i965: Use sample barycentric coordinates with per sample shading
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "program/prog_parameter.h"
37 #include "program/prog_print.h"
38 #include "program/prog_optimize.h"
39 #include "program/register_allocate.h"
40 #include "program/sampler.h"
41 #include "program/hash_table.h"
42 #include "brw_context.h"
43 #include "brw_eu.h"
44 #include "brw_wm.h"
45 }
46 #include "brw_fs.h"
47 #include "main/uniforms.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50
51 void
52 fs_visitor::visit(ir_variable *ir)
53 {
54 fs_reg *reg = NULL;
55
56 if (variable_storage(ir))
57 return;
58
59 if (ir->data.mode == ir_var_shader_in) {
60 if (!strcmp(ir->name, "gl_FragCoord")) {
61 reg = emit_fragcoord_interpolation(ir);
62 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
63 reg = emit_frontfacing_interpolation(ir);
64 } else {
65 reg = emit_general_interpolation(ir);
66 }
67 assert(reg);
68 hash_table_insert(this->variable_ht, reg, ir);
69 return;
70 } else if (ir->data.mode == ir_var_shader_out) {
71 reg = new(this->mem_ctx) fs_reg(this, ir->type);
72
73 if (ir->data.index > 0) {
74 assert(ir->data.location == FRAG_RESULT_DATA0);
75 assert(ir->data.index == 1);
76 this->dual_src_output = *reg;
77 } else if (ir->data.location == FRAG_RESULT_COLOR) {
78 /* Writing gl_FragColor outputs to all color regions. */
79 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
80 this->outputs[i] = *reg;
81 this->output_components[i] = 4;
82 }
83 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
84 this->frag_depth = *reg;
85 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
86 this->sample_mask = *reg;
87 } else {
88 /* gl_FragData or a user-defined FS output */
89 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
90 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92 int vector_elements =
93 ir->type->is_array() ? ir->type->fields.array->vector_elements
94 : ir->type->vector_elements;
95
96 /* General color output. */
97 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
99 this->outputs[output] = *reg;
100 this->outputs[output].reg_offset += vector_elements * i;
101 this->output_components[output] = vector_elements;
102 }
103 }
104 } else if (ir->data.mode == ir_var_uniform) {
105 int param_index = c->prog_data.nr_params;
106
107 /* Thanks to the lower_ubo_reference pass, we will see only
108 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
109 * variables, so no need for them to be in variable_ht.
110 *
111 * Atomic counters take no uniform storage, no need to do
112 * anything here.
113 */
114 if (ir->is_in_uniform_block() || ir->type->contains_atomic())
115 return;
116
117 if (dispatch_width == 16) {
118 if (!variable_storage(ir)) {
119 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
120 }
121 return;
122 }
123
124 param_size[param_index] = type_size(ir->type);
125 if (!strncmp(ir->name, "gl_", 3)) {
126 setup_builtin_uniform_values(ir);
127 } else {
128 setup_uniform_values(ir);
129 }
130
131 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
132 reg->type = brw_type_for_base_type(ir->type);
133
134 } else if (ir->data.mode == ir_var_system_value) {
135 if (ir->data.location == SYSTEM_VALUE_SAMPLE_POS) {
136 reg = emit_samplepos_setup(ir);
137 } else if (ir->data.location == SYSTEM_VALUE_SAMPLE_ID) {
138 reg = emit_sampleid_setup(ir);
139 } else if (ir->data.location == SYSTEM_VALUE_SAMPLE_MASK_IN) {
140 reg = emit_samplemaskin_setup(ir);
141 }
142 }
143
144 if (!reg)
145 reg = new(this->mem_ctx) fs_reg(this, ir->type);
146
147 hash_table_insert(this->variable_ht, reg, ir);
148 }
149
150 void
151 fs_visitor::visit(ir_dereference_variable *ir)
152 {
153 fs_reg *reg = variable_storage(ir->var);
154 this->result = *reg;
155 }
156
157 void
158 fs_visitor::visit(ir_dereference_record *ir)
159 {
160 const glsl_type *struct_type = ir->record->type;
161
162 ir->record->accept(this);
163
164 unsigned int offset = 0;
165 for (unsigned int i = 0; i < struct_type->length; i++) {
166 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
167 break;
168 offset += type_size(struct_type->fields.structure[i].type);
169 }
170 this->result.reg_offset += offset;
171 this->result.type = brw_type_for_base_type(ir->type);
172 }
173
174 void
175 fs_visitor::visit(ir_dereference_array *ir)
176 {
177 ir_constant *constant_index;
178 fs_reg src;
179 int element_size = type_size(ir->type);
180
181 constant_index = ir->array_index->as_constant();
182
183 ir->array->accept(this);
184 src = this->result;
185 src.type = brw_type_for_base_type(ir->type);
186
187 if (constant_index) {
188 assert(src.file == UNIFORM || src.file == GRF);
189 src.reg_offset += constant_index->value.i[0] * element_size;
190 } else {
191 /* Variable index array dereference. We attach the variable index
192 * component to the reg as a pointer to a register containing the
193 * offset. Currently only uniform arrays are supported in this patch,
194 * and that reladdr pointer is resolved by
195 * move_uniform_array_access_to_pull_constants(). All other array types
196 * are lowered by lower_variable_index_to_cond_assign().
197 */
198 ir->array_index->accept(this);
199
200 fs_reg index_reg;
201 index_reg = fs_reg(this, glsl_type::int_type);
202 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
203
204 if (src.reladdr) {
205 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
206 }
207
208 src.reladdr = ralloc(mem_ctx, fs_reg);
209 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
210 }
211 this->result = src;
212 }
213
214 void
215 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
216 {
217 if (brw->gen < 6 ||
218 !x.is_valid_3src() ||
219 !y.is_valid_3src() ||
220 !a.is_valid_3src()) {
221 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
222 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
223 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
224 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
225
226 emit(MUL(y_times_a, y, a));
227
228 a.negate = !a.negate;
229 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
230 emit(MUL(x_times_one_minus_a, x, one_minus_a));
231
232 emit(ADD(dst, x_times_one_minus_a, y_times_a));
233 } else {
234 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
235 * we need to reorder the operands.
236 */
237 emit(LRP(dst, a, y, x));
238 }
239 }
240
241 void
242 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
243 fs_reg src0, fs_reg src1)
244 {
245 fs_inst *inst;
246
247 if (brw->gen >= 6) {
248 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
249 inst->conditional_mod = conditionalmod;
250 } else {
251 emit(CMP(reg_null_d, src0, src1, conditionalmod));
252
253 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
254 inst->predicate = BRW_PREDICATE_NORMAL;
255 }
256 }
257
258 /* Instruction selection: Produce a MOV.sat instead of
259 * MIN(MAX(val, 0), 1) when possible.
260 */
261 bool
262 fs_visitor::try_emit_saturate(ir_expression *ir)
263 {
264 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
265
266 if (!sat_val)
267 return false;
268
269 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
270
271 sat_val->accept(this);
272 fs_reg src = this->result;
273
274 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
275
276 /* If the last instruction from our accept() didn't generate our
277 * src, generate a saturated MOV
278 */
279 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
280 if (!modify || modify->regs_written != 1) {
281 this->result = fs_reg(this, ir->type);
282 fs_inst *inst = emit(MOV(this->result, src));
283 inst->saturate = true;
284 } else {
285 modify->saturate = true;
286 this->result = src;
287 }
288
289
290 return true;
291 }
292
293 bool
294 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
295 {
296 /* 3-src instructions were introduced in gen6. */
297 if (brw->gen < 6)
298 return false;
299
300 /* MAD can only handle floating-point data. */
301 if (ir->type != glsl_type::float_type)
302 return false;
303
304 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
305 ir_expression *mul = ir->operands[mul_arg]->as_expression();
306
307 if (!mul || mul->operation != ir_binop_mul)
308 return false;
309
310 if (nonmul->as_constant() ||
311 mul->operands[0]->as_constant() ||
312 mul->operands[1]->as_constant())
313 return false;
314
315 nonmul->accept(this);
316 fs_reg src0 = this->result;
317
318 mul->operands[0]->accept(this);
319 fs_reg src1 = this->result;
320
321 mul->operands[1]->accept(this);
322 fs_reg src2 = this->result;
323
324 this->result = fs_reg(this, ir->type);
325 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
326
327 return true;
328 }
329
330 void
331 fs_visitor::visit(ir_expression *ir)
332 {
333 unsigned int operand;
334 fs_reg op[3], temp;
335 fs_inst *inst;
336
337 assert(ir->get_num_operands() <= 3);
338
339 if (try_emit_saturate(ir))
340 return;
341 if (ir->operation == ir_binop_add) {
342 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
343 return;
344 }
345
346 for (operand = 0; operand < ir->get_num_operands(); operand++) {
347 ir->operands[operand]->accept(this);
348 if (this->result.file == BAD_FILE) {
349 fail("Failed to get tree for expression operand:\n");
350 ir->operands[operand]->print();
351 printf("\n");
352 }
353 assert(this->result.is_valid_3src());
354 op[operand] = this->result;
355
356 /* Matrix expression operands should have been broken down to vector
357 * operations already.
358 */
359 assert(!ir->operands[operand]->type->is_matrix());
360 /* And then those vector operands should have been broken down to scalar.
361 */
362 assert(!ir->operands[operand]->type->is_vector());
363 }
364
365 /* Storage for our result. If our result goes into an assignment, it will
366 * just get copy-propagated out, so no worries.
367 */
368 this->result = fs_reg(this, ir->type);
369
370 switch (ir->operation) {
371 case ir_unop_logic_not:
372 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
373 * ones complement of the whole register, not just bit 0.
374 */
375 emit(XOR(this->result, op[0], fs_reg(1)));
376 break;
377 case ir_unop_neg:
378 op[0].negate = !op[0].negate;
379 emit(MOV(this->result, op[0]));
380 break;
381 case ir_unop_abs:
382 op[0].abs = true;
383 op[0].negate = false;
384 emit(MOV(this->result, op[0]));
385 break;
386 case ir_unop_sign:
387 if (ir->type->is_float()) {
388 /* AND(val, 0x80000000) gives the sign bit.
389 *
390 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
391 * zero.
392 */
393 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
394
395 op[0].type = BRW_REGISTER_TYPE_UD;
396 this->result.type = BRW_REGISTER_TYPE_UD;
397 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
398
399 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
400 inst->predicate = BRW_PREDICATE_NORMAL;
401
402 this->result.type = BRW_REGISTER_TYPE_F;
403 } else {
404 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
405 * -> non-negative val generates 0x00000000.
406 * Predicated OR sets 1 if val is positive.
