i965: Add support for GL_ARB_depth_buffer_float under 3.0 override.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (ir->mode == ir_var_in) {
62 if (!strcmp(ir->name, "gl_FragCoord")) {
63 reg = emit_fragcoord_interpolation(ir);
64 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65 reg = emit_frontfacing_interpolation(ir);
66 } else {
67 reg = emit_general_interpolation(ir);
68 }
69 assert(reg);
70 hash_table_insert(this->variable_ht, reg, ir);
71 return;
72 } else if (ir->mode == ir_var_out) {
73 reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75 if (ir->location == FRAG_RESULT_COLOR) {
76 /* Writing gl_FragColor outputs to all color regions. */
77 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78 this->outputs[i] = *reg;
79 }
80 } else if (ir->location == FRAG_RESULT_DEPTH) {
81 this->frag_depth = ir;
82 } else {
83 /* gl_FragData or a user-defined FS output */
84 assert(ir->location >= FRAG_RESULT_DATA0 &&
85 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87 /* General color output. */
88 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89 int output = ir->location - FRAG_RESULT_DATA0 + i;
90 this->outputs[output] = *reg;
91 this->outputs[output].reg_offset += 4 * i;
92 }
93 }
94 } else if (ir->mode == ir_var_uniform) {
95 int param_index = c->prog_data.nr_params;
96
97 if (c->dispatch_width == 16) {
98 if (!variable_storage(ir)) {
99 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100 }
101 return;
102 }
103
104 if (!strncmp(ir->name, "gl_", 3)) {
105 setup_builtin_uniform_values(ir);
106 } else {
107 setup_uniform_values(ir->location, ir->type);
108 }
109
110 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111 reg->type = brw_type_for_base_type(ir->type);
112 }
113
114 if (!reg)
115 reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117 hash_table_insert(this->variable_ht, reg, ir);
118 }
119
120 void
121 fs_visitor::visit(ir_dereference_variable *ir)
122 {
123 fs_reg *reg = variable_storage(ir->var);
124 this->result = *reg;
125 }
126
127 void
128 fs_visitor::visit(ir_dereference_record *ir)
129 {
130 const glsl_type *struct_type = ir->record->type;
131
132 ir->record->accept(this);
133
134 unsigned int offset = 0;
135 for (unsigned int i = 0; i < struct_type->length; i++) {
136 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137 break;
138 offset += type_size(struct_type->fields.structure[i].type);
139 }
140 this->result.reg_offset += offset;
141 this->result.type = brw_type_for_base_type(ir->type);
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_array *ir)
146 {
147 ir_constant *index;
148 int element_size;
149
150 ir->array->accept(this);
151 index = ir->array_index->as_constant();
152
153 element_size = type_size(ir->type);
154 this->result.type = brw_type_for_base_type(ir->type);
155
156 if (index) {
157 assert(this->result.file == UNIFORM || this->result.file == GRF);
158 this->result.reg_offset += index->value.i[0] * element_size;
159 } else {
160 assert(!"FINISHME: non-constant array element");
161 }
162 }
163
164 /* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167 bool
168 fs_visitor::try_emit_saturate(ir_expression *ir)
169 {
170 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172 if (!sat_val)
173 return false;
174
175 sat_val->accept(this);
176 fs_reg src = this->result;
177
178 this->result = fs_reg(this, ir->type);
179 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180 inst->saturate = true;
181
182 return true;
183 }
184
185 void
186 fs_visitor::visit(ir_expression *ir)
187 {
188 unsigned int operand;
189 fs_reg op[2], temp;
190 fs_inst *inst;
191
192 assert(ir->get_num_operands() <= 2);
193
194 if (try_emit_saturate(ir))
195 return;
196
197 for (operand = 0; operand < ir->get_num_operands(); operand++) {
198 ir->operands[operand]->accept(this);
199 if (this->result.file == BAD_FILE) {
200 ir_print_visitor v;
201 fail("Failed to get tree for expression operand:\n");
202 ir->operands[operand]->accept(&v);
203 }
204 op[operand] = this->result;
205
206 /* Matrix expression operands should have been broken down to vector
207 * operations already.
208 */
209 assert(!ir->operands[operand]->type->is_matrix());
210 /* And then those vector operands should have been broken down to scalar.
211 */
212 assert(!ir->operands[operand]->type->is_vector());
213 }
214
215 /* Storage for our result. If our result goes into an assignment, it will
216 * just get copy-propagated out, so no worries.
217 */
218 this->result = fs_reg(this, ir->type);
219
220 switch (ir->operation) {
221 case ir_unop_logic_not:
222 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
223 * ones complement of the whole register, not just bit 0.
224 */
225 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
226 break;
227 case ir_unop_neg:
228 op[0].negate = !op[0].negate;
229 this->result = op[0];
230 break;
231 case ir_unop_abs:
232 op[0].abs = true;
233 op[0].negate = false;
234 this->result = op[0];
235 break;
236 case ir_unop_sign:
237 temp = fs_reg(this, ir->type);
238
239 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
240
241 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
242 inst->conditional_mod = BRW_CONDITIONAL_G;
243 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
244 inst->predicated = true;
245
246 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
247 inst->conditional_mod = BRW_CONDITIONAL_L;
248 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
249 inst->predicated = true;
250
251 break;
252 case ir_unop_rcp:
253 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
254 break;
255
256 case ir_unop_exp2:
257 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
258 break;
259 case ir_unop_log2:
260 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
261 break;
262 case ir_unop_exp:
263 case ir_unop_log:
264 assert(!"not reached: should be handled by ir_explog_to_explog2");
265 break;
266 case ir_unop_sin:
267 case ir_unop_sin_reduced:
268 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
269 break;
270 case ir_unop_cos:
271 case ir_unop_cos_reduced:
272 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
273 break;
274
275 case ir_unop_dFdx:
276 emit(FS_OPCODE_DDX, this->result, op[0]);
277 break;
278 case ir_unop_dFdy:
279 emit(FS_OPCODE_DDY, this->result, op[0]);
280 break;
281
282 case ir_binop_add:
283 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
284 break;
285 case ir_binop_sub:
286 assert(!"not reached: should be handled by ir_sub_to_add_neg");
287 break;
288
289 case ir_binop_mul:
290 if (ir->type->is_integer()) {
291 /* For integer multiplication, the MUL uses the low 16 bits
292 * of one of the operands (src0 on gen6, src1 on gen7). The
293 * MACH accumulates in the contribution of the upper 16 bits
294 * of that operand.
295 *
296 * FINISHME: Emit just the MUL if we know an operand is small
297 * enough.
