9eb9a9d07acac39548ab22a7fce041857f04651c
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "program/prog_parameter.h"
37 #include "program/prog_print.h"
38 #include "program/prog_optimize.h"
39 #include "program/register_allocate.h"
40 #include "program/sampler.h"
41 #include "program/hash_table.h"
42 #include "brw_context.h"
43 #include "brw_eu.h"
44 #include "brw_wm.h"
45 }
46 #include "brw_fs.h"
47 #include "main/uniforms.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50
51 void
52 fs_visitor::visit(ir_variable *ir)
53 {
54 fs_reg *reg = NULL;
55
56 if (variable_storage(ir))
57 return;
58
59 if (ir->mode == ir_var_shader_in) {
60 if (!strcmp(ir->name, "gl_FragCoord")) {
61 reg = emit_fragcoord_interpolation(ir);
62 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
63 reg = emit_frontfacing_interpolation(ir);
64 } else {
65 reg = emit_general_interpolation(ir);
66 }
67 assert(reg);
68 hash_table_insert(this->variable_ht, reg, ir);
69 return;
70 } else if (ir->mode == ir_var_shader_out) {
71 reg = new(this->mem_ctx) fs_reg(this, ir->type);
72
73 if (ir->index > 0) {
74 assert(ir->location == FRAG_RESULT_DATA0);
75 assert(ir->index == 1);
76 this->dual_src_output = *reg;
77 } else if (ir->location == FRAG_RESULT_COLOR) {
78 /* Writing gl_FragColor outputs to all color regions. */
79 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
80 this->outputs[i] = *reg;
81 this->output_components[i] = 4;
82 }
83 } else if (ir->location == FRAG_RESULT_DEPTH) {
84 this->frag_depth = *reg;
85 } else if (ir->location == FRAG_RESULT_SAMPLE_MASK) {
86 this->sample_mask = *reg;
87 } else {
88 /* gl_FragData or a user-defined FS output */
89 assert(ir->location >= FRAG_RESULT_DATA0 &&
90 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92 int vector_elements =
93 ir->type->is_array() ? ir->type->fields.array->vector_elements
94 : ir->type->vector_elements;
95
96 /* General color output. */
97 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98 int output = ir->location - FRAG_RESULT_DATA0 + i;
99 this->outputs[output] = *reg;
100 this->outputs[output].reg_offset += vector_elements * i;
101 this->output_components[output] = vector_elements;
102 }
103 }
104 } else if (ir->mode == ir_var_uniform) {
105 int param_index = c->prog_data.nr_params;
106
107 /* Thanks to the lower_ubo_reference pass, we will see only
108 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
109 * variables, so no need for them to be in variable_ht.
110 *
111 * Atomic counters take no uniform storage, no need to do
112 * anything here.
113 */
114 if (ir->is_in_uniform_block() || ir->type->contains_atomic())
115 return;
116
117 if (dispatch_width == 16) {
118 if (!variable_storage(ir)) {
119 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
120 }
121 return;
122 }
123
124 param_size[param_index] = type_size(ir->type);
125 if (!strncmp(ir->name, "gl_", 3)) {
126 setup_builtin_uniform_values(ir);
127 } else {
128 setup_uniform_values(ir);
129 }
130
131 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
132 reg->type = brw_type_for_base_type(ir->type);
133
134 } else if (ir->mode == ir_var_system_value) {
135 if (ir->location == SYSTEM_VALUE_SAMPLE_POS) {
136 reg = emit_samplepos_setup(ir);
137 } else if (ir->location == SYSTEM_VALUE_SAMPLE_ID) {
138 reg = emit_sampleid_setup(ir);
139 }
140 }
141
142 if (!reg)
143 reg = new(this->mem_ctx) fs_reg(this, ir->type);
144
145 hash_table_insert(this->variable_ht, reg, ir);
146 }
147
148 void
149 fs_visitor::visit(ir_dereference_variable *ir)
150 {
151 fs_reg *reg = variable_storage(ir->var);
152 this->result = *reg;
153 }
154
155 void
156 fs_visitor::visit(ir_dereference_record *ir)
157 {
158 const glsl_type *struct_type = ir->record->type;
159
160 ir->record->accept(this);
161
162 unsigned int offset = 0;
163 for (unsigned int i = 0; i < struct_type->length; i++) {
164 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
165 break;
166 offset += type_size(struct_type->fields.structure[i].type);
167 }
168 this->result.reg_offset += offset;
169 this->result.type = brw_type_for_base_type(ir->type);
170 }
171
172 void
173 fs_visitor::visit(ir_dereference_array *ir)
174 {
175 ir_constant *constant_index;
176 fs_reg src;
177 int element_size = type_size(ir->type);
178
179 constant_index = ir->array_index->as_constant();
180
181 ir->array->accept(this);
182 src = this->result;
183 src.type = brw_type_for_base_type(ir->type);
184
185 if (constant_index) {
186 assert(src.file == UNIFORM || src.file == GRF);
187 src.reg_offset += constant_index->value.i[0] * element_size;
188 } else {
189 /* Variable index array dereference. We attach the variable index
190 * component to the reg as a pointer to a register containing the
191 * offset. Currently only uniform arrays are supported in this patch,
192 * and that reladdr pointer is resolved by
193 * move_uniform_array_access_to_pull_constants(). All other array types
194 * are lowered by lower_variable_index_to_cond_assign().
195 */
196 ir->array_index->accept(this);
197
198 fs_reg index_reg;
199 index_reg = fs_reg(this, glsl_type::int_type);
200 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
201
202 if (src.reladdr) {
203 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
204 }
205
206 src.reladdr = ralloc(mem_ctx, fs_reg);
207 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
208 }
209 this->result = src;
210 }
211
212 void
213 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
214 {
215 if (brw->gen < 6 ||
216 !x.is_valid_3src() ||
217 !y.is_valid_3src() ||
218 !a.is_valid_3src()) {
219 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
220 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
221 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
222 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
223
224 emit(MUL(y_times_a, y, a));
225
226 a.negate = !a.negate;
227 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
228 emit(MUL(x_times_one_minus_a, x, one_minus_a));
229
230 emit(ADD(dst, x_times_one_minus_a, y_times_a));
231 } else {
232 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
233 * we need to reorder the operands.
234 */
235 emit(LRP(dst, a, y, x));
236 }
237 }
238
239 void
240 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
241 fs_reg src0, fs_reg src1)
242 {
243 fs_inst *inst;
244
245 if (brw->gen >= 6) {
246 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
247 inst->conditional_mod = conditionalmod;
248 } else {
249 emit(CMP(reg_null_d, src0, src1, conditionalmod));
250
251 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
252 inst->predicate = BRW_PREDICATE_NORMAL;
253 }
254 }
255
256 /* Instruction selection: Produce a MOV.sat instead of
257 * MIN(MAX(val, 0), 1) when possible.
258 */
259 bool
260 fs_visitor::try_emit_saturate(ir_expression *ir)
261 {
262 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
263
264 if (!sat_val)
265 return false;
266
267 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
268
269 sat_val->accept(this);
270 fs_reg src = this->result;
271
272 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
273
274 /* If the last instruction from our accept() didn't generate our
275 * src, generate a saturated MOV
276 */
277 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
278 if (!modify || modify->regs_written != 1) {
279 this->result = fs_reg(this, ir->type);
280 fs_inst *inst = emit(MOV(this->result, src));
281 inst->saturate = true;
282 } else {
283 modify->saturate = true;
284 this->result = src;
285 }
286
287
288 return true;
289 }
290
291 bool
292 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
293 {
294 /* 3-src instructions were introduced in gen6. */
295 if (brw->gen < 6)
296 return false;
297
298 /* MAD can only handle floating-point data. */
299 if (ir->type != glsl_type::float_type)
300 return false;
301
302 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
303 ir_expression *mul = ir->operands[mul_arg]->as_expression();
304
305 if (!mul || mul->operation != ir_binop_mul)
306 return false;
307
308 if (nonmul->as_constant() ||
309 mul->operands[0]->as_constant() ||
310 mul->operands[1]->as_constant())
311 return false;
312
313 nonmul->accept(this);
314 fs_reg src0 = this->result;
315
316 mul->operands[0]->accept(this);
317 fs_reg src1 = this->result;
318
319 mul->operands[1]->accept(this);
320 fs_reg src2 = this->result;
321
322 this->result = fs_reg(this, ir->type);
323 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
324
325 return true;
326 }
327
328 void
329 fs_visitor::visit(ir_expression *ir)
330 {
331 unsigned int operand;
332 fs_reg op[3], temp;
333 fs_inst *inst;
334
335 assert(ir->get_num_operands() <= 3);
336
337 if (try_emit_saturate(ir))
338 return;
339 if (ir->operation == ir_binop_add) {
340 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
341 return;
342 }
343
344 for (operand = 0; operand < ir->get_num_operands(); operand++) {
345 ir->operands[operand]->accept(this);
346 if (this->result.file == BAD_FILE) {
347 fail("Failed to get tree for expression operand:\n");
348 ir->operands[operand]->print();
349 printf("\n");
350 }
351 assert(this->result.is_valid_3src());
352 op[operand] = this->result;
353
354 /* Matrix expression operands should have been broken down to vector
355 * operations already.
356 */
357 assert(!ir->operands[operand]->type->is_matrix());
358 /* And then those vector operands should have been broken down to scalar.
359 */
360 assert(!ir->operands[operand]->type->is_vector());
361 }
362
363 /* Storage for our result. If our result goes into an assignment, it will
364 * just get copy-propagated out, so no worries.
365 */
366 this->result = fs_reg(this, ir->type);
367
368 switch (ir->operation) {
369 case ir_unop_logic_not:
370 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
371 * ones complement of the whole register, not just bit 0.
372 */
373 emit(XOR(this->result, op[0], fs_reg(1)));
374 break;
375 case ir_unop_neg:
376 op[0].negate = !op[0].negate;
377 emit(MOV(this->result, op[0]));
378 break;
379 case ir_unop_abs:
380 op[0].abs = true;
381 op[0].negate = false;
382 emit(MOV(this->result, op[0]));
383 break;
384 case ir_unop_sign:
385 temp = fs_reg(this, ir->type);
386
387 emit(MOV(this->result, fs_reg(0.0f)));
388
389 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
390 inst = emit(MOV(this->result, fs_reg(1.0f)));
391 inst->predicate = BRW_PREDICATE_NORMAL;
392
393 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
394 inst = emit(MOV(this->result, fs_reg(-1.0f)));
395 inst->predicate = BRW_PREDICATE_NORMAL;
396
397 break;
398 case ir_unop_rcp:
399 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
400 break;
401
402 case ir_unop_exp2:
403 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
404 break;
405 case ir_unop_log2:
406 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
407 break;
408 case ir_unop_exp:
409 case ir_unop_log:
410 assert(!"not reached: should be handled by ir_explog_to_explog2");
411 break;
412 case ir_unop_sin:
413 case ir_unop_sin_reduced:
414 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
415 break;
416 case ir_unop_cos:
417 case ir_unop_cos_reduced:
418 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
419 break;
420
421 case ir_unop_dFdx:
422 emit(FS_OPCODE_DDX, this->result, op[0]);
423 break;
424 case ir_unop_dFdy:
425 emit(FS_OPCODE_DDY, this->result, op[0]);
426 break;
427
428 case ir_binop_add:
429 emit(ADD(this->result, op[0], op[1]));
430 break;
431 case ir_binop_sub:
432 assert(!"not reached: should be handled by ir_sub_to_add_neg");
433 break;
434
435 case ir_binop_mul:
436 if (ir->type->is_integer()) {
437 /* For integer multiplication, the MUL uses the low 16 bits
438 * of one of the operands (src0 on gen6, src1 on gen7). The
439 * MACH accumulates in the contribution of the upper 16 bits
440 * of that operand.