407 */
408 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
409
410 emit(ASR(this->result, op[0], fs_reg(31)));
411
412 inst = emit(OR(this->result, this->result, fs_reg(1)));
413 inst->predicate = BRW_PREDICATE_NORMAL;
414 }
415 break;
416 case ir_unop_rcp:
417 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
418 break;
419
420 case ir_unop_exp2:
421 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
422 break;
423 case ir_unop_log2:
424 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
425 break;
426 case ir_unop_exp:
427 case ir_unop_log:
428 assert(!"not reached: should be handled by ir_explog_to_explog2");
429 break;
430 case ir_unop_sin:
431 case ir_unop_sin_reduced:
432 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
433 break;
434 case ir_unop_cos:
435 case ir_unop_cos_reduced:
436 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
437 break;
438
439 case ir_unop_dFdx:
440 emit(FS_OPCODE_DDX, this->result, op[0]);
441 break;
442 case ir_unop_dFdy:
443 emit(FS_OPCODE_DDY, this->result, op[0]);
444 break;
445
446 case ir_binop_add:
447 emit(ADD(this->result, op[0], op[1]));
448 break;
449 case ir_binop_sub:
450 assert(!"not reached: should be handled by ir_sub_to_add_neg");
451 break;
452
453 case ir_binop_mul:
454 if (brw->gen < 8 && ir->type->is_integer()) {
455 /* For integer multiplication, the MUL uses the low 16 bits
456 * of one of the operands (src0 on gen6, src1 on gen7). The
457 * MACH accumulates in the contribution of the upper 16 bits
458 * of that operand.
459 *
460 * FINISHME: Emit just the MUL if we know an operand is small
461 * enough.
462 */
463 if (brw->gen >= 7 && dispatch_width == 16)
464 fail("SIMD16 explicit accumulator operands unsupported\n");
465
466 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
467
468 emit(MUL(acc, op[0], op[1]));
469 emit(MACH(reg_null_d, op[0], op[1]));
470 emit(MOV(this->result, fs_reg(acc)));
471 } else {
472 emit(MUL(this->result, op[0], op[1]));
473 }
474 break;
475 case ir_binop_imul_high: {
476 if (brw->gen >= 7 && dispatch_width == 16)
477 fail("SIMD16 explicit accumulator operands unsupported\n");
478
479 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
480
481 emit(MUL(acc, op[0], op[1]));
482 emit(MACH(this->result, op[0], op[1]));
483 break;
484 }
485 case ir_binop_div:
486 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
487 assert(ir->type->is_integer());
488 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
489 break;
490 case ir_binop_carry: {
491 if (brw->gen >= 7 && dispatch_width == 16)
492 fail("SIMD16 explicit accumulator operands unsupported\n");
493
494 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
495
496 emit(ADDC(reg_null_ud, op[0], op[1]));
497 emit(MOV(this->result, fs_reg(acc)));
498 break;
499 }
500 case ir_binop_borrow: {
501 if (brw->gen >= 7 && dispatch_width == 16)
502 fail("SIMD16 explicit accumulator operands unsupported\n");
503
504 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
505
506 emit(SUBB(reg_null_ud, op[0], op[1]));
507 emit(MOV(this->result, fs_reg(acc)));
508 break;
509 }
510 case ir_binop_mod:
511 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
512 assert(ir->type->is_integer());
513 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
514 break;
515
516 case ir_binop_less:
517 case ir_binop_greater:
518 case ir_binop_lequal:
519 case ir_binop_gequal:
520 case ir_binop_equal:
521 case ir_binop_all_equal:
522 case ir_binop_nequal:
523 case ir_binop_any_nequal:
524 resolve_bool_comparison(ir->operands[0], &op[0]);
525 resolve_bool_comparison(ir->operands[1], &op[1]);
526
527 emit(CMP(this->result, op[0], op[1],
528 brw_conditional_for_comparison(ir->operation)));
529 break;
530
531 case ir_binop_logic_xor:
532 emit(XOR(this->result, op[0], op[1]));
533 break;
534
535 case ir_binop_logic_or:
536 emit(OR(this->result, op[0], op[1]));
537 break;
538
539 case ir_binop_logic_and:
540 emit(AND(this->result, op[0], op[1]));
541 break;
542
543 case ir_binop_dot:
544 case ir_unop_any:
545 assert(!"not reached: should be handled by brw_fs_channel_expressions");
546 break;
547
548 case ir_unop_noise:
549 assert(!"not reached: should be handled by lower_noise");
550 break;
551
552 case ir_quadop_vector:
553 assert(!"not reached: should be handled by lower_quadop_vector");
554 break;
555
556 case ir_binop_vector_extract:
557 assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
558 break;
559
560 case ir_triop_vector_insert:
561 assert(!"not reached: should be handled by lower_vector_insert()");
562 break;
563
564 case ir_binop_ldexp:
565 assert(!"not reached: should be handled by ldexp_to_arith()");
566 break;
567
568 case ir_unop_sqrt:
569 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
570 break;
571
572 case ir_unop_rsq:
573 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
574 break;
575
576 case ir_unop_bitcast_i2f:
577 case ir_unop_bitcast_u2f:
578 op[0].type = BRW_REGISTER_TYPE_F;
579 this->result = op[0];
580 break;
581 case ir_unop_i2u:
582 case ir_unop_bitcast_f2u:
583 op[0].type = BRW_REGISTER_TYPE_UD;
584 this->result = op[0];
585 break;
586 case ir_unop_u2i:
587 case ir_unop_bitcast_f2i:
588 op[0].type = BRW_REGISTER_TYPE_D;
589 this->result = op[0];
590 break;
591 case ir_unop_i2f:
592 case ir_unop_u2f:
593 case ir_unop_f2i:
594 case ir_unop_f2u:
595 emit(MOV(this->result, op[0]));
596 break;
597
598 case ir_unop_b2i:
599 emit(AND(this->result, op[0], fs_reg(1)));
600 break;
601 case ir_unop_b2f:
602 temp = fs_reg(this, glsl_type::int_type);
603 emit(AND(temp, op[0], fs_reg(1)));
604 emit(MOV(this->result, temp));
605 break;
606
607 case ir_unop_f2b:
608 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
609 break;
610 case ir_unop_i2b:
611 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
612 break;
613
614 case ir_unop_trunc:
615 emit(RNDZ(this->result, op[0]));
616 break;
617 case ir_unop_ceil:
618 op[0].negate = !op[0].negate;
619 emit(RNDD(this->result, op[0]));
620 this->result.negate = true;
621 break;
622 case ir_unop_floor:
623 emit(RNDD(this->result, op[0]));
624 break;
625 case ir_unop_fract:
626 emit(FRC(this->result, op[0]));
627 break;
628 case ir_unop_round_even:
629 emit(RNDE(this->result, op[0]));
630 break;
631
632 case ir_binop_min:
633 case ir_binop_max:
634 resolve_ud_negate(&op[0]);
635 resolve_ud_negate(&op[1]);
636 emit_minmax(ir->operation == ir_binop_min ?
637 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
638 this->result, op[0], op[1]);
639 break;
640 case ir_unop_pack_snorm_2x16:
641 case ir_unop_pack_snorm_4x8:
642 case ir_unop_pack_unorm_2x16:
643 case ir_unop_pack_unorm_4x8:
644 case ir_unop_unpack_snorm_2x16:
645 case ir_unop_unpack_snorm_4x8:
646 case ir_unop_unpack_unorm_2x16:
647 case ir_unop_unpack_unorm_4x8:
648 case ir_unop_unpack_half_2x16:
649 case ir_unop_pack_half_2x16:
650 assert(!"not reached: should be handled by lower_packing_builtins");
651 break;
652 case ir_unop_unpack_half_2x16_split_x:
653 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
654 break;
655 case ir_unop_unpack_half_2x16_split_y:
656 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
657 break;
658 case ir_binop_pow:
659 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
660 break;
661
662 case ir_unop_bitfield_reverse:
663 emit(BFREV(this->result, op[0]));
664 break;
665 case ir_unop_bit_count:
666 emit(CBIT(this->result, op[0]));
667 break;
668 case ir_unop_find_msb:
669 temp = fs_reg(this, glsl_type::uint_type);
670 emit(FBH(temp, op[0]));
671
672 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
673 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
674 * subtract the result from 31 to convert the MSB count into an LSB count.
675 */
676
677 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
678 emit(MOV(this->result, temp));
679 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
680
681 temp.negate = true;
682 inst = emit(ADD(this->result, temp, fs_reg(31)));
683 inst->predicate = BRW_PREDICATE_NORMAL;
684 break;
685 case ir_unop_find_lsb:
686 emit(FBL(this->result, op[0]));
687 break;
688 case ir_triop_bitfield_extract:
689 /* Note that the instruction's argument order is reversed from GLSL
690 * and the IR.
691 */
692 emit(BFE(this->result, op[2], op[1], op[0]));
693 break;
694 case ir_binop_bfm:
695 emit(BFI1(this->result, op[0], op[1]));
696 break;
697 case ir_triop_bfi:
698 emit(BFI2(this->result, op[0], op[1], op[2]));
699 break;
700 case ir_quadop_bitfield_insert:
701 assert(!"not reached: should be handled by "
702 "lower_instructions::bitfield_insert_to_bfm_bfi");
703 break;
704
705 case ir_unop_bit_not:
706 emit(NOT(this->result, op[0]));
707 break;
708 case ir_binop_bit_and:
709 emit(AND(this->result, op[0], op[1]));
710 break;
711 case ir_binop_bit_xor:
712 emit(XOR(this->result, op[0], op[1]));
713 break;
714 case ir_binop_bit_or:
715 emit(OR(this->result, op[0], op[1]));
716 break;
717
718 case ir_binop_lshift:
719 emit(SHL(this->result, op[0], op[1]));
720 break;
721
722 case ir_binop_rshift:
723 if (ir->type->base_type == GLSL_TYPE_INT)
724 emit(ASR(this->result, op[0], op[1]));
725 else
726 emit(SHR(this->result, op[0], op[1]));
727 break;
728 case ir_binop_pack_half_2x16_split:
729 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
730 break;
731 case ir_binop_ubo_load: {
732 /* This IR node takes a constant uniform block and a constant or
733 * variable byte offset within the block and loads a vector from that.
734 */
735 ir_constant *uniform_block = ir->operands[0]->as_constant();
736 ir_constant *const_offset = ir->operands[1]->as_constant();
737 fs_reg surf_index = fs_reg(c->prog_data.base.binding_table.ubo_start +
738 uniform_block->value.u[0]);
739 if (const_offset) {
740 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
741 packed_consts.type = result.type;
742
743 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
744 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
745 packed_consts, surf_index, const_offset_reg));
746
747 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
748 for (int i = 0; i < ir->type->vector_elements; i++) {
749 /* UBO bools are any nonzero value. We consider bools to be
750 * values with the low bit set to 1. Convert them using CMP.
751 */
752 if (ir->type->base_type == GLSL_TYPE_BOOL) {
753 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
754 } else {
755 emit(MOV(result, packed_consts));
756 }
757
758 packed_consts.smear++;
759 result.reg_offset++;
760
761 /* The std140 packing rules don't allow vectors to cross 16-byte
762 * boundaries, and a reg is 32 bytes.