298 */
299 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
300
301 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
302 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
303 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
304 } else {
305 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
306 }
307 break;
308 case ir_binop_div:
309 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
310 assert(ir->type->is_integer());
311 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
312 break;
313 case ir_binop_mod:
314 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
315 assert(ir->type->is_integer());
316 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
317 break;
318
319 case ir_binop_less:
320 case ir_binop_greater:
321 case ir_binop_lequal:
322 case ir_binop_gequal:
323 case ir_binop_equal:
324 case ir_binop_all_equal:
325 case ir_binop_nequal:
326 case ir_binop_any_nequal:
327 temp = this->result;
328 /* original gen4 does implicit conversion before comparison. */
329 if (intel->gen < 5)
330 temp.type = op[0].type;
331
332 resolve_ud_negate(&op[0]);
333 resolve_ud_negate(&op[1]);
334
335 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
336 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
337 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
338 break;
339
340 case ir_binop_logic_xor:
341 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
342 break;
343
344 case ir_binop_logic_or:
345 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
346 break;
347
348 case ir_binop_logic_and:
349 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
350 break;
351
352 case ir_binop_dot:
353 case ir_unop_any:
354 assert(!"not reached: should be handled by brw_fs_channel_expressions");
355 break;
356
357 case ir_unop_noise:
358 assert(!"not reached: should be handled by lower_noise");
359 break;
360
361 case ir_quadop_vector:
362 assert(!"not reached: should be handled by lower_quadop_vector");
363 break;
364
365 case ir_unop_sqrt:
366 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
367 break;
368
369 case ir_unop_rsq:
370 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
371 break;
372
373 case ir_unop_i2u:
374 op[0].type = BRW_REGISTER_TYPE_UD;
375 this->result = op[0];
376 break;
377 case ir_unop_u2i:
378 op[0].type = BRW_REGISTER_TYPE_D;
379 this->result = op[0];
380 break;
381 case ir_unop_i2f:
382 case ir_unop_u2f:
383 case ir_unop_b2f:
384 case ir_unop_b2i:
385 case ir_unop_f2i:
386 emit(BRW_OPCODE_MOV, this->result, op[0]);
387 break;
388 case ir_unop_f2b:
389 case ir_unop_i2b:
390 temp = this->result;
391 /* original gen4 does implicit conversion before comparison. */
392 if (intel->gen < 5)
393 temp.type = op[0].type;
394
395 resolve_ud_negate(&op[0]);
396
397 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
398 inst->conditional_mod = BRW_CONDITIONAL_NZ;
399 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
400 break;
401
402 case ir_unop_trunc:
403 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
404 break;
405 case ir_unop_ceil:
406 op[0].negate = !op[0].negate;
407 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
408 this->result.negate = true;
409 break;
410 case ir_unop_floor:
411 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
412 break;
413 case ir_unop_fract:
414 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
415 break;
416 case ir_unop_round_even:
417 emit(BRW_OPCODE_RNDE, this->result, op[0]);
418 break;
419
420 case ir_binop_min:
421 resolve_ud_negate(&op[0]);
422 resolve_ud_negate(&op[1]);
423
424 if (intel->gen >= 6) {
425 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
426 inst->conditional_mod = BRW_CONDITIONAL_L;
427 } else {
428 /* Unalias the destination */
429 this->result = fs_reg(this, ir->type);
430
431 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
432 inst->conditional_mod = BRW_CONDITIONAL_L;
433
434 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
435 inst->predicated = true;
436 }
437 break;
438 case ir_binop_max:
439 resolve_ud_negate(&op[0]);
440 resolve_ud_negate(&op[1]);
441
442 if (intel->gen >= 6) {
443 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
444 inst->conditional_mod = BRW_CONDITIONAL_GE;
445 } else {
446 /* Unalias the destination */
447 this->result = fs_reg(this, ir->type);
448
449 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
450 inst->conditional_mod = BRW_CONDITIONAL_G;
451
452 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
453 inst->predicated = true;
454 }
455 break;
456
457 case ir_binop_pow:
458 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
459 break;
460
461 case ir_unop_bit_not:
462 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
463 break;
464 case ir_binop_bit_and:
465 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
466 break;
467 case ir_binop_bit_xor:
468 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
469 break;
470 case ir_binop_bit_or:
471 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
472 break;
473
474 case ir_binop_lshift:
475 inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
476 break;
477
478 case ir_binop_rshift:
479 if (ir->type->base_type == GLSL_TYPE_INT)
480 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
481 else
482 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
483 break;
484 }
485 }
486
487 void
488 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
489 const glsl_type *type, bool predicated)
490 {
491 switch (type->base_type) {
492 case GLSL_TYPE_FLOAT:
493 case GLSL_TYPE_UINT:
494 case GLSL_TYPE_INT:
495 case GLSL_TYPE_BOOL:
496 for (unsigned int i = 0; i < type->components(); i++) {
497 l.type = brw_type_for_base_type(type);
498 r.type = brw_type_for_base_type(type);
499
500 if (predicated || !l.equals(&r)) {
501 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
502 inst->predicated = predicated;
503 }
504
505 l.reg_offset++;
506 r.reg_offset++;
507 }
508 break;
509 case GLSL_TYPE_ARRAY:
510 for (unsigned int i = 0; i < type->length; i++) {
511 emit_assignment_writes(l, r, type->fields.array, predicated);
512 }
513 break;
514
515 case GLSL_TYPE_STRUCT:
516 for (unsigned int i = 0; i < type->length; i++) {
517 emit_assignment_writes(l, r, type->fields.structure[i].type,
518 predicated);
519 }
520 break;
521
522 case GLSL_TYPE_SAMPLER:
523 break;
524
525 default:
526 assert(!"not reached");
527 break;
528 }
529 }
530
531 /* If the RHS processing resulted in an instruction generating a
532 * temporary value, and it would be easy to rewrite the instruction to
533 * generate its result right into the LHS instead, do so. This ends
534 * up reliably removing instructions where it can be tricky to do so
535 * later without real UD chain information.