441 *
442 * FINISHME: Emit just the MUL if we know an operand is small
443 * enough.
444 */
445 if (brw->gen >= 7 && dispatch_width == 16)
446 fail("16-wide explicit accumulator operands unsupported\n");
447
448 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
449
450 emit(MUL(acc, op[0], op[1]));
451 emit(MACH(reg_null_d, op[0], op[1]));
452 emit(MOV(this->result, fs_reg(acc)));
453 } else {
454 emit(MUL(this->result, op[0], op[1]));
455 }
456 break;
457 case ir_binop_imul_high: {
458 if (brw->gen >= 7 && dispatch_width == 16)
459 fail("16-wide explicit accumulator operands unsupported\n");
460
461 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
462
463 emit(MUL(acc, op[0], op[1]));
464 emit(MACH(this->result, op[0], op[1]));
465 break;
466 }
467 case ir_binop_div:
468 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
469 assert(ir->type->is_integer());
470 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
471 break;
472 case ir_binop_carry: {
473 if (brw->gen >= 7 && dispatch_width == 16)
474 fail("16-wide explicit accumulator operands unsupported\n");
475
476 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
477
478 emit(ADDC(reg_null_ud, op[0], op[1]));
479 emit(MOV(this->result, fs_reg(acc)));
480 break;
481 }
482 case ir_binop_borrow: {
483 if (brw->gen >= 7 && dispatch_width == 16)
484 fail("16-wide explicit accumulator operands unsupported\n");
485
486 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
487
488 emit(SUBB(reg_null_ud, op[0], op[1]));
489 emit(MOV(this->result, fs_reg(acc)));
490 break;
491 }
492 case ir_binop_mod:
493 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
494 assert(ir->type->is_integer());
495 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
496 break;
497
498 case ir_binop_less:
499 case ir_binop_greater:
500 case ir_binop_lequal:
501 case ir_binop_gequal:
502 case ir_binop_equal:
503 case ir_binop_all_equal:
504 case ir_binop_nequal:
505 case ir_binop_any_nequal:
506 resolve_bool_comparison(ir->operands[0], &op[0]);
507 resolve_bool_comparison(ir->operands[1], &op[1]);
508
509 emit(CMP(this->result, op[0], op[1],
510 brw_conditional_for_comparison(ir->operation)));
511 break;
512
513 case ir_binop_logic_xor:
514 emit(XOR(this->result, op[0], op[1]));
515 break;
516
517 case ir_binop_logic_or:
518 emit(OR(this->result, op[0], op[1]));
519 break;
520
521 case ir_binop_logic_and:
522 emit(AND(this->result, op[0], op[1]));
523 break;
524
525 case ir_binop_dot:
526 case ir_unop_any:
527 assert(!"not reached: should be handled by brw_fs_channel_expressions");
528 break;
529
530 case ir_unop_noise:
531 assert(!"not reached: should be handled by lower_noise");
532 break;
533
534 case ir_quadop_vector:
535 assert(!"not reached: should be handled by lower_quadop_vector");
536 break;
537
538 case ir_binop_vector_extract:
539 assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
540 break;
541
542 case ir_triop_vector_insert:
543 assert(!"not reached: should be handled by lower_vector_insert()");
544 break;
545
546 case ir_binop_ldexp:
547 assert(!"not reached: should be handled by ldexp_to_arith()");
548 break;
549
550 case ir_unop_sqrt:
551 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
552 break;
553
554 case ir_unop_rsq:
555 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
556 break;
557
558 case ir_unop_bitcast_i2f:
559 case ir_unop_bitcast_u2f:
560 op[0].type = BRW_REGISTER_TYPE_F;
561 this->result = op[0];
562 break;
563 case ir_unop_i2u:
564 case ir_unop_bitcast_f2u:
565 op[0].type = BRW_REGISTER_TYPE_UD;
566 this->result = op[0];
567 break;
568 case ir_unop_u2i:
569 case ir_unop_bitcast_f2i:
570 op[0].type = BRW_REGISTER_TYPE_D;
571 this->result = op[0];
572 break;
573 case ir_unop_i2f:
574 case ir_unop_u2f:
575 case ir_unop_f2i:
576 case ir_unop_f2u:
577 emit(MOV(this->result, op[0]));
578 break;
579
580 case ir_unop_b2i:
581 emit(AND(this->result, op[0], fs_reg(1)));
582 break;
583 case ir_unop_b2f:
584 temp = fs_reg(this, glsl_type::int_type);
585 emit(AND(temp, op[0], fs_reg(1)));
586 emit(MOV(this->result, temp));
587 break;
588
589 case ir_unop_f2b:
590 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
591 break;
592 case ir_unop_i2b:
593 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
594 break;
595
596 case ir_unop_trunc:
597 emit(RNDZ(this->result, op[0]));
598 break;
599 case ir_unop_ceil:
600 op[0].negate = !op[0].negate;
601 emit(RNDD(this->result, op[0]));
602 this->result.negate = true;
603 break;
604 case ir_unop_floor:
605 emit(RNDD(this->result, op[0]));
606 break;
607 case ir_unop_fract:
608 emit(FRC(this->result, op[0]));
609 break;
610 case ir_unop_round_even:
611 emit(RNDE(this->result, op[0]));
612 break;
613
614 case ir_binop_min:
615 case ir_binop_max:
616 resolve_ud_negate(&op[0]);
617 resolve_ud_negate(&op[1]);
618 emit_minmax(ir->operation == ir_binop_min ?
619 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
620 this->result, op[0], op[1]);
621 break;
622 case ir_unop_pack_snorm_2x16:
623 case ir_unop_pack_snorm_4x8:
624 case ir_unop_pack_unorm_2x16:
625 case ir_unop_pack_unorm_4x8:
626 case ir_unop_unpack_snorm_2x16:
627 case ir_unop_unpack_snorm_4x8:
628 case ir_unop_unpack_unorm_2x16:
629 case ir_unop_unpack_unorm_4x8:
630 case ir_unop_unpack_half_2x16:
631 case ir_unop_pack_half_2x16:
632 assert(!"not reached: should be handled by lower_packing_builtins");
633 break;
634 case ir_unop_unpack_half_2x16_split_x:
635 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
636 break;
637 case ir_unop_unpack_half_2x16_split_y:
638 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
639 break;
640 case ir_binop_pow:
641 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
642 break;
643
644 case ir_unop_bitfield_reverse:
645 emit(BFREV(this->result, op[0]));
646 break;
647 case ir_unop_bit_count:
648 emit(CBIT(this->result, op[0]));
649 break;
650 case ir_unop_find_msb:
651 temp = fs_reg(this, glsl_type::uint_type);
652 emit(FBH(temp, op[0]));
653
654 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
655 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
656 * subtract the result from 31 to convert the MSB count into an LSB count.
657 */
658
659 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
660 emit(MOV(this->result, temp));
661 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
662
663 temp.negate = true;
664 inst = emit(ADD(this->result, temp, fs_reg(31)));
665 inst->predicate = BRW_PREDICATE_NORMAL;
666 break;
667 case ir_unop_find_lsb:
668 emit(FBL(this->result, op[0]));
669 break;
670 case ir_triop_bitfield_extract:
671 /* Note that the instruction's argument order is reversed from GLSL
672 * and the IR.
673 */
674 emit(BFE(this->result, op[2], op[1], op[0]));
675 break;
676 case ir_binop_bfm:
677 emit(BFI1(this->result, op[0], op[1]));
678 break;
679 case ir_triop_bfi:
680 emit(BFI2(this->result, op[0], op[1], op[2]));
681 break;
682 case ir_quadop_bitfield_insert:
683 assert(!"not reached: should be handled by "
684 "lower_instructions::bitfield_insert_to_bfm_bfi");
685 break;
686
687 case ir_unop_bit_not:
688 emit(NOT(this->result, op[0]));
689 break;
690 case ir_binop_bit_and:
691 emit(AND(this->result, op[0], op[1]));
692 break;
693 case ir_binop_bit_xor:
694 emit(XOR(this->result, op[0], op[1]));
695 break;
696 case ir_binop_bit_or:
697 emit(OR(this->result, op[0], op[1]));
698 break;
699
700 case ir_binop_lshift:
701 emit(SHL(this->result, op[0], op[1]));
702 break;
703
704 case ir_binop_rshift:
705 if (ir->type->base_type == GLSL_TYPE_INT)
706 emit(ASR(this->result, op[0], op[1]));
707 else
708 emit(SHR(this->result, op[0], op[1]));
709 break;
710 case ir_binop_pack_half_2x16_split:
711 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
712 break;
713 case ir_binop_ubo_load: {
714 /* This IR node takes a constant uniform block and a constant or
715 * variable byte offset within the block and loads a vector from that.
716 */
717 ir_constant *uniform_block = ir->operands[0]->as_constant();
718 ir_constant *const_offset = ir->operands[1]->as_constant();
719 fs_reg surf_index = fs_reg(c->prog_data.base.binding_table.ubo_start +
720 uniform_block->value.u[0]);
721 if (const_offset) {
722 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
723 packed_consts.type = result.type;
724
725 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
726 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
727 packed_consts, surf_index, const_offset_reg));
728
729 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
730 for (int i = 0; i < ir->type->vector_elements; i++) {
731 /* UBO bools are any nonzero value. We consider bools to be
732 * values with the low bit set to 1. Convert them using CMP.
733 */
734 if (ir->type->base_type == GLSL_TYPE_BOOL) {
735 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
736 } else {
737 emit(MOV(result, packed_consts));
738 }
739
740 packed_consts.smear++;
741 result.reg_offset++;
742
743 /* The std140 packing rules don't allow vectors to cross 16-byte
744 * boundaries, and a reg is 32 bytes.