763 */
764 assert(packed_consts.smear < 8);
765 }
766 } else {
767 /* Turn the byte offset into a dword offset. */
768 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
769 emit(SHR(base_offset, op[1], fs_reg(2)));
770
771 for (int i = 0; i < ir->type->vector_elements; i++) {
772 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
773 base_offset, i));
774
775 if (ir->type->base_type == GLSL_TYPE_BOOL)
776 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
777
778 result.reg_offset++;
779 }
780 }
781
782 result.reg_offset = 0;
783 break;
784 }
785
786 case ir_triop_fma:
787 /* Note that the instruction's argument order is reversed from GLSL
788 * and the IR.
789 */
790 emit(MAD(this->result, op[2], op[1], op[0]));
791 break;
792
793 case ir_triop_lrp:
794 emit_lrp(this->result, op[0], op[1], op[2]);
795 break;
796
797 case ir_triop_csel:
798 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
799 inst = emit(BRW_OPCODE_SEL, this->result, op[1], op[2]);
800 inst->predicate = BRW_PREDICATE_NORMAL;
801 break;
802 }
803 }
804
805 void
806 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
807 const glsl_type *type, bool predicated)
808 {
809 switch (type->base_type) {
810 case GLSL_TYPE_FLOAT:
811 case GLSL_TYPE_UINT:
812 case GLSL_TYPE_INT:
813 case GLSL_TYPE_BOOL:
814 for (unsigned int i = 0; i < type->components(); i++) {
815 l.type = brw_type_for_base_type(type);
816 r.type = brw_type_for_base_type(type);
817
818 if (predicated || !l.equals(r)) {
819 fs_inst *inst = emit(MOV(l, r));
820 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
821 }
822
823 l.reg_offset++;
824 r.reg_offset++;
825 }
826 break;
827 case GLSL_TYPE_ARRAY:
828 for (unsigned int i = 0; i < type->length; i++) {
829 emit_assignment_writes(l, r, type->fields.array, predicated);
830 }
831 break;
832
833 case GLSL_TYPE_STRUCT:
834 for (unsigned int i = 0; i < type->length; i++) {
835 emit_assignment_writes(l, r, type->fields.structure[i].type,
836 predicated);
837 }
838 break;
839
840 case GLSL_TYPE_SAMPLER:
841 case GLSL_TYPE_ATOMIC_UINT:
842 break;
843
844 case GLSL_TYPE_VOID:
845 case GLSL_TYPE_ERROR:
846 case GLSL_TYPE_INTERFACE:
847 assert(!"not reached");
848 break;
849 }
850 }
851
852 /* If the RHS processing resulted in an instruction generating a
853 * temporary value, and it would be easy to rewrite the instruction to
854 * generate its result right into the LHS instead, do so. This ends
855 * up reliably removing instructions where it can be tricky to do so
856 * later without real UD chain information.
857 */
858 bool
859 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
860 fs_reg dst,
861 fs_reg src,
862 fs_inst *pre_rhs_inst,
863 fs_inst *last_rhs_inst)
864 {
865 /* Only attempt if we're doing a direct assignment. */
866 if (ir->condition ||
867 !(ir->lhs->type->is_scalar() ||
868 (ir->lhs->type->is_vector() &&
869 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
870 return false;
871
872 /* Make sure the last instruction generated our source reg. */
873 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
874 last_rhs_inst,
875 src);
876 if (!modify)
877 return false;
878
879 /* If last_rhs_inst wrote a different number of components than our LHS,
880 * we can't safely rewrite it.
881 */
882 if (virtual_grf_sizes[dst.reg] != modify->regs_written)
883 return false;
884
885 /* Success! Rewrite the instruction. */
886 modify->dst = dst;
887
888 return true;
889 }
890
891 void
892 fs_visitor::visit(ir_assignment *ir)
893 {
894 fs_reg l, r;
895 fs_inst *inst;
896
897 /* FINISHME: arrays on the lhs */
898 ir->lhs->accept(this);
899 l = this->result;
900
901 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
902
903 ir->rhs->accept(this);
904 r = this->result;
905
906 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
907
908 assert(l.file != BAD_FILE);
909 assert(r.file != BAD_FILE);
910
911 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
912 return;
913
914 if (ir->condition) {
915 emit_bool_to_cond_code(ir->condition);
916 }
917
918 if (ir->lhs->type->is_scalar() ||
919 ir->lhs->type->is_vector()) {
920 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
921 if (ir->write_mask & (1 << i)) {
922 inst = emit(MOV(l, r));
923 if (ir->condition)
924 inst->predicate = BRW_PREDICATE_NORMAL;
925 r.reg_offset++;
926 }
927 l.reg_offset++;
928 }
929 } else {
930 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
931 }
932 }
933
934 fs_inst *
935 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
936 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
937 {
938 int mlen;
939 int base_mrf = 1;
940 bool simd16 = false;
941 fs_reg orig_dst;
942
943 /* g0 header. */
944 mlen = 1;
945
946 if (ir->shadow_comparitor) {
947 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
948 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
949 coordinate.reg_offset++;
950 }
951
952 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
953 * the unused slots must be zeroed.
954 */
955 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
956 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
957 }
958 mlen += 3;
959
960 if (ir->op == ir_tex) {
961 /* There's no plain shadow compare message, so we use shadow
962 * compare with a bias of 0.0.
963 */
964 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
965 mlen++;
966 } else if (ir->op == ir_txb || ir->op == ir_txl) {
967 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
968 mlen++;
969 } else {
970 assert(!"Should not get here.");
971 }
972
973 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
974 mlen++;
975 } else if (ir->op == ir_tex) {
976 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
977 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
978 coordinate.reg_offset++;
979 }
980 /* zero the others. */
981 for (int i = ir->coordinate->type->vector_elements; i<3; i++) {
982 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
983 }
984 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
985 mlen += 3;
986 } else if (ir->op == ir_txd) {
987 fs_reg &dPdx = lod;
988
989 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
990 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
991 coordinate.reg_offset++;
992 }
993 /* the slots for u and v are always present, but r is optional */
994 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
995
996 /* P = u, v, r
997 * dPdx = dudx, dvdx, drdx
998 * dPdy = dudy, dvdy, drdy
999 *
1000 * 1-arg: Does not exist.
1001 *
1002 * 2-arg: dudx dvdx dudy dvdy
1003 * dPdx.x dPdx.y dPdy.x dPdy.y
1004 * m4 m5 m6 m7
1005 *
1006 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1007 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1008 * m5 m6 m7 m8 m9 m10
1009 */
1010 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1011 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1012 dPdx.reg_offset++;
1013 }
1014 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
1015
1016 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
1017 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1018 dPdy.reg_offset++;
1019 }
1020 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
1021 } else if (ir->op == ir_txs) {
1022 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1023 simd16 = true;
1024 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1025 mlen += 2;
1026 } else {
1027 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1028 * instructions. We'll need to do SIMD16 here.
1029 */
1030 simd16 = true;
1031 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
1032
1033 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1034 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1035 coordinate));
1036 coordinate.reg_offset++;
1037 }
1038
1039 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1040 * be necessary for TXF (ld), but seems wise to do for all messages.
1041 */
1042 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
1043 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1044 }
1045
1046 /* lod/bias appears after u/v/r. */
1047 mlen += 6;
1048
1049 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1050 mlen++;
1051
1052 /* The unused upper half. */
1053 mlen++;
1054 }
1055
1056 if (simd16) {
1057 /* Now, since we're doing simd16, the return is 2 interleaved
1058 * vec4s where the odd-indexed ones are junk. We'll need to move
1059 * this weirdness around to the expected layout.
1060 */
1061 orig_dst = dst;
1062 dst = fs_reg(GRF, virtual_grf_alloc(8),
1063 (brw->is_g4x ?
1064 brw_type_for_base_type(ir->type) :
1065 BRW_REGISTER_TYPE_F));
1066 }
1067
1068 fs_inst *inst = NULL;
1069 switch (ir->op) {
1070 case ir_tex:
1071 inst = emit(SHADER_OPCODE_TEX, dst);
1072 break;
1073 case ir_txb:
1074 inst = emit(FS_OPCODE_TXB, dst);
1075 break;
1076 case ir_txl:
1077 inst = emit(SHADER_OPCODE_TXL, dst);
1078 break;
1079 case ir_txd:
1080 inst = emit(SHADER_OPCODE_TXD, dst);
1081 break;
1082 case ir_txs:
1083 inst = emit(SHADER_OPCODE_TXS, dst);
1084 break;
1085 case ir_txf:
1086 inst = emit(SHADER_OPCODE_TXF, dst);
1087 break;
1088 default:
1089 fail("unrecognized texture opcode");
1090 }
1091 inst->base_mrf = base_mrf;
1092 inst->mlen = mlen;
1093 inst->header_present = true;
1094 inst->regs_written = simd16 ? 8 : 4;
1095
1096 if (simd16) {
1097 for (int i = 0; i < 4; i++) {
1098 emit(MOV(orig_dst, dst));
1099 orig_dst.reg_offset++;
1100 dst.reg_offset += 2;
1101 }
1102 }
1103
1104 return inst;
1105 }
1106
1107 /* gen5's sampler has slots for u, v, r, array index, then optional
1108 * parameters like shadow comparitor or LOD bias. If optional
1109 * parameters aren't present, those base slots are optional and don't
1110 * need to be included in the message.
1111 *
1112 * We don't fill in the unnecessary slots regardless, which may look
1113 * surprising in the disassembly.
1114 */
1115 fs_inst *
1116 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1117 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1118 fs_reg sample_index)
1119 {
1120 int mlen = 0;
1121 int base_mrf = 2;
1122 int reg_width = dispatch_width / 8;
1123 bool header_present = false;
1124 const int vector_elements =
1125 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
1126
1127 if (ir->offset) {
1128 /* The offsets set up by the ir_texture visitor are in the
1129 * m1 header, so we can't go headerless.