536 */
537 bool
538 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
539 fs_reg dst,
540 fs_reg src,
541 fs_inst *pre_rhs_inst,
542 fs_inst *last_rhs_inst)
543 {
544 if (pre_rhs_inst == last_rhs_inst)
545 return false; /* No instructions generated to work with. */
546
547 /* Only attempt if we're doing a direct assignment. */
548 if (ir->condition ||
549 !(ir->lhs->type->is_scalar() ||
550 (ir->lhs->type->is_vector() &&
551 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
552 return false;
553
554 /* Make sure the last instruction generated our source reg. */
555 if (last_rhs_inst->predicated ||
556 last_rhs_inst->force_uncompressed ||
557 last_rhs_inst->force_sechalf ||
558 !src.equals(&last_rhs_inst->dst))
559 return false;
560
561 /* Success! Rewrite the instruction. */
562 last_rhs_inst->dst = dst;
563
564 return true;
565 }
566
567 void
568 fs_visitor::visit(ir_assignment *ir)
569 {
570 fs_reg l, r;
571 fs_inst *inst;
572
573 /* FINISHME: arrays on the lhs */
574 ir->lhs->accept(this);
575 l = this->result;
576
577 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
578
579 ir->rhs->accept(this);
580 r = this->result;
581
582 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
583
584 assert(l.file != BAD_FILE);
585 assert(r.file != BAD_FILE);
586
587 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
588 return;
589
590 if (ir->condition) {
591 emit_bool_to_cond_code(ir->condition);
592 }
593
594 if (ir->lhs->type->is_scalar() ||
595 ir->lhs->type->is_vector()) {
596 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
597 if (ir->write_mask & (1 << i)) {
598 inst = emit(BRW_OPCODE_MOV, l, r);
599 if (ir->condition)
600 inst->predicated = true;
601 r.reg_offset++;
602 }
603 l.reg_offset++;
604 }
605 } else {
606 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
607 }
608 }
609
610 fs_inst *
611 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
612 int sampler)
613 {
614 int mlen;
615 int base_mrf = 1;
616 bool simd16 = false;
617 fs_reg orig_dst;
618
619 /* g0 header. */
620 mlen = 1;
621
622 if (ir->shadow_comparitor && ir->op != ir_txd) {
623 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
624 fs_inst *inst = emit(BRW_OPCODE_MOV,
625 fs_reg(MRF, base_mrf + mlen + i), coordinate);
626 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
627 inst->saturate = true;
628
629 coordinate.reg_offset++;
630 }
631 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
632 mlen += 3;
633
634 if (ir->op == ir_tex) {
635 /* There's no plain shadow compare message, so we use shadow
636 * compare with a bias of 0.0.
637 */
638 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
639 mlen++;
640 } else if (ir->op == ir_txb) {
641 ir->lod_info.bias->accept(this);
642 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
643 mlen++;
644 } else {
645 assert(ir->op == ir_txl);
646 ir->lod_info.lod->accept(this);
647 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
648 mlen++;
649 }
650
651 ir->shadow_comparitor->accept(this);
652 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
653 mlen++;
654 } else if (ir->op == ir_tex) {
655 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
656 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
657 coordinate);
658 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
659 inst->saturate = true;
660 coordinate.reg_offset++;
661 }
662 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
663 mlen += 3;
664 } else if (ir->op == ir_txd) {
665 ir->lod_info.grad.dPdx->accept(this);
666 fs_reg dPdx = this->result;
667
668 ir->lod_info.grad.dPdy->accept(this);
669 fs_reg dPdy = this->result;
670
671 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
672 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
673 coordinate.reg_offset++;
674 }
675 /* the slots for u and v are always present, but r is optional */
676 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
677
678 /* P = u, v, r
679 * dPdx = dudx, dvdx, drdx
680 * dPdy = dudy, dvdy, drdy
681 *
682 * 1-arg: Does not exist.
683 *
684 * 2-arg: dudx dvdx dudy dvdy
685 * dPdx.x dPdx.y dPdy.x dPdy.y
686 * m4 m5 m6 m7
687 *
688 * 3-arg: dudx dvdx drdx dudy dvdy drdy
689 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
690 * m5 m6 m7 m8 m9 m10
691 */
692 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
693 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
694 dPdx.reg_offset++;
695 }
696 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
697
698 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
699 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
700 dPdy.reg_offset++;
701 }
702 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
703 } else if (ir->op == ir_txs) {
704 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
705 simd16 = true;
706 ir->lod_info.lod->accept(this);
707 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
708 mlen += 2;
709 } else {
710 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
711 * instructions. We'll need to do SIMD16 here.
712 */
713 simd16 = true;
714 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
715
716 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
717 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
718 base_mrf + mlen + i * 2,
719 coordinate.type),
720 coordinate);
721 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
722 inst->saturate = true;
723 coordinate.reg_offset++;
724 }
725
726 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
727 * be necessary for TXF (ld), but seems wise to do for all messages.
728 */
729 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
730 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
731 }
732
733 /* lod/bias appears after u/v/r. */
734 mlen += 6;
735
736 if (ir->op == ir_txb) {
737 ir->lod_info.bias->accept(this);
738 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
739 mlen++;
740 } else {
741 ir->lod_info.lod->accept(this);
742 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
743 this->result);
744 mlen++;
745 }
746
747 /* The unused upper half. */
748 mlen++;
749 }
750
751 if (simd16) {
752 /* Now, since we're doing simd16, the return is 2 interleaved
753 * vec4s where the odd-indexed ones are junk. We'll need to move
754 * this weirdness around to the expected layout.
755 */
756 orig_dst = dst;
757 const glsl_type *vec_type =
758 glsl_type::get_instance(ir->type->base_type, 4, 1);
759 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
760 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
761 : BRW_REGISTER_TYPE_F;
762 }
763
764 fs_inst *inst = NULL;
765 switch (ir->op) {
766 case ir_tex:
767 inst = emit(SHADER_OPCODE_TEX, dst);
768 break;
769 case ir_txb:
770 inst = emit(FS_OPCODE_TXB, dst);
771 break;
772 case ir_txl:
773 inst = emit(SHADER_OPCODE_TXL, dst);
774 break;
775 case ir_txd:
776 inst = emit(SHADER_OPCODE_TXD, dst);
777 break;
778 case ir_txs:
779 inst = emit(SHADER_OPCODE_TXS, dst);
780 break;
781 case ir_txf:
782 inst = emit(SHADER_OPCODE_TXF, dst);
783 break;
784 }
785 inst->base_mrf = base_mrf;
786 inst->mlen = mlen;
787 inst->header_present = true;
788
789 if (simd16) {
790 for (int i = 0; i < 4; i++) {
791 emit(BRW_OPCODE_MOV, orig_dst, dst);
792 orig_dst.reg_offset++;
793 dst.reg_offset += 2;
794 }
795 }
796
797 return inst;
798 }
799
800 /* gen5's sampler has slots for u, v, r, array index, then optional
801 * parameters like shadow comparitor or LOD bias. If optional
802 * parameters aren't present, those base slots are optional and don't
803 * need to be included in the message.
804 *
805 * We don't fill in the unnecessary slots regardless, which may look
806 * surprising in the disassembly.
807 */
808 fs_inst *
809 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
810 int sampler)
811 {
812 int mlen = 0;
813 int base_mrf = 2;
814 int reg_width = c->dispatch_width / 8;
815 bool header_present = false;
816 const int vector_elements =
817 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
818
819 if (ir->offset) {
820 /* The offsets set up by the ir_texture visitor are in the
821 * m1 header, so we can't go headerless.