745 */
746 assert(packed_consts.smear < 8);
747 }
748 } else {
749 /* Turn the byte offset into a dword offset. */
750 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
751 emit(SHR(base_offset, op[1], fs_reg(2)));
752
753 for (int i = 0; i < ir->type->vector_elements; i++) {
754 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
755 base_offset, i));
756
757 if (ir->type->base_type == GLSL_TYPE_BOOL)
758 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
759
760 result.reg_offset++;
761 }
762 }
763
764 result.reg_offset = 0;
765 break;
766 }
767
768 case ir_triop_fma:
769 /* Note that the instruction's argument order is reversed from GLSL
770 * and the IR.
771 */
772 emit(MAD(this->result, op[2], op[1], op[0]));
773 break;
774
775 case ir_triop_lrp:
776 emit_lrp(this->result, op[0], op[1], op[2]);
777 break;
778
779 case ir_triop_csel:
780 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
781 inst = emit(BRW_OPCODE_SEL, this->result, op[1], op[2]);
782 inst->predicate = BRW_PREDICATE_NORMAL;
783 break;
784 }
785 }
786
787 void
788 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
789 const glsl_type *type, bool predicated)
790 {
791 switch (type->base_type) {
792 case GLSL_TYPE_FLOAT:
793 case GLSL_TYPE_UINT:
794 case GLSL_TYPE_INT:
795 case GLSL_TYPE_BOOL:
796 for (unsigned int i = 0; i < type->components(); i++) {
797 l.type = brw_type_for_base_type(type);
798 r.type = brw_type_for_base_type(type);
799
800 if (predicated || !l.equals(r)) {
801 fs_inst *inst = emit(MOV(l, r));
802 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
803 }
804
805 l.reg_offset++;
806 r.reg_offset++;
807 }
808 break;
809 case GLSL_TYPE_ARRAY:
810 for (unsigned int i = 0; i < type->length; i++) {
811 emit_assignment_writes(l, r, type->fields.array, predicated);
812 }
813 break;
814
815 case GLSL_TYPE_STRUCT:
816 for (unsigned int i = 0; i < type->length; i++) {
817 emit_assignment_writes(l, r, type->fields.structure[i].type,
818 predicated);
819 }
820 break;
821
822 case GLSL_TYPE_SAMPLER:
823 case GLSL_TYPE_ATOMIC_UINT:
824 break;
825
826 case GLSL_TYPE_VOID:
827 case GLSL_TYPE_ERROR:
828 case GLSL_TYPE_INTERFACE:
829 assert(!"not reached");
830 break;
831 }
832 }
833
834 /* If the RHS processing resulted in an instruction generating a
835 * temporary value, and it would be easy to rewrite the instruction to
836 * generate its result right into the LHS instead, do so. This ends
837 * up reliably removing instructions where it can be tricky to do so
838 * later without real UD chain information.
839 */
840 bool
841 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
842 fs_reg dst,
843 fs_reg src,
844 fs_inst *pre_rhs_inst,
845 fs_inst *last_rhs_inst)
846 {
847 /* Only attempt if we're doing a direct assignment. */
848 if (ir->condition ||
849 !(ir->lhs->type->is_scalar() ||
850 (ir->lhs->type->is_vector() &&
851 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
852 return false;
853
854 /* Make sure the last instruction generated our source reg. */
855 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
856 last_rhs_inst,
857 src);
858 if (!modify)
859 return false;
860
861 /* If last_rhs_inst wrote a different number of components than our LHS,
862 * we can't safely rewrite it.
863 */
864 if (virtual_grf_sizes[dst.reg] != modify->regs_written)
865 return false;
866
867 /* Success! Rewrite the instruction. */
868 modify->dst = dst;
869
870 return true;
871 }
872
873 void
874 fs_visitor::visit(ir_assignment *ir)
875 {
876 fs_reg l, r;
877 fs_inst *inst;
878
879 /* FINISHME: arrays on the lhs */
880 ir->lhs->accept(this);
881 l = this->result;
882
883 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
884
885 ir->rhs->accept(this);
886 r = this->result;
887
888 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
889
890 assert(l.file != BAD_FILE);
891 assert(r.file != BAD_FILE);
892
893 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
894 return;
895
896 if (ir->condition) {
897 emit_bool_to_cond_code(ir->condition);
898 }
899
900 if (ir->lhs->type->is_scalar() ||
901 ir->lhs->type->is_vector()) {
902 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
903 if (ir->write_mask & (1 << i)) {
904 inst = emit(MOV(l, r));
905 if (ir->condition)
906 inst->predicate = BRW_PREDICATE_NORMAL;
907 r.reg_offset++;
908 }
909 l.reg_offset++;
910 }
911 } else {
912 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
913 }
914 }
915
916 fs_inst *
917 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
918 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
919 {
920 int mlen;
921 int base_mrf = 1;
922 bool simd16 = false;
923 fs_reg orig_dst;
924
925 /* g0 header. */
926 mlen = 1;
927
928 if (ir->shadow_comparitor) {
929 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
930 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
931 coordinate.reg_offset++;
932 }
933
934 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
935 * the unused slots must be zeroed.
936 */
937 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
938 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
939 }
940 mlen += 3;
941
942 if (ir->op == ir_tex) {
943 /* There's no plain shadow compare message, so we use shadow
944 * compare with a bias of 0.0.
945 */
946 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
947 mlen++;
948 } else if (ir->op == ir_txb || ir->op == ir_txl) {
949 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
950 mlen++;
951 } else {
952 assert(!"Should not get here.");
953 }
954
955 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
956 mlen++;
957 } else if (ir->op == ir_tex) {
958 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
959 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
960 coordinate.reg_offset++;
961 }
962 /* zero the others. */
963 for (int i = ir->coordinate->type->vector_elements; i<3; i++) {
964 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
965 }
966 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
967 mlen += 3;
968 } else if (ir->op == ir_txd) {
969 fs_reg &dPdx = lod;
970
971 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
972 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
973 coordinate.reg_offset++;
974 }
975 /* the slots for u and v are always present, but r is optional */
976 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
977
978 /* P = u, v, r
979 * dPdx = dudx, dvdx, drdx
980 * dPdy = dudy, dvdy, drdy
981 *
982 * 1-arg: Does not exist.
983 *
984 * 2-arg: dudx dvdx dudy dvdy
985 * dPdx.x dPdx.y dPdy.x dPdy.y
986 * m4 m5 m6 m7
987 *
988 * 3-arg: dudx dvdx drdx dudy dvdy drdy
989 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
990 * m5 m6 m7 m8 m9 m10
991 */
992 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
993 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
994 dPdx.reg_offset++;
995 }
996 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
997
998 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
999 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1000 dPdy.reg_offset++;
1001 }
1002 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
1003 } else if (ir->op == ir_txs) {
1004 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1005 simd16 = true;
1006 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1007 mlen += 2;
1008 } else {
1009 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1010 * instructions. We'll need to do SIMD16 here.
1011 */
1012 simd16 = true;
1013 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
1014
1015 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1016 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1017 coordinate));
1018 coordinate.reg_offset++;
1019 }
1020
1021 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1022 * be necessary for TXF (ld), but seems wise to do for all messages.
1023 */
1024 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
1025 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1026 }
1027
1028 /* lod/bias appears after u/v/r. */
1029 mlen += 6;
1030
1031 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1032 mlen++;
1033
1034 /* The unused upper half. */
1035 mlen++;
1036 }
1037
1038 if (simd16) {
1039 /* Now, since we're doing simd16, the return is 2 interleaved
1040 * vec4s where the odd-indexed ones are junk. We'll need to move
1041 * this weirdness around to the expected layout.
1042 */
1043 orig_dst = dst;
1044 dst = fs_reg(GRF, virtual_grf_alloc(8),
1045 (brw->is_g4x ?
1046 brw_type_for_base_type(ir->type) :
1047 BRW_REGISTER_TYPE_F));
1048 }
1049
1050 fs_inst *inst = NULL;
1051 switch (ir->op) {
1052 case ir_tex:
1053 inst = emit(SHADER_OPCODE_TEX, dst);
1054 break;
1055 case ir_txb:
1056 inst = emit(FS_OPCODE_TXB, dst);
1057 break;
1058 case ir_txl:
1059 inst = emit(SHADER_OPCODE_TXL, dst);
1060 break;
1061 case ir_txd:
1062 inst = emit(SHADER_OPCODE_TXD, dst);
1063 break;
1064 case ir_txs:
1065 inst = emit(SHADER_OPCODE_TXS, dst);
1066 break;
1067 case ir_txf:
1068 inst = emit(SHADER_OPCODE_TXF, dst);
1069 break;
1070 default:
1071 fail("unrecognized texture opcode");
1072 }
1073 inst->base_mrf = base_mrf;
1074 inst->mlen = mlen;
1075 inst->header_present = true;
1076 inst->regs_written = simd16 ? 8 : 4;
1077
1078 if (simd16) {
1079 for (int i = 0; i < 4; i++) {
1080 emit(MOV(orig_dst, dst));
1081 orig_dst.reg_offset++;
1082 dst.reg_offset += 2;
1083 }
1084 }
1085
1086 return inst;
1087 }
1088
1089 /* gen5's sampler has slots for u, v, r, array index, then optional
1090 * parameters like shadow comparitor or LOD bias. If optional
1091 * parameters aren't present, those base slots are optional and don't
1092 * need to be included in the message.
1093 *
1094 * We don't fill in the unnecessary slots regardless, which may look
1095 * surprising in the disassembly.
1096 */
1097 fs_inst *
1098 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1099 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1100 fs_reg sample_index)
1101 {
1102 int mlen = 0;
1103 int base_mrf = 2;
1104 int reg_width = dispatch_width / 8;
1105 bool header_present = false;
1106 const int vector_elements =
1107 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
1108
1109 if (ir->offset) {
1110 /* The offsets set up by the ir_texture visitor are in the
1111 * m1 header, so we can't go headerless.