1130 */
1131 header_present = true;
1132 mlen++;
1133 base_mrf--;
1134 }
1135
1136 for (int i = 0; i < vector_elements; i++) {
1137 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1138 coordinate));
1139 coordinate.reg_offset++;
1140 }
1141 mlen += vector_elements * reg_width;
1142
1143 if (ir->shadow_comparitor) {
1144 mlen = MAX2(mlen, header_present + 4 * reg_width);
1145
1146 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1147 mlen += reg_width;
1148 }
1149
1150 fs_inst *inst = NULL;
1151 switch (ir->op) {
1152 case ir_tex:
1153 inst = emit(SHADER_OPCODE_TEX, dst);
1154 break;
1155 case ir_txb:
1156 mlen = MAX2(mlen, header_present + 4 * reg_width);
1157 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1158 mlen += reg_width;
1159
1160 inst = emit(FS_OPCODE_TXB, dst);
1161 break;
1162 case ir_txl:
1163 mlen = MAX2(mlen, header_present + 4 * reg_width);
1164 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1165 mlen += reg_width;
1166
1167 inst = emit(SHADER_OPCODE_TXL, dst);
1168 break;
1169 case ir_txd: {
1170 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1171
1172 /**
1173 * P = u, v, r
1174 * dPdx = dudx, dvdx, drdx
1175 * dPdy = dudy, dvdy, drdy
1176 *
1177 * Load up these values:
1178 * - dudx dudy dvdx dvdy drdx drdy
1179 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1180 */
1181 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1182 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1183 lod.reg_offset++;
1184 mlen += reg_width;
1185
1186 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1187 lod2.reg_offset++;
1188 mlen += reg_width;
1189 }
1190
1191 inst = emit(SHADER_OPCODE_TXD, dst);
1192 break;
1193 }
1194 case ir_txs:
1195 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1196 mlen += reg_width;
1197 inst = emit(SHADER_OPCODE_TXS, dst);
1198 break;
1199 case ir_query_levels:
1200 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1201 mlen += reg_width;
1202 inst = emit(SHADER_OPCODE_TXS, dst);
1203 break;
1204 case ir_txf:
1205 mlen = header_present + 4 * reg_width;
1206 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1207 inst = emit(SHADER_OPCODE_TXF, dst);
1208 break;
1209 case ir_txf_ms:
1210 mlen = header_present + 4 * reg_width;
1211
1212 /* lod */
1213 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1214 /* sample index */
1215 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1216 mlen += reg_width;
1217 inst = emit(SHADER_OPCODE_TXF_MS, dst);
1218 break;
1219 case ir_lod:
1220 inst = emit(SHADER_OPCODE_LOD, dst);
1221 break;
1222 case ir_tg4:
1223 inst = emit(SHADER_OPCODE_TG4, dst);
1224 break;
1225 default:
1226 fail("unrecognized texture opcode");
1227 break;
1228 }
1229 inst->base_mrf = base_mrf;
1230 inst->mlen = mlen;
1231 inst->header_present = header_present;
1232 inst->regs_written = 4;
1233
1234 if (mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1235 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1236 " disallowed by hardware\n");
1237 }
1238
1239 return inst;
1240 }
1241
1242 fs_inst *
1243 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1244 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1245 fs_reg sample_index, fs_reg mcs)
1246 {
1247 int reg_width = dispatch_width / 8;
1248 bool header_present = false;
1249
1250 fs_reg payload = fs_reg(this, glsl_type::float_type);
1251 fs_reg next = payload;
1252
1253 if (ir->op == ir_tg4 || (ir->offset && ir->op != ir_txf)) {
1254 /* For general texture offsets (no txf workaround), we need a header to
1255 * put them in. Note that for SIMD16 we're making space for two actual
1256 * hardware registers here, so the emit will have to fix up for this.
1257 *
1258 * * ir4_tg4 needs to place its channel select in the header,
1259 * for interaction with ARB_texture_swizzle
1260 */
1261 header_present = true;
1262 next.reg_offset++;
1263 }
1264
1265 if (ir->shadow_comparitor) {
1266 emit(MOV(next, shadow_c));
1267 next.reg_offset++;
1268 }
1269
1270 bool has_nonconstant_offset = ir->offset && !ir->offset->as_constant();
1271 bool coordinate_done = false;
1272
1273 /* Set up the LOD info */
1274 switch (ir->op) {
1275 case ir_tex:
1276 case ir_lod:
1277 break;
1278 case ir_txb:
1279 emit(MOV(next, lod));
1280 next.reg_offset++;
1281 break;
1282 case ir_txl:
1283 emit(MOV(next, lod));
1284 next.reg_offset++;
1285 break;
1286 case ir_txd: {
1287 if (dispatch_width == 16)
1288 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1289
1290 /* Load dPdx and the coordinate together:
1291 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1292 */
1293 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1294 emit(MOV(next, coordinate));
1295 coordinate.reg_offset++;
1296 next.reg_offset++;
1297
1298 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1299 * only derivatives for (u, v, r).
1300 */
1301 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1302 emit(MOV(next, lod));
1303 lod.reg_offset++;
1304 next.reg_offset++;
1305
1306 emit(MOV(next, lod2));
1307 lod2.reg_offset++;
1308 next.reg_offset++;
1309 }
1310 }
1311
1312 coordinate_done = true;
1313 break;
1314 }
1315 case ir_txs:
1316 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), lod));
1317 next.reg_offset++;
1318 break;
1319 case ir_query_levels:
1320 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1321 next.reg_offset++;
1322 break;
1323 case ir_txf:
1324 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1325 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1326 coordinate.reg_offset++;
1327 next.reg_offset++;
1328
1329 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), lod));
1330 next.reg_offset++;
1331
1332 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1333 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1334 coordinate.reg_offset++;
1335 next.reg_offset++;
1336 }
1337
1338 coordinate_done = true;
1339 break;
1340 case ir_txf_ms:
1341 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), sample_index));
1342 next.reg_offset++;
1343
1344 /* data from the multisample control surface */
1345 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), mcs));
1346 next.reg_offset++;
1347
1348 /* there is no offsetting for this message; just copy in the integer
1349 * texture coordinates
1350 */
1351 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1352 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1353 coordinate.reg_offset++;
1354 next.reg_offset++;
1355 }
1356
1357 coordinate_done = true;
1358 break;
1359 case ir_tg4:
1360 if (has_nonconstant_offset) {
1361 if (ir->shadow_comparitor && dispatch_width == 16)
1362 fail("Gen7 does not support gather4_po_c in SIMD16 mode.");
1363
1364 /* More crazy intermixing */
1365 ir->offset->accept(this);
1366 fs_reg offset_value = this->result;
1367
1368 for (int i = 0; i < 2; i++) { /* u, v */
1369 emit(MOV(next, coordinate));
1370 coordinate.reg_offset++;
1371 next.reg_offset++;
1372 }
1373
1374 for (int i = 0; i < 2; i++) { /* offu, offv */
1375 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), offset_value));
1376 offset_value.reg_offset++;
1377 next.reg_offset++;
1378 }
1379
1380 if (ir->coordinate->type->vector_elements == 3) { /* r if present */
1381 emit(MOV(next, coordinate));
1382 coordinate.reg_offset++;
1383 next.reg_offset++;
1384 }
1385
1386 coordinate_done = true;
1387 }
1388 break;
1389 }
1390
1391 /* Set up the coordinate (except for cases where it was done above) */
1392 if (ir->coordinate && !coordinate_done) {
1393 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1394 emit(MOV(next, coordinate));
1395 coordinate.reg_offset++;
1396 next.reg_offset++;
1397 }
1398 }
1399
1400 /* Generate the SEND */
1401 fs_inst *inst = NULL;
1402 switch (ir->op) {
1403 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst, payload); break;
1404 case ir_txb: inst = emit(FS_OPCODE_TXB, dst, payload); break;
1405 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst, payload); break;
1406 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst, payload); break;
1407 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst, payload); break;
1408 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst, payload); break;
1409 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1410 case ir_query_levels: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1411 case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst, payload); break;
1412 case ir_tg4:
1413 if (has_nonconstant_offset)
1414 inst = emit(SHADER_OPCODE_TG4_OFFSET, dst, payload);
1415 else
1416 inst = emit(SHADER_OPCODE_TG4, dst, payload);
1417 break;
1418 }
1419 inst->base_mrf = -1;
1420 if (reg_width == 2)
1421 inst->mlen = next.reg_offset * reg_width - header_present;
1422 else
1423 inst->mlen = next.reg_offset * reg_width;
1424 inst->header_present = header_present;
1425 inst->regs_written = 4;
1426
1427 virtual_grf_sizes[payload.reg] = next.reg_offset;
1428 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1429 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1430 " disallowed by hardware\n");
1431 }
1432
1433 return inst;
1434 }
1435
1436 fs_reg
1437 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1438 bool is_rect, int sampler, int texunit)
1439 {
1440 fs_inst *inst = NULL;
1441 bool needs_gl_clamp = true;
1442 fs_reg scale_x, scale_y;
1443
1444 /* The 965 requires the EU to do the normalization of GL rectangle
1445 * texture coordinates. We use the program parameter state
1446 * tracking to get the scaling factor.
1447 */
1448 if (is_rect &&
1449 (brw->gen < 6 ||
1450 (brw->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1451 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1452 struct gl_program_parameter_list *params = prog->Parameters;
1453 int tokens[STATE_LENGTH] = {
1454 STATE_INTERNAL,
1455 STATE_TEXRECT_SCALE,
1456 texunit,
1457 0,
1458 0
1459 };
1460
1461 if (dispatch_width == 16) {
1462 fail("rectangle scale uniform setup not supported on SIMD16\n");
1463 return coordinate;
1464 }
1465
1466 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1467 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1468
1469 GLuint index = _mesa_add_state_reference(params,
1470 (gl_state_index *)tokens);
1471 c->prog_data.param[c->prog_data.nr_params++] =
1472 &prog->Parameters->ParameterValues[index][0].f;
1473 c->prog_data.param[c->prog_data.nr_params++] =
1474 &prog->Parameters->ParameterValues[index][1].f;
1475 }
1476
1477 /* The 965 requires the EU to do the normalization of GL rectangle
1478 * texture coordinates. We use the program parameter state
1479 * tracking to get the scaling factor.
1480 */
1481 if (brw->gen < 6 && is_rect) {
1482 fs_reg dst = fs_reg(this, ir->coordinate->type);
1483 fs_reg src = coordinate;
1484 coordinate = dst;
1485
1486 emit(MUL(dst, src, scale_x));
1487 dst.reg_offset++;
1488 src.reg_offset++;
1489 emit(MUL(dst, src, scale_y));
1490 } else if (is_rect) {
1491 /* On gen6+, the sampler handles the rectangle coordinates
1492 * natively, without needing rescaling. But that means we have
1493 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1494 * not [0, 1] like the default case below.
1495 */
1496 needs_gl_clamp = false;
1497
1498 for (int i = 0; i < 2; i++) {
1499 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1500 fs_reg chan = coordinate;
1501 chan.reg_offset += i;
1502
1503 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1504 inst->conditional_mod = BRW_CONDITIONAL_G;
1505
1506 /* Our parameter comes in as 1.0/width or 1.0/height,
1507 * because that's what people normally want for doing
1508 * texture rectangle handling. We need width or height
1509 * for clamping, but we don't care enough to make a new
1510 * parameter type, so just invert back.
