857f956232e63f52ee078e2182159f31dec20357
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_fs.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50 #include "glsl/ir_print_visitor.h"
51
52 void
53 fs_visitor::visit(ir_variable *ir)
54 {
55 fs_reg *reg = NULL;
56
57 if (variable_storage(ir))
58 return;
59
60 if (ir->mode == ir_var_shader_in) {
61 if (!strcmp(ir->name, "gl_FragCoord")) {
62 reg = emit_fragcoord_interpolation(ir);
63 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
64 reg = emit_frontfacing_interpolation(ir);
65 } else {
66 reg = emit_general_interpolation(ir);
67 }
68 assert(reg);
69 hash_table_insert(this->variable_ht, reg, ir);
70 return;
71 } else if (ir->mode == ir_var_shader_out) {
72 reg = new(this->mem_ctx) fs_reg(this, ir->type);
73
74 if (ir->index > 0) {
75 assert(ir->location == FRAG_RESULT_DATA0);
76 assert(ir->index == 1);
77 this->dual_src_output = *reg;
78 } else if (ir->location == FRAG_RESULT_COLOR) {
79 /* Writing gl_FragColor outputs to all color regions. */
80 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
81 this->outputs[i] = *reg;
82 this->output_components[i] = 4;
83 }
84 } else if (ir->location == FRAG_RESULT_DEPTH) {
85 this->frag_depth = *reg;
86 } else {
87 /* gl_FragData or a user-defined FS output */
88 assert(ir->location >= FRAG_RESULT_DATA0 &&
89 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
90
91 int vector_elements =
92 ir->type->is_array() ? ir->type->fields.array->vector_elements
93 : ir->type->vector_elements;
94
95 /* General color output. */
96 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
97 int output = ir->location - FRAG_RESULT_DATA0 + i;
98 this->outputs[output] = *reg;
99 this->outputs[output].reg_offset += vector_elements * i;
100 this->output_components[output] = vector_elements;
101 }
102 }
103 } else if (ir->mode == ir_var_uniform) {
104 int param_index = c->prog_data.nr_params;
105
106 /* Thanks to the lower_ubo_reference pass, we will see only
107 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
108 * variables, so no need for them to be in variable_ht.
109 */
110 if (ir->is_in_uniform_block())
111 return;
112
113 if (dispatch_width == 16) {
114 if (!variable_storage(ir)) {
115 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
116 }
117 return;
118 }
119
120 param_size[param_index] = type_size(ir->type);
121 if (!strncmp(ir->name, "gl_", 3)) {
122 setup_builtin_uniform_values(ir);
123 } else {
124 setup_uniform_values(ir);
125 }
126
127 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
128 reg->type = brw_type_for_base_type(ir->type);
129 }
130
131 if (!reg)
132 reg = new(this->mem_ctx) fs_reg(this, ir->type);
133
134 hash_table_insert(this->variable_ht, reg, ir);
135 }
136
137 void
138 fs_visitor::visit(ir_dereference_variable *ir)
139 {
140 fs_reg *reg = variable_storage(ir->var);
141 this->result = *reg;
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_record *ir)
146 {
147 const glsl_type *struct_type = ir->record->type;
148
149 ir->record->accept(this);
150
151 unsigned int offset = 0;
152 for (unsigned int i = 0; i < struct_type->length; i++) {
153 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
154 break;
155 offset += type_size(struct_type->fields.structure[i].type);
156 }
157 this->result.reg_offset += offset;
158 this->result.type = brw_type_for_base_type(ir->type);
159 }
160
161 void
162 fs_visitor::visit(ir_dereference_array *ir)
163 {
164 ir_constant *constant_index;
165 fs_reg src;
166 int element_size = type_size(ir->type);
167
168 constant_index = ir->array_index->as_constant();
169
170 ir->array->accept(this);
171 src = this->result;
172 src.type = brw_type_for_base_type(ir->type);
173
174 if (constant_index) {
175 assert(src.file == UNIFORM || src.file == GRF);
176 src.reg_offset += constant_index->value.i[0] * element_size;
177 } else {
178 /* Variable index array dereference. We attach the variable index
179 * component to the reg as a pointer to a register containing the
180 * offset. Currently only uniform arrays are supported in this patch,
181 * and that reladdr pointer is resolved by
182 * move_uniform_array_access_to_pull_constants(). All other array types
183 * are lowered by lower_variable_index_to_cond_assign().
184 */
185 ir->array_index->accept(this);
186
187 fs_reg index_reg;
188 index_reg = fs_reg(this, glsl_type::int_type);
189 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
190
191 if (src.reladdr) {
192 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
193 }
194
195 src.reladdr = ralloc(mem_ctx, fs_reg);
196 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
197 }
198 this->result = src;
199 }
200
201 void
202 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
203 {
204 if (intel->gen < 6 || x.file != GRF || y.file != GRF || a.file != GRF) {
205 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
206 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
207 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
208 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
209
210 emit(MUL(y_times_a, y, a));
211
212 a.negate = !a.negate;
213 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
214 emit(MUL(x_times_one_minus_a, x, one_minus_a));
215
216 emit(ADD(dst, x_times_one_minus_a, y_times_a));
217 } else {
218 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
219 * we need to reorder the operands.
220 */
221 emit(LRP(dst, a, y, x));
222 }
223 }
224
225 void
226 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
227 fs_reg src0, fs_reg src1)
228 {
229 fs_inst *inst;
230
231 if (intel->gen >= 6) {
232 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
233 inst->conditional_mod = conditionalmod;
234 } else {
235 emit(CMP(reg_null_d, src0, src1, conditionalmod));
236
237 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
238 inst->predicate = BRW_PREDICATE_NORMAL;
239 }
240 }
241
242 /* Instruction selection: Produce a MOV.sat instead of
243 * MIN(MAX(val, 0), 1) when possible.
244 */
245 bool
246 fs_visitor::try_emit_saturate(ir_expression *ir)
247 {
248 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
249
250 if (!sat_val)
251 return false;
252
253 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
254
255 sat_val->accept(this);
256 fs_reg src = this->result;
257
258 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
259
260 /* If the last instruction from our accept() didn't generate our
261 * src, generate a saturated MOV
262 */
263 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
264 if (!modify || modify->regs_written() != 1) {
265 this->result = fs_reg(this, ir->type);
266 fs_inst *inst = emit(MOV(this->result, src));
267 inst->saturate = true;
268 } else {
269 modify->saturate = true;
270 this->result = src;
271 }
272
273
274 return true;
275 }
276
277 bool
278 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
279 {
280 /* 3-src instructions were introduced in gen6. */
281 if (intel->gen < 6)
282 return false;
283
284 /* MAD can only handle floating-point data. */
285 if (ir->type != glsl_type::float_type)
286 return false;
287
288 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
289 ir_expression *mul = ir->operands[mul_arg]->as_expression();
290
291 if (!mul || mul->operation != ir_binop_mul)
292 return false;
293
294 if (nonmul->as_constant() ||
295 mul->operands[0]->as_constant() ||
296 mul->operands[1]->as_constant())
297 return false;
298
299 nonmul->accept(this);
300 fs_reg src0 = this->result;
301
302 mul->operands[0]->accept(this);
303 fs_reg src1 = this->result;
304
305 mul->operands[1]->accept(this);
306 fs_reg src2 = this->result;
307
308 this->result = fs_reg(this, ir->type);
309 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
310
311 return true;
312 }
313
314 void
315 fs_visitor::visit(ir_expression *ir)
316 {
317 unsigned int operand;
318 fs_reg op[3], temp;
319 fs_inst *inst;
320
321 assert(ir->get_num_operands() <= 3);
322
323 if (try_emit_saturate(ir))
324 return;
325 if (ir->operation == ir_binop_add) {
326 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
327 return;
328 }
329
330 for (operand = 0; operand < ir->get_num_operands(); operand++) {
331 ir->operands[operand]->accept(this);
332 if (this->result.file == BAD_FILE) {
333 ir_print_visitor v;
334 fail("Failed to get tree for expression operand:\n");
335 ir->operands[operand]->accept(&v);
336 }
337 op[operand] = this->result;
338
339 /* Matrix expression operands should have been broken down to vector
340 * operations already.
341 */
342 assert(!ir->operands[operand]->type->is_matrix());
343 /* And then those vector operands should have been broken down to scalar.
344 */
345 assert(!ir->operands[operand]->type->is_vector());
346 }
347
348 /* Storage for our result. If our result goes into an assignment, it will
349 * just get copy-propagated out, so no worries.
350 */
351 this->result = fs_reg(this, ir->type);
352
353 switch (ir->operation) {
354 case ir_unop_logic_not:
355 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
356 * ones complement of the whole register, not just bit 0.