1112 */
1113 header_present = true;
1114 mlen++;
1115 base_mrf--;
1116 }
1117
1118 for (int i = 0; i < vector_elements; i++) {
1119 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1120 coordinate));
1121 coordinate.reg_offset++;
1122 }
1123 mlen += vector_elements * reg_width;
1124
1125 if (ir->shadow_comparitor) {
1126 mlen = MAX2(mlen, header_present + 4 * reg_width);
1127
1128 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1129 mlen += reg_width;
1130 }
1131
1132 fs_inst *inst = NULL;
1133 switch (ir->op) {
1134 case ir_tex:
1135 inst = emit(SHADER_OPCODE_TEX, dst);
1136 break;
1137 case ir_txb:
1138 mlen = MAX2(mlen, header_present + 4 * reg_width);
1139 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1140 mlen += reg_width;
1141
1142 inst = emit(FS_OPCODE_TXB, dst);
1143 break;
1144 case ir_txl:
1145 mlen = MAX2(mlen, header_present + 4 * reg_width);
1146 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1147 mlen += reg_width;
1148
1149 inst = emit(SHADER_OPCODE_TXL, dst);
1150 break;
1151 case ir_txd: {
1152 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1153
1154 /**
1155 * P = u, v, r
1156 * dPdx = dudx, dvdx, drdx
1157 * dPdy = dudy, dvdy, drdy
1158 *
1159 * Load up these values:
1160 * - dudx dudy dvdx dvdy drdx drdy
1161 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1162 */
1163 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1164 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1165 lod.reg_offset++;
1166 mlen += reg_width;
1167
1168 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1169 lod2.reg_offset++;
1170 mlen += reg_width;
1171 }
1172
1173 inst = emit(SHADER_OPCODE_TXD, dst);
1174 break;
1175 }
1176 case ir_txs:
1177 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1178 mlen += reg_width;
1179 inst = emit(SHADER_OPCODE_TXS, dst);
1180 break;
1181 case ir_query_levels:
1182 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1183 mlen += reg_width;
1184 inst = emit(SHADER_OPCODE_TXS, dst);
1185 break;
1186 case ir_txf:
1187 mlen = header_present + 4 * reg_width;
1188 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1189 inst = emit(SHADER_OPCODE_TXF, dst);
1190 break;
1191 case ir_txf_ms:
1192 mlen = header_present + 4 * reg_width;
1193
1194 /* lod */
1195 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1196 /* sample index */
1197 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1198 mlen += reg_width;
1199 inst = emit(SHADER_OPCODE_TXF_MS, dst);
1200 break;
1201 case ir_lod:
1202 inst = emit(SHADER_OPCODE_LOD, dst);
1203 break;
1204 case ir_tg4:
1205 inst = emit(SHADER_OPCODE_TG4, dst);
1206 break;
1207 default:
1208 fail("unrecognized texture opcode");
1209 break;
1210 }
1211 inst->base_mrf = base_mrf;
1212 inst->mlen = mlen;
1213 inst->header_present = header_present;
1214 inst->regs_written = 4;
1215
1216 if (mlen > 11) {
1217 fail("Message length >11 disallowed by hardware\n");
1218 }
1219
1220 return inst;
1221 }
1222
1223 fs_inst *
1224 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1225 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1226 fs_reg sample_index)
1227 {
1228 int reg_width = dispatch_width / 8;
1229 bool header_present = false;
1230
1231 fs_reg payload = fs_reg(this, glsl_type::float_type);
1232 fs_reg next = payload;
1233
1234 if (ir->op == ir_tg4 || (ir->offset && ir->op != ir_txf)) {
1235 /* For general texture offsets (no txf workaround), we need a header to
1236 * put them in. Note that for 16-wide we're making space for two actual
1237 * hardware registers here, so the emit will have to fix up for this.
1238 *
1239 * * ir4_tg4 needs to place its channel select in the header,
1240 * for interaction with ARB_texture_swizzle
1241 */
1242 header_present = true;
1243 next.reg_offset++;
1244 }
1245
1246 if (ir->shadow_comparitor) {
1247 emit(MOV(next, shadow_c));
1248 next.reg_offset++;
1249 }
1250
1251 bool has_nonconstant_offset = ir->offset && !ir->offset->as_constant();
1252 bool coordinate_done = false;
1253
1254 /* Set up the LOD info */
1255 switch (ir->op) {
1256 case ir_tex:
1257 case ir_lod:
1258 break;
1259 case ir_txb:
1260 emit(MOV(next, lod));
1261 next.reg_offset++;
1262 break;
1263 case ir_txl:
1264 emit(MOV(next, lod));
1265 next.reg_offset++;
1266 break;
1267 case ir_txd: {
1268 if (dispatch_width == 16)
1269 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1270
1271 /* Load dPdx and the coordinate together:
1272 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1273 */
1274 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1275 emit(MOV(next, coordinate));
1276 coordinate.reg_offset++;
1277 next.reg_offset++;
1278
1279 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1280 * only derivatives for (u, v, r).
1281 */
1282 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1283 emit(MOV(next, lod));
1284 lod.reg_offset++;
1285 next.reg_offset++;
1286
1287 emit(MOV(next, lod2));
1288 lod2.reg_offset++;
1289 next.reg_offset++;
1290 }
1291 }
1292
1293 coordinate_done = true;
1294 break;
1295 }
1296 case ir_txs:
1297 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), lod));
1298 next.reg_offset++;
1299 break;
1300 case ir_query_levels:
1301 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1302 next.reg_offset++;
1303 break;
1304 case ir_txf:
1305 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1306 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1307 coordinate.reg_offset++;
1308 next.reg_offset++;
1309
1310 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), lod));
1311 next.reg_offset++;
1312
1313 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1314 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1315 coordinate.reg_offset++;
1316 next.reg_offset++;
1317 }
1318
1319 coordinate_done = true;
1320 break;
1321 case ir_txf_ms:
1322 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), sample_index));
1323 next.reg_offset++;
1324
1325 /* constant zero MCS; we arrange to never actually have a compressed
1326 * multisample surface here for now. TODO: issue ld_mcs to get this first,
1327 * if we ever support texturing from compressed multisample surfaces
1328 */
1329 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1330 next.reg_offset++;
1331
1332 /* there is no offsetting for this message; just copy in the integer
1333 * texture coordinates
1334 */
1335 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1336 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1337 coordinate.reg_offset++;
1338 next.reg_offset++;
1339 }
1340
1341 coordinate_done = true;
1342 break;
1343 case ir_tg4:
1344 if (has_nonconstant_offset) {
1345 if (ir->shadow_comparitor && dispatch_width == 16)
1346 fail("Gen7 does not support gather4_po_c in SIMD16 mode.");
1347
1348 /* More crazy intermixing */
1349 ir->offset->accept(this);
1350 fs_reg offset_value = this->result;
1351
1352 for (int i = 0; i < 2; i++) { /* u, v */
1353 emit(MOV(next, coordinate));
1354 coordinate.reg_offset++;
1355 next.reg_offset++;
1356 }
1357
1358 for (int i = 0; i < 2; i++) { /* offu, offv */
1359 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), offset_value));
1360 offset_value.reg_offset++;
1361 next.reg_offset++;
1362 }
1363
1364 if (ir->coordinate->type->vector_elements == 3) { /* r if present */
1365 emit(MOV(next, coordinate));
1366 coordinate.reg_offset++;
1367 next.reg_offset++;
1368 }
1369
1370 coordinate_done = true;
1371 }
1372 break;
1373 }
1374
1375 /* Set up the coordinate (except for cases where it was done above) */
1376 if (ir->coordinate && !coordinate_done) {
1377 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1378 emit(MOV(next, coordinate));
1379 coordinate.reg_offset++;
1380 next.reg_offset++;
1381 }
1382 }
1383
1384 /* Generate the SEND */
1385 fs_inst *inst = NULL;
1386 switch (ir->op) {
1387 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst, payload); break;
1388 case ir_txb: inst = emit(FS_OPCODE_TXB, dst, payload); break;
1389 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst, payload); break;
1390 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst, payload); break;
1391 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst, payload); break;
1392 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst, payload); break;
1393 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1394 case ir_query_levels: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1395 case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst, payload); break;
1396 case ir_tg4:
1397 if (has_nonconstant_offset)
1398 inst = emit(SHADER_OPCODE_TG4_OFFSET, dst, payload);
1399 else
1400 inst = emit(SHADER_OPCODE_TG4, dst, payload);
1401 break;
1402 }
1403 inst->base_mrf = -1;
1404 if (reg_width == 2)
1405 inst->mlen = next.reg_offset * reg_width - header_present;
1406 else
1407 inst->mlen = next.reg_offset * reg_width;
1408 inst->header_present = header_present;
1409 inst->regs_written = 4;
1410
1411 virtual_grf_sizes[payload.reg] = next.reg_offset;
1412 if (inst->mlen > 11) {
1413 fail("Message length >11 disallowed by hardware\n");
1414 }
1415
1416 return inst;
1417 }
1418
1419 fs_reg
1420 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1421 bool is_rect, int sampler, int texunit)
1422 {
1423 fs_inst *inst = NULL;
1424 bool needs_gl_clamp = true;
1425 fs_reg scale_x, scale_y;
1426
1427 /* The 965 requires the EU to do the normalization of GL rectangle
1428 * texture coordinates. We use the program parameter state
1429 * tracking to get the scaling factor.
1430 */
1431 if (is_rect &&
1432 (brw->gen < 6 ||
1433 (brw->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1434 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1435 struct gl_program_parameter_list *params = prog->Parameters;
1436 int tokens[STATE_LENGTH] = {
1437 STATE_INTERNAL,
1438 STATE_TEXRECT_SCALE,
1439 texunit,
1440 0,
1441 0
1442 };
1443
1444 if (dispatch_width == 16) {
1445 fail("rectangle scale uniform setup not supported on 16-wide\n");
1446 return coordinate;
1447 }
1448
1449 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1450 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1451
1452 GLuint index = _mesa_add_state_reference(params,
1453 (gl_state_index *)tokens);
1454 c->prog_data.param[c->prog_data.nr_params++] =
1455 &prog->Parameters->ParameterValues[index][0].f;
1456 c->prog_data.param[c->prog_data.nr_params++] =
1457 &prog->Parameters->ParameterValues[index][1].f;
1458 }
1459
1460 /* The 965 requires the EU to do the normalization of GL rectangle
1461 * texture coordinates. We use the program parameter state
1462 * tracking to get the scaling factor.
1463 */
1464 if (brw->gen < 6 && is_rect) {
1465 fs_reg dst = fs_reg(this, ir->coordinate->type);
1466 fs_reg src = coordinate;
1467 coordinate = dst;
1468
1469 emit(MUL(dst, src, scale_x));
1470 dst.reg_offset++;
1471 src.reg_offset++;
1472 emit(MUL(dst, src, scale_y));
1473 } else if (is_rect) {
1474 /* On gen6+, the sampler handles the rectangle coordinates
1475 * natively, without needing rescaling. But that means we have
1476 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1477 * not [0, 1] like the default case below.
1478 */
1479 needs_gl_clamp = false;
1480
1481 for (int i = 0; i < 2; i++) {
1482 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1483 fs_reg chan = coordinate;
1484 chan.reg_offset += i;
1485
1486 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1487 inst->conditional_mod = BRW_CONDITIONAL_G;
1488
1489 /* Our parameter comes in as 1.0/width or 1.0/height,
1490 * because that's what people normally want for doing
1491 * texture rectangle handling. We need width or height
1492 * for clamping, but we don't care enough to make a new
1493 * parameter type, so just invert back.