1511 */
1512 fs_reg limit = fs_reg(this, glsl_type::float_type);
1513 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1514 emit(SHADER_OPCODE_RCP, limit, limit);
1515
1516 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1517 inst->conditional_mod = BRW_CONDITIONAL_L;
1518 }
1519 }
1520 }
1521
1522 if (ir->coordinate && needs_gl_clamp) {
1523 for (unsigned int i = 0;
1524 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1525 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1526 fs_reg chan = coordinate;
1527 chan.reg_offset += i;
1528
1529 fs_inst *inst = emit(MOV(chan, chan));
1530 inst->saturate = true;
1531 }
1532 }
1533 }
1534 return coordinate;
1535 }
1536
1537 /* Sample from the MCS surface attached to this multisample texture. */
1538 fs_reg
1539 fs_visitor::emit_mcs_fetch(ir_texture *ir, fs_reg coordinate, int sampler)
1540 {
1541 int reg_width = dispatch_width / 8;
1542 fs_reg payload = fs_reg(this, glsl_type::float_type);
1543 fs_reg dest = fs_reg(this, glsl_type::uvec4_type);
1544 fs_reg next = payload;
1545
1546 /* parameters are: u, v, r, lod; missing parameters are treated as zero */
1547 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1548 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1549 coordinate.reg_offset++;
1550 next.reg_offset++;
1551 }
1552
1553 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload);
1554 virtual_grf_sizes[payload.reg] = next.reg_offset;
1555 inst->base_mrf = -1;
1556 inst->mlen = next.reg_offset * reg_width;
1557 inst->header_present = false;
1558 inst->regs_written = 4 * reg_width; /* we only care about one reg of response,
1559 * but the sampler always writes 4/8
1560 */
1561 inst->sampler = sampler;
1562
1563 return dest;
1564 }
1565
1566 void
1567 fs_visitor::visit(ir_texture *ir)
1568 {
1569 fs_inst *inst = NULL;
1570
1571 int sampler =
1572 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
1573 /* FINISHME: We're failing to recompile our programs when the sampler is
1574 * updated. This only matters for the texture rectangle scale parameters
1575 * (pre-gen6, or gen6+ with GL_CLAMP).
1576 */
1577 int texunit = prog->SamplerUnits[sampler];
1578
1579 if (ir->op == ir_tg4) {
1580 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
1581 * emitting anything other than setting up the constant result.
1582 */
1583 ir_constant *chan = ir->lod_info.component->as_constant();
1584 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1585 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
1586
1587 fs_reg res = fs_reg(this, glsl_type::vec4_type);
1588 this->result = res;
1589
1590 for (int i=0; i<4; i++) {
1591 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
1592 res.reg_offset++;
1593 }
1594 return;
1595 }
1596 }
1597
1598 /* Should be lowered by do_lower_texture_projection */
1599 assert(!ir->projector);
1600
1601 /* Should be lowered */
1602 assert(!ir->offset || !ir->offset->type->is_array());
1603
1604 /* Generate code to compute all the subexpression trees. This has to be
1605 * done before loading any values into MRFs for the sampler message since
1606 * generating these values may involve SEND messages that need the MRFs.
1607 */
1608 fs_reg coordinate;
1609 if (ir->coordinate) {
1610 ir->coordinate->accept(this);
1611
1612 coordinate = rescale_texcoord(ir, this->result,
1613 ir->sampler->type->sampler_dimensionality ==
1614 GLSL_SAMPLER_DIM_RECT,
1615 sampler, texunit);
1616 }
1617
1618 fs_reg shadow_comparitor;
1619 if (ir->shadow_comparitor) {
1620 ir->shadow_comparitor->accept(this);
1621 shadow_comparitor = this->result;
1622 }
1623
1624 fs_reg lod, lod2, sample_index, mcs;
1625 switch (ir->op) {
1626 case ir_tex:
1627 case ir_lod:
1628 case ir_tg4:
1629 case ir_query_levels:
1630 break;
1631 case ir_txb:
1632 ir->lod_info.bias->accept(this);
1633 lod = this->result;
1634 break;
1635 case ir_txd:
1636 ir->lod_info.grad.dPdx->accept(this);
1637 lod = this->result;
1638
1639 ir->lod_info.grad.dPdy->accept(this);
1640 lod2 = this->result;
1641 break;
1642 case ir_txf:
1643 case ir_txl:
1644 case ir_txs:
1645 ir->lod_info.lod->accept(this);
1646 lod = this->result;
1647 break;
1648 case ir_txf_ms:
1649 ir->lod_info.sample_index->accept(this);
1650 sample_index = this->result;
1651
1652 if (brw->gen >= 7 && c->key.tex.compressed_multisample_layout_mask & (1<<sampler))
1653 mcs = emit_mcs_fetch(ir, coordinate, sampler);
1654 else
1655 mcs = fs_reg(0u);
1656 break;
1657 default:
1658 assert(!"Unrecognized texture opcode");
1659 };
1660
1661 /* Writemasking doesn't eliminate channels on SIMD8 texture
1662 * samples, so don't worry about them.
1663 */
1664 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1665
1666 if (brw->gen >= 7) {
1667 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1668 lod, lod2, sample_index, mcs);
1669 } else if (brw->gen >= 5) {
1670 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1671 lod, lod2, sample_index);
1672 } else {
1673 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1674 lod, lod2);
1675 }
1676
1677 if (ir->offset != NULL && ir->op != ir_txf)
1678 inst->texture_offset = brw_texture_offset(ctx, ir->offset->as_constant());
1679
1680 if (ir->op == ir_tg4)
1681 inst->texture_offset |= gather_channel(ir, sampler) << 16; // M0.2:16-17
1682
1683 inst->sampler = sampler;
1684
1685 if (ir->shadow_comparitor)
1686 inst->shadow_compare = true;
1687
1688 /* fixup #layers for cube map arrays */
1689 if (ir->op == ir_txs) {
1690 glsl_type const *type = ir->sampler->type;
1691 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1692 type->sampler_array) {
1693 fs_reg depth = dst;
1694 depth.reg_offset = 2;
1695 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1696 }
1697 }
1698
1699 swizzle_result(ir, dst, sampler);
1700 }
1701
1702 /**
1703 * Set up the gather channel based on the swizzle, for gather4.
1704 */
1705 uint32_t
1706 fs_visitor::gather_channel(ir_texture *ir, int sampler)
1707 {
1708 ir_constant *chan = ir->lod_info.component->as_constant();
1709 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1710 switch (swiz) {
1711 case SWIZZLE_X: return 0;
1712 case SWIZZLE_Y:
1713 /* gather4 sampler is broken for green channel on RG32F --
1714 * we must ask for blue instead.
1715 */
1716 if (c->key.tex.gather_channel_quirk_mask & (1<<sampler))
1717 return 2;
1718 return 1;
1719 case SWIZZLE_Z: return 2;
1720 case SWIZZLE_W: return 3;
1721 default:
1722 assert(!"Not reached"); /* zero, one swizzles handled already */
1723 return 0;
1724 }
1725 }
1726
1727 /**
1728 * Swizzle the result of a texture result. This is necessary for
1729 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1730 */
1731 void
1732 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1733 {
1734 if (ir->op == ir_query_levels) {
1735 /* # levels is in .w */
1736 orig_val.reg_offset += 3;
1737 this->result = orig_val;
1738 return;
1739 }
1740
1741 this->result = orig_val;
1742
1743 /* txs,lod don't actually sample the texture, so swizzling the result
1744 * makes no sense.
1745 */
1746 if (ir->op == ir_txs || ir->op == ir_lod || ir->op == ir_tg4)
1747 return;
1748
1749 if (ir->type == glsl_type::float_type) {
1750 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1751 assert(ir->sampler->type->sampler_shadow);
1752 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1753 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1754
1755 for (int i = 0; i < 4; i++) {
1756 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1757 fs_reg l = swizzled_result;
1758 l.reg_offset += i;
1759
1760 if (swiz == SWIZZLE_ZERO) {
1761 emit(MOV(l, fs_reg(0.0f)));
1762 } else if (swiz == SWIZZLE_ONE) {
1763 emit(MOV(l, fs_reg(1.0f)));
1764 } else {
1765 fs_reg r = orig_val;
1766 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1767 emit(MOV(l, r));
1768 }
1769 }
1770 this->result = swizzled_result;
1771 }
1772 }
1773
1774 void
1775 fs_visitor::visit(ir_swizzle *ir)
1776 {
1777 ir->val->accept(this);
1778 fs_reg val = this->result;
1779
1780 if (ir->type->vector_elements == 1) {
1781 this->result.reg_offset += ir->mask.x;
1782 return;
1783 }
1784
1785 fs_reg result = fs_reg(this, ir->type);
1786 this->result = result;
1787
1788 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1789 fs_reg channel = val;
1790 int swiz = 0;
1791
1792 switch (i) {
1793 case 0:
1794 swiz = ir->mask.x;
1795 break;
1796 case 1:
1797 swiz = ir->mask.y;
1798 break;
1799 case 2:
1800 swiz = ir->mask.z;
1801 break;
1802 case 3:
1803 swiz = ir->mask.w;
1804 break;
1805 }
1806
1807 channel.reg_offset += swiz;
1808 emit(MOV(result, channel));
1809 result.reg_offset++;
1810 }
1811 }
1812
1813 void
1814 fs_visitor::visit(ir_discard *ir)
1815 {
1816 assert(ir->condition == NULL); /* FINISHME */
1817
1818 /* We track our discarded pixels in f0.1. By predicating on it, we can
1819 * update just the flag bits that aren't yet discarded. By emitting a
1820 * CMP of g0 != g0, all our currently executing channels will get turned
1821 * off.
1822 */
1823 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1824 BRW_REGISTER_TYPE_UW));
1825 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1826 BRW_CONDITIONAL_NZ));
1827 cmp->predicate = BRW_PREDICATE_NORMAL;
1828 cmp->flag_subreg = 1;
1829
1830 if (brw->gen >= 6) {
1831 /* For performance, after a discard, jump to the end of the shader.
1832 * However, many people will do foliage by discarding based on a
1833 * texture's alpha mask, and then continue on to texture with the
1834 * remaining pixels. To avoid trashing the derivatives for those
1835 * texture samples, we'll only jump if all of the pixels in the subspan
1836 * have been discarded.
1837 */
1838 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1839 discard_jump->flag_subreg = 1;
1840 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1841 discard_jump->predicate_inverse = true;
1842 }
1843 }
1844
1845 void
1846 fs_visitor::visit(ir_constant *ir)
1847 {
1848 /* Set this->result to reg at the bottom of the function because some code
1849 * paths will cause this visitor to be applied to other fields. This will
1850 * cause the value stored in this->result to be modified.