357 */
358 emit(XOR(this->result, op[0], fs_reg(1)));
359 break;
360 case ir_unop_neg:
361 op[0].negate = !op[0].negate;
362 this->result = op[0];
363 break;
364 case ir_unop_abs:
365 op[0].abs = true;
366 op[0].negate = false;
367 this->result = op[0];
368 break;
369 case ir_unop_sign:
370 temp = fs_reg(this, ir->type);
371
372 emit(MOV(this->result, fs_reg(0.0f)));
373
374 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
375 inst = emit(MOV(this->result, fs_reg(1.0f)));
376 inst->predicate = BRW_PREDICATE_NORMAL;
377
378 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
379 inst = emit(MOV(this->result, fs_reg(-1.0f)));
380 inst->predicate = BRW_PREDICATE_NORMAL;
381
382 break;
383 case ir_unop_rcp:
384 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
385 break;
386
387 case ir_unop_exp2:
388 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
389 break;
390 case ir_unop_log2:
391 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
392 break;
393 case ir_unop_exp:
394 case ir_unop_log:
395 assert(!"not reached: should be handled by ir_explog_to_explog2");
396 break;
397 case ir_unop_sin:
398 case ir_unop_sin_reduced:
399 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
400 break;
401 case ir_unop_cos:
402 case ir_unop_cos_reduced:
403 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
404 break;
405
406 case ir_unop_dFdx:
407 emit(FS_OPCODE_DDX, this->result, op[0]);
408 break;
409 case ir_unop_dFdy:
410 emit(FS_OPCODE_DDY, this->result, op[0]);
411 break;
412
413 case ir_binop_add:
414 emit(ADD(this->result, op[0], op[1]));
415 break;
416 case ir_binop_sub:
417 assert(!"not reached: should be handled by ir_sub_to_add_neg");
418 break;
419
420 case ir_binop_mul:
421 if (ir->type->is_integer()) {
422 /* For integer multiplication, the MUL uses the low 16 bits
423 * of one of the operands (src0 on gen6, src1 on gen7). The
424 * MACH accumulates in the contribution of the upper 16 bits
425 * of that operand.
426 *
427 * FINISHME: Emit just the MUL if we know an operand is small
428 * enough.
429 */
430 if (intel->gen >= 7 && dispatch_width == 16)
431 fail("16-wide explicit accumulator operands unsupported\n");
432
433 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
434
435 emit(MUL(acc, op[0], op[1]));
436 emit(MACH(reg_null_d, op[0], op[1]));
437 emit(MOV(this->result, fs_reg(acc)));
438 } else {
439 emit(MUL(this->result, op[0], op[1]));
440 }
441 break;
442 case ir_binop_div:
443 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
444 assert(ir->type->is_integer());
445 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
446 break;
447 case ir_binop_mod:
448 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
449 assert(ir->type->is_integer());
450 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
451 break;
452
453 case ir_binop_less:
454 case ir_binop_greater:
455 case ir_binop_lequal:
456 case ir_binop_gequal:
457 case ir_binop_equal:
458 case ir_binop_all_equal:
459 case ir_binop_nequal:
460 case ir_binop_any_nequal:
461 resolve_bool_comparison(ir->operands[0], &op[0]);
462 resolve_bool_comparison(ir->operands[1], &op[1]);
463
464 emit(CMP(this->result, op[0], op[1],
465 brw_conditional_for_comparison(ir->operation)));
466 break;
467
468 case ir_binop_logic_xor:
469 emit(XOR(this->result, op[0], op[1]));
470 break;
471
472 case ir_binop_logic_or:
473 emit(OR(this->result, op[0], op[1]));
474 break;
475
476 case ir_binop_logic_and:
477 emit(AND(this->result, op[0], op[1]));
478 break;
479
480 case ir_binop_dot:
481 case ir_unop_any:
482 assert(!"not reached: should be handled by brw_fs_channel_expressions");
483 break;
484
485 case ir_unop_noise:
486 assert(!"not reached: should be handled by lower_noise");
487 break;
488
489 case ir_quadop_vector:
490 assert(!"not reached: should be handled by lower_quadop_vector");
491 break;
492
493 case ir_unop_sqrt:
494 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
495 break;
496
497 case ir_unop_rsq:
498 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
499 break;
500
501 case ir_unop_bitcast_i2f:
502 case ir_unop_bitcast_u2f:
503 op[0].type = BRW_REGISTER_TYPE_F;
504 this->result = op[0];
505 break;
506 case ir_unop_i2u:
507 case ir_unop_bitcast_f2u:
508 op[0].type = BRW_REGISTER_TYPE_UD;
509 this->result = op[0];
510 break;
511 case ir_unop_u2i:
512 case ir_unop_bitcast_f2i:
513 op[0].type = BRW_REGISTER_TYPE_D;
514 this->result = op[0];
515 break;
516 case ir_unop_i2f:
517 case ir_unop_u2f:
518 case ir_unop_f2i:
519 case ir_unop_f2u:
520 emit(MOV(this->result, op[0]));
521 break;
522
523 case ir_unop_b2i:
524 inst = emit(AND(this->result, op[0], fs_reg(1)));
525 break;
526 case ir_unop_b2f:
527 temp = fs_reg(this, glsl_type::int_type);
528 emit(AND(temp, op[0], fs_reg(1)));
529 emit(MOV(this->result, temp));
530 break;
531
532 case ir_unop_f2b:
533 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
534 break;
535 case ir_unop_i2b:
536 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
537 break;
538
539 case ir_unop_trunc:
540 emit(RNDZ(this->result, op[0]));
541 break;
542 case ir_unop_ceil:
543 op[0].negate = !op[0].negate;
544 inst = emit(RNDD(this->result, op[0]));
545 this->result.negate = true;
546 break;
547 case ir_unop_floor:
548 inst = emit(RNDD(this->result, op[0]));
549 break;
550 case ir_unop_fract:
551 inst = emit(FRC(this->result, op[0]));
552 break;
553 case ir_unop_round_even:
554 emit(RNDE(this->result, op[0]));
555 break;
556
557 case ir_binop_min:
558 case ir_binop_max:
559 resolve_ud_negate(&op[0]);
560 resolve_ud_negate(&op[1]);
561 emit_minmax(ir->operation == ir_binop_min ?
562 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
563 this->result, op[0], op[1]);
564 break;
565 case ir_unop_pack_snorm_2x16:
566 case ir_unop_pack_snorm_4x8:
567 case ir_unop_pack_unorm_2x16:
568 case ir_unop_pack_unorm_4x8:
569 case ir_unop_unpack_snorm_2x16:
570 case ir_unop_unpack_snorm_4x8:
571 case ir_unop_unpack_unorm_2x16:
572 case ir_unop_unpack_unorm_4x8:
573 case ir_unop_unpack_half_2x16:
574 case ir_unop_pack_half_2x16:
575 assert(!"not reached: should be handled by lower_packing_builtins");
576 break;
577 case ir_unop_unpack_half_2x16_split_x:
578 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
579 break;
580 case ir_unop_unpack_half_2x16_split_y:
581 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
582 break;
583 case ir_binop_pow:
584 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
585 break;
586
587 case ir_unop_bit_not:
588 inst = emit(NOT(this->result, op[0]));
589 break;
590 case ir_binop_bit_and:
591 inst = emit(AND(this->result, op[0], op[1]));
592 break;
593 case ir_binop_bit_xor:
594 inst = emit(XOR(this->result, op[0], op[1]));
595 break;
596 case ir_binop_bit_or:
597 inst = emit(OR(this->result, op[0], op[1]));
598 break;
599
600 case ir_binop_lshift:
601 inst = emit(SHL(this->result, op[0], op[1]));
602 break;
603
604 case ir_binop_rshift:
605 if (ir->type->base_type == GLSL_TYPE_INT)
606 inst = emit(ASR(this->result, op[0], op[1]));
607 else
608 inst = emit(SHR(this->result, op[0], op[1]));
609 break;
610 case ir_binop_pack_half_2x16_split:
611 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
612 break;
613 case ir_binop_ubo_load: {
614 /* This IR node takes a constant uniform block and a constant or
615 * variable byte offset within the block and loads a vector from that.
616 */
617 ir_constant *uniform_block = ir->operands[0]->as_constant();
618 ir_constant *const_offset = ir->operands[1]->as_constant();
619 fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
620 if (const_offset) {
621 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
622 packed_consts.type = result.type;
623
624 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
625 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
626 packed_consts, surf_index, const_offset_reg));
627
628 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
629 for (int i = 0; i < ir->type->vector_elements; i++) {
630 /* UBO bools are any nonzero value. We consider bools to be
631 * values with the low bit set to 1. Convert them using CMP.
