CLAMP on Gen7.
867 */
868 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
869 sampler, texunit);
870 }
871
872 /* Writemasking doesn't eliminate channels on SIMD8 texture
873 * samples, so don't worry about them.
874 */
875 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
876
877 if (devinfo->gen >= 7) {
878 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
879 shadow_c, lod, lod2, grad_components,
880 sample_index, mcs, sampler_reg,
881 offset_value);
882 } else if (devinfo->gen >= 5) {
883 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
884 shadow_c, lod, lod2, grad_components,
885 sample_index, sampler,
886 offset_value.file != BAD_FILE);
887 } else if (dispatch_width == 16) {
888 inst = emit_texture_gen4_simd16(op, dst, coordinate, coord_components,
889 shadow_c, lod, sampler);
890 } else {
891 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
892 shadow_c, lod, lod2, grad_components,
893 sampler);
894 }
895
896 if (shadow_c.file != BAD_FILE)
897 inst->shadow_compare = true;
898
899 if (offset_value.file == IMM)
900 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
901
902 if (op == ir_tg4) {
903 inst->offset |=
904 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
905
906 if (devinfo->gen == 6)
907 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
908 }
909
910 /* fixup #layers for cube map arrays */
911 if (op == ir_txs && is_cube_array) {
912 fs_reg depth = offset(dst, bld, 2);
913 fs_reg fixed_depth = vgrf(glsl_type::int_type);
914 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
915
916 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
917 int components = inst->regs_written / (inst->exec_size / 8);
918 for (int i = 0; i < components; i++) {
919 if (i == 2) {
920 fixed_payload[i] = fixed_depth;
921 } else {
922 fixed_payload[i] = offset(dst, bld, i);
923 }
924 }
925 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
926 }
927
928 swizzle_result(op, dest_type->vector_elements, dst, sampler);
929 }
930
931 /**
932 * Apply workarounds for Gen6 gather with UINT/SINT
933 */
934 void
935 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
936 {
937 if (!wa)
938 return;
939
940 int width = (wa & WA_8BIT) ? 8 : 16;
941
942 for (int i = 0; i < 4; i++) {
943 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
944 /* Convert from UNORM to UINT */
945 bld.MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1)));
946 bld.MOV(dst, dst_f);
947
948 if (wa & WA_SIGN) {
949 /* Reinterpret the UINT value as a signed INT value by
950 * shifting the sign bit into place, then shifting back
951 * preserving sign.
952 */
953 bld.SHL(dst, dst, fs_reg(32 - width));
954 bld.ASR(dst, dst, fs_reg(32 - width));
955 }
956
957 dst = offset(dst, bld, 1);
958 }
959 }
960
961 /**
962 * Set up the gather channel based on the swizzle, for gather4.
963 */
964 uint32_t
965 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
966 {
967 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
968 switch (swiz) {
969 case SWIZZLE_X: return 0;
970 case SWIZZLE_Y:
971 /* gather4 sampler is broken for green channel on RG32F --
972 * we must ask for blue instead.
973 */
974 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
975 return 2;
976 return 1;
977 case SWIZZLE_Z: return 2;
978 case SWIZZLE_W: return 3;
979 default:
980 unreachable("Not reached"); /* zero, one swizzles handled already */
981 }
982 }
983
984 /**
985 * Swizzle the result of a texture result. This is necessary for
986 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
987 */
988 void
989 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
990 fs_reg orig_val, uint32_t sampler)
991 {
992 if (op == ir_query_levels) {
993 /* # levels is in .w */
994 this->result = offset(orig_val, bld, 3);
995 return;
996 }
997
998 this->result = orig_val;
999
1000 /* txs,lod don't actually sample the texture, so swizzling the result
1001 * makes no sense.