822 */
823 header_present = true;
824 mlen++;
825 base_mrf--;
826 }
827
828 for (int i = 0; i < vector_elements; i++) {
829 fs_inst *inst = emit(BRW_OPCODE_MOV,
830 fs_reg(MRF, base_mrf + mlen + i * reg_width,
831 coordinate.type),
832 coordinate);
833 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
834 inst->saturate = true;
835 coordinate.reg_offset++;
836 }
837 mlen += vector_elements * reg_width;
838
839 if (ir->shadow_comparitor && ir->op != ir_txd) {
840 mlen = MAX2(mlen, header_present + 4 * reg_width);
841
842 ir->shadow_comparitor->accept(this);
843 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
844 mlen += reg_width;
845 }
846
847 fs_inst *inst = NULL;
848 switch (ir->op) {
849 case ir_tex:
850 inst = emit(SHADER_OPCODE_TEX, dst);
851 break;
852 case ir_txb:
853 ir->lod_info.bias->accept(this);
854 mlen = MAX2(mlen, header_present + 4 * reg_width);
855 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
856 mlen += reg_width;
857
858 inst = emit(FS_OPCODE_TXB, dst);
859
860 break;
861 case ir_txl:
862 ir->lod_info.lod->accept(this);
863 mlen = MAX2(mlen, header_present + 4 * reg_width);
864 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
865 mlen += reg_width;
866
867 inst = emit(SHADER_OPCODE_TXL, dst);
868 break;
869 case ir_txd: {
870 ir->lod_info.grad.dPdx->accept(this);
871 fs_reg dPdx = this->result;
872
873 ir->lod_info.grad.dPdy->accept(this);
874 fs_reg dPdy = this->result;
875
876 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
877
878 /**
879 * P = u, v, r
880 * dPdx = dudx, dvdx, drdx
881 * dPdy = dudy, dvdy, drdy
882 *
883 * Load up these values:
884 * - dudx dudy dvdx dvdy drdx drdy
885 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
886 */
887 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
888 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
889 dPdx.reg_offset++;
890 mlen += reg_width;
891
892 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
893 dPdy.reg_offset++;
894 mlen += reg_width;
895 }
896
897 inst = emit(SHADER_OPCODE_TXD, dst);
898 break;
899 }
900 case ir_txs:
901 ir->lod_info.lod->accept(this);
902 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
903 mlen += reg_width;
904 inst = emit(SHADER_OPCODE_TXS, dst);
905 break;
906 case ir_txf:
907 mlen = header_present + 4 * reg_width;
908
909 ir->lod_info.lod->accept(this);
910 emit(BRW_OPCODE_MOV,
911 fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
912 this->result);
913 inst = emit(SHADER_OPCODE_TXF, dst);
914 break;
915 }
916 inst->base_mrf = base_mrf;
917 inst->mlen = mlen;
918 inst->header_present = header_present;
919
920 if (mlen > 11) {
921 fail("Message length >11 disallowed by hardware\n");
922 }
923
924 return inst;
925 }
926
927 fs_inst *
928 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
929 int sampler)
930 {
931 int mlen = 0;
932 int base_mrf = 2;
933 int reg_width = c->dispatch_width / 8;
934 bool header_present = false;
935
936 if (ir->offset) {
937 /* The offsets set up by the ir_texture visitor are in the
938 * m1 header, so we can't go headerless.
939 */
940 header_present = true;
941 mlen++;
942 base_mrf--;
943 }
944
945 if (ir->shadow_comparitor && ir->op != ir_txd) {
946 ir->shadow_comparitor->accept(this);
947 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
948 mlen += reg_width;
949 }
950
951 /* Set up the LOD info */
952 switch (ir->op) {
953 case ir_tex:
954 break;
955 case ir_txb:
956 ir->lod_info.bias->accept(this);
957 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
958 mlen += reg_width;
959 break;
960 case ir_txl:
961 ir->lod_info.lod->accept(this);
962 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
963 mlen += reg_width;
964 break;
965 case ir_txd: {
966 if (c->dispatch_width == 16)
967 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
968
969 ir->lod_info.grad.dPdx->accept(this);
970 fs_reg dPdx = this->result;
971
972 ir->lod_info.grad.dPdy->accept(this);
973 fs_reg dPdy = this->result;
974
975 /* Load dPdx and the coordinate together:
976 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
977 */
978 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
979 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
980 coordinate);
981 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
982 inst->saturate = true;
983 coordinate.reg_offset++;
984 mlen += reg_width;
985
986 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
987 dPdx.reg_offset++;
988 mlen += reg_width;
989
990 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
991 dPdy.reg_offset++;
992 mlen += reg_width;
993 }
994 break;
995 }
996 case ir_txs:
997 ir->lod_info.lod->accept(this);
998 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
999 mlen += reg_width;
1000 break;
1001 case ir_txf:
1002 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1003 emit(BRW_OPCODE_MOV,
1004 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1005 coordinate.reg_offset++;
1006 mlen += reg_width;
1007
1008 ir->lod_info.lod->accept(this);
1009 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1010 mlen += reg_width;
1011
1012 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1013 emit(BRW_OPCODE_MOV,
1014 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1015 coordinate.reg_offset++;
1016 mlen += reg_width;
1017 }
1018 break;
1019 }
1020
1021 /* Set up the coordinate (except for cases where it was done above) */
1022 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1023 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1024 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1025 coordinate);
1026 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
1027 inst->saturate = true;
1028 coordinate.reg_offset++;
1029 mlen += reg_width;
1030 }
1031 }
1032
1033 /* Generate the SEND */
1034 fs_inst *inst = NULL;
1035 switch (ir->op) {
1036 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1037 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1038 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1039 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1040 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1041 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1042 }
1043 inst->base_mrf = base_mrf;
1044 inst->mlen = mlen;
1045 inst->header_present = header_present;
1046
1047 if (mlen > 11) {
1048 fail("Message length >11 disallowed by hardware\n");
1049 }
1050
1051 return inst;
1052 }
1053
1054 void
1055 fs_visitor::visit(ir_texture *ir)
1056 {
1057 fs_inst *inst = NULL;
1058
1059 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1060 sampler = fp->Base.SamplerUnits[sampler];
1061
1062 /* Our hardware doesn't have a sample_d_c message, so shadow compares
1063 * for textureGrad/TXD need to be emulated with instructions.