632 */
633 if (ir->type->base_type == GLSL_TYPE_BOOL) {
634 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
635 } else {
636 emit(MOV(result, packed_consts));
637 }
638
639 packed_consts.smear++;
640 result.reg_offset++;
641
642 /* The std140 packing rules don't allow vectors to cross 16-byte
643 * boundaries, and a reg is 32 bytes.
644 */
645 assert(packed_consts.smear < 8);
646 }
647 } else {
648 /* Turn the byte offset into a dword offset. */
649 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
650 emit(SHR(base_offset, op[1], fs_reg(2)));
651
652 for (int i = 0; i < ir->type->vector_elements; i++) {
653 fs_reg offset = fs_reg(this, glsl_type::int_type);
654 emit(ADD(offset, base_offset, fs_reg(i)));
655 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index, offset));
656
657 if (ir->type->base_type == GLSL_TYPE_BOOL)
658 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
659
660 result.reg_offset++;
661 }
662 }
663
664 result.reg_offset = 0;
665 break;
666 }
667
668 case ir_triop_lrp:
669 emit_lrp(this->result, op[0], op[1], op[2]);
670 break;
671 }
672 }
673
674 void
675 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
676 const glsl_type *type, bool predicated)
677 {
678 switch (type->base_type) {
679 case GLSL_TYPE_FLOAT:
680 case GLSL_TYPE_UINT:
681 case GLSL_TYPE_INT:
682 case GLSL_TYPE_BOOL:
683 for (unsigned int i = 0; i < type->components(); i++) {
684 l.type = brw_type_for_base_type(type);
685 r.type = brw_type_for_base_type(type);
686
687 if (predicated || !l.equals(r)) {
688 fs_inst *inst = emit(MOV(l, r));
689 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
690 }
691
692 l.reg_offset++;
693 r.reg_offset++;
694 }
695 break;
696 case GLSL_TYPE_ARRAY:
697 for (unsigned int i = 0; i < type->length; i++) {
698 emit_assignment_writes(l, r, type->fields.array, predicated);
699 }
700 break;
701
702 case GLSL_TYPE_STRUCT:
703 for (unsigned int i = 0; i < type->length; i++) {
704 emit_assignment_writes(l, r, type->fields.structure[i].type,
705 predicated);
706 }
707 break;
708
709 case GLSL_TYPE_SAMPLER:
710 break;
711
712 case GLSL_TYPE_VOID:
713 case GLSL_TYPE_ERROR:
714 case GLSL_TYPE_INTERFACE:
715 assert(!"not reached");
716 break;
717 }
718 }
719
720 /* If the RHS processing resulted in an instruction generating a
721 * temporary value, and it would be easy to rewrite the instruction to
722 * generate its result right into the LHS instead, do so. This ends
723 * up reliably removing instructions where it can be tricky to do so
724 * later without real UD chain information.
725 */
726 bool
727 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
728 fs_reg dst,
729 fs_reg src,
730 fs_inst *pre_rhs_inst,
731 fs_inst *last_rhs_inst)
732 {
733 /* Only attempt if we're doing a direct assignment. */
734 if (ir->condition ||
735 !(ir->lhs->type->is_scalar() ||
736 (ir->lhs->type->is_vector() &&
737 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
738 return false;
739
740 /* Make sure the last instruction generated our source reg. */
741 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
742 last_rhs_inst,
743 src);
744 if (!modify)
745 return false;
746
747 /* If last_rhs_inst wrote a different number of components than our LHS,
748 * we can't safely rewrite it.
749 */
750 if (virtual_grf_sizes[dst.reg] != modify->regs_written())
751 return false;
752
753 /* Success! Rewrite the instruction. */
754 modify->dst = dst;
755
756 return true;
757 }
758
759 void
760 fs_visitor::visit(ir_assignment *ir)
761 {
762 fs_reg l, r;
763 fs_inst *inst;
764
765 /* FINISHME: arrays on the lhs */
766 ir->lhs->accept(this);
767 l = this->result;
768
769 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
770
771 ir->rhs->accept(this);
772 r = this->result;
773
774 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
775
776 assert(l.file != BAD_FILE);
777 assert(r.file != BAD_FILE);
778
779 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
780 return;
781
782 if (ir->condition) {
783 emit_bool_to_cond_code(ir->condition);
784 }
785
786 if (ir->lhs->type->is_scalar() ||
787 ir->lhs->type->is_vector()) {
788 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
789 if (ir->write_mask & (1 << i)) {
790 inst = emit(MOV(l, r));
791 if (ir->condition)
792 inst->predicate = BRW_PREDICATE_NORMAL;
793 r.reg_offset++;
794 }
795 l.reg_offset++;
796 }
797 } else {
798 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
799 }
800 }
801
802 fs_inst *
803 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
804 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
805 {
806 int mlen;
807 int base_mrf = 1;
808 bool simd16 = false;
809 fs_reg orig_dst;
810
811 /* g0 header. */
812 mlen = 1;
813
814 if (ir->shadow_comparitor) {
815 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
816 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
817 coordinate.reg_offset++;
818 }
819 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
820 mlen += 3;
821
822 if (ir->op == ir_tex) {
823 /* There's no plain shadow compare message, so we use shadow
824 * compare with a bias of 0.0.
825 */
826 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
827 mlen++;
828 } else if (ir->op == ir_txb || ir->op == ir_txl) {
829 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
830 mlen++;
831 } else {
832 assert(!"Should not get here.");
833 }
834
835 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
836 mlen++;
837 } else if (ir->op == ir_tex) {
838 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
839 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
840 coordinate.reg_offset++;
841 }
842 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
843 mlen += 3;
844 } else if (ir->op == ir_txd) {
845 fs_reg &dPdx = lod;
846
847 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
848 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
849 coordinate.reg_offset++;
850 }
851 /* the slots for u and v are always present, but r is optional */
852 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
853
854 /* P = u, v, r
855 * dPdx = dudx, dvdx, drdx
856 * dPdy = dudy, dvdy, drdy
857 *
858 * 1-arg: Does not exist.
859 *
860 * 2-arg: dudx dvdx dudy dvdy
861 * dPdx.x dPdx.y dPdy.x dPdy.y
862 * m4 m5 m6 m7
863 *
864 * 3-arg: dudx dvdx drdx dudy dvdy drdy
865 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
866 * m5 m6 m7 m8 m9 m10
867 */
868 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
869 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
870 dPdx.reg_offset++;
871 }
872 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
873
874 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
875 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
876 dPdy.reg_offset++;
877 }
878 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
879 } else if (ir->op == ir_txs) {
880 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
881 simd16 = true;
882 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
883 mlen += 2;
884 } else {
885 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
886 * instructions. We'll need to do SIMD16 here.
887 */
888 simd16 = true;
889 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
890
891 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
892 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
893 coordinate));
894 coordinate.reg_offset++;
895 }
896
897 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
898 * be necessary for TXF (ld), but seems wise to do for all messages.
899 */
900 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
901 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
902 }
903
904 /* lod/bias appears after u/v/r. */
905 mlen += 6;
906
907 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
908 mlen++;
909
910 /* The unused upper half. */
911 mlen++;
912 }
913
914 if (simd16) {
915 /* Now, since we're doing simd16, the return is 2 interleaved
916 * vec4s where the odd-indexed ones are junk. We'll need to move
917 * this weirdness around to the expected layout.
918 */
919 orig_dst = dst;
920 const glsl_type *vec_type =
921 glsl_type::get_instance(ir->type->base_type, 4, 1);
922 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
923 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
924 : BRW_REGISTER_TYPE_F;
925 }
926
927 fs_inst *inst = NULL;
928 switch (ir->op) {
929 case ir_tex:
930 inst = emit(SHADER_OPCODE_TEX, dst);
931 break;
932 case ir_txb:
933 inst = emit(FS_OPCODE_TXB, dst);
934 break;
935 case ir_txl:
936 inst = emit(SHADER_OPCODE_TXL, dst);
937 break;
938 case ir_txd:
939 inst = emit(SHADER_OPCODE_TXD, dst);
940 break;
941 case ir_txs:
942 inst = emit(SHADER_OPCODE_TXS, dst);
943 break;
944 case ir_txf:
945 inst = emit(SHADER_OPCODE_TXF, dst);
946 break;
947 default:
948 fail("unrecognized texture opcode");
949 }
950 inst->base_mrf = base_mrf;
951 inst->mlen = mlen;
952 inst->header_present = true;
953
954 if (simd16) {
955 for (int i = 0; i < 4; i++) {
956 emit(MOV(orig_dst, dst));
957 orig_dst.reg_offset++;
958 dst.reg_offset += 2;
959 }
960 }
961
962 return inst;
963 }
964
965 /* gen5's sampler has slots for u, v, r, array index, then optional
966 * parameters like shadow comparitor or LOD bias. If optional
967 * parameters aren't present, those base slots are optional and don't
968 * need to be included in the message.