1002 */
1003 if (op == ir_txs || op == ir_lod || op == ir_tg4)
1004 return;
1005
1006 if (dest_components == 1) {
1007 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1008 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
1009 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
1010 swizzled_result.type = orig_val.type;
1011
1012 for (int i = 0; i < 4; i++) {
1013 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
1014 fs_reg l = swizzled_result;
1015 l = offset(l, bld, i);
1016
1017 if (swiz == SWIZZLE_ZERO) {
1018 bld.MOV(l, fs_reg(0.0f));
1019 } else if (swiz == SWIZZLE_ONE) {
1020 bld.MOV(l, fs_reg(1.0f));
1021 } else {
1022 bld.MOV(l, offset(orig_val, bld,
1023 GET_SWZ(key_tex->swizzles[sampler], i)));
1024 }
1025 }
1026 this->result = swizzled_result;
1027 }
1028 }
1029
1030 /**
1031 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
1032 *
1033 * Many GLSL shaders contain the following pattern:
1034 *
1035 * x = condition ? foo : bar
1036 *
1037 * The compiler emits an ir_if tree for this, since each subexpression might be
1038 * a complex tree that could have side-effects or short-circuit logic.
1039 *
1040 * However, the common case is to simply select one of two constants or
1041 * variable values---which is exactly what SEL is for. In this case, the
1042 * assembly looks like:
1043 *
1044 * (+f0) IF
1045 * MOV dst src0
1046 * ELSE
1047 * MOV dst src1
1048 * ENDIF
1049 *
1050 * which can be easily translated into:
1051 *
1052 * (+f0) SEL dst src0 src1
1053 *
1054 * If src0 is an immediate value, we promote it to a temporary GRF.
1055 */
1056 bool
1057 fs_visitor::try_replace_with_sel()
1058 {
1059 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
1060 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
1061
1062 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
1063 int opcodes[] = {
1064 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
1065 };
1066
1067 fs_inst *match = (fs_inst *) endif_inst->prev;
1068 for (int i = 0; i < 4; i++) {
1069 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
1070 return false;
1071 match = (fs_inst *) match->prev;
1072 }
1073
1074 /* The opcodes match; it looks like the right sequence of instructions. */
1075 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
1076 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
1077 fs_inst *if_inst = (fs_inst *) then_mov->prev;
1078
1079 /* Check that the MOVs are the right form. */
1080 if (then_mov->dst.equals(else_mov->dst) &&
1081 !then_mov->is_partial_write() &&
1082 !else_mov->is_partial_write()) {
1083
1084 /* Remove the matched instructions; we'll emit a SEL to replace them. */
1085 while (!if_inst->next->is_tail_sentinel())
1086 if_inst->next->exec_node::remove();
1087 if_inst->exec_node::remove();
1088
1089 /* Only the last source register can be a constant, so if the MOV in
1090 * the "then" clause uses a constant, we need to put it in a temporary.
1091 */
1092 fs_reg src0(then_mov->src[0]);
1093 if (src0.file == IMM) {
1094 src0 = vgrf(glsl_type::float_type);
1095 src0.type = then_mov->src[0].type;
1096 bld.MOV(src0, then_mov->src[0]);
1097 }
1098
1099 if (if_inst->conditional_mod) {
1100 /* Sandybridge-specific IF with embedded comparison */
1101 bld.CMP(bld.null_reg_d(), if_inst->src[0], if_inst->src[1],
1102 if_inst->conditional_mod);
1103 set_predicate(BRW_PREDICATE_NORMAL,
1104 bld.emit(BRW_OPCODE_SEL, then_mov->dst,
1105 src0, else_mov->src[0]));
1106 } else {
1107 /* Separate CMP and IF instructions */
1108 set_predicate_inv(if_inst->predicate, if_inst->predicate_inverse,
1109 bld.emit(BRW_OPCODE_SEL, then_mov->dst,
1110 src0, else_mov->src[0]));
1111 }
1112
1113 return true;
1114 }
1115
1116 return false;
1117 }
1118
1119 void
1120 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
1121 fs_reg dst, fs_reg offset, fs_reg src0,
1122 fs_reg src1)
1123 {
1124 int reg_width = dispatch_width / 8;
1125 int length = 0;
1126
1127 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
1128
1129 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1130 /* Initialize the sample mask in the message header. */
1131 bld.exec_all().MOV(sources[0], fs_reg(0u));
1132
1133 if (stage == MESA_SHADER_FRAGMENT) {
1134 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
1135 bld.exec_all()
1136 .MOV(component(sources[0], 7), brw_flag_reg(0, 1));
1137 } else {
1138 bld.exec_all()
1139 .MOV(component(sources[0], 7),
1140 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD));
1141 }
1142 } else {
1143 /* The execution mask is part of the side-band information sent together with
1144 * the message payload to the data port. It's implicitly ANDed with the sample
1145 * mask sent in the header to compute the actual set of channels that execute
1146 * the atomic operation.