1064 */
1065 bool hw_compare_supported = ir->op != ir_txd;
1066 if (ir->shadow_comparitor && !hw_compare_supported) {
1067 assert(c->key.compare_funcs[sampler] != GL_NONE);
1068 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1069 if (c->key.compare_funcs[sampler] == GL_ALWAYS)
1070 return swizzle_result(ir, fs_reg(1.0f), sampler);
1071 else if (c->key.compare_funcs[sampler] == GL_NEVER)
1072 return swizzle_result(ir, fs_reg(0.0f), sampler);
1073 }
1074
1075 if (ir->coordinate)
1076 ir->coordinate->accept(this);
1077 fs_reg coordinate = this->result;
1078
1079 if (ir->offset != NULL) {
1080 ir_constant *offset = ir->offset->as_constant();
1081 assert(offset != NULL);
1082
1083 signed char offsets[3];
1084 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
1085 offsets[i] = (signed char) offset->value.i[i];
1086
1087 /* Combine all three offsets into a single unsigned dword:
1088 *
1089 * bits 11:8 - U Offset (X component)
1090 * bits 7:4 - V Offset (Y component)
1091 * bits 3:0 - R Offset (Z component)
1092 */
1093 unsigned offset_bits = 0;
1094 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1095 const unsigned shift = 4 * (2 - i);
1096 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1097 }
1098
1099 /* Explicitly set up the message header by copying g0 to msg reg m1. */
1100 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1101 fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1102
1103 /* Then set the offset bits in DWord 2 of the message header. */
1104 emit(BRW_OPCODE_MOV,
1105 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1106 BRW_REGISTER_TYPE_UD)),
1107 fs_reg(brw_imm_uw(offset_bits)));
1108 }
1109
1110 /* Should be lowered by do_lower_texture_projection */
1111 assert(!ir->projector);
1112
1113 /* The 965 requires the EU to do the normalization of GL rectangle
1114 * texture coordinates. We use the program parameter state
1115 * tracking to get the scaling factor.
1116 */
1117 if (intel->gen < 6 &&
1118 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1119 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1120 int tokens[STATE_LENGTH] = {
1121 STATE_INTERNAL,
1122 STATE_TEXRECT_SCALE,
1123 sampler,
1124 0,
1125 0
1126 };
1127
1128 if (c->dispatch_width == 16) {
1129 fail("rectangle scale uniform setup not supported on 16-wide\n");
1130 this->result = fs_reg(this, ir->type);
1131 return;
1132 }
1133
1134 c->prog_data.param_convert[c->prog_data.nr_params] =
1135 PARAM_NO_CONVERT;
1136 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1137 PARAM_NO_CONVERT;
1138
1139 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1140 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1141 GLuint index = _mesa_add_state_reference(params,
1142 (gl_state_index *)tokens);
1143
1144 this->param_index[c->prog_data.nr_params] = index;
1145 this->param_offset[c->prog_data.nr_params] = 0;
1146 c->prog_data.nr_params++;
1147 this->param_index[c->prog_data.nr_params] = index;
1148 this->param_offset[c->prog_data.nr_params] = 1;
1149 c->prog_data.nr_params++;
1150
1151 fs_reg dst = fs_reg(this, ir->coordinate->type);
1152 fs_reg src = coordinate;
1153 coordinate = dst;
1154
1155 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1156 dst.reg_offset++;
1157 src.reg_offset++;
1158 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1159 }
1160
1161 /* Writemasking doesn't eliminate channels on SIMD8 texture
1162 * samples, so don't worry about them.
1163 */
1164 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1165
1166 if (intel->gen >= 7) {
1167 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1168 } else if (intel->gen >= 5) {
1169 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1170 } else {
1171 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1172 }
1173
1174 /* If there's an offset, we already set up m1. To avoid the implied move,
1175 * use the null register. Otherwise, we want an implied move from g0.
1176 */
1177 if (ir->offset != NULL || !inst->header_present)
1178 inst->src[0] = reg_undef;
1179 else
1180 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1181
1182 inst->sampler = sampler;
1183
1184 if (ir->shadow_comparitor) {
1185 if (hw_compare_supported) {
1186 inst->shadow_compare = true;
1187 } else {
1188 ir->shadow_comparitor->accept(this);
1189 fs_reg ref = this->result;
1190
1191 fs_reg value = dst;
1192 dst = fs_reg(this, glsl_type::vec4_type);
1193
1194 /* FINISHME: This needs to be done pre-filtering. */
1195
1196 uint32_t conditional = 0;
1197 switch (c->key.compare_funcs[sampler]) {
1198 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1199 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1200 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1201 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1202 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1203 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1204 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1205 default: assert(!"Should not get here: bad shadow compare function");
1206 }
1207
1208 /* Use conditional moves to load 0 or 1 as the result */
1209 this->current_annotation = "manual shadow comparison";
1210 for (int i = 0; i < 4; i++) {
1211 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1212
1213 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1214 inst->conditional_mod = conditional;
1215
1216 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1217 inst->predicated = true;
1218
1219 dst.reg_offset++;
1220 value.reg_offset++;
1221 }
1222 dst.reg_offset = 0;
1223 }
1224 }
1225
1226 swizzle_result(ir, dst, sampler);
1227 }
1228
1229 /**
1230 * Swizzle the result of a texture result. This is necessary for
1231 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1232 */
1233 void
1234 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1235 {
1236 this->result = orig_val;
1237
1238 if (ir->op == ir_txs)
1239 return;
1240
1241 if (ir->type == glsl_type::float_type) {
1242 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1243 assert(ir->sampler->type->sampler_shadow);
1244 } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1245 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1246
1247 for (int i = 0; i < 4; i++) {
1248 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1249 fs_reg l = swizzled_result;
1250 l.reg_offset += i;
1251
1252 if (swiz == SWIZZLE_ZERO) {
1253 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1254 } else if (swiz == SWIZZLE_ONE) {
1255 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1256 } else {
1257 fs_reg r = orig_val;
1258 r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1259 emit(BRW_OPCODE_MOV, l, r);
1260 }
1261 }
1262 this->result = swizzled_result;
1263 }
1264 }
1265
1266 void
1267 fs_visitor::visit(ir_swizzle *ir)
1268 {
1269 ir->val->accept(this);
1270 fs_reg val = this->result;
1271
1272 if (ir->type->vector_elements == 1) {
1273 this->result.reg_offset += ir->mask.x;
1274 return;
1275 }
1276
1277 fs_reg result = fs_reg(this, ir->type);
1278 this->result = result;
1279
1280 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1281 fs_reg channel = val;
1282 int swiz = 0;
1283
1284 switch (i) {
1285 case 0:
1286 swiz = ir->mask.x;
1287 break;
1288 case 1:
1289 swiz = ir->mask.y;
1290 break;
1291 case 2:
1292 swiz = ir->mask.z;
1293 break;
1294 case 3:
1295 swiz = ir->mask.w;
1296 break;
1297 }
1298
1299 channel.reg_offset += swiz;
1300 emit(BRW_OPCODE_MOV, result, channel);
1301 result.reg_offset++;
1302 }
1303 }
1304
1305 void
1306 fs_visitor::visit(ir_discard *ir)
1307 {
1308 assert(ir->condition == NULL); /* FINISHME */
1309
1310 emit(FS_OPCODE_DISCARD);
1311 kill_emitted = true;
1312 }
1313
1314 void
1315 fs_visitor::visit(ir_constant *ir)
1316 {
1317 /* Set this->result to reg at the bottom of the function because some code
1318 * paths will cause this visitor to be applied to other fields. This will
1319 * cause the value stored in this->result to be modified.