969 *
970 * We don't fill in the unnecessary slots regardless, which may look
971 * surprising in the disassembly.
972 */
973 fs_inst *
974 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
975 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
976 fs_reg sample_index)
977 {
978 int mlen = 0;
979 int base_mrf = 2;
980 int reg_width = dispatch_width / 8;
981 bool header_present = false;
982 const int vector_elements =
983 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
984
985 if (ir->offset != NULL && ir->op == ir_txf) {
986 /* It appears that the ld instruction used for txf does its
987 * address bounds check before adding in the offset. To work
988 * around this, just add the integer offset to the integer texel
989 * coordinate, and don't put the offset in the header.
990 */
991 ir_constant *offset = ir->offset->as_constant();
992 for (int i = 0; i < vector_elements; i++) {
993 emit(ADD(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
994 coordinate,
995 offset->value.i[i]));
996 coordinate.reg_offset++;
997 }
998 } else {
999 if (ir->offset) {
1000 /* The offsets set up by the ir_texture visitor are in the
1001 * m1 header, so we can't go headerless.
1002 */
1003 header_present = true;
1004 mlen++;
1005 base_mrf--;
1006 }
1007
1008 for (int i = 0; i < vector_elements; i++) {
1009 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1010 coordinate));
1011 coordinate.reg_offset++;
1012 }
1013 }
1014 mlen += vector_elements * reg_width;
1015
1016 if (ir->shadow_comparitor) {
1017 mlen = MAX2(mlen, header_present + 4 * reg_width);
1018
1019 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1020 mlen += reg_width;
1021 }
1022
1023 fs_inst *inst = NULL;
1024 switch (ir->op) {
1025 case ir_tex:
1026 inst = emit(SHADER_OPCODE_TEX, dst);
1027 break;
1028 case ir_txb:
1029 mlen = MAX2(mlen, header_present + 4 * reg_width);
1030 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1031 mlen += reg_width;
1032
1033 inst = emit(FS_OPCODE_TXB, dst);
1034 break;
1035 case ir_txl:
1036 mlen = MAX2(mlen, header_present + 4 * reg_width);
1037 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1038 mlen += reg_width;
1039
1040 inst = emit(SHADER_OPCODE_TXL, dst);
1041 break;
1042 case ir_txd: {
1043 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1044
1045 /**
1046 * P = u, v, r
1047 * dPdx = dudx, dvdx, drdx
1048 * dPdy = dudy, dvdy, drdy
1049 *
1050 * Load up these values:
1051 * - dudx dudy dvdx dvdy drdx drdy
1052 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1053 */
1054 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1055 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1056 lod.reg_offset++;
1057 mlen += reg_width;
1058
1059 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1060 lod2.reg_offset++;
1061 mlen += reg_width;
1062 }
1063
1064 inst = emit(SHADER_OPCODE_TXD, dst);
1065 break;
1066 }
1067 case ir_txs:
1068 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1069 mlen += reg_width;
1070 inst = emit(SHADER_OPCODE_TXS, dst);
1071 break;
1072 case ir_txf:
1073 mlen = header_present + 4 * reg_width;
1074 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1075 inst = emit(SHADER_OPCODE_TXF, dst);
1076 break;
1077 case ir_txf_ms:
1078 mlen = header_present + 4 * reg_width;
1079
1080 /* lod */
1081 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1082 /* sample index */
1083 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1084 mlen += reg_width;
1085 inst = emit(SHADER_OPCODE_TXF_MS, dst);
1086 break;
1087 }
1088 inst->base_mrf = base_mrf;
1089 inst->mlen = mlen;
1090 inst->header_present = header_present;
1091
1092 if (mlen > 11) {
1093 fail("Message length >11 disallowed by hardware\n");
1094 }
1095
1096 return inst;
1097 }
1098
1099 fs_inst *
1100 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1101 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1102 fs_reg sample_index)
1103 {
1104 int mlen = 0;
1105 int base_mrf = 2;
1106 int reg_width = dispatch_width / 8;
1107 bool header_present = false;
1108 int offsets[3];
1109
1110 if (ir->offset && ir->op != ir_txf) {
1111 /* The offsets set up by the ir_texture visitor are in the
1112 * m1 header, so we can't go headerless.
1113 */
1114 header_present = true;
1115 mlen++;
1116 base_mrf--;
1117 }
1118
1119 if (ir->shadow_comparitor) {
1120 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1121 mlen += reg_width;
1122 }
1123
1124 /* Set up the LOD info */
1125 switch (ir->op) {
1126 case ir_tex:
1127 break;
1128 case ir_txb:
1129 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1130 mlen += reg_width;
1131 break;
1132 case ir_txl:
1133 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1134 mlen += reg_width;
1135 break;
1136 case ir_txd: {
1137 if (dispatch_width == 16)
1138 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1139
1140 /* Load dPdx and the coordinate together:
1141 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1142 */
1143 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1144 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1145 coordinate.reg_offset++;
1146 mlen += reg_width;
1147
1148 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1149 * only derivatives for (u, v, r).
1150 */
1151 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1152 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1153 lod.reg_offset++;
1154 mlen += reg_width;
1155
1156 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1157 lod2.reg_offset++;
1158 mlen += reg_width;
1159 }
1160 }
1161 break;
1162 }
1163 case ir_txs:
1164 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1165 mlen += reg_width;
1166 break;
1167 case ir_txf:
1168 /* It appears that the ld instruction used for txf does its
1169 * address bounds check before adding in the offset. To work
1170 * around this, just add the integer offset to the integer texel
1171 * coordinate, and don't put the offset in the header.
1172 */
1173 if (ir->offset) {
1174 ir_constant *offset = ir->offset->as_constant();
1175 offsets[0] = offset->value.i[0];
1176 offsets[1] = offset->value.i[1];
1177 offsets[2] = offset->value.i[2];
1178 } else {
1179 memset(offsets, 0, sizeof(offsets));
1180 }
1181
1182 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1183 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1184 coordinate, offsets[0]));
1185 coordinate.reg_offset++;
1186 mlen += reg_width;
1187
1188 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod));
1189 mlen += reg_width;
1190
1191 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1192 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1193 coordinate, offsets[i]));
1194 coordinate.reg_offset++;
1195 mlen += reg_width;
1196 }
1197 break;
1198 case ir_txf_ms:
1199 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1200 mlen += reg_width;
1201
1202 /* constant zero MCS; we arrange to never actually have a compressed
1203 * multisample surface here for now. TODO: issue ld_mcs to get this first,
1204 * if we ever support texturing from compressed multisample surfaces
1205 */
1206 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1207 mlen += reg_width;
1208
1209 /* there is no offsetting for this message; just copy in the integer
1210 * texture coordinates
1211 */
1212 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1213 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1214 coordinate));
1215 coordinate.reg_offset++;
1216 mlen += reg_width;
1217 }
1218 break;
1219 }
1220
1221 /* Set up the coordinate (except for cases where it was done above) */
1222 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf && ir->op != ir_txf_ms) {
1223 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1224 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1225 coordinate.reg_offset++;
1226 mlen += reg_width;
1227 }
1228 }
1229
1230 /* Generate the SEND */
1231 fs_inst *inst = NULL;
1232 switch (ir->op) {
1233 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1234 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1235 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1236 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1237 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1238 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst); break;
1239 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1240 }
1241 inst->base_mrf = base_mrf;
1242 inst->mlen = mlen;
1243 inst->header_present = header_present;
1244
1245 if (mlen > 11) {
1246 fail("Message length >11 disallowed by hardware\n");
1247 }
1248
1249 return inst;
1250 }
1251
1252 fs_reg
1253 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1254 bool is_rect, int sampler, int texunit)
1255 {
1256 fs_inst *inst = NULL;
1257 bool needs_gl_clamp = true;
1258 fs_reg scale_x, scale_y;
1259
1260 /* The 965 requires the EU to do the normalization of GL rectangle
1261 * texture coordinates. We use the program parameter state
1262 * tracking to get the scaling factor.