1147 */
1148 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
1149 bld.exec_all()
1150 .MOV(component(sources[0], 7), fs_reg(0xffffu));
1151 }
1152 length++;
1153
1154 /* Set the atomic operation offset. */
1155 sources[1] = vgrf(glsl_type::uint_type);
1156 bld.MOV(sources[1], offset);
1157 length++;
1158
1159 /* Set the atomic operation arguments. */
1160 if (src0.file != BAD_FILE) {
1161 sources[length] = vgrf(glsl_type::uint_type);
1162 bld.MOV(sources[length], src0);
1163 length++;
1164 }
1165
1166 if (src1.file != BAD_FILE) {
1167 sources[length] = vgrf(glsl_type::uint_type);
1168 bld.MOV(sources[length], src1);
1169 length++;
1170 }
1171
1172 int mlen = 1 + (length - 1) * reg_width;
1173 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1174 BRW_REGISTER_TYPE_UD);
1175 bld.LOAD_PAYLOAD(src_payload, sources, length, 1);
1176
1177 /* Emit the instruction. */
1178 fs_inst *inst = bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
1179 fs_reg(surf_index), fs_reg(atomic_op));
1180 inst->mlen = mlen;
1181 }
1182
1183 void
1184 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
1185 fs_reg offset)
1186 {
1187 int reg_width = dispatch_width / 8;
1188
1189 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1190
1191 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1192 /* Initialize the sample mask in the message header. */
1193 bld.exec_all()
1194 .MOV(sources[0], fs_reg(0u));
1195
1196 if (stage == MESA_SHADER_FRAGMENT) {
1197 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
1198 bld.exec_all()
1199 .MOV(component(sources[0], 7), brw_flag_reg(0, 1));
1200 } else {
1201 bld.exec_all()
1202 .MOV(component(sources[0], 7),
1203 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD));
1204 }
1205 } else {
1206 /* The execution mask is part of the side-band information sent together with
1207 * the message payload to the data port. It's implicitly ANDed with the sample
1208 * mask sent in the header to compute the actual set of channels that execute
1209 * the atomic operation.
1210 */
1211 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
1212 bld.exec_all()
1213 .MOV(component(sources[0], 7), fs_reg(0xffffu));
1214 }
1215
1216 /* Set the surface read offset. */
1217 sources[1] = vgrf(glsl_type::uint_type);
1218 bld.MOV(sources[1], offset);
1219
1220 int mlen = 1 + reg_width;
1221 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1222 BRW_REGISTER_TYPE_UD);
1223 fs_inst *inst = bld.LOAD_PAYLOAD(src_payload, sources, 2, 1);
1224
1225 /* Emit the instruction. */
1226 inst = bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
1227 fs_reg(surf_index), fs_reg(1));
1228 inst->mlen = mlen;
1229 }
1230
1231 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1232 void
1233 fs_visitor::emit_dummy_fs()
1234 {
1235 int reg_width = dispatch_width / 8;
1236
1237 /* Everyone's favorite color. */
1238 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
1239 for (int i = 0; i < 4; i++) {
1240 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
1241 fs_reg(color[i]));
1242 }
1243
1244 fs_inst *write;
1245 write = bld.emit(FS_OPCODE_FB_WRITE);
1246 write->eot = true;
1247 if (devinfo->gen >= 6) {
1248 write->base_mrf = 2;
1249 write->mlen = 4 * reg_width;
1250 } else {
1251 write->header_size = 2;
1252 write->base_mrf = 0;
1253 write->mlen = 2 + 4 * reg_width;
1254 }
1255
1256 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
1257 * varying to avoid GPU hangs, so set that.
1258 */
1259 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1260 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
1261 memset(wm_prog_data->urb_setup, -1,
1262 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1263
1264 /* We don't have any uniforms. */
1265 stage_prog_data->nr_params = 0;
1266 stage_prog_data->nr_pull_params = 0;
1267 stage_prog_data->curb_read_length = 0;
1268 stage_prog_data->dispatch_grf_start_reg = 2;
1269 wm_prog_data->dispatch_grf_start_reg_16 = 2;
1270 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
1271
1272 calculate_cfg();
1273 }
1274
1275 /* The register location here is relative to the start of the URB
1276 * data. It will get adjusted to be a real location before
1277 * generate_code() time.