1320 *
1321 * Make reg constant so that it doesn't get accidentally modified along the
1322 * way. Yes, I actually had this problem. :(
1323 */
1324 const fs_reg reg(this, ir->type);
1325 fs_reg dst_reg = reg;
1326
1327 if (ir->type->is_array()) {
1328 const unsigned size = type_size(ir->type->fields.array);
1329
1330 for (unsigned i = 0; i < ir->type->length; i++) {
1331 ir->array_elements[i]->accept(this);
1332 fs_reg src_reg = this->result;
1333
1334 dst_reg.type = src_reg.type;
1335 for (unsigned j = 0; j < size; j++) {
1336 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1337 src_reg.reg_offset++;
1338 dst_reg.reg_offset++;
1339 }
1340 }
1341 } else if (ir->type->is_record()) {
1342 foreach_list(node, &ir->components) {
1343 ir_instruction *const field = (ir_instruction *) node;
1344 const unsigned size = type_size(field->type);
1345
1346 field->accept(this);
1347 fs_reg src_reg = this->result;
1348
1349 dst_reg.type = src_reg.type;
1350 for (unsigned j = 0; j < size; j++) {
1351 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1352 src_reg.reg_offset++;
1353 dst_reg.reg_offset++;
1354 }
1355 }
1356 } else {
1357 const unsigned size = type_size(ir->type);
1358
1359 for (unsigned i = 0; i < size; i++) {
1360 switch (ir->type->base_type) {
1361 case GLSL_TYPE_FLOAT:
1362 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1363 break;
1364 case GLSL_TYPE_UINT:
1365 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1366 break;
1367 case GLSL_TYPE_INT:
1368 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1369 break;
1370 case GLSL_TYPE_BOOL:
1371 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1372 break;
1373 default:
1374 assert(!"Non-float/uint/int/bool constant");
1375 }
1376 dst_reg.reg_offset++;
1377 }
1378 }
1379
1380 this->result = reg;
1381 }
1382
1383 void
1384 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1385 {
1386 ir_expression *expr = ir->as_expression();
1387
1388 if (expr) {
1389 fs_reg op[2];
1390 fs_inst *inst;
1391
1392 assert(expr->get_num_operands() <= 2);
1393 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1394 assert(expr->operands[i]->type->is_scalar());
1395
1396 expr->operands[i]->accept(this);
1397 op[i] = this->result;
1398
1399 resolve_ud_negate(&op[i]);
1400 }
1401
1402 switch (expr->operation) {
1403 case ir_unop_logic_not:
1404 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1405 inst->conditional_mod = BRW_CONDITIONAL_Z;
1406 break;
1407
1408 case ir_binop_logic_xor:
1409 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1410 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1411 break;
1412
1413 case ir_binop_logic_or:
1414 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1415 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1416 break;
1417
1418 case ir_binop_logic_and:
1419 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1420 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1421 break;
1422
1423 case ir_unop_f2b:
1424 if (intel->gen >= 6) {
1425 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1426 } else {
1427 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1428 }
1429 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1430 break;
1431
1432 case ir_unop_i2b:
1433 if (intel->gen >= 6) {
1434 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1435 } else {
1436 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1437 }
1438 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1439 break;
1440
1441 case ir_binop_greater:
1442 case ir_binop_gequal:
1443 case ir_binop_less:
1444 case ir_binop_lequal:
1445 case ir_binop_equal:
1446 case ir_binop_all_equal:
1447 case ir_binop_nequal:
1448 case ir_binop_any_nequal:
1449 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1450 inst->conditional_mod =
1451 brw_conditional_for_comparison(expr->operation);
1452 break;
1453
1454 default:
1455 assert(!"not reached");
1456 fail("bad cond code\n");
1457 break;
1458 }
1459 return;
1460 }
1461
1462 ir->accept(this);
1463
1464 if (intel->gen >= 6) {
1465 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1466 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1467 } else {
1468 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1469 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1470 }
1471 }
1472
1473 /**
1474 * Emit a gen6 IF statement with the comparison folded into the IF
1475 * instruction.
1476 */
1477 void
1478 fs_visitor::emit_if_gen6(ir_if *ir)
1479 {
1480 ir_expression *expr = ir->condition->as_expression();
1481
1482 if (expr) {
1483 fs_reg op[2];
1484 fs_inst *inst;
1485 fs_reg temp;
1486
1487 assert(expr->get_num_operands() <= 2);
1488 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1489 assert(expr->operands[i]->type->is_scalar());
1490
1491 expr->operands[i]->accept(this);
1492 op[i] = this->result;
1493 }
1494
1495 switch (expr->operation) {
1496 case ir_unop_logic_not:
1497 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1498 inst->conditional_mod = BRW_CONDITIONAL_Z;
1499 return;
1500
1501 case ir_binop_logic_xor:
1502 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1503 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1504 return;
1505
1506 case ir_binop_logic_or:
1507 temp = fs_reg(this, glsl_type::bool_type);
1508 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1509 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1510 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1511 return;
1512
1513 case ir_binop_logic_and:
1514 temp = fs_reg(this, glsl_type::bool_type);
1515 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1516 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1517 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1518 return;
1519
1520 case ir_unop_f2b:
1521 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1522 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1523 return;
1524
1525 case ir_unop_i2b:
1526 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1527 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1528 return;
1529
1530 case ir_binop_greater:
1531 case ir_binop_gequal:
1532 case ir_binop_less:
1533 case ir_binop_lequal:
1534 case ir_binop_equal:
1535 case ir_binop_all_equal:
1536 case ir_binop_nequal:
1537 case ir_binop_any_nequal:
1538 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1539 inst->conditional_mod =
1540 brw_conditional_for_comparison(expr->operation);
1541 return;
1542 default:
1543 assert(!"not reached");
1544 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1545 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1546 fail("bad condition\n");
1547 return;
1548 }
1549 return;
1550 }
1551
1552 ir->condition->accept(this);
1553
1554 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1555 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1556 }
1557
1558 void
1559 fs_visitor::visit(ir_if *ir)
1560 {
1561 fs_inst *inst;
1562
1563 if (intel->gen < 6 && c->dispatch_width == 16) {
1564 fail("Can't support (non-uniform) control flow on 16-wide\n");
1565 }
1566
1567 /* Don't point the annotation at the if statement, because then it plus
1568 * the then and else blocks get printed.