1263 */
1264 if (is_rect &&
1265 (intel->gen < 6 ||
1266 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1267 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1268 struct gl_program_parameter_list *params = fp->Base.Parameters;
1269 int tokens[STATE_LENGTH] = {
1270 STATE_INTERNAL,
1271 STATE_TEXRECT_SCALE,
1272 texunit,
1273 0,
1274 0
1275 };
1276
1277 if (dispatch_width == 16) {
1278 fail("rectangle scale uniform setup not supported on 16-wide\n");
1279 return coordinate;
1280 }
1281
1282 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1283 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1284
1285 GLuint index = _mesa_add_state_reference(params,
1286 (gl_state_index *)tokens);
1287 c->prog_data.param[c->prog_data.nr_params++] =
1288 &fp->Base.Parameters->ParameterValues[index][0].f;
1289 c->prog_data.param[c->prog_data.nr_params++] =
1290 &fp->Base.Parameters->ParameterValues[index][1].f;
1291 }
1292
1293 /* The 965 requires the EU to do the normalization of GL rectangle
1294 * texture coordinates. We use the program parameter state
1295 * tracking to get the scaling factor.
1296 */
1297 if (intel->gen < 6 && is_rect) {
1298 fs_reg dst = fs_reg(this, ir->coordinate->type);
1299 fs_reg src = coordinate;
1300 coordinate = dst;
1301
1302 emit(MUL(dst, src, scale_x));
1303 dst.reg_offset++;
1304 src.reg_offset++;
1305 emit(MUL(dst, src, scale_y));
1306 } else if (is_rect) {
1307 /* On gen6+, the sampler handles the rectangle coordinates
1308 * natively, without needing rescaling. But that means we have
1309 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1310 * not [0, 1] like the default case below.
1311 */
1312 needs_gl_clamp = false;
1313
1314 for (int i = 0; i < 2; i++) {
1315 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1316 fs_reg chan = coordinate;
1317 chan.reg_offset += i;
1318
1319 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1320 inst->conditional_mod = BRW_CONDITIONAL_G;
1321
1322 /* Our parameter comes in as 1.0/width or 1.0/height,
1323 * because that's what people normally want for doing
1324 * texture rectangle handling. We need width or height
1325 * for clamping, but we don't care enough to make a new
1326 * parameter type, so just invert back.
1327 */
1328 fs_reg limit = fs_reg(this, glsl_type::float_type);
1329 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1330 emit(SHADER_OPCODE_RCP, limit, limit);
1331
1332 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1333 inst->conditional_mod = BRW_CONDITIONAL_L;
1334 }
1335 }
1336 }
1337
1338 if (ir->coordinate && needs_gl_clamp) {
1339 for (unsigned int i = 0;
1340 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1341 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1342 fs_reg chan = coordinate;
1343 chan.reg_offset += i;
1344
1345 fs_inst *inst = emit(MOV(chan, chan));
1346 inst->saturate = true;
1347 }
1348 }
1349 }
1350 return coordinate;
1351 }
1352
1353 void
1354 fs_visitor::visit(ir_texture *ir)
1355 {
1356 fs_inst *inst = NULL;
1357
1358 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1359 /* FINISHME: We're failing to recompile our programs when the sampler is
1360 * updated. This only matters for the texture rectangle scale parameters
1361 * (pre-gen6, or gen6+ with GL_CLAMP).
1362 */
1363 int texunit = fp->Base.SamplerUnits[sampler];
1364
1365 /* Should be lowered by do_lower_texture_projection */
1366 assert(!ir->projector);
1367
1368 /* Generate code to compute all the subexpression trees. This has to be
1369 * done before loading any values into MRFs for the sampler message since
1370 * generating these values may involve SEND messages that need the MRFs.
1371 */
1372 fs_reg coordinate;
1373 if (ir->coordinate) {
1374 ir->coordinate->accept(this);
1375
1376 coordinate = rescale_texcoord(ir, this->result,
1377 ir->sampler->type->sampler_dimensionality ==
1378 GLSL_SAMPLER_DIM_RECT,
1379 sampler, texunit);
1380 }
1381
1382 fs_reg shadow_comparitor;
1383 if (ir->shadow_comparitor) {
1384 ir->shadow_comparitor->accept(this);
1385 shadow_comparitor = this->result;
1386 }
1387
1388 fs_reg lod, lod2, sample_index;
1389 switch (ir->op) {
1390 case ir_tex:
1391 break;
1392 case ir_txb:
1393 ir->lod_info.bias->accept(this);
1394 lod = this->result;
1395 break;
1396 case ir_txd:
1397 ir->lod_info.grad.dPdx->accept(this);
1398 lod = this->result;
1399
1400 ir->lod_info.grad.dPdy->accept(this);
1401 lod2 = this->result;
1402 break;
1403 case ir_txf:
1404 case ir_txl:
1405 case ir_txs:
1406 ir->lod_info.lod->accept(this);
1407 lod = this->result;
1408 break;
1409 case ir_txf_ms:
1410 ir->lod_info.sample_index->accept(this);
1411 sample_index = this->result;
1412 break;
1413 };
1414
1415 /* Writemasking doesn't eliminate channels on SIMD8 texture
1416 * samples, so don't worry about them.
1417 */
1418 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1419
1420 if (intel->gen >= 7) {
1421 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1422 lod, lod2, sample_index);
1423 } else if (intel->gen >= 5) {
1424 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1425 lod, lod2, sample_index);
1426 } else {
1427 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1428 lod, lod2);
1429 }
1430
1431 /* The header is set up by generate_tex() when necessary. */
1432 inst->src[0] = reg_undef;
1433
1434 if (ir->offset != NULL && ir->op != ir_txf)
1435 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1436
1437 inst->sampler = sampler;
1438
1439 if (ir->shadow_comparitor)
1440 inst->shadow_compare = true;
1441
1442 /* fixup #layers for cube map arrays */
1443 if (ir->op == ir_txs) {
1444 glsl_type const *type = ir->sampler->type;
1445 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1446 type->sampler_array) {
1447 fs_reg depth = dst;
1448 depth.reg_offset = 2;
1449 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1450 }
1451 }
1452
1453 swizzle_result(ir, dst, sampler);
1454 }
1455
1456 /**
1457 * Swizzle the result of a texture result. This is necessary for
1458 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1459 */
1460 void
1461 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1462 {
1463 this->result = orig_val;
1464
1465 if (ir->op == ir_txs)
1466 return;
1467
1468 if (ir->type == glsl_type::float_type) {
1469 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1470 assert(ir->sampler->type->sampler_shadow);
1471 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1472 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1473
1474 for (int i = 0; i < 4; i++) {
1475 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1476 fs_reg l = swizzled_result;
1477 l.reg_offset += i;
1478
1479 if (swiz == SWIZZLE_ZERO) {
1480 emit(MOV(l, fs_reg(0.0f)));
1481 } else if (swiz == SWIZZLE_ONE) {
1482 emit(MOV(l, fs_reg(1.0f)));
1483 } else {
1484 fs_reg r = orig_val;
1485 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1486 emit(MOV(l, r));
1487 }
1488 }
1489 this->result = swizzled_result;
1490 }
1491 }
1492
1493 void
1494 fs_visitor::visit(ir_swizzle *ir)
1495 {
1496 ir->val->accept(this);
1497 fs_reg val = this->result;
1498
1499 if (ir->type->vector_elements == 1) {
1500 this->result.reg_offset += ir->mask.x;
1501 return;
1502 }
1503
1504 fs_reg result = fs_reg(this, ir->type);
1505 this->result = result;
1506
1507 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1508 fs_reg channel = val;
1509 int swiz = 0;
1510
1511 switch (i) {
1512 case 0:
1513 swiz = ir->mask.x;
1514 break;
1515 case 1:
1516 swiz = ir->mask.y;
1517 break;
1518 case 2:
1519 swiz = ir->mask.z;
1520 break;
1521 case 3:
1522 swiz = ir->mask.w;
1523 break;
1524 }
1525
1526 channel.reg_offset += swiz;
1527 emit(MOV(result, channel));
1528 result.reg_offset++;
1529 }
1530 }
1531
1532 void
1533 fs_visitor::visit(ir_discard *ir)
1534 {
1535 assert(ir->condition == NULL); /* FINISHME */
1536
1537 /* We track our discarded pixels in f0.1. By predicating on it, we can
1538 * update just the flag bits that aren't yet discarded. By emitting a
1539 * CMP of g0 != g0, all our currently executing channels will get turned
1540 * off.
1541 */
1542 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1543 BRW_REGISTER_TYPE_UW));
1544 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1545 BRW_CONDITIONAL_NZ));
1546 cmp->predicate = BRW_PREDICATE_NORMAL;
1547 cmp->flag_subreg = 1;
1548
1549 if (intel->gen >= 6) {
1550 /* For performance, after a discard, jump to the end of the shader.