1278 */
1279 struct brw_reg
1280 fs_visitor::interp_reg(int location, int channel)
1281 {
1282 assert(stage == MESA_SHADER_FRAGMENT);
1283 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1284 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
1285 int stride = (channel & 1) * 4;
1286
1287 assert(prog_data->urb_setup[location] != -1);
1288
1289 return brw_vec1_grf(regnr, stride);
1290 }
1291
1292 /** Emits the interpolation for the varying inputs. */
1293 void
1294 fs_visitor::emit_interpolation_setup_gen4()
1295 {
1296 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1297
1298 fs_builder abld = bld.annotate("compute pixel centers");
1299 this->pixel_x = vgrf(glsl_type::uint_type);
1300 this->pixel_y = vgrf(glsl_type::uint_type);
1301 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1302 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1303 abld.ADD(this->pixel_x,
1304 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1305 fs_reg(brw_imm_v(0x10101010)));
1306 abld.ADD(this->pixel_y,
1307 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1308 fs_reg(brw_imm_v(0x11001100)));
1309
1310 abld = bld.annotate("compute pixel deltas from v0");
1311
1312 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1313 vgrf(glsl_type::vec2_type);
1314 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1315 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
1316 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
1317
1318 if (devinfo->has_pln && dispatch_width == 16) {
1319 for (unsigned i = 0; i < 2; i++) {
1320 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
1321 half(this->pixel_x, i), xstart);
1322 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
1323 half(this->pixel_y, i), ystart);
1324 }
1325 } else {
1326 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
1327 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
1328 }
1329
1330 abld = bld.annotate("compute pos.w and 1/pos.w");
1331 /* Compute wpos.w. It's always in our setup, since it's needed to
1332 * interpolate the other attributes.
1333 */
1334 this->wpos_w = vgrf(glsl_type::float_type);
1335 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
1336 interp_reg(VARYING_SLOT_POS, 3));
1337 /* Compute the pixel 1/W value from wpos.w. */
1338 this->pixel_w = vgrf(glsl_type::float_type);
1339 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1340 }
1341
1342 /** Emits the interpolation for the varying inputs. */
1343 void
1344 fs_visitor::emit_interpolation_setup_gen6()
1345 {
1346 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1347
1348 fs_builder abld = bld.annotate("compute pixel centers");
1349 if (devinfo->gen >= 8 || dispatch_width == 8) {
1350 /* The "Register Region Restrictions" page says for BDW (and newer,
1351 * presumably):
1352 *
1353 * "When destination spans two registers, the source may be one or
1354 * two registers. The destination elements must be evenly split
1355 * between the two registers."
1356 *
1357 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
1358 * compute our pixel centers.
1359 */
1360 fs_reg int_pixel_xy(GRF, alloc.allocate(dispatch_width / 8),
1361 BRW_REGISTER_TYPE_UW);
1362
1363 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
1364 dbld.ADD(int_pixel_xy,
1365 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
1366 fs_reg(brw_imm_v(0x11001010)));
1367
1368 this->pixel_x = vgrf(glsl_type::float_type);
1369 this->pixel_y = vgrf(glsl_type::float_type);
1370 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
1371 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
1372 } else {
1373 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
1374 *
1375 * "When destination spans two registers, the source MUST span two
1376 * registers."
1377 *
1378 * Since the GRF source of the ADD will only read a single register, we
1379 * must do two separate ADDs in SIMD16.
1380 */
1381 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
1382 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
1383 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1384 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1385 abld.ADD(int_pixel_x,
1386 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1387 fs_reg(brw_imm_v(0x10101010)));
1388 abld.ADD(int_pixel_y,
1389 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1390 fs_reg(brw_imm_v(0x11001100)));
1391
1392 /* As of gen6, we can no longer mix float and int sources. We have
1393 * to turn the integer pixel centers into floats for their actual
1394 * use.