1494 */
1495 fs_reg limit = fs_reg(this, glsl_type::float_type);
1496 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1497 emit(SHADER_OPCODE_RCP, limit, limit);
1498
1499 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1500 inst->conditional_mod = BRW_CONDITIONAL_L;
1501 }
1502 }
1503 }
1504
1505 if (ir->coordinate && needs_gl_clamp) {
1506 for (unsigned int i = 0;
1507 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1508 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1509 fs_reg chan = coordinate;
1510 chan.reg_offset += i;
1511
1512 fs_inst *inst = emit(MOV(chan, chan));
1513 inst->saturate = true;
1514 }
1515 }
1516 }
1517 return coordinate;
1518 }
1519
1520 void
1521 fs_visitor::visit(ir_texture *ir)
1522 {
1523 fs_inst *inst = NULL;
1524
1525 int sampler =
1526 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
1527 /* FINISHME: We're failing to recompile our programs when the sampler is
1528 * updated. This only matters for the texture rectangle scale parameters
1529 * (pre-gen6, or gen6+ with GL_CLAMP).
1530 */
1531 int texunit = prog->SamplerUnits[sampler];
1532
1533 if (ir->op == ir_tg4) {
1534 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
1535 * emitting anything other than setting up the constant result.
1536 */
1537 ir_constant *chan = ir->lod_info.component->as_constant();
1538 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1539 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
1540
1541 fs_reg res = fs_reg(this, glsl_type::vec4_type);
1542 this->result = res;
1543
1544 for (int i=0; i<4; i++) {
1545 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
1546 res.reg_offset++;
1547 }
1548 return;
1549 }
1550 }
1551
1552 /* Should be lowered by do_lower_texture_projection */
1553 assert(!ir->projector);
1554
1555 /* Should be lowered */
1556 assert(!ir->offset || !ir->offset->type->is_array());
1557
1558 /* Generate code to compute all the subexpression trees. This has to be
1559 * done before loading any values into MRFs for the sampler message since
1560 * generating these values may involve SEND messages that need the MRFs.
1561 */
1562 fs_reg coordinate;
1563 if (ir->coordinate) {
1564 ir->coordinate->accept(this);
1565
1566 coordinate = rescale_texcoord(ir, this->result,
1567 ir->sampler->type->sampler_dimensionality ==
1568 GLSL_SAMPLER_DIM_RECT,
1569 sampler, texunit);
1570 }
1571
1572 fs_reg shadow_comparitor;
1573 if (ir->shadow_comparitor) {
1574 ir->shadow_comparitor->accept(this);
1575 shadow_comparitor = this->result;
1576 }
1577
1578 fs_reg lod, lod2, sample_index;
1579 switch (ir->op) {
1580 case ir_tex:
1581 case ir_lod:
1582 case ir_tg4:
1583 case ir_query_levels:
1584 break;
1585 case ir_txb:
1586 ir->lod_info.bias->accept(this);
1587 lod = this->result;
1588 break;
1589 case ir_txd:
1590 ir->lod_info.grad.dPdx->accept(this);
1591 lod = this->result;
1592
1593 ir->lod_info.grad.dPdy->accept(this);
1594 lod2 = this->result;
1595 break;
1596 case ir_txf:
1597 case ir_txl:
1598 case ir_txs:
1599 ir->lod_info.lod->accept(this);
1600 lod = this->result;
1601 break;
1602 case ir_txf_ms:
1603 ir->lod_info.sample_index->accept(this);
1604 sample_index = this->result;
1605 break;
1606 default:
1607 assert(!"Unrecognized texture opcode");
1608 };
1609
1610 /* Writemasking doesn't eliminate channels on SIMD8 texture
1611 * samples, so don't worry about them.
1612 */
1613 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1614
1615 if (brw->gen >= 7) {
1616 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1617 lod, lod2, sample_index);
1618 } else if (brw->gen >= 5) {
1619 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1620 lod, lod2, sample_index);
1621 } else {
1622 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1623 lod, lod2);
1624 }
1625
1626 if (ir->offset != NULL && ir->op != ir_txf)
1627 inst->texture_offset = brw_texture_offset(ctx, ir->offset->as_constant());
1628
1629 if (ir->op == ir_tg4)
1630 inst->texture_offset |= gather_channel(ir, sampler) << 16; // M0.2:16-17
1631
1632 inst->sampler = sampler;
1633
1634 if (ir->shadow_comparitor)
1635 inst->shadow_compare = true;
1636
1637 /* fixup #layers for cube map arrays */
1638 if (ir->op == ir_txs) {
1639 glsl_type const *type = ir->sampler->type;
1640 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1641 type->sampler_array) {
1642 fs_reg depth = dst;
1643 depth.reg_offset = 2;
1644 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1645 }
1646 }
1647
1648 swizzle_result(ir, dst, sampler);
1649 }
1650
1651 /**
1652 * Set up the gather channel based on the swizzle, for gather4.
1653 */
1654 uint32_t
1655 fs_visitor::gather_channel(ir_texture *ir, int sampler)
1656 {
1657 ir_constant *chan = ir->lod_info.component->as_constant();
1658 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1659 switch (swiz) {
1660 case SWIZZLE_X: return 0;
1661 case SWIZZLE_Y:
1662 /* gather4 sampler is broken for green channel on RG32F --
1663 * we must ask for blue instead.
1664 */
1665 if (c->key.tex.gather_channel_quirk_mask & (1<<sampler))
1666 return 2;
1667 return 1;
1668 case SWIZZLE_Z: return 2;
1669 case SWIZZLE_W: return 3;
1670 default:
1671 assert(!"Not reached"); /* zero, one swizzles handled already */
1672 return 0;
1673 }
1674 }
1675
1676 /**
1677 * Swizzle the result of a texture result. This is necessary for
1678 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1679 */
1680 void
1681 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1682 {
1683 if (ir->op == ir_query_levels) {
1684 /* # levels is in .w */
1685 orig_val.reg_offset += 3;
1686 this->result = orig_val;
1687 return;
1688 }
1689
1690 this->result = orig_val;
1691
1692 /* txs,lod don't actually sample the texture, so swizzling the result
1693 * makes no sense.
1694 */
1695 if (ir->op == ir_txs || ir->op == ir_lod || ir->op == ir_tg4)
1696 return;
1697
1698 if (ir->type == glsl_type::float_type) {
1699 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1700 assert(ir->sampler->type->sampler_shadow);
1701 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1702 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1703
1704 for (int i = 0; i < 4; i++) {
1705 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1706 fs_reg l = swizzled_result;
1707 l.reg_offset += i;
1708
1709 if (swiz == SWIZZLE_ZERO) {
1710 emit(MOV(l, fs_reg(0.0f)));
1711 } else if (swiz == SWIZZLE_ONE) {
1712 emit(MOV(l, fs_reg(1.0f)));
1713 } else {
1714 fs_reg r = orig_val;
1715 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1716 emit(MOV(l, r));
1717 }
1718 }
1719 this->result = swizzled_result;
1720 }
1721 }
1722
1723 void
1724 fs_visitor::visit(ir_swizzle *ir)
1725 {
1726 ir->val->accept(this);
1727 fs_reg val = this->result;
1728
1729 if (ir->type->vector_elements == 1) {
1730 this->result.reg_offset += ir->mask.x;
1731 return;
1732 }
1733
1734 fs_reg result = fs_reg(this, ir->type);
1735 this->result = result;
1736
1737 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1738 fs_reg channel = val;
1739 int swiz = 0;
1740
1741 switch (i) {
1742 case 0:
1743 swiz = ir->mask.x;
1744 break;
1745 case 1:
1746 swiz = ir->mask.y;
1747 break;
1748 case 2:
1749 swiz = ir->mask.z;
1750 break;
1751 case 3:
1752 swiz = ir->mask.w;
1753 break;
1754 }
1755
1756 channel.reg_offset += swiz;
1757 emit(MOV(result, channel));
1758 result.reg_offset++;
1759 }
1760 }
1761
1762 void
1763 fs_visitor::visit(ir_discard *ir)
1764 {
1765 assert(ir->condition == NULL); /* FINISHME */
1766
1767 /* We track our discarded pixels in f0.1. By predicating on it, we can
1768 * update just the flag bits that aren't yet discarded. By emitting a
1769 * CMP of g0 != g0, all our currently executing channels will get turned
1770 * off.
1771 */
1772 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1773 BRW_REGISTER_TYPE_UW));
1774 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1775 BRW_CONDITIONAL_NZ));
1776 cmp->predicate = BRW_PREDICATE_NORMAL;
1777 cmp->flag_subreg = 1;
1778
1779 if (brw->gen >= 6) {
1780 /* For performance, after a discard, jump to the end of the shader.
1781 * However, many people will do foliage by discarding based on a
1782 * texture's alpha mask, and then continue on to texture with the
1783 * remaining pixels. To avoid trashing the derivatives for those
1784 * texture samples, we'll only jump if all of the pixels in the subspan
1785 * have been discarded.
1786 */
1787 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1788 discard_jump->flag_subreg = 1;
1789 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1790 discard_jump->predicate_inverse = true;
1791 }
1792 }
1793
1794 void
1795 fs_visitor::visit(ir_constant *ir)
1796 {
1797 /* Set this->result to reg at the bottom of the function because some code
1798 * paths will cause this visitor to be applied to other fields. This will
1799 * cause the value stored in this->result to be modified.