1551 * However, many people will do foliage by discarding based on a
1552 * texture's alpha mask, and then continue on to texture with the
1553 * remaining pixels. To avoid trashing the derivatives for those
1554 * texture samples, we'll only jump if all of the pixels in the subspan
1555 * have been discarded.
1556 */
1557 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1558 discard_jump->flag_subreg = 1;
1559 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1560 discard_jump->predicate_inverse = true;
1561 }
1562 }
1563
1564 void
1565 fs_visitor::visit(ir_constant *ir)
1566 {
1567 /* Set this->result to reg at the bottom of the function because some code
1568 * paths will cause this visitor to be applied to other fields. This will
1569 * cause the value stored in this->result to be modified.
1570 *
1571 * Make reg constant so that it doesn't get accidentally modified along the
1572 * way. Yes, I actually had this problem. :(
1573 */
1574 const fs_reg reg(this, ir->type);
1575 fs_reg dst_reg = reg;
1576
1577 if (ir->type->is_array()) {
1578 const unsigned size = type_size(ir->type->fields.array);
1579
1580 for (unsigned i = 0; i < ir->type->length; i++) {
1581 ir->array_elements[i]->accept(this);
1582 fs_reg src_reg = this->result;
1583
1584 dst_reg.type = src_reg.type;
1585 for (unsigned j = 0; j < size; j++) {
1586 emit(MOV(dst_reg, src_reg));
1587 src_reg.reg_offset++;
1588 dst_reg.reg_offset++;
1589 }
1590 }
1591 } else if (ir->type->is_record()) {
1592 foreach_list(node, &ir->components) {
1593 ir_constant *const field = (ir_constant *) node;
1594 const unsigned size = type_size(field->type);
1595
1596 field->accept(this);
1597 fs_reg src_reg = this->result;
1598
1599 dst_reg.type = src_reg.type;
1600 for (unsigned j = 0; j < size; j++) {
1601 emit(MOV(dst_reg, src_reg));
1602 src_reg.reg_offset++;
1603 dst_reg.reg_offset++;
1604 }
1605 }
1606 } else {
1607 const unsigned size = type_size(ir->type);
1608
1609 for (unsigned i = 0; i < size; i++) {
1610 switch (ir->type->base_type) {
1611 case GLSL_TYPE_FLOAT:
1612 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1613 break;
1614 case GLSL_TYPE_UINT:
1615 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1616 break;
1617 case GLSL_TYPE_INT:
1618 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1619 break;
1620 case GLSL_TYPE_BOOL:
1621 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1622 break;
1623 default:
1624 assert(!"Non-float/uint/int/bool constant");
1625 }
1626 dst_reg.reg_offset++;
1627 }
1628 }
1629
1630 this->result = reg;
1631 }
1632
1633 void
1634 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1635 {
1636 ir_expression *expr = ir->as_expression();
1637
1638 if (expr) {
1639 fs_reg op[2];
1640 fs_inst *inst;
1641
1642 assert(expr->get_num_operands() <= 2);
1643 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1644 assert(expr->operands[i]->type->is_scalar());
1645
1646 expr->operands[i]->accept(this);
1647 op[i] = this->result;
1648
1649 resolve_ud_negate(&op[i]);
1650 }
1651
1652 switch (expr->operation) {
1653 case ir_unop_logic_not:
1654 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1655 inst->conditional_mod = BRW_CONDITIONAL_Z;
1656 break;
1657
1658 case ir_binop_logic_xor:
1659 case ir_binop_logic_or:
1660 case ir_binop_logic_and:
1661 goto out;
1662
1663 case ir_unop_f2b:
1664 if (intel->gen >= 6) {
1665 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1666 } else {
1667 inst = emit(MOV(reg_null_f, op[0]));
1668 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1669 }
1670 break;
1671
1672 case ir_unop_i2b:
1673 if (intel->gen >= 6) {
1674 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1675 } else {
1676 inst = emit(MOV(reg_null_d, op[0]));
1677 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1678 }
1679 break;
1680
1681 case ir_binop_greater:
1682 case ir_binop_gequal:
1683 case ir_binop_less:
1684 case ir_binop_lequal:
1685 case ir_binop_equal:
1686 case ir_binop_all_equal:
1687 case ir_binop_nequal:
1688 case ir_binop_any_nequal:
1689 resolve_bool_comparison(expr->operands[0], &op[0]);
1690 resolve_bool_comparison(expr->operands[1], &op[1]);
1691
1692 emit(CMP(reg_null_d, op[0], op[1],
1693 brw_conditional_for_comparison(expr->operation)));
1694 break;
1695
1696 default:
1697 assert(!"not reached");
1698 fail("bad cond code\n");
1699 break;
1700 }
1701 return;
1702 }
1703
1704 out:
1705 ir->accept(this);
1706
1707 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1708 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1709 }
1710
1711 /**
1712 * Emit a gen6 IF statement with the comparison folded into the IF
1713 * instruction.
1714 */
1715 void
1716 fs_visitor::emit_if_gen6(ir_if *ir)
1717 {
1718 ir_expression *expr = ir->condition->as_expression();
1719
1720 if (expr) {
1721 fs_reg op[2];
1722 fs_inst *inst;
1723 fs_reg temp;
1724
1725 assert(expr->get_num_operands() <= 2);
1726 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1727 assert(expr->operands[i]->type->is_scalar());
1728
1729 expr->operands[i]->accept(this);
1730 op[i] = this->result;
1731 }
1732
1733 switch (expr->operation) {
1734 case ir_unop_logic_not:
1735 case ir_binop_logic_xor:
1736 case ir_binop_logic_or:
1737 case ir_binop_logic_and:
1738 /* For operations on bool arguments, only the low bit of the bool is
1739 * valid, and the others are undefined. Fall back to the condition
1740 * code path.
1741 */
1742 break;
1743
1744 case ir_unop_f2b:
1745 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1746 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1747 return;
1748
1749 case ir_unop_i2b:
1750 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1751 return;
1752
1753 case ir_binop_greater:
1754 case ir_binop_gequal:
1755 case ir_binop_less:
1756 case ir_binop_lequal:
1757 case ir_binop_equal:
1758 case ir_binop_all_equal:
1759 case ir_binop_nequal:
1760 case ir_binop_any_nequal:
1761 resolve_bool_comparison(expr->operands[0], &op[0]);
1762 resolve_bool_comparison(expr->operands[1], &op[1]);
1763
1764 emit(IF(op[0], op[1],
1765 brw_conditional_for_comparison(expr->operation)));
1766 return;
1767 default:
1768 assert(!"not reached");
1769 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1770 fail("bad condition\n");
1771 return;
1772 }
1773 }
1774
1775 emit_bool_to_cond_code(ir->condition);
1776 fs_inst *inst = emit(BRW_OPCODE_IF);
1777 inst->predicate = BRW_PREDICATE_NORMAL;
1778 }
1779
1780 void
1781 fs_visitor::visit(ir_if *ir)
1782 {
1783 if (intel->gen < 6 && dispatch_width == 16) {
1784 fail("Can't support (non-uniform) control flow on 16-wide\n");
1785 }
1786
1787 /* Don't point the annotation at the if statement, because then it plus
1788 * the then and else blocks get printed.