1395 */
1396 this->pixel_x = vgrf(glsl_type::float_type);
1397 this->pixel_y = vgrf(glsl_type::float_type);
1398 abld.MOV(this->pixel_x, int_pixel_x);
1399 abld.MOV(this->pixel_y, int_pixel_y);
1400 }
1401
1402 abld = bld.annotate("compute pos.w");
1403 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
1404 this->wpos_w = vgrf(glsl_type::float_type);
1405 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1406
1407 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1408 uint8_t reg = payload.barycentric_coord_reg[i];
1409 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
1410 }
1411 }
1412
1413 static enum brw_conditional_mod
1414 cond_for_alpha_func(GLenum func)
1415 {
1416 switch(func) {
1417 case GL_GREATER:
1418 return BRW_CONDITIONAL_G;
1419 case GL_GEQUAL:
1420 return BRW_CONDITIONAL_GE;
1421 case GL_LESS:
1422 return BRW_CONDITIONAL_L;
1423 case GL_LEQUAL:
1424 return BRW_CONDITIONAL_LE;
1425 case GL_EQUAL:
1426 return BRW_CONDITIONAL_EQ;
1427 case GL_NOTEQUAL:
1428 return BRW_CONDITIONAL_NEQ;
1429 default:
1430 unreachable("Not reached");
1431 }
1432 }
1433
1434 /**
1435 * Alpha test support for when we compile it into the shader instead
1436 * of using the normal fixed-function alpha test.
1437 */
1438 void
1439 fs_visitor::emit_alpha_test()
1440 {
1441 assert(stage == MESA_SHADER_FRAGMENT);
1442 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1443 const fs_builder abld = bld.annotate("Alpha test");
1444
1445 fs_inst *cmp;
1446 if (key->alpha_test_func == GL_ALWAYS)
1447 return;
1448
1449 if (key->alpha_test_func == GL_NEVER) {
1450 /* f0.1 = 0 */
1451 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1452 BRW_REGISTER_TYPE_UW));
1453 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
1454 BRW_CONDITIONAL_NEQ);
1455 } else {
1456 /* RT0 alpha */
1457 fs_reg color = offset(outputs[0], bld, 3);
1458
1459 /* f0.1 &= func(color, ref) */
1460 cmp = abld.CMP(bld.null_reg_f(), color, fs_reg(key->alpha_test_ref),
1461 cond_for_alpha_func(key->alpha_test_func));
1462 }
1463 cmp->predicate = BRW_PREDICATE_NORMAL;
1464 cmp->flag_subreg = 1;
1465 }
1466
1467 fs_inst *
1468 fs_visitor::emit_single_fb_write(const fs_builder &bld,
1469 fs_reg color0, fs_reg color1,
1470 fs_reg src0_alpha, unsigned components)
1471 {
1472 assert(stage == MESA_SHADER_FRAGMENT);
1473 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1474
1475 /* Hand over gl_FragDepth or the payload depth. */
1476 const fs_reg dst_depth = (payload.dest_depth_reg ?
1477 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
1478 fs_reg());
1479 fs_reg src_depth;
1480
1481 if (source_depth_to_render_target) {
1482 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
1483 src_depth = frag_depth;
1484 else
1485 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
1486 }
1487
1488 const fs_reg sources[] = {
1489 color0, color1, src0_alpha, src_depth, dst_depth, sample_mask,
1490 fs_reg(components)
1491 };
1492 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
1493 sources, ARRAY_SIZE(sources));
1494
1495 if (prog_data->uses_kill) {
1496 write->predicate = BRW_PREDICATE_NORMAL;
1497 write->flag_subreg = 1;
1498 }
1499
1500 return write;
1501 }
1502
1503 void
1504 fs_visitor::emit_fb_writes()
1505 {
1506 assert(stage == MESA_SHADER_FRAGMENT);
1507 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1508 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1509
1510 fs_inst *inst = NULL;
1511
1512 if (source_depth_to_render_target && devinfo->gen == 6) {
1513 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
1514 * would require SIMD8 moves of each half to message regs, e.g. by using
1515 * the SIMD lowering pass. Unfortunately this is more difficult than it
1516 * sounds because the SIMD8 single-source message lacks channel selects
1517 * for the second and third subspans.