1800 *
1801 * Make reg constant so that it doesn't get accidentally modified along the
1802 * way. Yes, I actually had this problem. :(
1803 */
1804 const fs_reg reg(this, ir->type);
1805 fs_reg dst_reg = reg;
1806
1807 if (ir->type->is_array()) {
1808 const unsigned size = type_size(ir->type->fields.array);
1809
1810 for (unsigned i = 0; i < ir->type->length; i++) {
1811 ir->array_elements[i]->accept(this);
1812 fs_reg src_reg = this->result;
1813
1814 dst_reg.type = src_reg.type;
1815 for (unsigned j = 0; j < size; j++) {
1816 emit(MOV(dst_reg, src_reg));
1817 src_reg.reg_offset++;
1818 dst_reg.reg_offset++;
1819 }
1820 }
1821 } else if (ir->type->is_record()) {
1822 foreach_list(node, &ir->components) {
1823 ir_constant *const field = (ir_constant *) node;
1824 const unsigned size = type_size(field->type);
1825
1826 field->accept(this);
1827 fs_reg src_reg = this->result;
1828
1829 dst_reg.type = src_reg.type;
1830 for (unsigned j = 0; j < size; j++) {
1831 emit(MOV(dst_reg, src_reg));
1832 src_reg.reg_offset++;
1833 dst_reg.reg_offset++;
1834 }
1835 }
1836 } else {
1837 const unsigned size = type_size(ir->type);
1838
1839 for (unsigned i = 0; i < size; i++) {
1840 switch (ir->type->base_type) {
1841 case GLSL_TYPE_FLOAT:
1842 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1843 break;
1844 case GLSL_TYPE_UINT:
1845 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1846 break;
1847 case GLSL_TYPE_INT:
1848 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1849 break;
1850 case GLSL_TYPE_BOOL:
1851 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1852 break;
1853 default:
1854 assert(!"Non-float/uint/int/bool constant");
1855 }
1856 dst_reg.reg_offset++;
1857 }
1858 }
1859
1860 this->result = reg;
1861 }
1862
1863 void
1864 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1865 {
1866 ir_expression *expr = ir->as_expression();
1867
1868 if (expr &&
1869 expr->operation != ir_binop_logic_and &&
1870 expr->operation != ir_binop_logic_or &&
1871 expr->operation != ir_binop_logic_xor) {
1872 fs_reg op[2];
1873 fs_inst *inst;
1874
1875 assert(expr->get_num_operands() <= 2);
1876 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1877 assert(expr->operands[i]->type->is_scalar());
1878
1879 expr->operands[i]->accept(this);
1880 op[i] = this->result;
1881
1882 resolve_ud_negate(&op[i]);
1883 }
1884
1885 switch (expr->operation) {
1886 case ir_unop_logic_not:
1887 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1888 inst->conditional_mod = BRW_CONDITIONAL_Z;
1889 break;
1890
1891 case ir_unop_f2b:
1892 if (brw->gen >= 6) {
1893 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1894 } else {
1895 inst = emit(MOV(reg_null_f, op[0]));
1896 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1897 }
1898 break;
1899
1900 case ir_unop_i2b:
1901 if (brw->gen >= 6) {
1902 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1903 } else {
1904 inst = emit(MOV(reg_null_d, op[0]));
1905 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1906 }
1907 break;
1908
1909 case ir_binop_greater:
1910 case ir_binop_gequal:
1911 case ir_binop_less:
1912 case ir_binop_lequal:
1913 case ir_binop_equal:
1914 case ir_binop_all_equal:
1915 case ir_binop_nequal:
1916 case ir_binop_any_nequal:
1917 resolve_bool_comparison(expr->operands[0], &op[0]);
1918 resolve_bool_comparison(expr->operands[1], &op[1]);
1919
1920 emit(CMP(reg_null_d, op[0], op[1],
1921 brw_conditional_for_comparison(expr->operation)));
1922 break;
1923
1924 default:
1925 assert(!"not reached");
1926 fail("bad cond code\n");
1927 break;
1928 }
1929 return;
1930 }
1931
1932 ir->accept(this);
1933
1934 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1935 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1936 }
1937
1938 /**
1939 * Emit a gen6 IF statement with the comparison folded into the IF
1940 * instruction.
1941 */
1942 void
1943 fs_visitor::emit_if_gen6(ir_if *ir)
1944 {
1945 ir_expression *expr = ir->condition->as_expression();
1946
1947 if (expr) {
1948 fs_reg op[2];
1949 fs_inst *inst;
1950 fs_reg temp;
1951
1952 assert(expr->get_num_operands() <= 2);
1953 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1954 assert(expr->operands[i]->type->is_scalar());
1955
1956 expr->operands[i]->accept(this);
1957 op[i] = this->result;
1958 }
1959
1960 switch (expr->operation) {
1961 case ir_unop_logic_not:
1962 case ir_binop_logic_xor:
1963 case ir_binop_logic_or:
1964 case ir_binop_logic_and:
1965 /* For operations on bool arguments, only the low bit of the bool is
1966 * valid, and the others are undefined. Fall back to the condition
1967 * code path.
1968 */
1969 break;
1970
1971 case ir_unop_f2b:
1972 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1973 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1974 return;
1975
1976 case ir_unop_i2b:
1977 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1978 return;
1979
1980 case ir_binop_greater:
1981 case ir_binop_gequal:
1982 case ir_binop_less:
1983 case ir_binop_lequal:
1984 case ir_binop_equal:
1985 case ir_binop_all_equal:
1986 case ir_binop_nequal:
1987 case ir_binop_any_nequal:
1988 resolve_bool_comparison(expr->operands[0], &op[0]);
1989 resolve_bool_comparison(expr->operands[1], &op[1]);
1990
1991 emit(IF(op[0], op[1],
1992 brw_conditional_for_comparison(expr->operation)));
1993 return;
1994 default:
1995 assert(!"not reached");
1996 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1997 fail("bad condition\n");
1998 return;
1999 }
2000 }
2001
2002 emit_bool_to_cond_code(ir->condition);
2003 fs_inst *inst = emit(BRW_OPCODE_IF);
2004 inst->predicate = BRW_PREDICATE_NORMAL;
2005 }
2006
2007 /**
2008 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2009 *
2010 * Many GLSL shaders contain the following pattern:
2011 *
2012 * x = condition ? foo : bar
2013 *
2014 * The compiler emits an ir_if tree for this, since each subexpression might be
2015 * a complex tree that could have side-effects or short-circuit logic.
2016 *
2017 * However, the common case is to simply select one of two constants or
2018 * variable values---which is exactly what SEL is for. In this case, the
2019 * assembly looks like:
2020 *
2021 * (+f0) IF
2022 * MOV dst src0
2023 * ELSE
2024 * MOV dst src1
2025 * ENDIF
2026 *
2027 * which can be easily translated into:
2028 *
2029 * (+f0) SEL dst src0 src1
2030 *
2031 * If src0 is an immediate value, we promote it to a temporary GRF.
2032 */
2033 void
2034 fs_visitor::try_replace_with_sel()
2035 {
2036 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2037 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2038
2039 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2040 int opcodes[] = {
2041 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2042 };
2043
2044 fs_inst *match = (fs_inst *) endif_inst->prev;
2045 for (int i = 0; i < 4; i++) {
2046 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2047 return;
2048 match = (fs_inst *) match->prev;
2049 }
2050
2051 /* The opcodes match; it looks like the right sequence of instructions. */
2052 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2053 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2054 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2055
2056 /* Check that the MOVs are the right form. */
2057 if (then_mov->dst.equals(else_mov->dst) &&
2058 !then_mov->is_partial_write() &&
2059 !else_mov->is_partial_write()) {
2060
2061 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2062 while (!if_inst->next->is_tail_sentinel())
2063 if_inst->next->remove();
2064 if_inst->remove();
2065
2066 /* Only the last source register can be a constant, so if the MOV in
2067 * the "then" clause uses a constant, we need to put it in a temporary.
2068 */
2069 fs_reg src0(then_mov->src[0]);
2070 if (src0.file == IMM) {
2071 src0 = fs_reg(this, glsl_type::float_type);
2072 src0.type = then_mov->src[0].type;
2073 emit(MOV(src0, then_mov->src[0]));
2074 }
2075
2076 fs_inst *sel;
2077 if (if_inst->conditional_mod) {
2078 /* Sandybridge-specific IF with embedded comparison */
2079 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2080 if_inst->conditional_mod));
2081 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2082 sel->predicate = BRW_PREDICATE_NORMAL;
2083 } else {
2084 /* Separate CMP and IF instructions */
2085 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2086 sel->predicate = if_inst->predicate;
2087 sel->predicate_inverse = if_inst->predicate_inverse;
2088 }
2089 }
2090 }
2091
2092 void
2093 fs_visitor::visit(ir_if *ir)
2094 {
2095 if (brw->gen < 6 && dispatch_width == 16) {
2096 fail("Can't support (non-uniform) control flow on 16-wide\n");
2097 }
2098
2099 /* Don't point the annotation at the if statement, because then it plus
2100 * the then and else blocks get printed.
2101 */
2102 this->base_ir = ir->condition;
2103
2104 if (brw->gen == 6) {
2105 emit_if_gen6(ir);
2106 } else {
2107 emit_bool_to_cond_code(ir->condition);
2108
2109 emit(IF(BRW_PREDICATE_NORMAL));
2110 }
2111
2112 foreach_list(node, &ir->then_instructions) {
2113 ir_instruction *ir = (ir_instruction *)node;
2114 this->base_ir = ir;
2115
2116 ir->accept(this);
2117 }
2118
2119 if (!ir->else_instructions.is_empty()) {
2120 emit(BRW_OPCODE_ELSE);
2121
2122 foreach_list(node, &ir->else_instructions) {
2123 ir_instruction *ir = (ir_instruction *)node;
2124 this->base_ir = ir;
2125
2126 ir->accept(this);
2127 }
2128 }
2129
2130 emit(BRW_OPCODE_ENDIF);
2131
2132 try_replace_with_sel();
2133 }
2134
2135 void
2136 fs_visitor::visit(ir_loop *ir)
2137 {
2138 fs_reg counter = reg_undef;
2139
2140 if (brw->gen < 6 && dispatch_width == 16) {
2141 fail("Can't support (non-uniform) control flow on 16-wide\n");
2142 }
2143
2144 if (ir->counter) {
2145 this->base_ir = ir->counter;
2146 ir->counter->accept(this);
2147 counter = *(variable_storage(ir->counter));
2148
2149 if (ir->from) {
2150 this->base_ir = ir->from;
2151 ir->from->accept(this);
2152
2153 emit(MOV(counter, this->result));
2154 }
2155 }
2156
2157 this->base_ir = NULL;
2158 emit(BRW_OPCODE_DO);
2159
2160 if (ir->to) {
2161 this->base_ir = ir->to;
2162 ir->to->accept(this);
2163
2164 emit(CMP(reg_null_d, counter, this->result,
2165 brw_conditional_for_comparison(ir->cmp)));
2166
2167 fs_inst *inst = emit(BRW_OPCODE_BREAK);
2168 inst->predicate = BRW_PREDICATE_NORMAL;
2169 }
2170
2171 foreach_list(node, &ir->body_instructions) {
2172 ir_instruction *ir = (ir_instruction *)node;
2173
2174 this->base_ir = ir;
2175 ir->accept(this);
2176 }
2177
2178 if (ir->increment) {
2179 this->base_ir = ir->increment;
2180 ir->increment->accept(this);
2181 emit(ADD(counter, counter, this->result));
2182 }
2183
2184 this->base_ir = NULL;
2185 emit(BRW_OPCODE_WHILE);
2186 }
2187
2188 void
2189 fs_visitor::visit(ir_loop_jump *ir)
2190 {
2191 switch (ir->mode) {
2192 case ir_loop_jump::jump_break:
2193 emit(BRW_OPCODE_BREAK);
2194 break;
2195 case ir_loop_jump::jump_continue:
2196 emit(BRW_OPCODE_CONTINUE);
2197 break;
2198 }
2199 }
2200
2201 void
2202 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
2203 {
2204 ir_dereference *deref = static_cast<ir_dereference *>(
2205 ir->actual_parameters.get_head());
2206 ir_variable *location = deref->variable_referenced();
2207 unsigned surf_index = (c->prog_data.base.binding_table.abo_start +
2208 location->atomic.buffer_index);
2209
2210 /* Calculate the surface offset */
2211 fs_reg offset(this, glsl_type::uint_type);
2212 ir_dereference_array *deref_array = deref->as_dereference_array();
2213
2214 if (deref_array) {
2215 deref_array->array_index->accept(this);
2216
2217 fs_reg tmp(this, glsl_type::uint_type);
2218 emit(MUL(tmp, this->result, ATOMIC_COUNTER_SIZE));
2219 emit(ADD(offset, tmp, location->atomic.offset));
2220 } else {
2221 offset = location->atomic.offset;
2222 }
2223
2224 /* Emit the appropriate machine instruction */
2225 const char *callee = ir->callee->function_name();
2226 ir->return_deref->accept(this);
2227 fs_reg dst = this->result;
2228
2229 if (!strcmp("__intrinsic_atomic_read", callee)) {
2230 emit_untyped_surface_read(surf_index, dst, offset);
2231
2232 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
2233 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
2234 fs_reg(), fs_reg());
2235
2236 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
2237 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
2238 fs_reg(), fs_reg());
2239 }
2240 }
2241
2242 void
2243 fs_visitor::visit(ir_call *ir)
2244 {
2245 const char *callee = ir->callee->function_name();
2246
2247 if (!strcmp("__intrinsic_atomic_read", callee) ||
2248 !strcmp("__intrinsic_atomic_increment", callee) ||
2249 !strcmp("__intrinsic_atomic_predecrement", callee)) {
2250 visit_atomic_counter_intrinsic(ir);
2251 } else {
2252 assert(!"Unsupported intrinsic.");
2253 }
2254 }
2255
2256 void
2257 fs_visitor::visit(ir_return *ir)
2258 {
2259 assert(!"FINISHME");
2260 }
2261
2262 void
2263 fs_visitor::visit(ir_function *ir)
2264 {
2265 /* Ignore function bodies other than main() -- we shouldn't see calls to
2266 * them since they should all be inlined before we get to ir_to_mesa.