1569 */
1570 this->base_ir = ir->condition;
1571
1572 if (intel->gen == 6) {
1573 emit_if_gen6(ir);
1574 } else {
1575 emit_bool_to_cond_code(ir->condition);
1576
1577 inst = emit(BRW_OPCODE_IF);
1578 inst->predicated = true;
1579 }
1580
1581 foreach_list(node, &ir->then_instructions) {
1582 ir_instruction *ir = (ir_instruction *)node;
1583 this->base_ir = ir;
1584
1585 ir->accept(this);
1586 }
1587
1588 if (!ir->else_instructions.is_empty()) {
1589 emit(BRW_OPCODE_ELSE);
1590
1591 foreach_list(node, &ir->else_instructions) {
1592 ir_instruction *ir = (ir_instruction *)node;
1593 this->base_ir = ir;
1594
1595 ir->accept(this);
1596 }
1597 }
1598
1599 emit(BRW_OPCODE_ENDIF);
1600 }
1601
1602 void
1603 fs_visitor::visit(ir_loop *ir)
1604 {
1605 fs_reg counter = reg_undef;
1606
1607 if (c->dispatch_width == 16) {
1608 fail("Can't support (non-uniform) control flow on 16-wide\n");
1609 }
1610
1611 if (ir->counter) {
1612 this->base_ir = ir->counter;
1613 ir->counter->accept(this);
1614 counter = *(variable_storage(ir->counter));
1615
1616 if (ir->from) {
1617 this->base_ir = ir->from;
1618 ir->from->accept(this);
1619
1620 emit(BRW_OPCODE_MOV, counter, this->result);
1621 }
1622 }
1623
1624 emit(BRW_OPCODE_DO);
1625
1626 if (ir->to) {
1627 this->base_ir = ir->to;
1628 ir->to->accept(this);
1629
1630 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1631 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1632
1633 inst = emit(BRW_OPCODE_BREAK);
1634 inst->predicated = true;
1635 }
1636
1637 foreach_list(node, &ir->body_instructions) {
1638 ir_instruction *ir = (ir_instruction *)node;
1639
1640 this->base_ir = ir;
1641 ir->accept(this);
1642 }
1643
1644 if (ir->increment) {
1645 this->base_ir = ir->increment;
1646 ir->increment->accept(this);
1647 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1648 }
1649
1650 emit(BRW_OPCODE_WHILE);
1651 }
1652
1653 void
1654 fs_visitor::visit(ir_loop_jump *ir)
1655 {
1656 switch (ir->mode) {
1657 case ir_loop_jump::jump_break:
1658 emit(BRW_OPCODE_BREAK);
1659 break;
1660 case ir_loop_jump::jump_continue:
1661 emit(BRW_OPCODE_CONTINUE);
1662 break;
1663 }
1664 }
1665
1666 void
1667 fs_visitor::visit(ir_call *ir)
1668 {
1669 assert(!"FINISHME");
1670 }
1671
1672 void
1673 fs_visitor::visit(ir_return *ir)
1674 {
1675 assert(!"FINISHME");
1676 }
1677
1678 void
1679 fs_visitor::visit(ir_function *ir)
1680 {
1681 /* Ignore function bodies other than main() -- we shouldn't see calls to
1682 * them since they should all be inlined before we get to ir_to_mesa.
1683 */
1684 if (strcmp(ir->name, "main") == 0) {
1685 const ir_function_signature *sig;
1686 exec_list empty;
1687
1688 sig = ir->matching_signature(&empty);
1689
1690 assert(sig);
1691
1692 foreach_list(node, &sig->body) {
1693 ir_instruction *ir = (ir_instruction *)node;
1694 this->base_ir = ir;
1695
1696 ir->accept(this);
1697 }
1698 }
1699 }
1700
1701 void
1702 fs_visitor::visit(ir_function_signature *ir)
1703 {
1704 assert(!"not reached");
1705 (void)ir;
1706 }
1707
1708 fs_inst *
1709 fs_visitor::emit(fs_inst inst)
1710 {
1711 fs_inst *list_inst = new(mem_ctx) fs_inst;
1712 *list_inst = inst;
1713
1714 if (force_uncompressed_stack > 0)
1715 list_inst->force_uncompressed = true;
1716 else if (force_sechalf_stack > 0)
1717 list_inst->force_sechalf = true;
1718
1719 list_inst->annotation = this->current_annotation;
1720 list_inst->ir = this->base_ir;
1721
1722 this->instructions.push_tail(list_inst);
1723
1724 return list_inst;
1725 }
1726
1727 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1728 void
1729 fs_visitor::emit_dummy_fs()
1730 {
1731 /* Everyone's favorite color. */
1732 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1733 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1734 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1735 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1736
1737 fs_inst *write;
1738 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1739 write->base_mrf = 2;
1740 }
1741
1742 /* The register location here is relative to the start of the URB
1743 * data. It will get adjusted to be a real location before
1744 * generate_code() time.
1745 */
1746 struct brw_reg
1747 fs_visitor::interp_reg(int location, int channel)
1748 {
1749 int regnr = urb_setup[location] * 2 + channel / 2;
1750 int stride = (channel & 1) * 4;
1751
1752 assert(urb_setup[location] != -1);
1753
1754 return brw_vec1_grf(regnr, stride);
1755 }
1756
1757 /** Emits the interpolation for the varying inputs. */
1758 void
1759 fs_visitor::emit_interpolation_setup_gen4()
1760 {
1761 this->current_annotation = "compute pixel centers";
1762 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1763 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1764 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1765 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1766
1767 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1768 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1769
1770 this->current_annotation = "compute pixel deltas from v0";
1771 if (brw->has_pln) {
1772 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1773 fs_reg(this, glsl_type::vec2_type);
1774 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1775 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1776 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1777 } else {
1778 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1779 fs_reg(this, glsl_type::float_type);
1780 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1781 fs_reg(this, glsl_type::float_type);
1782 }
1783 emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1784 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1785 emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1786 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1787
1788 this->current_annotation = "compute pos.w and 1/pos.w";
1789 /* Compute wpos.w. It's always in our setup, since it's needed to
1790 * interpolate the other attributes.
1791 */
1792 this->wpos_w = fs_reg(this, glsl_type::float_type);
1793 emit(FS_OPCODE_LINTERP, wpos_w,
1794 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1795 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1796 interp_reg(FRAG_ATTRIB_WPOS, 3));
1797 /* Compute the pixel 1/W value from wpos.w. */
1798 this->pixel_w = fs_reg(this, glsl_type::float_type);
1799 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1800 this->current_annotation = NULL;
1801 }
1802
1803 /** Emits the interpolation for the varying inputs. */
1804 void
1805 fs_visitor::emit_interpolation_setup_gen6()
1806 {
1807 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1808
1809 /* If the pixel centers end up used, the setup is the same as for gen4. */
1810 this->current_annotation = "compute pixel centers";
1811 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1812 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1813 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1814 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1815 emit(BRW_OPCODE_ADD,
1816 int_pixel_x,
1817 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1818 fs_reg(brw_imm_v(0x10101010)));
1819 emit(BRW_OPCODE_ADD,
1820 int_pixel_y,
1821 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1822 fs_reg(brw_imm_v(0x11001100)));
1823
1824 /* As of gen6, we can no longer mix float and int sources. We have
1825 * to turn the integer pixel centers into floats for their actual
1826 * use.