1518 */
1519 no16("Missing support for simd16 depth writes on gen6\n");
1520 }
1521
1522 if (do_dual_src) {
1523 const fs_builder abld = bld.annotate("FB dual-source write");
1524
1525 inst = emit_single_fb_write(abld, this->outputs[0],
1526 this->dual_src_output, reg_undef, 4);
1527 inst->target = 0;
1528
1529 prog_data->dual_src_blend = true;
1530 } else {
1531 for (int target = 0; target < key->nr_color_regions; target++) {
1532 /* Skip over outputs that weren't written. */
1533 if (this->outputs[target].file == BAD_FILE)
1534 continue;
1535
1536 const fs_builder abld = bld.annotate(
1537 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
1538
1539 fs_reg src0_alpha;
1540 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
1541 src0_alpha = offset(outputs[0], bld, 3);
1542
1543 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
1544 src0_alpha,
1545 this->output_components[target]);
1546 inst->target = target;
1547 }
1548 }
1549
1550 if (inst == NULL) {
1551 /* Even if there's no color buffers enabled, we still need to send
1552 * alpha out the pipeline to our null renderbuffer to support
1553 * alpha-testing, alpha-to-coverage, and so on.
1554 */
1555 /* FINISHME: Factor out this frequently recurring pattern into a
1556 * helper function.
1557 */
1558 const fs_reg srcs[] = { reg_undef, reg_undef,
1559 reg_undef, offset(this->outputs[0], bld, 3) };
1560 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
1561 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
1562
1563 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
1564 inst->target = 0;
1565 }
1566
1567 inst->eot = true;
1568 }
1569
1570 void
1571 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
1572 {
1573 const struct brw_vue_prog_key *key =
1574 (const struct brw_vue_prog_key *) this->key;
1575
1576 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
1577 this->userplane[i] = fs_reg(UNIFORM, uniforms);
1578 for (int j = 0; j < 4; ++j) {
1579 stage_prog_data->param[uniforms + j] =
1580 (gl_constant_value *) &clip_planes[i][j];
1581 }
1582 uniforms += 4;
1583 }
1584 }
1585
1586 /**
1587 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
1588 *
1589 * This does nothing if the shader uses gl_ClipDistance or user clipping is
1590 * disabled altogether.
1591 */
1592 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
1593 {
1594 struct brw_vue_prog_data *vue_prog_data =
1595 (struct brw_vue_prog_data *) prog_data;
1596 const struct brw_vue_prog_key *key =
1597 (const struct brw_vue_prog_key *) this->key;
1598
1599 /* Bail unless some sort of legacy clipping is enabled */
1600 if (!key->userclip_active || prog->UsesClipDistanceOut)
1601 return;
1602
1603 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
1604 *
1605 * "If a linked set of shaders forming the vertex stage contains no
1606 * static write to gl_ClipVertex or gl_ClipDistance, but the
1607 * application has requested clipping against user clip planes through
1608 * the API, then the coordinate written to gl_Position is used for
1609 * comparison against the user clip planes."
1610 *
1611 * This function is only called if the shader didn't write to
1612 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
1613 * if the user wrote to it; otherwise we use gl_Position.
1614 */
1615
1616 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
1617 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
1618 clip_vertex = VARYING_SLOT_POS;
1619
1620 /* If the clip vertex isn't written, skip this. Typically this means
1621 * the GS will set up clipping. */
1622 if (outputs[clip_vertex].file == BAD_FILE)
1623 return;
1624
1625 setup_uniform_clipplane_values(clip_planes);
1626
1627 const fs_builder abld = bld.annotate("user clip distances");
1628
1629 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
1630 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
1631
1632 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
1633 fs_reg u = userplane[i];
1634 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
1635 output.reg_offset = i & 3;
1636
1637 abld.MUL(output, outputs[clip_vertex], u);
1638 for (int j = 1; j < 4; j++) {
1639 u.reg = userplane[i].reg + j;
1640 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
1641 }
1642 }
1643 }
1644
1645 void
1646 fs_visitor::emit_urb_writes()
1647 {
1648 int slot, urb_offset, length;
1649 struct brw_vs_prog_data *vs_prog_data =
1650 (struct brw_vs_prog_data *) prog_data;
1651 const struct brw_vs_prog_key *key =
1652 (const struct brw_vs_prog_key *) this->key;
1653 const GLbitfield64 psiz_mask =
1654 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
1655 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
1656 bool flush;
1657 fs_reg sources[8];
1658
1659 /* If we don't have any valid slots to write, just do a minimal urb write
1660 * send to terminate the shader. This includes 1 slot of undefined data,
1661 * because it's invalid to write 0 data:
1662 *
1663 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
1664 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
1665 * Write Data Payload:
1666 *
1667 * "The write data payload can be between 1 and 8 message phases long."