2267 */
2268 if (strcmp(ir->name, "main") == 0) {
2269 const ir_function_signature *sig;
2270 exec_list empty;
2271
2272 sig = ir->matching_signature(NULL, &empty);
2273
2274 assert(sig);
2275
2276 foreach_list(node, &sig->body) {
2277 ir_instruction *ir = (ir_instruction *)node;
2278 this->base_ir = ir;
2279
2280 ir->accept(this);
2281 }
2282 }
2283 }
2284
2285 void
2286 fs_visitor::visit(ir_function_signature *ir)
2287 {
2288 assert(!"not reached");
2289 (void)ir;
2290 }
2291
2292 void
2293 fs_visitor::visit(ir_emit_vertex *)
2294 {
2295 assert(!"not reached");
2296 }
2297
2298 void
2299 fs_visitor::visit(ir_end_primitive *)
2300 {
2301 assert(!"not reached");
2302 }
2303
2304 void
2305 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
2306 fs_reg dst, fs_reg offset, fs_reg src0,
2307 fs_reg src1)
2308 {
2309 const unsigned operand_len = dispatch_width / 8;
2310 unsigned mlen = 0;
2311
2312 /* Initialize the sample mask in the message header. */
2313 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2314 ->force_writemask_all = true;
2315
2316 if (fp->UsesKill) {
2317 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2318 ->force_writemask_all = true;
2319 } else {
2320 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2321 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2322 ->force_writemask_all = true;
2323 }
2324
2325 mlen++;
2326
2327 /* Set the atomic operation offset. */
2328 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2329 mlen += operand_len;
2330
2331 /* Set the atomic operation arguments. */
2332 if (src0.file != BAD_FILE) {
2333 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src0));
2334 mlen += operand_len;
2335 }
2336
2337 if (src1.file != BAD_FILE) {
2338 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src1));
2339 mlen += operand_len;
2340 }
2341
2342 /* Emit the instruction. */
2343 fs_inst inst(SHADER_OPCODE_UNTYPED_ATOMIC, dst, atomic_op, surf_index);
2344 inst.base_mrf = 0;
2345 inst.mlen = mlen;
2346 emit(inst);
2347 }
2348
2349 void
2350 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
2351 fs_reg offset)
2352 {
2353 const unsigned operand_len = dispatch_width / 8;
2354 unsigned mlen = 0;
2355
2356 /* Initialize the sample mask in the message header. */
2357 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2358 ->force_writemask_all = true;
2359
2360 if (fp->UsesKill) {
2361 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2362 ->force_writemask_all = true;
2363 } else {
2364 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2365 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2366 ->force_writemask_all = true;
2367 }
2368
2369 mlen++;
2370
2371 /* Set the surface read offset. */
2372 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2373 mlen += operand_len;
2374
2375 /* Emit the instruction. */
2376 fs_inst inst(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, surf_index);
2377 inst.base_mrf = 0;
2378 inst.mlen = mlen;
2379 emit(inst);
2380 }
2381
2382 fs_inst *
2383 fs_visitor::emit(fs_inst inst)
2384 {
2385 fs_inst *list_inst = new(mem_ctx) fs_inst;
2386 *list_inst = inst;
2387 emit(list_inst);
2388 return list_inst;
2389 }
2390
2391 fs_inst *
2392 fs_visitor::emit(fs_inst *inst)
2393 {
2394 if (force_uncompressed_stack > 0)
2395 inst->force_uncompressed = true;
2396
2397 inst->annotation = this->current_annotation;
2398 inst->ir = this->base_ir;
2399
2400 this->instructions.push_tail(inst);
2401
2402 return inst;
2403 }
2404
2405 void
2406 fs_visitor::emit(exec_list list)
2407 {
2408 foreach_list_safe(node, &list) {
2409 fs_inst *inst = (fs_inst *)node;
2410 inst->remove();
2411 emit(inst);
2412 }
2413 }
2414
2415 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
2416 void
2417 fs_visitor::emit_dummy_fs()
2418 {
2419 int reg_width = dispatch_width / 8;
2420
2421 /* Everyone's favorite color. */
2422 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
2423 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
2424 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
2425 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
2426
2427 fs_inst *write;
2428 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
2429 write->base_mrf = 2;
2430 write->mlen = 4 * reg_width;
2431 write->eot = true;
2432 }
2433
2434 /* The register location here is relative to the start of the URB
2435 * data. It will get adjusted to be a real location before
2436 * generate_code() time.
2437 */
2438 struct brw_reg
2439 fs_visitor::interp_reg(int location, int channel)
2440 {
2441 int regnr = c->prog_data.urb_setup[location] * 2 + channel / 2;
2442 int stride = (channel & 1) * 4;
2443
2444 assert(c->prog_data.urb_setup[location] != -1);
2445
2446 return brw_vec1_grf(regnr, stride);
2447 }
2448
2449 /** Emits the interpolation for the varying inputs. */
2450 void
2451 fs_visitor::emit_interpolation_setup_gen4()
2452 {
2453 this->current_annotation = "compute pixel centers";
2454 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2455 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2456 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2457 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2458
2459 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2460 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2461
2462 this->current_annotation = "compute pixel deltas from v0";
2463 if (brw->has_pln) {
2464 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2465 fs_reg(this, glsl_type::vec2_type);
2466 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2467 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2468 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2469 } else {
2470 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2471 fs_reg(this, glsl_type::float_type);
2472 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2473 fs_reg(this, glsl_type::float_type);
2474 }
2475 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2476 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2477 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2478 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2479
2480 this->current_annotation = "compute pos.w and 1/pos.w";
2481 /* Compute wpos.w. It's always in our setup, since it's needed to
2482 * interpolate the other attributes.
2483 */
2484 this->wpos_w = fs_reg(this, glsl_type::float_type);
2485 emit(FS_OPCODE_LINTERP, wpos_w,
2486 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2487 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2488 interp_reg(VARYING_SLOT_POS, 3));
2489 /* Compute the pixel 1/W value from wpos.w. */
2490 this->pixel_w = fs_reg(this, glsl_type::float_type);
2491 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2492 this->current_annotation = NULL;
2493 }
2494
2495 /** Emits the interpolation for the varying inputs. */
2496 void
2497 fs_visitor::emit_interpolation_setup_gen6()
2498 {
2499 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2500
2501 /* If the pixel centers end up used, the setup is the same as for gen4. */
2502 this->current_annotation = "compute pixel centers";
2503 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2504 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2505 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2506 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2507 emit(ADD(int_pixel_x,
2508 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2509 fs_reg(brw_imm_v(0x10101010))));
2510 emit(ADD(int_pixel_y,
2511 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2512 fs_reg(brw_imm_v(0x11001100))));
2513
2514 /* As of gen6, we can no longer mix float and int sources. We have
2515 * to turn the integer pixel centers into floats for their actual
2516 * use.
2517 */
2518 this->pixel_x = fs_reg(this, glsl_type::float_type);
2519 this->pixel_y = fs_reg(this, glsl_type::float_type);
2520 emit(MOV(this->pixel_x, int_pixel_x));
2521 emit(MOV(this->pixel_y, int_pixel_y));
2522
2523 this->current_annotation = "compute pos.w";
2524 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2525 this->wpos_w = fs_reg(this, glsl_type::float_type);
2526 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2527
2528 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2529 uint8_t reg = c->barycentric_coord_reg[i];
2530 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2531 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2532 }
2533
2534 this->current_annotation = NULL;
2535 }
2536
2537 void
2538 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2539 {
2540 int reg_width = dispatch_width / 8;
2541 fs_inst *inst;
2542 fs_reg color = outputs[target];
2543 fs_reg mrf;
2544
2545 /* If there's no color data to be written, skip it. */
2546 if (color.file == BAD_FILE)
2547 return;
2548
2549 color.reg_offset += index;
2550
2551 if (dispatch_width == 8 || brw->gen >= 6) {
2552 /* SIMD8 write looks like:
2553 * m + 0: r0
2554 * m + 1: r1
2555 * m + 2: g0
2556 * m + 3: g1
2557 *
2558 * gen6 SIMD16 DP write looks like:
2559 * m + 0: r0
2560 * m + 1: r1
2561 * m + 2: g0
2562 * m + 3: g1
2563 * m + 4: b0
2564 * m + 5: b1
2565 * m + 6: a0
2566 * m + 7: a1
2567 */
2568 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2569 color.type),
2570 color));
2571 inst->saturate = c->key.clamp_fragment_color;
2572 } else {
2573 /* pre-gen6 SIMD16 single source DP write looks like:
2574 * m + 0: r0
2575 * m + 1: g0
2576 * m + 2: b0
2577 * m + 3: a0
2578 * m + 4: r1
2579 * m + 5: g1
2580 * m + 6: b1
2581 * m + 7: a1
2582 */
2583 if (brw->has_compr4) {
2584 /* By setting the high bit of the MRF register number, we
2585 * indicate that we want COMPR4 mode - instead of doing the
2586 * usual destination + 1 for the second half we get
2587 * destination + 4.