1851 *
1852 * Make reg constant so that it doesn't get accidentally modified along the
1853 * way. Yes, I actually had this problem. :(
1854 */
1855 const fs_reg reg(this, ir->type);
1856 fs_reg dst_reg = reg;
1857
1858 if (ir->type->is_array()) {
1859 const unsigned size = type_size(ir->type->fields.array);
1860
1861 for (unsigned i = 0; i < ir->type->length; i++) {
1862 ir->array_elements[i]->accept(this);
1863 fs_reg src_reg = this->result;
1864
1865 dst_reg.type = src_reg.type;
1866 for (unsigned j = 0; j < size; j++) {
1867 emit(MOV(dst_reg, src_reg));
1868 src_reg.reg_offset++;
1869 dst_reg.reg_offset++;
1870 }
1871 }
1872 } else if (ir->type->is_record()) {
1873 foreach_list(node, &ir->components) {
1874 ir_constant *const field = (ir_constant *) node;
1875 const unsigned size = type_size(field->type);
1876
1877 field->accept(this);
1878 fs_reg src_reg = this->result;
1879
1880 dst_reg.type = src_reg.type;
1881 for (unsigned j = 0; j < size; j++) {
1882 emit(MOV(dst_reg, src_reg));
1883 src_reg.reg_offset++;
1884 dst_reg.reg_offset++;
1885 }
1886 }
1887 } else {
1888 const unsigned size = type_size(ir->type);
1889
1890 for (unsigned i = 0; i < size; i++) {
1891 switch (ir->type->base_type) {
1892 case GLSL_TYPE_FLOAT:
1893 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1894 break;
1895 case GLSL_TYPE_UINT:
1896 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1897 break;
1898 case GLSL_TYPE_INT:
1899 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1900 break;
1901 case GLSL_TYPE_BOOL:
1902 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1903 break;
1904 default:
1905 assert(!"Non-float/uint/int/bool constant");
1906 }
1907 dst_reg.reg_offset++;
1908 }
1909 }
1910
1911 this->result = reg;
1912 }
1913
1914 void
1915 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1916 {
1917 ir_expression *expr = ir->as_expression();
1918
1919 if (expr &&
1920 expr->operation != ir_binop_logic_and &&
1921 expr->operation != ir_binop_logic_or &&
1922 expr->operation != ir_binop_logic_xor) {
1923 fs_reg op[2];
1924 fs_inst *inst;
1925
1926 assert(expr->get_num_operands() <= 2);
1927 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1928 assert(expr->operands[i]->type->is_scalar());
1929
1930 expr->operands[i]->accept(this);
1931 op[i] = this->result;
1932
1933 resolve_ud_negate(&op[i]);
1934 }
1935
1936 switch (expr->operation) {
1937 case ir_unop_logic_not:
1938 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1939 inst->conditional_mod = BRW_CONDITIONAL_Z;
1940 break;
1941
1942 case ir_unop_f2b:
1943 if (brw->gen >= 6) {
1944 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1945 } else {
1946 inst = emit(MOV(reg_null_f, op[0]));
1947 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1948 }
1949 break;
1950
1951 case ir_unop_i2b:
1952 if (brw->gen >= 6) {
1953 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1954 } else {
1955 inst = emit(MOV(reg_null_d, op[0]));
1956 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1957 }
1958 break;
1959
1960 case ir_binop_greater:
1961 case ir_binop_gequal:
1962 case ir_binop_less:
1963 case ir_binop_lequal:
1964 case ir_binop_equal:
1965 case ir_binop_all_equal:
1966 case ir_binop_nequal:
1967 case ir_binop_any_nequal:
1968 resolve_bool_comparison(expr->operands[0], &op[0]);
1969 resolve_bool_comparison(expr->operands[1], &op[1]);
1970
1971 emit(CMP(reg_null_d, op[0], op[1],
1972 brw_conditional_for_comparison(expr->operation)));
1973 break;
1974
1975 default:
1976 assert(!"not reached");
1977 fail("bad cond code\n");
1978 break;
1979 }
1980 return;
1981 }
1982
1983 ir->accept(this);
1984
1985 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1986 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1987 }
1988
1989 /**
1990 * Emit a gen6 IF statement with the comparison folded into the IF
1991 * instruction.
1992 */
1993 void
1994 fs_visitor::emit_if_gen6(ir_if *ir)
1995 {
1996 ir_expression *expr = ir->condition->as_expression();
1997
1998 if (expr) {
1999 fs_reg op[2];
2000 fs_inst *inst;
2001 fs_reg temp;
2002
2003 assert(expr->get_num_operands() <= 2);
2004 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2005 assert(expr->operands[i]->type->is_scalar());
2006
2007 expr->operands[i]->accept(this);
2008 op[i] = this->result;
2009 }
2010
2011 switch (expr->operation) {
2012 case ir_unop_logic_not:
2013 case ir_binop_logic_xor:
2014 case ir_binop_logic_or:
2015 case ir_binop_logic_and:
2016 /* For operations on bool arguments, only the low bit of the bool is
2017 * valid, and the others are undefined. Fall back to the condition
2018 * code path.
2019 */
2020 break;
2021
2022 case ir_unop_f2b:
2023 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2024 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2025 return;
2026
2027 case ir_unop_i2b:
2028 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2029 return;
2030
2031 case ir_binop_greater:
2032 case ir_binop_gequal:
2033 case ir_binop_less:
2034 case ir_binop_lequal:
2035 case ir_binop_equal:
2036 case ir_binop_all_equal:
2037 case ir_binop_nequal:
2038 case ir_binop_any_nequal:
2039 resolve_bool_comparison(expr->operands[0], &op[0]);
2040 resolve_bool_comparison(expr->operands[1], &op[1]);
2041
2042 emit(IF(op[0], op[1],
2043 brw_conditional_for_comparison(expr->operation)));
2044 return;
2045 default:
2046 assert(!"not reached");
2047 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2048 fail("bad condition\n");
2049 return;
2050 }
2051 }
2052
2053 emit_bool_to_cond_code(ir->condition);
2054 fs_inst *inst = emit(BRW_OPCODE_IF);
2055 inst->predicate = BRW_PREDICATE_NORMAL;
2056 }
2057
2058 /**
2059 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2060 *
2061 * Many GLSL shaders contain the following pattern:
2062 *
2063 * x = condition ? foo : bar
2064 *
2065 * The compiler emits an ir_if tree for this, since each subexpression might be
2066 * a complex tree that could have side-effects or short-circuit logic.
2067 *
2068 * However, the common case is to simply select one of two constants or
2069 * variable values---which is exactly what SEL is for. In this case, the
2070 * assembly looks like:
2071 *
2072 * (+f0) IF
2073 * MOV dst src0
2074 * ELSE
2075 * MOV dst src1
2076 * ENDIF
2077 *
2078 * which can be easily translated into:
2079 *
2080 * (+f0) SEL dst src0 src1
2081 *
2082 * If src0 is an immediate value, we promote it to a temporary GRF.
2083 */
2084 void
2085 fs_visitor::try_replace_with_sel()
2086 {
2087 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2088 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2089
2090 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2091 int opcodes[] = {
2092 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2093 };
2094
2095 fs_inst *match = (fs_inst *) endif_inst->prev;
2096 for (int i = 0; i < 4; i++) {
2097 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2098 return;
2099 match = (fs_inst *) match->prev;
2100 }
2101
2102 /* The opcodes match; it looks like the right sequence of instructions. */
2103 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2104 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2105 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2106
2107 /* Check that the MOVs are the right form. */
2108 if (then_mov->dst.equals(else_mov->dst) &&
2109 !then_mov->is_partial_write() &&
2110 !else_mov->is_partial_write()) {
2111
2112 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2113 while (!if_inst->next->is_tail_sentinel())
2114 if_inst->next->remove();
2115 if_inst->remove();
2116
2117 /* Only the last source register can be a constant, so if the MOV in
2118 * the "then" clause uses a constant, we need to put it in a temporary.
2119 */
2120 fs_reg src0(then_mov->src[0]);
2121 if (src0.file == IMM) {
2122 src0 = fs_reg(this, glsl_type::float_type);
2123 src0.type = then_mov->src[0].type;
2124 emit(MOV(src0, then_mov->src[0]));
2125 }
2126
2127 fs_inst *sel;
2128 if (if_inst->conditional_mod) {
2129 /* Sandybridge-specific IF with embedded comparison */
2130 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2131 if_inst->conditional_mod));
2132 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2133 sel->predicate = BRW_PREDICATE_NORMAL;
2134 } else {
2135 /* Separate CMP and IF instructions */
2136 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2137 sel->predicate = if_inst->predicate;
2138 sel->predicate_inverse = if_inst->predicate_inverse;
2139 }
2140 }
2141 }
2142
2143 void
2144 fs_visitor::visit(ir_if *ir)
2145 {
2146 if (brw->gen < 6 && dispatch_width == 16) {
2147 fail("Can't support (non-uniform) control flow on SIMD16\n");
2148 }
2149
2150 /* Don't point the annotation at the if statement, because then it plus
2151 * the then and else blocks get printed.
2152 */
2153 this->base_ir = ir->condition;
2154
2155 if (brw->gen == 6) {
2156 emit_if_gen6(ir);
2157 } else {
2158 emit_bool_to_cond_code(ir->condition);
2159
2160 emit(IF(BRW_PREDICATE_NORMAL));
2161 }
2162
2163 foreach_list(node, &ir->then_instructions) {
2164 ir_instruction *ir = (ir_instruction *)node;
2165 this->base_ir = ir;
2166
2167 ir->accept(this);
2168 }
2169
2170 if (!ir->else_instructions.is_empty()) {
2171 emit(BRW_OPCODE_ELSE);
2172
2173 foreach_list(node, &ir->else_instructions) {
2174 ir_instruction *ir = (ir_instruction *)node;
2175 this->base_ir = ir;
2176
2177 ir->accept(this);
2178 }
2179 }
2180
2181 emit(BRW_OPCODE_ENDIF);
2182
2183 try_replace_with_sel();
2184 }
2185
2186 void
2187 fs_visitor::visit(ir_loop *ir)
2188 {
2189 if (brw->gen < 6 && dispatch_width == 16) {
2190 fail("Can't support (non-uniform) control flow on SIMD16\n");
2191 }
2192
2193 this->base_ir = NULL;
2194 emit(BRW_OPCODE_DO);
2195
2196 foreach_list(node, &ir->body_instructions) {
2197 ir_instruction *ir = (ir_instruction *)node;
2198
2199 this->base_ir = ir;
2200 ir->accept(this);
2201 }
2202
2203 this->base_ir = NULL;
2204 emit(BRW_OPCODE_WHILE);
2205 }
2206
2207 void
2208 fs_visitor::visit(ir_loop_jump *ir)
2209 {
2210 switch (ir->mode) {
2211 case ir_loop_jump::jump_break:
2212 emit(BRW_OPCODE_BREAK);
2213 break;
2214 case ir_loop_jump::jump_continue:
2215 emit(BRW_OPCODE_CONTINUE);
2216 break;
2217 }
2218 }
2219
2220 void
2221 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
2222 {
2223 ir_dereference *deref = static_cast<ir_dereference *>(
2224 ir->actual_parameters.get_head());
2225 ir_variable *location = deref->variable_referenced();
2226 unsigned surf_index = (c->prog_data.base.binding_table.abo_start +
2227 location->data.atomic.buffer_index);
2228
2229 /* Calculate the surface offset */
2230 fs_reg offset(this, glsl_type::uint_type);
2231 ir_dereference_array *deref_array = deref->as_dereference_array();
2232
2233 if (deref_array) {
2234 deref_array->array_index->accept(this);
2235
2236 fs_reg tmp(this, glsl_type::uint_type);
2237 emit(MUL(tmp, this->result, ATOMIC_COUNTER_SIZE));
2238 emit(ADD(offset, tmp, location->data.atomic.offset));
2239 } else {
2240 offset = location->data.atomic.offset;
2241 }
2242
2243 /* Emit the appropriate machine instruction */
2244 const char *callee = ir->callee->function_name();
2245 ir->return_deref->accept(this);
2246 fs_reg dst = this->result;
2247
2248 if (!strcmp("__intrinsic_atomic_read", callee)) {
2249 emit_untyped_surface_read(surf_index, dst, offset);
2250
2251 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
2252 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
2253 fs_reg(), fs_reg());
2254
2255 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
2256 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
2257 fs_reg(), fs_reg());
2258 }
2259 }
2260
2261 void
2262 fs_visitor::visit(ir_call *ir)
2263 {
2264 const char *callee = ir->callee->function_name();
2265
2266 if (!strcmp("__intrinsic_atomic_read", callee) ||
2267 !strcmp("__intrinsic_atomic_increment", callee) ||
2268 !strcmp("__intrinsic_atomic_predecrement", callee)) {
2269 visit_atomic_counter_intrinsic(ir);
2270 } else {
2271 assert(!"Unsupported intrinsic.");
2272 }
2273 }
2274
2275 void
2276 fs_visitor::visit(ir_return *ir)
2277 {
2278 assert(!"FINISHME");
2279 }
2280
2281 void
2282 fs_visitor::visit(ir_function *ir)
2283 {
2284 /* Ignore function bodies other than main() -- we shouldn't see calls to
2285 * them since they should all be inlined before we get to ir_to_mesa.