1668 */
1669 if (vue_map->slots_valid == 0) {
1670 fs_reg payload = fs_reg(GRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
1671 bld.exec_all().MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
1672 BRW_REGISTER_TYPE_UD)));
1673
1674 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1675 inst->eot = true;
1676 inst->mlen = 2;
1677 inst->offset = 1;
1678 return;
1679 }
1680
1681 length = 0;
1682 urb_offset = 0;
1683 flush = false;
1684 for (slot = 0; slot < vue_map->num_slots; slot++) {
1685 fs_reg reg, src, zero;
1686
1687 int varying = vue_map->slot_to_varying[slot];
1688 switch (varying) {
1689 case VARYING_SLOT_PSIZ:
1690
1691 /* The point size varying slot is the vue header and is always in the
1692 * vue map. But often none of the special varyings that live there
1693 * are written and in that case we can skip writing to the vue
1694 * header, provided the corresponding state properly clamps the
1695 * values further down the pipeline. */
1696 if ((vue_map->slots_valid & psiz_mask) == 0) {
1697 assert(length == 0);
1698 urb_offset++;
1699 break;
1700 }
1701
1702 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1703 bld.MOV(zero, fs_reg(0u));
1704
1705 sources[length++] = zero;
1706 if (vue_map->slots_valid & VARYING_BIT_LAYER)
1707 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
1708 else
1709 sources[length++] = zero;
1710
1711 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
1712 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
1713 else
1714 sources[length++] = zero;
1715
1716 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
1717 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
1718 else
1719 sources[length++] = zero;
1720 break;
1721
1722 case BRW_VARYING_SLOT_NDC:
1723 case VARYING_SLOT_EDGE:
1724 unreachable("unexpected scalar vs output");
1725 break;
1726
1727 case BRW_VARYING_SLOT_PAD:
1728 break;
1729
1730 default:
1731 /* gl_Position is always in the vue map, but isn't always written by
1732 * the shader. Other varyings (clip distances) get added to the vue
1733 * map but don't always get written. In those cases, the
1734 * corresponding this->output[] slot will be invalid we and can skip
1735 * the urb write for the varying. If we've already queued up a vue
1736 * slot for writing we flush a mlen 5 urb write, otherwise we just
1737 * advance the urb_offset.
1738 */
1739 if (this->outputs[varying].file == BAD_FILE) {
1740 if (length > 0)
1741 flush = true;
1742 else
1743 urb_offset++;
1744 break;
1745 }
1746
1747 if ((varying == VARYING_SLOT_COL0 ||
1748 varying == VARYING_SLOT_COL1 ||
1749 varying == VARYING_SLOT_BFC0 ||
1750 varying == VARYING_SLOT_BFC1) &&
1751 key->clamp_vertex_color) {
1752 /* We need to clamp these guys, so do a saturating MOV into a
1753 * temp register and use that for the payload.
1754 */
1755 for (int i = 0; i < 4; i++) {
1756 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
1757 src = offset(this->outputs[varying], bld, i);
1758 set_saturate(true, bld.MOV(reg, src));
1759 sources[length++] = reg;
1760 }
1761 } else {
1762 for (int i = 0; i < 4; i++)
1763 sources[length++] = offset(this->outputs[varying], bld, i);
1764 }
1765 break;
1766 }
1767
1768 const fs_builder abld = bld.annotate("URB write");
1769
1770 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
1771 * the last slot or if we need to flush (see BAD_FILE varying case
1772 * above), emit a URB write send now to flush out the data.