2588 */
2589 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2590 color.type),
2591 color));
2592 inst->saturate = c->key.clamp_fragment_color;
2593 } else {
2594 push_force_uncompressed();
2595 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2596 color));
2597 inst->saturate = c->key.clamp_fragment_color;
2598 pop_force_uncompressed();
2599
2600 color.sechalf = true;
2601 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2602 color));
2603 inst->force_sechalf = true;
2604 inst->saturate = c->key.clamp_fragment_color;
2605 color.sechalf = false;
2606 }
2607 }
2608 }
2609
2610 static int
2611 cond_for_alpha_func(GLenum func)
2612 {
2613 switch(func) {
2614 case GL_GREATER:
2615 return BRW_CONDITIONAL_G;
2616 case GL_GEQUAL:
2617 return BRW_CONDITIONAL_GE;
2618 case GL_LESS:
2619 return BRW_CONDITIONAL_L;
2620 case GL_LEQUAL:
2621 return BRW_CONDITIONAL_LE;
2622 case GL_EQUAL:
2623 return BRW_CONDITIONAL_EQ;
2624 case GL_NOTEQUAL:
2625 return BRW_CONDITIONAL_NEQ;
2626 default:
2627 assert(!"Not reached");
2628 return 0;
2629 }
2630 }
2631
2632 /**
2633 * Alpha test support for when we compile it into the shader instead
2634 * of using the normal fixed-function alpha test.
2635 */
2636 void
2637 fs_visitor::emit_alpha_test()
2638 {
2639 this->current_annotation = "Alpha test";
2640
2641 fs_inst *cmp;
2642 if (c->key.alpha_test_func == GL_ALWAYS)
2643 return;
2644
2645 if (c->key.alpha_test_func == GL_NEVER) {
2646 /* f0.1 = 0 */
2647 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2648 BRW_REGISTER_TYPE_UW));
2649 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
2650 BRW_CONDITIONAL_NEQ));
2651 } else {
2652 /* RT0 alpha */
2653 fs_reg color = outputs[0];
2654 color.reg_offset += 3;
2655
2656 /* f0.1 &= func(color, ref) */
2657 cmp = emit(CMP(reg_null_f, color, fs_reg(c->key.alpha_test_ref),
2658 cond_for_alpha_func(c->key.alpha_test_func)));
2659 }
2660 cmp->predicate = BRW_PREDICATE_NORMAL;
2661 cmp->flag_subreg = 1;
2662 }
2663
2664 void
2665 fs_visitor::emit_fb_writes()
2666 {
2667 this->current_annotation = "FB write header";
2668 bool header_present = true;
2669 /* We can potentially have a message length of up to 15, so we have to set
2670 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2671 */
2672 int base_mrf = 1;
2673 int nr = base_mrf;
2674 int reg_width = dispatch_width / 8;
2675 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2676 bool src0_alpha_to_render_target = false;
2677
2678 if (dispatch_width == 16 && do_dual_src) {
2679 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2680 do_dual_src = false;
2681 }
2682
2683 /* From the Sandy Bridge PRM, volume 4, page 198:
2684 *
2685 * "Dispatched Pixel Enables. One bit per pixel indicating
2686 * which pixels were originally enabled when the thread was
2687 * dispatched. This field is only required for the end-of-
2688 * thread message and on all dual-source messages."
2689 */
2690 if (brw->gen >= 6 &&
2691 !this->fp->UsesKill &&
2692 !do_dual_src &&
2693 c->key.nr_color_regions == 1) {
2694 header_present = false;
2695 }
2696
2697 if (header_present) {
2698 src0_alpha_to_render_target = brw->gen >= 6 &&
2699 !do_dual_src &&
2700 c->key.replicate_alpha;
2701 /* m2, m3 header */
2702 nr += 2;
2703 }
2704
2705 if (c->aa_dest_stencil_reg) {
2706 push_force_uncompressed();
2707 emit(MOV(fs_reg(MRF, nr++),
2708 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2709 pop_force_uncompressed();
2710 }
2711
2712 c->prog_data.uses_omask =
2713 fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
2714 if(c->prog_data.uses_omask) {
2715 this->current_annotation = "FB write oMask";
2716 assert(this->sample_mask.file != BAD_FILE);
2717 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. */
2718 emit(FS_OPCODE_SET_OMASK, fs_reg(MRF, nr, BRW_REGISTER_TYPE_UW), this->sample_mask);
2719 nr += 1;
2720 }
2721
2722 /* Reserve space for color. It'll be filled in per MRT below. */
2723 int color_mrf = nr;
2724 nr += 4 * reg_width;
2725 if (do_dual_src)
2726 nr += 4;
2727 if (src0_alpha_to_render_target)
2728 nr += reg_width;
2729
2730 if (c->source_depth_to_render_target) {
2731 if (brw->gen == 6 && dispatch_width == 16) {
2732 /* For outputting oDepth on gen6, SIMD8 writes have to be
2733 * used. This would require 8-wide moves of each half to
2734 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2735 * Just bail on doing so for now.
2736 */
2737 fail("Missing support for simd16 depth writes on gen6\n");
2738 }
2739
2740 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2741 /* Hand over gl_FragDepth. */
2742 assert(this->frag_depth.file != BAD_FILE);
2743 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2744 } else {
2745 /* Pass through the payload depth. */
2746 emit(MOV(fs_reg(MRF, nr),
2747 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2748 }
2749 nr += reg_width;
2750 }
2751
2752 if (c->dest_depth_reg) {
2753 emit(MOV(fs_reg(MRF, nr),
2754 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2755 nr += reg_width;
2756 }
2757
2758 if (do_dual_src) {
2759 fs_reg src0 = this->outputs[0];
2760 fs_reg src1 = this->dual_src_output;
2761
2762 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2763 "FB write src0");
2764 for (int i = 0; i < 4; i++) {
2765 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2766 src0.reg_offset++;
2767 inst->saturate = c->key.clamp_fragment_color;
2768 }
2769
2770 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2771 "FB write src1");
2772 for (int i = 0; i < 4; i++) {
2773 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2774 src1));
2775 src1.reg_offset++;
2776 inst->saturate = c->key.clamp_fragment_color;
2777 }
2778
2779 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2780 emit_shader_time_end();
2781
2782 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2783 inst->target = 0;
2784 inst->base_mrf = base_mrf;
2785 inst->mlen = nr - base_mrf;
2786 inst->eot = true;
2787 inst->header_present = header_present;
2788
2789 c->prog_data.dual_src_blend = true;
2790 this->current_annotation = NULL;
2791 return;
2792 }
2793
2794 for (int target = 0; target < c->key.nr_color_regions; target++) {
2795 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2796 "FB write target %d",
2797 target);
2798 /* If src0_alpha_to_render_target is true, include source zero alpha
2799 * data in RenderTargetWrite message for targets > 0.
2800 */
2801 int write_color_mrf = color_mrf;
2802 if (src0_alpha_to_render_target && target != 0) {
2803 fs_inst *inst;
2804 fs_reg color = outputs[0];
2805 color.reg_offset += 3;
2806
2807 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2808 color));
2809 inst->saturate = c->key.clamp_fragment_color;
2810 write_color_mrf = color_mrf + reg_width;
2811 }
2812
2813 for (unsigned i = 0; i < this->output_components[target]; i++)
2814 emit_color_write(target, i, write_color_mrf);
2815
2816 bool eot = false;
2817 if (target == c->key.nr_color_regions - 1) {
2818 eot = true;
2819
2820 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2821 emit_shader_time_end();
2822 }
2823
2824 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2825 inst->target = target;
2826 inst->base_mrf = base_mrf;
2827 if (src0_alpha_to_render_target && target == 0)
2828 inst->mlen = nr - base_mrf - reg_width;
2829 else
2830 inst->mlen = nr - base_mrf;
2831 inst->eot = eot;
2832 inst->header_present = header_present;
2833 }
2834
2835 if (c->key.nr_color_regions == 0) {
2836 /* Even if there's no color buffers enabled, we still need to send
2837 * alpha out the pipeline to our null renderbuffer to support
2838 * alpha-testing, alpha-to-coverage, and so on.
2839 */
2840 emit_color_write(0, 3, color_mrf);
2841
2842 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2843 emit_shader_time_end();
2844
2845 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2846 inst->base_mrf = base_mrf;
2847 inst->mlen = nr - base_mrf;
2848 inst->eot = true;
2849 inst->header_present = header_present;
2850 }
2851
2852 this->current_annotation = NULL;
2853 }
2854
2855 void
2856 fs_visitor::resolve_ud_negate(fs_reg *reg)
2857 {
2858 if (reg->type != BRW_REGISTER_TYPE_UD ||
2859 !reg->negate)
2860 return;
2861
2862 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2863 emit(MOV(temp, *reg));
2864 *reg = temp;
2865 }
2866
2867 void
2868 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2869 {
2870 if (rvalue->type != glsl_type::bool_type)
2871 return;
2872
2873 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2874 emit(AND(temp, *reg, fs_reg(1)));
2875 *reg = temp;
2876 }
2877
2878 fs_visitor::fs_visitor(struct brw_context *brw,
2879 struct brw_wm_compile *c,
2880 struct gl_shader_program *shader_prog,
2881 struct gl_fragment_program *fp,
2882 unsigned dispatch_width)
2883 : dispatch_width(dispatch_width)
2884 {
2885 this->c = c;
2886 this->brw = brw;
2887 this->fp = fp;
2888 this->prog = &fp->Base;
2889 this->shader_prog = shader_prog;
2890 this->prog = &fp->Base;
2891 this->stage_prog_data = &c->prog_data.base;
2892 this->ctx = &brw->ctx;
2893 this->mem_ctx = ralloc_context(NULL);
2894 if (shader_prog)
2895 shader = (struct brw_shader *)
2896 shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2897 else
2898 shader = NULL;
2899 this->failed = false;
2900 this->variable_ht = hash_table_ctor(0,
2901 hash_table_pointer_hash,
2902 hash_table_pointer_compare);
2903
2904 memset(this->outputs, 0, sizeof(this->outputs));
2905 memset(this->output_components, 0, sizeof(this->output_components));
2906 this->first_non_payload_grf = 0;
2907 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2908
2909 this->current_annotation = NULL;
2910 this->base_ir = NULL;
2911
2912 this->virtual_grf_sizes = NULL;
2913 this->virtual_grf_count = 0;
2914 this->virtual_grf_array_size = 0;
2915 this->virtual_grf_start = NULL;
2916 this->virtual_grf_end = NULL;
2917 this->live_intervals = NULL;
2918
2919 this->params_remap = NULL;
2920 this->nr_params_remap = 0;
2921
2922 this->force_uncompressed_stack = 0;
2923
2924 this->spilled_any_registers = false;
2925
2926 memset(&this->param_size, 0, sizeof(this->param_size));
2927 }
2928
2929 fs_visitor::~fs_visitor()
2930 {
2931 ralloc_free(this->mem_ctx);
2932 hash_table_dtor(this->variable_ht);
2933 }