1827 */
1828 this->pixel_x = fs_reg(this, glsl_type::float_type);
1829 this->pixel_y = fs_reg(this, glsl_type::float_type);
1830 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1831 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1832
1833 this->current_annotation = "compute pos.w";
1834 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1835 this->wpos_w = fs_reg(this, glsl_type::float_type);
1836 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1837
1838 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1839 uint8_t reg = c->barycentric_coord_reg[i];
1840 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1841 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1842 }
1843
1844 this->current_annotation = NULL;
1845 }
1846
1847 void
1848 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1849 {
1850 int reg_width = c->dispatch_width / 8;
1851 fs_inst *inst;
1852 fs_reg color = outputs[target];
1853 fs_reg mrf;
1854
1855 /* If there's no color data to be written, skip it. */
1856 if (color.file == BAD_FILE)
1857 return;
1858
1859 color.reg_offset += index;
1860
1861 if (c->dispatch_width == 8 || intel->gen >= 6) {
1862 /* SIMD8 write looks like:
1863 * m + 0: r0
1864 * m + 1: r1
1865 * m + 2: g0
1866 * m + 3: g1
1867 *
1868 * gen6 SIMD16 DP write looks like:
1869 * m + 0: r0
1870 * m + 1: r1
1871 * m + 2: g0
1872 * m + 3: g1
1873 * m + 4: b0
1874 * m + 5: b1
1875 * m + 6: a0
1876 * m + 7: a1
1877 */
1878 inst = emit(BRW_OPCODE_MOV,
1879 fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1880 color);
1881 inst->saturate = c->key.clamp_fragment_color;
1882 } else {
1883 /* pre-gen6 SIMD16 single source DP write looks like:
1884 * m + 0: r0
1885 * m + 1: g0
1886 * m + 2: b0
1887 * m + 3: a0
1888 * m + 4: r1
1889 * m + 5: g1
1890 * m + 6: b1
1891 * m + 7: a1
1892 */
1893 if (brw->has_compr4) {
1894 /* By setting the high bit of the MRF register number, we
1895 * indicate that we want COMPR4 mode - instead of doing the
1896 * usual destination + 1 for the second half we get
1897 * destination + 4.
1898 */
1899 inst = emit(BRW_OPCODE_MOV,
1900 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1901 color.type),
1902 color);
1903 inst->saturate = c->key.clamp_fragment_color;
1904 } else {
1905 push_force_uncompressed();
1906 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1907 color.type),
1908 color);
1909 inst->saturate = c->key.clamp_fragment_color;
1910 pop_force_uncompressed();
1911
1912 push_force_sechalf();
1913 color.sechalf = true;
1914 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1915 color.type),
1916 color);
1917 inst->saturate = c->key.clamp_fragment_color;
1918 pop_force_sechalf();
1919 color.sechalf = false;
1920 }
1921 }
1922 }
1923
1924 void
1925 fs_visitor::emit_fb_writes()
1926 {
1927 this->current_annotation = "FB write header";
1928 bool header_present = true;
1929 int base_mrf = 2;
1930 int nr = base_mrf;
1931 int reg_width = c->dispatch_width / 8;
1932
1933 if (intel->gen >= 6 &&
1934 !this->kill_emitted &&
1935 c->key.nr_color_regions == 1) {
1936 header_present = false;
1937 }
1938
1939 if (header_present) {
1940 /* m2, m3 header */
1941 nr += 2;
1942 }
1943
1944 if (c->aa_dest_stencil_reg) {
1945 push_force_uncompressed();
1946 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1947 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1948 pop_force_uncompressed();
1949 }
1950
1951 /* Reserve space for color. It'll be filled in per MRT below. */
1952 int color_mrf = nr;
1953 nr += 4 * reg_width;
1954
1955 if (c->source_depth_to_render_target) {
1956 if (intel->gen == 6 && c->dispatch_width == 16) {
1957 /* For outputting oDepth on gen6, SIMD8 writes have to be
1958 * used. This would require 8-wide moves of each half to
1959 * message regs, kind of like pre-gen5 SIMD16 FB writes.
1960 * Just bail on doing so for now.
1961 */
1962 fail("Missing support for simd16 depth writes on gen6\n");
1963 }
1964
1965 if (c->computes_depth) {
1966 /* Hand over gl_FragDepth. */
1967 assert(this->frag_depth);
1968 fs_reg depth = *(variable_storage(this->frag_depth));
1969
1970 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1971 } else {
1972 /* Pass through the payload depth. */
1973 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1974 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1975 }
1976 nr += reg_width;
1977 }
1978
1979 if (c->dest_depth_reg) {
1980 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1981 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1982 nr += reg_width;
1983 }
1984
1985 for (int target = 0; target < c->key.nr_color_regions; target++) {
1986 this->current_annotation = ralloc_asprintf(this->mem_ctx,
1987 "FB write target %d",
1988 target);
1989 for (int i = 0; i < 4; i++)
1990 emit_color_write(target, i, color_mrf);
1991
1992 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1993 inst->target = target;
1994 inst->base_mrf = base_mrf;
1995 inst->mlen = nr - base_mrf;
1996 if (target == c->key.nr_color_regions - 1)
1997 inst->eot = true;
1998 inst->header_present = header_present;
1999 }
2000
2001 if (c->key.nr_color_regions == 0) {
2002 if (c->key.alpha_test) {
2003 /* If the alpha test is enabled but there's no color buffer,
2004 * we still need to send alpha out the pipeline to our null
2005 * renderbuffer.
2006 */
2007 emit_color_write(0, 3, color_mrf);
2008 }
2009
2010 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2011 inst->base_mrf = base_mrf;
2012 inst->mlen = nr - base_mrf;
2013 inst->eot = true;
2014 inst->header_present = header_present;
2015 }
2016
2017 this->current_annotation = NULL;
2018 }
2019
2020 void
2021 fs_visitor::resolve_ud_negate(fs_reg *reg)
2022 {
2023 if (reg->type != BRW_REGISTER_TYPE_UD ||
2024 !reg->negate)
2025 return;
2026
2027 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2028 emit(BRW_OPCODE_MOV, temp, *reg);
2029 *reg = temp;
2030 }