2286 */
2287 if (strcmp(ir->name, "main") == 0) {
2288 const ir_function_signature *sig;
2289 exec_list empty;
2290
2291 sig = ir->matching_signature(NULL, &empty);
2292
2293 assert(sig);
2294
2295 foreach_list(node, &sig->body) {
2296 ir_instruction *ir = (ir_instruction *)node;
2297 this->base_ir = ir;
2298
2299 ir->accept(this);
2300 }
2301 }
2302 }
2303
2304 void
2305 fs_visitor::visit(ir_function_signature *ir)
2306 {
2307 assert(!"not reached");
2308 (void)ir;
2309 }
2310
2311 void
2312 fs_visitor::visit(ir_emit_vertex *)
2313 {
2314 assert(!"not reached");
2315 }
2316
2317 void
2318 fs_visitor::visit(ir_end_primitive *)
2319 {
2320 assert(!"not reached");
2321 }
2322
2323 void
2324 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
2325 fs_reg dst, fs_reg offset, fs_reg src0,
2326 fs_reg src1)
2327 {
2328 const unsigned operand_len = dispatch_width / 8;
2329 unsigned mlen = 0;
2330
2331 /* Initialize the sample mask in the message header. */
2332 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2333 ->force_writemask_all = true;
2334
2335 if (fp->UsesKill) {
2336 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2337 ->force_writemask_all = true;
2338 } else {
2339 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2340 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2341 ->force_writemask_all = true;
2342 }
2343
2344 mlen++;
2345
2346 /* Set the atomic operation offset. */
2347 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2348 mlen += operand_len;
2349
2350 /* Set the atomic operation arguments. */
2351 if (src0.file != BAD_FILE) {
2352 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src0));
2353 mlen += operand_len;
2354 }
2355
2356 if (src1.file != BAD_FILE) {
2357 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src1));
2358 mlen += operand_len;
2359 }
2360
2361 /* Emit the instruction. */
2362 fs_inst inst(SHADER_OPCODE_UNTYPED_ATOMIC, dst, atomic_op, surf_index);
2363 inst.base_mrf = 0;
2364 inst.mlen = mlen;
2365 emit(inst);
2366 }
2367
2368 void
2369 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
2370 fs_reg offset)
2371 {
2372 const unsigned operand_len = dispatch_width / 8;
2373 unsigned mlen = 0;
2374
2375 /* Initialize the sample mask in the message header. */
2376 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2377 ->force_writemask_all = true;
2378
2379 if (fp->UsesKill) {
2380 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2381 ->force_writemask_all = true;
2382 } else {
2383 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2384 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2385 ->force_writemask_all = true;
2386 }
2387
2388 mlen++;
2389
2390 /* Set the surface read offset. */
2391 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2392 mlen += operand_len;
2393
2394 /* Emit the instruction. */
2395 fs_inst inst(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, surf_index);
2396 inst.base_mrf = 0;
2397 inst.mlen = mlen;
2398 emit(inst);
2399 }
2400
2401 fs_inst *
2402 fs_visitor::emit(fs_inst inst)
2403 {
2404 fs_inst *list_inst = new(mem_ctx) fs_inst;
2405 *list_inst = inst;
2406 emit(list_inst);
2407 return list_inst;
2408 }
2409
2410 fs_inst *
2411 fs_visitor::emit(fs_inst *inst)
2412 {
2413 if (force_uncompressed_stack > 0)
2414 inst->force_uncompressed = true;
2415
2416 inst->annotation = this->current_annotation;
2417 inst->ir = this->base_ir;
2418
2419 this->instructions.push_tail(inst);
2420
2421 return inst;
2422 }
2423
2424 void
2425 fs_visitor::emit(exec_list list)
2426 {
2427 foreach_list_safe(node, &list) {
2428 fs_inst *inst = (fs_inst *)node;
2429 inst->remove();
2430 emit(inst);
2431 }
2432 }
2433
2434 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
2435 void
2436 fs_visitor::emit_dummy_fs()
2437 {
2438 int reg_width = dispatch_width / 8;
2439
2440 /* Everyone's favorite color. */
2441 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
2442 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
2443 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
2444 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
2445
2446 fs_inst *write;
2447 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
2448 write->base_mrf = 2;
2449 write->mlen = 4 * reg_width;
2450 write->eot = true;
2451 }
2452
2453 /* The register location here is relative to the start of the URB
2454 * data. It will get adjusted to be a real location before
2455 * generate_code() time.
2456 */
2457 struct brw_reg
2458 fs_visitor::interp_reg(int location, int channel)
2459 {
2460 int regnr = c->prog_data.urb_setup[location] * 2 + channel / 2;
2461 int stride = (channel & 1) * 4;
2462
2463 assert(c->prog_data.urb_setup[location] != -1);
2464
2465 return brw_vec1_grf(regnr, stride);
2466 }
2467
2468 /** Emits the interpolation for the varying inputs. */
2469 void
2470 fs_visitor::emit_interpolation_setup_gen4()
2471 {
2472 this->current_annotation = "compute pixel centers";
2473 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2474 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2475 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2476 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2477
2478 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2479 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2480
2481 this->current_annotation = "compute pixel deltas from v0";
2482 if (brw->has_pln) {
2483 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2484 fs_reg(this, glsl_type::vec2_type);
2485 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2486 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2487 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2488 } else {
2489 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2490 fs_reg(this, glsl_type::float_type);
2491 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2492 fs_reg(this, glsl_type::float_type);
2493 }
2494 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2495 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2496 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2497 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2498
2499 this->current_annotation = "compute pos.w and 1/pos.w";
2500 /* Compute wpos.w. It's always in our setup, since it's needed to
2501 * interpolate the other attributes.
2502 */
2503 this->wpos_w = fs_reg(this, glsl_type::float_type);
2504 emit(FS_OPCODE_LINTERP, wpos_w,
2505 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2506 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2507 interp_reg(VARYING_SLOT_POS, 3));
2508 /* Compute the pixel 1/W value from wpos.w. */
2509 this->pixel_w = fs_reg(this, glsl_type::float_type);
2510 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2511 this->current_annotation = NULL;
2512 }
2513
2514 /** Emits the interpolation for the varying inputs. */
2515 void
2516 fs_visitor::emit_interpolation_setup_gen6()
2517 {
2518 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2519
2520 /* If the pixel centers end up used, the setup is the same as for gen4. */
2521 this->current_annotation = "compute pixel centers";
2522 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2523 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2524 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2525 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2526 emit(ADD(int_pixel_x,
2527 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2528 fs_reg(brw_imm_v(0x10101010))));
2529 emit(ADD(int_pixel_y,
2530 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2531 fs_reg(brw_imm_v(0x11001100))));
2532
2533 /* As of gen6, we can no longer mix float and int sources. We have
2534 * to turn the integer pixel centers into floats for their actual
2535 * use.
2536 */
2537 this->pixel_x = fs_reg(this, glsl_type::float_type);
2538 this->pixel_y = fs_reg(this, glsl_type::float_type);
2539 emit(MOV(this->pixel_x, int_pixel_x));
2540 emit(MOV(this->pixel_y, int_pixel_y));
2541
2542 this->current_annotation = "compute pos.w";
2543 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2544 this->wpos_w = fs_reg(this, glsl_type::float_type);
2545 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2546
2547 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2548 uint8_t reg = c->barycentric_coord_reg[i];
2549 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2550 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2551 }
2552
2553 this->current_annotation = NULL;
2554 }
2555
2556 void
2557 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2558 {
2559 int reg_width = dispatch_width / 8;
2560 fs_inst *inst;
2561 fs_reg color = outputs[target];
2562 fs_reg mrf;
2563
2564 /* If there's no color data to be written, skip it. */
2565 if (color.file == BAD_FILE)
2566 return;
2567
2568 color.reg_offset += index;
2569
2570 if (dispatch_width == 8 || brw->gen >= 6) {
2571 /* SIMD8 write looks like:
2572 * m + 0: r0
2573 * m + 1: r1
2574 * m + 2: g0
2575 * m + 3: g1
2576 *
2577 * gen6 SIMD16 DP write looks like:
2578 * m + 0: r0
2579 * m + 1: r1
2580 * m + 2: g0
2581 * m + 3: g1
2582 * m + 4: b0
2583 * m + 5: b1
2584 * m + 6: a0
2585 * m + 7: a1
2586 */
2587 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2588 color.type),
2589 color));
2590 inst->saturate = c->key.clamp_fragment_color;
2591 } else {
2592 /* pre-gen6 SIMD16 single source DP write looks like:
2593 * m + 0: r0
2594 * m + 1: g0
2595 * m + 2: b0
2596 * m + 3: a0
2597 * m + 4: r1
2598 * m + 5: g1
2599 * m + 6: b1
2600 * m + 7: a1
2601 */
2602 if (brw->has_compr4) {
2603 /* By setting the high bit of the MRF register number, we
2604 * indicate that we want COMPR4 mode - instead of doing the
2605 * usual destination + 1 for the second half we get
2606 * destination + 4.