1773 */
1774 int last = slot == vue_map->num_slots - 1;
1775 if (length == 8 || last)
1776 flush = true;
1777 if (flush) {
1778 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
1779 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
1780 BRW_REGISTER_TYPE_F);
1781 payload_sources[0] =
1782 fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1783
1784 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
1785 abld.LOAD_PAYLOAD(payload, payload_sources, length + 1, 1);
1786
1787 fs_inst *inst =
1788 abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1789 inst->eot = last;
1790 inst->mlen = length + 1;
1791 inst->offset = urb_offset;
1792 urb_offset = slot + 1;
1793 length = 0;
1794 flush = false;
1795 }
1796 }
1797 }
1798
1799 void
1800 fs_visitor::emit_cs_terminate()
1801 {
1802 assert(devinfo->gen >= 7);
1803
1804 /* We are getting the thread ID from the compute shader header */
1805 assert(stage == MESA_SHADER_COMPUTE);
1806
1807 /* We can't directly send from g0, since sends with EOT have to use
1808 * g112-127. So, copy it to a virtual register, The register allocator will
1809 * make sure it uses the appropriate register range.
1810 */
1811 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
1812 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1813 bld.group(8, 0).exec_all().MOV(payload, g0);
1814
1815 /* Send a message to the thread spawner to terminate the thread. */
1816 fs_inst *inst = bld.exec_all()
1817 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
1818 inst->eot = true;
1819 }
1820
1821 void
1822 fs_visitor::emit_barrier()
1823 {
1824 assert(devinfo->gen >= 7);
1825
1826 /* We are getting the barrier ID from the compute shader header */
1827 assert(stage == MESA_SHADER_COMPUTE);
1828
1829 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1830
1831 /* Clear the message payload */
1832 bld.exec_all().MOV(payload, fs_reg(0u));
1833
1834 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
1835 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
1836 bld.exec_all().AND(component(payload, 2), r0_2, fs_reg(0x0f000000u));
1837
1838 /* Emit a gateway "barrier" message using the payload we set up, followed
1839 * by a wait instruction.
1840 */
1841 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
1842 }
1843
1844 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1845 void *mem_ctx,
1846 gl_shader_stage stage,
1847 const void *key,
1848 struct brw_stage_prog_data *prog_data,
1849 struct gl_shader_program *shader_prog,
1850 struct gl_program *prog,
1851 unsigned dispatch_width,
1852 int shader_time_index)
1853 : backend_shader(compiler, log_data, mem_ctx,
1854 shader_prog, prog, prog_data, stage),
1855 key(key), prog_data(prog_data),
1856 dispatch_width(dispatch_width),
1857 shader_time_index(shader_time_index),
1858 promoted_constants(0),
1859 bld(fs_builder(this, dispatch_width).at_end())
1860 {
1861 switch (stage) {
1862 case MESA_SHADER_FRAGMENT:
1863 key_tex = &((const brw_wm_prog_key *) key)->tex;
1864 break;
1865 case MESA_SHADER_VERTEX:
1866 case MESA_SHADER_GEOMETRY:
1867 key_tex = &((const brw_vue_prog_key *) key)->tex;
1868 break;
1869 case MESA_SHADER_COMPUTE:
1870 key_tex = &((const brw_cs_prog_key*) key)->tex;
1871 break;
1872 default:
1873 unreachable("unhandled shader stage");
1874 }
1875
1876 this->failed = false;
1877 this->simd16_unsupported = false;
1878 this->no16_msg = NULL;
1879
1880 this->nir_locals = NULL;
1881 this->nir_ssa_values = NULL;
1882
1883 memset(&this->payload, 0, sizeof(this->payload));
1884 memset(this->outputs, 0, sizeof(this->outputs));
1885 memset(this->output_components, 0, sizeof(this->output_components));
1886 this->source_depth_to_render_target = false;
1887 this->runtime_check_aads_emit = false;
1888 this->first_non_payload_grf = 0;
1889 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1890
1891 this->virtual_grf_start = NULL;
1892 this->virtual_grf_end = NULL;
1893 this->live_intervals = NULL;
1894 this->regs_live_at_ip = NULL;
1895
1896 this->uniforms = 0;
1897 this->last_scratch = 0;
1898 this->pull_constant_loc = NULL;
1899 this->push_constant_loc = NULL;
1900
1901 this->spilled_any_registers = false;
1902 this->do_dual_src = false;
1903
1904 if (dispatch_width == 8)
1905 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1906 }
1907
1908 fs_visitor::~fs_visitor()
1909 {
1910 }