1789 */
1790 this->base_ir = ir->condition;
1791
1792 if (intel->gen == 6) {
1793 emit_if_gen6(ir);
1794 } else {
1795 emit_bool_to_cond_code(ir->condition);
1796
1797 emit(IF(BRW_PREDICATE_NORMAL));
1798 }
1799
1800 foreach_list(node, &ir->then_instructions) {
1801 ir_instruction *ir = (ir_instruction *)node;
1802 this->base_ir = ir;
1803
1804 ir->accept(this);
1805 }
1806
1807 if (!ir->else_instructions.is_empty()) {
1808 emit(BRW_OPCODE_ELSE);
1809
1810 foreach_list(node, &ir->else_instructions) {
1811 ir_instruction *ir = (ir_instruction *)node;
1812 this->base_ir = ir;
1813
1814 ir->accept(this);
1815 }
1816 }
1817
1818 emit(BRW_OPCODE_ENDIF);
1819 }
1820
1821 void
1822 fs_visitor::visit(ir_loop *ir)
1823 {
1824 fs_reg counter = reg_undef;
1825
1826 if (intel->gen < 6 && dispatch_width == 16) {
1827 fail("Can't support (non-uniform) control flow on 16-wide\n");
1828 }
1829
1830 if (ir->counter) {
1831 this->base_ir = ir->counter;
1832 ir->counter->accept(this);
1833 counter = *(variable_storage(ir->counter));
1834
1835 if (ir->from) {
1836 this->base_ir = ir->from;
1837 ir->from->accept(this);
1838
1839 emit(MOV(counter, this->result));
1840 }
1841 }
1842
1843 this->base_ir = NULL;
1844 emit(BRW_OPCODE_DO);
1845
1846 if (ir->to) {
1847 this->base_ir = ir->to;
1848 ir->to->accept(this);
1849
1850 emit(CMP(reg_null_d, counter, this->result,
1851 brw_conditional_for_comparison(ir->cmp)));
1852
1853 fs_inst *inst = emit(BRW_OPCODE_BREAK);
1854 inst->predicate = BRW_PREDICATE_NORMAL;
1855 }
1856
1857 foreach_list(node, &ir->body_instructions) {
1858 ir_instruction *ir = (ir_instruction *)node;
1859
1860 this->base_ir = ir;
1861 ir->accept(this);
1862 }
1863
1864 if (ir->increment) {
1865 this->base_ir = ir->increment;
1866 ir->increment->accept(this);
1867 emit(ADD(counter, counter, this->result));
1868 }
1869
1870 this->base_ir = NULL;
1871 emit(BRW_OPCODE_WHILE);
1872 }
1873
1874 void
1875 fs_visitor::visit(ir_loop_jump *ir)
1876 {
1877 switch (ir->mode) {
1878 case ir_loop_jump::jump_break:
1879 emit(BRW_OPCODE_BREAK);
1880 break;
1881 case ir_loop_jump::jump_continue:
1882 emit(BRW_OPCODE_CONTINUE);
1883 break;
1884 }
1885 }
1886
1887 void
1888 fs_visitor::visit(ir_call *ir)
1889 {
1890 assert(!"FINISHME");
1891 }
1892
1893 void
1894 fs_visitor::visit(ir_return *ir)
1895 {
1896 assert(!"FINISHME");
1897 }
1898
1899 void
1900 fs_visitor::visit(ir_function *ir)
1901 {
1902 /* Ignore function bodies other than main() -- we shouldn't see calls to
1903 * them since they should all be inlined before we get to ir_to_mesa.
1904 */
1905 if (strcmp(ir->name, "main") == 0) {
1906 const ir_function_signature *sig;
1907 exec_list empty;
1908
1909 sig = ir->matching_signature(&empty);
1910
1911 assert(sig);
1912
1913 foreach_list(node, &sig->body) {
1914 ir_instruction *ir = (ir_instruction *)node;
1915 this->base_ir = ir;
1916
1917 ir->accept(this);
1918 }
1919 }
1920 }
1921
1922 void
1923 fs_visitor::visit(ir_function_signature *ir)
1924 {
1925 assert(!"not reached");
1926 (void)ir;
1927 }
1928
1929 fs_inst *
1930 fs_visitor::emit(fs_inst inst)
1931 {
1932 fs_inst *list_inst = new(mem_ctx) fs_inst;
1933 *list_inst = inst;
1934 emit(list_inst);
1935 return list_inst;
1936 }
1937
1938 fs_inst *
1939 fs_visitor::emit(fs_inst *inst)
1940 {
1941 if (force_uncompressed_stack > 0)
1942 inst->force_uncompressed = true;
1943 else if (force_sechalf_stack > 0)
1944 inst->force_sechalf = true;
1945
1946 inst->annotation = this->current_annotation;
1947 inst->ir = this->base_ir;
1948
1949 this->instructions.push_tail(inst);
1950
1951 return inst;
1952 }
1953
1954 void
1955 fs_visitor::emit(exec_list list)
1956 {
1957 foreach_list_safe(node, &list) {
1958 fs_inst *inst = (fs_inst *)node;
1959 inst->remove();
1960 emit(inst);
1961 }
1962 }
1963
1964 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1965 void
1966 fs_visitor::emit_dummy_fs()
1967 {
1968 int reg_width = dispatch_width / 8;
1969
1970 /* Everyone's favorite color. */
1971 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
1972 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
1973 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
1974 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
1975
1976 fs_inst *write;
1977 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1978 write->base_mrf = 2;
1979 write->mlen = 4 * reg_width;
1980 write->eot = true;
1981 }
1982
1983 /* The register location here is relative to the start of the URB
1984 * data. It will get adjusted to be a real location before
1985 * generate_code() time.
1986 */
1987 struct brw_reg
1988 fs_visitor::interp_reg(int location, int channel)
1989 {
1990 int regnr = urb_setup[location] * 2 + channel / 2;
1991 int stride = (channel & 1) * 4;
1992
1993 assert(urb_setup[location] != -1);
1994
1995 return brw_vec1_grf(regnr, stride);
1996 }
1997
1998 /** Emits the interpolation for the varying inputs. */
1999 void
2000 fs_visitor::emit_interpolation_setup_gen4()
2001 {
2002 this->current_annotation = "compute pixel centers";
2003 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2004 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2005 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2006 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2007
2008 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2009 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2010
2011 this->current_annotation = "compute pixel deltas from v0";
2012 if (brw->has_pln) {
2013 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2014 fs_reg(this, glsl_type::vec2_type);
2015 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2016 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2017 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2018 } else {
2019 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2020 fs_reg(this, glsl_type::float_type);
2021 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2022 fs_reg(this, glsl_type::float_type);
2023 }
2024 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2025 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2026 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2027 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2028
2029 this->current_annotation = "compute pos.w and 1/pos.w";
2030 /* Compute wpos.w. It's always in our setup, since it's needed to
2031 * interpolate the other attributes.
2032 */
2033 this->wpos_w = fs_reg(this, glsl_type::float_type);
2034 emit(FS_OPCODE_LINTERP, wpos_w,
2035 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2036 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2037 interp_reg(VARYING_SLOT_POS, 3));
2038 /* Compute the pixel 1/W value from wpos.w. */
2039 this->pixel_w = fs_reg(this, glsl_type::float_type);
2040 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2041 this->current_annotation = NULL;
2042 }
2043
2044 /** Emits the interpolation for the varying inputs. */
2045 void
2046 fs_visitor::emit_interpolation_setup_gen6()
2047 {
2048 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2049
2050 /* If the pixel centers end up used, the setup is the same as for gen4. */
2051 this->current_annotation = "compute pixel centers";
2052 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2053 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2054 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2055 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2056 emit(ADD(int_pixel_x,
2057 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2058 fs_reg(brw_imm_v(0x10101010))));
2059 emit(ADD(int_pixel_y,
2060 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2061 fs_reg(brw_imm_v(0x11001100))));
2062
2063 /* As of gen6, we can no longer mix float and int sources. We have
2064 * to turn the integer pixel centers into floats for their actual
2065 * use.
2066 */
2067 this->pixel_x = fs_reg(this, glsl_type::float_type);
2068 this->pixel_y = fs_reg(this, glsl_type::float_type);
2069 emit(MOV(this->pixel_x, int_pixel_x));
2070 emit(MOV(this->pixel_y, int_pixel_y));
2071
2072 this->current_annotation = "compute pos.w";
2073 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2074 this->wpos_w = fs_reg(this, glsl_type::float_type);
2075 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2076
2077 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2078 uint8_t reg = c->barycentric_coord_reg[i];
2079 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2080 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2081 }
2082
2083 this->current_annotation = NULL;
2084 }
2085
2086 void
2087 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2088 {
2089 int reg_width = dispatch_width / 8;
2090 fs_inst *inst;
2091 fs_reg color = outputs[target];
2092 fs_reg mrf;
2093
2094 /* If there's no color data to be written, skip it. */
2095 if (color.file == BAD_FILE)
2096 return;
2097
2098 color.reg_offset += index;
2099
2100 if (dispatch_width == 8 || intel->gen >= 6) {
2101 /* SIMD8 write looks like:
2102 * m + 0: r0
2103 * m + 1: r1
2104 * m + 2: g0
2105 * m + 3: g1
2106 *
2107 * gen6 SIMD16 DP write looks like:
2108 * m + 0: r0
2109 * m + 1: r1
2110 * m + 2: g0
2111 * m + 3: g1
2112 * m + 4: b0
2113 * m + 5: b1
2114 * m + 6: a0
2115 * m + 7: a1
2116 */
2117 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2118 color.type),
2119 color));
2120 inst->saturate = c->key.clamp_fragment_color;
2121 } else {
2122 /* pre-gen6 SIMD16 single source DP write looks like:
2123 * m + 0: r0
2124 * m + 1: g0
2125 * m + 2: b0
2126 * m + 3: a0
2127 * m + 4: r1
2128 * m + 5: g1
2129 * m + 6: b1
2130 * m + 7: a1
2131 */
2132 if (brw->has_compr4) {
2133 /* By setting the high bit of the MRF register number, we
2134 * indicate that we want COMPR4 mode - instead of doing the
2135 * usual destination + 1 for the second half we get
2136 * destination + 4.