2607 */
2608 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2609 color.type),
2610 color));
2611 inst->saturate = c->key.clamp_fragment_color;
2612 } else {
2613 push_force_uncompressed();
2614 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2615 color));
2616 inst->saturate = c->key.clamp_fragment_color;
2617 pop_force_uncompressed();
2618
2619 color.sechalf = true;
2620 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2621 color));
2622 inst->force_sechalf = true;
2623 inst->saturate = c->key.clamp_fragment_color;
2624 color.sechalf = false;
2625 }
2626 }
2627 }
2628
2629 static int
2630 cond_for_alpha_func(GLenum func)
2631 {
2632 switch(func) {
2633 case GL_GREATER:
2634 return BRW_CONDITIONAL_G;
2635 case GL_GEQUAL:
2636 return BRW_CONDITIONAL_GE;
2637 case GL_LESS:
2638 return BRW_CONDITIONAL_L;
2639 case GL_LEQUAL:
2640 return BRW_CONDITIONAL_LE;
2641 case GL_EQUAL:
2642 return BRW_CONDITIONAL_EQ;
2643 case GL_NOTEQUAL:
2644 return BRW_CONDITIONAL_NEQ;
2645 default:
2646 assert(!"Not reached");
2647 return 0;
2648 }
2649 }
2650
2651 /**
2652 * Alpha test support for when we compile it into the shader instead
2653 * of using the normal fixed-function alpha test.
2654 */
2655 void
2656 fs_visitor::emit_alpha_test()
2657 {
2658 this->current_annotation = "Alpha test";
2659
2660 fs_inst *cmp;
2661 if (c->key.alpha_test_func == GL_ALWAYS)
2662 return;
2663
2664 if (c->key.alpha_test_func == GL_NEVER) {
2665 /* f0.1 = 0 */
2666 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2667 BRW_REGISTER_TYPE_UW));
2668 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
2669 BRW_CONDITIONAL_NEQ));
2670 } else {
2671 /* RT0 alpha */
2672 fs_reg color = outputs[0];
2673 color.reg_offset += 3;
2674
2675 /* f0.1 &= func(color, ref) */
2676 cmp = emit(CMP(reg_null_f, color, fs_reg(c->key.alpha_test_ref),
2677 cond_for_alpha_func(c->key.alpha_test_func)));
2678 }
2679 cmp->predicate = BRW_PREDICATE_NORMAL;
2680 cmp->flag_subreg = 1;
2681 }
2682
2683 void
2684 fs_visitor::emit_fb_writes()
2685 {
2686 this->current_annotation = "FB write header";
2687 bool header_present = true;
2688 /* We can potentially have a message length of up to 15, so we have to set
2689 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2690 */
2691 int base_mrf = 1;
2692 int nr = base_mrf;
2693 int reg_width = dispatch_width / 8;
2694 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2695 bool src0_alpha_to_render_target = false;
2696
2697 if (dispatch_width == 16 && do_dual_src) {
2698 fail("GL_ARB_blend_func_extended not yet supported in SIMD16.");
2699 do_dual_src = false;
2700 }
2701
2702 /* From the Sandy Bridge PRM, volume 4, page 198:
2703 *
2704 * "Dispatched Pixel Enables. One bit per pixel indicating
2705 * which pixels were originally enabled when the thread was
2706 * dispatched. This field is only required for the end-of-
2707 * thread message and on all dual-source messages."
2708 */
2709 if (brw->gen >= 6 &&
2710 !this->fp->UsesKill &&
2711 !do_dual_src &&
2712 c->key.nr_color_regions == 1) {
2713 header_present = false;
2714 }
2715
2716 if (header_present) {
2717 src0_alpha_to_render_target = brw->gen >= 6 &&
2718 !do_dual_src &&
2719 c->key.replicate_alpha;
2720 /* m2, m3 header */
2721 nr += 2;
2722 }
2723
2724 if (c->aa_dest_stencil_reg) {
2725 push_force_uncompressed();
2726 emit(MOV(fs_reg(MRF, nr++),
2727 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2728 pop_force_uncompressed();
2729 }
2730
2731 c->prog_data.uses_omask =
2732 fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
2733 if(c->prog_data.uses_omask) {
2734 this->current_annotation = "FB write oMask";
2735 assert(this->sample_mask.file != BAD_FILE);
2736 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. */
2737 emit(FS_OPCODE_SET_OMASK, fs_reg(MRF, nr, BRW_REGISTER_TYPE_UW), this->sample_mask);
2738 nr += 1;
2739 }
2740
2741 /* Reserve space for color. It'll be filled in per MRT below. */
2742 int color_mrf = nr;
2743 nr += 4 * reg_width;
2744 if (do_dual_src)
2745 nr += 4;
2746 if (src0_alpha_to_render_target)
2747 nr += reg_width;
2748
2749 if (c->source_depth_to_render_target) {
2750 if (brw->gen == 6 && dispatch_width == 16) {
2751 /* For outputting oDepth on gen6, SIMD8 writes have to be
2752 * used. This would require SIMD8 moves of each half to
2753 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2754 * Just bail on doing so for now.
2755 */
2756 fail("Missing support for simd16 depth writes on gen6\n");
2757 }
2758
2759 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2760 /* Hand over gl_FragDepth. */
2761 assert(this->frag_depth.file != BAD_FILE);
2762 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2763 } else {
2764 /* Pass through the payload depth. */
2765 emit(MOV(fs_reg(MRF, nr),
2766 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2767 }
2768 nr += reg_width;
2769 }
2770
2771 if (c->dest_depth_reg) {
2772 emit(MOV(fs_reg(MRF, nr),
2773 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2774 nr += reg_width;
2775 }
2776
2777 if (do_dual_src) {
2778 fs_reg src0 = this->outputs[0];
2779 fs_reg src1 = this->dual_src_output;
2780
2781 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2782 "FB write src0");
2783 for (int i = 0; i < 4; i++) {
2784 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2785 src0.reg_offset++;
2786 inst->saturate = c->key.clamp_fragment_color;
2787 }
2788
2789 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2790 "FB write src1");
2791 for (int i = 0; i < 4; i++) {
2792 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2793 src1));
2794 src1.reg_offset++;
2795 inst->saturate = c->key.clamp_fragment_color;
2796 }
2797
2798 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2799 emit_shader_time_end();
2800
2801 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2802 inst->target = 0;
2803 inst->base_mrf = base_mrf;
2804 inst->mlen = nr - base_mrf;
2805 inst->eot = true;
2806 inst->header_present = header_present;
2807
2808 c->prog_data.dual_src_blend = true;
2809 this->current_annotation = NULL;
2810 return;
2811 }
2812
2813 for (int target = 0; target < c->key.nr_color_regions; target++) {
2814 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2815 "FB write target %d",
2816 target);
2817 /* If src0_alpha_to_render_target is true, include source zero alpha
2818 * data in RenderTargetWrite message for targets > 0.
2819 */
2820 int write_color_mrf = color_mrf;
2821 if (src0_alpha_to_render_target && target != 0) {
2822 fs_inst *inst;
2823 fs_reg color = outputs[0];
2824 color.reg_offset += 3;
2825
2826 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2827 color));
2828 inst->saturate = c->key.clamp_fragment_color;
2829 write_color_mrf = color_mrf + reg_width;
2830 }
2831
2832 for (unsigned i = 0; i < this->output_components[target]; i++)
2833 emit_color_write(target, i, write_color_mrf);
2834
2835 bool eot = false;
2836 if (target == c->key.nr_color_regions - 1) {
2837 eot = true;
2838
2839 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2840 emit_shader_time_end();
2841 }
2842
2843 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2844 inst->target = target;
2845 inst->base_mrf = base_mrf;
2846 if (src0_alpha_to_render_target && target == 0)
2847 inst->mlen = nr - base_mrf - reg_width;
2848 else
2849 inst->mlen = nr - base_mrf;
2850 inst->eot = eot;
2851 inst->header_present = header_present;
2852 }
2853
2854 if (c->key.nr_color_regions == 0) {
2855 /* Even if there's no color buffers enabled, we still need to send
2856 * alpha out the pipeline to our null renderbuffer to support
2857 * alpha-testing, alpha-to-coverage, and so on.
2858 */
2859 emit_color_write(0, 3, color_mrf);
2860
2861 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2862 emit_shader_time_end();
2863
2864 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2865 inst->base_mrf = base_mrf;
2866 inst->mlen = nr - base_mrf;
2867 inst->eot = true;
2868 inst->header_present = header_present;
2869 }
2870
2871 this->current_annotation = NULL;
2872 }
2873
2874 void
2875 fs_visitor::resolve_ud_negate(fs_reg *reg)
2876 {
2877 if (reg->type != BRW_REGISTER_TYPE_UD ||
2878 !reg->negate)
2879 return;
2880
2881 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2882 emit(MOV(temp, *reg));
2883 *reg = temp;
2884 }
2885
2886 void
2887 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2888 {
2889 if (rvalue->type != glsl_type::bool_type)
2890 return;
2891
2892 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2893 emit(AND(temp, *reg, fs_reg(1)));
2894 *reg = temp;
2895 }
2896
2897 fs_visitor::fs_visitor(struct brw_context *brw,
2898 struct brw_wm_compile *c,
2899 struct gl_shader_program *shader_prog,
2900 struct gl_fragment_program *fp,
2901 unsigned dispatch_width)
2902 : dispatch_width(dispatch_width)
2903 {
2904 this->c = c;
2905 this->brw = brw;
2906 this->fp = fp;
2907 this->prog = &fp->Base;
2908 this->shader_prog = shader_prog;
2909 this->prog = &fp->Base;
2910 this->stage_prog_data = &c->prog_data.base;
2911 this->ctx = &brw->ctx;
2912 this->mem_ctx = ralloc_context(NULL);
2913 if (shader_prog)
2914 shader = (struct brw_shader *)
2915 shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2916 else
2917 shader = NULL;
2918 this->failed = false;
2919 this->variable_ht = hash_table_ctor(0,
2920 hash_table_pointer_hash,
2921 hash_table_pointer_compare);
2922
2923 memset(this->outputs, 0, sizeof(this->outputs));
2924 memset(this->output_components, 0, sizeof(this->output_components));
2925 this->first_non_payload_grf = 0;
2926 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2927
2928 this->current_annotation = NULL;
2929 this->base_ir = NULL;
2930
2931 this->virtual_grf_sizes = NULL;
2932 this->virtual_grf_count = 0;
2933 this->virtual_grf_array_size = 0;
2934 this->virtual_grf_start = NULL;
2935 this->virtual_grf_end = NULL;
2936 this->live_intervals = NULL;
2937 this->regs_live_at_ip = NULL;
2938
2939 this->params_remap = NULL;
2940 this->nr_params_remap = 0;
2941
2942 this->force_uncompressed_stack = 0;
2943
2944 this->spilled_any_registers = false;
2945
2946 memset(&this->param_size, 0, sizeof(this->param_size));
2947 }
2948
2949 fs_visitor::~fs_visitor()
2950 {
2951 ralloc_free(this->mem_ctx);
2952 hash_table_dtor(this->variable_ht);
2953 }