2137 */
2138 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2139 color.type),
2140 color));
2141 inst->saturate = c->key.clamp_fragment_color;
2142 } else {
2143 push_force_uncompressed();
2144 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2145 color));
2146 inst->saturate = c->key.clamp_fragment_color;
2147 pop_force_uncompressed();
2148
2149 push_force_sechalf();
2150 color.sechalf = true;
2151 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2152 color));
2153 inst->saturate = c->key.clamp_fragment_color;
2154 pop_force_sechalf();
2155 color.sechalf = false;
2156 }
2157 }
2158 }
2159
2160 void
2161 fs_visitor::emit_fb_writes()
2162 {
2163 this->current_annotation = "FB write header";
2164 bool header_present = true;
2165 /* We can potentially have a message length of up to 15, so we have to set
2166 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2167 */
2168 int base_mrf = 1;
2169 int nr = base_mrf;
2170 int reg_width = dispatch_width / 8;
2171 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2172 bool src0_alpha_to_render_target = false;
2173
2174 if (dispatch_width == 16 && do_dual_src) {
2175 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2176 do_dual_src = false;
2177 }
2178
2179 /* From the Sandy Bridge PRM, volume 4, page 198:
2180 *
2181 * "Dispatched Pixel Enables. One bit per pixel indicating
2182 * which pixels were originally enabled when the thread was
2183 * dispatched. This field is only required for the end-of-
2184 * thread message and on all dual-source messages."
2185 */
2186 if (intel->gen >= 6 &&
2187 !this->fp->UsesKill &&
2188 !do_dual_src &&
2189 c->key.nr_color_regions == 1) {
2190 header_present = false;
2191 }
2192
2193 if (header_present) {
2194 src0_alpha_to_render_target = intel->gen >= 6 &&
2195 !do_dual_src &&
2196 c->key.nr_color_regions > 1 &&
2197 c->key.sample_alpha_to_coverage;
2198 /* m2, m3 header */
2199 nr += 2;
2200 }
2201
2202 if (c->aa_dest_stencil_reg) {
2203 push_force_uncompressed();
2204 emit(MOV(fs_reg(MRF, nr++),
2205 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2206 pop_force_uncompressed();
2207 }
2208
2209 /* Reserve space for color. It'll be filled in per MRT below. */
2210 int color_mrf = nr;
2211 nr += 4 * reg_width;
2212 if (do_dual_src)
2213 nr += 4;
2214 if (src0_alpha_to_render_target)
2215 nr += reg_width;
2216
2217 if (c->source_depth_to_render_target) {
2218 if (intel->gen == 6 && dispatch_width == 16) {
2219 /* For outputting oDepth on gen6, SIMD8 writes have to be
2220 * used. This would require 8-wide moves of each half to
2221 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2222 * Just bail on doing so for now.
2223 */
2224 fail("Missing support for simd16 depth writes on gen6\n");
2225 }
2226
2227 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2228 /* Hand over gl_FragDepth. */
2229 assert(this->frag_depth.file != BAD_FILE);
2230 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2231 } else {
2232 /* Pass through the payload depth. */
2233 emit(MOV(fs_reg(MRF, nr),
2234 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2235 }
2236 nr += reg_width;
2237 }
2238
2239 if (c->dest_depth_reg) {
2240 emit(MOV(fs_reg(MRF, nr),
2241 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2242 nr += reg_width;
2243 }
2244
2245 if (do_dual_src) {
2246 fs_reg src0 = this->outputs[0];
2247 fs_reg src1 = this->dual_src_output;
2248
2249 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2250 "FB write src0");
2251 for (int i = 0; i < 4; i++) {
2252 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2253 src0.reg_offset++;
2254 inst->saturate = c->key.clamp_fragment_color;
2255 }
2256
2257 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2258 "FB write src1");
2259 for (int i = 0; i < 4; i++) {
2260 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2261 src1));
2262 src1.reg_offset++;
2263 inst->saturate = c->key.clamp_fragment_color;
2264 }
2265
2266 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2267 emit_shader_time_end();
2268
2269 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2270 inst->target = 0;
2271 inst->base_mrf = base_mrf;
2272 inst->mlen = nr - base_mrf;
2273 inst->eot = true;
2274 inst->header_present = header_present;
2275
2276 c->prog_data.dual_src_blend = true;
2277 this->current_annotation = NULL;
2278 return;
2279 }
2280
2281 for (int target = 0; target < c->key.nr_color_regions; target++) {
2282 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2283 "FB write target %d",
2284 target);
2285 /* If src0_alpha_to_render_target is true, include source zero alpha
2286 * data in RenderTargetWrite message for targets > 0.
2287 */
2288 int write_color_mrf = color_mrf;
2289 if (src0_alpha_to_render_target && target != 0) {
2290 fs_inst *inst;
2291 fs_reg color = outputs[0];
2292 color.reg_offset += 3;
2293
2294 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2295 color));
2296 inst->saturate = c->key.clamp_fragment_color;
2297 write_color_mrf = color_mrf + reg_width;
2298 }
2299
2300 for (unsigned i = 0; i < this->output_components[target]; i++)
2301 emit_color_write(target, i, write_color_mrf);
2302
2303 bool eot = false;
2304 if (target == c->key.nr_color_regions - 1) {
2305 eot = true;
2306
2307 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2308 emit_shader_time_end();
2309 }
2310
2311 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2312 inst->target = target;
2313 inst->base_mrf = base_mrf;
2314 if (src0_alpha_to_render_target && target == 0)
2315 inst->mlen = nr - base_mrf - reg_width;
2316 else
2317 inst->mlen = nr - base_mrf;
2318 inst->eot = eot;
2319 inst->header_present = header_present;
2320 }
2321
2322 if (c->key.nr_color_regions == 0) {
2323 /* Even if there's no color buffers enabled, we still need to send
2324 * alpha out the pipeline to our null renderbuffer to support
2325 * alpha-testing, alpha-to-coverage, and so on.
2326 */
2327 emit_color_write(0, 3, color_mrf);
2328
2329 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2330 emit_shader_time_end();
2331
2332 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2333 inst->base_mrf = base_mrf;
2334 inst->mlen = nr - base_mrf;
2335 inst->eot = true;
2336 inst->header_present = header_present;
2337 }
2338
2339 this->current_annotation = NULL;
2340 }
2341
2342 void
2343 fs_visitor::resolve_ud_negate(fs_reg *reg)
2344 {
2345 if (reg->type != BRW_REGISTER_TYPE_UD ||
2346 !reg->negate)
2347 return;
2348
2349 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2350 emit(MOV(temp, *reg));
2351 *reg = temp;
2352 }
2353
2354 void
2355 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2356 {
2357 if (rvalue->type != glsl_type::bool_type)
2358 return;
2359
2360 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2361 emit(AND(temp, *reg, fs_reg(1)));
2362 *reg = temp;
2363 }
2364
2365 fs_visitor::fs_visitor(struct brw_context *brw,
2366 struct brw_wm_compile *c,
2367 struct gl_shader_program *prog,
2368 struct gl_fragment_program *fp,
2369 unsigned dispatch_width)
2370 : dispatch_width(dispatch_width)
2371 {
2372 this->c = c;
2373 this->brw = brw;
2374 this->fp = fp;
2375 this->prog = prog;
2376 this->intel = &brw->intel;
2377 this->ctx = &intel->ctx;
2378 this->mem_ctx = ralloc_context(NULL);
2379 if (prog)
2380 shader = (struct brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2381 else
2382 shader = NULL;
2383 this->failed = false;
2384 this->variable_ht = hash_table_ctor(0,
2385 hash_table_pointer_hash,
2386 hash_table_pointer_compare);
2387
2388 memset(this->outputs, 0, sizeof(this->outputs));
2389 memset(this->output_components, 0, sizeof(this->output_components));
2390 this->first_non_payload_grf = 0;
2391 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2392
2393 this->current_annotation = NULL;
2394 this->base_ir = NULL;
2395
2396 this->virtual_grf_sizes = NULL;
2397 this->virtual_grf_count = 0;
2398 this->virtual_grf_array_size = 0;
2399 this->virtual_grf_def = NULL;
2400 this->virtual_grf_use = NULL;
2401 this->live_intervals_valid = false;
2402
2403 this->force_uncompressed_stack = 0;
2404 this->force_sechalf_stack = 0;
2405
2406 memset(&this->param_size, 0, sizeof(this->param_size));
2407 }
2408
2409 fs_visitor::~fs_visitor()
2410 {
2411 ralloc_free(this->mem_ctx);
2412 hash_table_dtor(this->variable_ht);
2413 }