9f37013bddf587b3d930b7ce93ddcb24c6077d95
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "program/prog_parameter.h"
37 #include "program/prog_print.h"
38 #include "program/prog_optimize.h"
39 #include "program/register_allocate.h"
40 #include "program/sampler.h"
41 #include "program/hash_table.h"
42 #include "brw_context.h"
43 #include "brw_eu.h"
44 #include "brw_wm.h"
45 }
46 #include "brw_fs.h"
47 #include "main/uniforms.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50
51 void
52 fs_visitor::visit(ir_variable *ir)
53 {
54 fs_reg *reg = NULL;
55
56 if (variable_storage(ir))
57 return;
58
59 if (ir->mode == ir_var_shader_in) {
60 if (!strcmp(ir->name, "gl_FragCoord")) {
61 reg = emit_fragcoord_interpolation(ir);
62 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
63 reg = emit_frontfacing_interpolation(ir);
64 } else {
65 reg = emit_general_interpolation(ir);
66 }
67 assert(reg);
68 hash_table_insert(this->variable_ht, reg, ir);
69 return;
70 } else if (ir->mode == ir_var_shader_out) {
71 reg = new(this->mem_ctx) fs_reg(this, ir->type);
72
73 if (ir->index > 0) {
74 assert(ir->location == FRAG_RESULT_DATA0);
75 assert(ir->index == 1);
76 this->dual_src_output = *reg;
77 } else if (ir->location == FRAG_RESULT_COLOR) {
78 /* Writing gl_FragColor outputs to all color regions. */
79 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
80 this->outputs[i] = *reg;
81 this->output_components[i] = 4;
82 }
83 } else if (ir->location == FRAG_RESULT_DEPTH) {
84 this->frag_depth = *reg;
85 } else {
86 /* gl_FragData or a user-defined FS output */
87 assert(ir->location >= FRAG_RESULT_DATA0 &&
88 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
89
90 int vector_elements =
91 ir->type->is_array() ? ir->type->fields.array->vector_elements
92 : ir->type->vector_elements;
93
94 /* General color output. */
95 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
96 int output = ir->location - FRAG_RESULT_DATA0 + i;
97 this->outputs[output] = *reg;
98 this->outputs[output].reg_offset += vector_elements * i;
99 this->output_components[output] = vector_elements;
100 }
101 }
102 } else if (ir->mode == ir_var_uniform) {
103 int param_index = c->prog_data.nr_params;
104
105 /* Thanks to the lower_ubo_reference pass, we will see only
106 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
107 * variables, so no need for them to be in variable_ht.
108 */
109 if (ir->is_in_uniform_block())
110 return;
111
112 if (dispatch_width == 16) {
113 if (!variable_storage(ir)) {
114 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
115 }
116 return;
117 }
118
119 param_size[param_index] = type_size(ir->type);
120 if (!strncmp(ir->name, "gl_", 3)) {
121 setup_builtin_uniform_values(ir);
122 } else {
123 setup_uniform_values(ir);
124 }
125
126 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
127 reg->type = brw_type_for_base_type(ir->type);
128 }
129
130 if (!reg)
131 reg = new(this->mem_ctx) fs_reg(this, ir->type);
132
133 hash_table_insert(this->variable_ht, reg, ir);
134 }
135
136 void
137 fs_visitor::visit(ir_dereference_variable *ir)
138 {
139 fs_reg *reg = variable_storage(ir->var);
140 this->result = *reg;
141 }
142
143 void
144 fs_visitor::visit(ir_dereference_record *ir)
145 {
146 const glsl_type *struct_type = ir->record->type;
147
148 ir->record->accept(this);
149
150 unsigned int offset = 0;
151 for (unsigned int i = 0; i < struct_type->length; i++) {
152 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
153 break;
154 offset += type_size(struct_type->fields.structure[i].type);
155 }
156 this->result.reg_offset += offset;
157 this->result.type = brw_type_for_base_type(ir->type);
158 }
159
160 void
161 fs_visitor::visit(ir_dereference_array *ir)
162 {
163 ir_constant *constant_index;
164 fs_reg src;
165 int element_size = type_size(ir->type);
166
167 constant_index = ir->array_index->as_constant();
168
169 ir->array->accept(this);
170 src = this->result;
171 src.type = brw_type_for_base_type(ir->type);
172
173 if (constant_index) {
174 assert(src.file == UNIFORM || src.file == GRF);
175 src.reg_offset += constant_index->value.i[0] * element_size;
176 } else {
177 /* Variable index array dereference. We attach the variable index
178 * component to the reg as a pointer to a register containing the
179 * offset. Currently only uniform arrays are supported in this patch,
180 * and that reladdr pointer is resolved by
181 * move_uniform_array_access_to_pull_constants(). All other array types
182 * are lowered by lower_variable_index_to_cond_assign().
183 */
184 ir->array_index->accept(this);
185
186 fs_reg index_reg;
187 index_reg = fs_reg(this, glsl_type::int_type);
188 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
189
190 if (src.reladdr) {
191 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
192 }
193
194 src.reladdr = ralloc(mem_ctx, fs_reg);
195 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
196 }
197 this->result = src;
198 }
199
200 void
201 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
202 {
203 if (brw->gen < 6 ||
204 !x.is_valid_3src() ||
205 !y.is_valid_3src() ||
206 !a.is_valid_3src()) {
207 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
208 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
209 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
210 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
211
212 emit(MUL(y_times_a, y, a));
213
214 a.negate = !a.negate;
215 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
216 emit(MUL(x_times_one_minus_a, x, one_minus_a));
217
218 emit(ADD(dst, x_times_one_minus_a, y_times_a));
219 } else {
220 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
221 * we need to reorder the operands.
222 */
223 emit(LRP(dst, a, y, x));
224 }
225 }
226
227 void
228 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
229 fs_reg src0, fs_reg src1)
230 {
231 fs_inst *inst;
232
233 if (brw->gen >= 6) {
234 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
235 inst->conditional_mod = conditionalmod;
236 } else {
237 emit(CMP(reg_null_d, src0, src1, conditionalmod));
238
239 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
240 inst->predicate = BRW_PREDICATE_NORMAL;
241 }
242 }
243
244 /* Instruction selection: Produce a MOV.sat instead of
245 * MIN(MAX(val, 0), 1) when possible.
246 */
247 bool
248 fs_visitor::try_emit_saturate(ir_expression *ir)
249 {
250 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
251
252 if (!sat_val)
253 return false;
254
255 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
256
257 sat_val->accept(this);
258 fs_reg src = this->result;
259
260 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
261
262 /* If the last instruction from our accept() didn't generate our
263 * src, generate a saturated MOV
264 */
265 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
266 if (!modify || modify->regs_written != 1) {
267 this->result = fs_reg(this, ir->type);
268 fs_inst *inst = emit(MOV(this->result, src));
269 inst->saturate = true;
270 } else {
271 modify->saturate = true;
272 this->result = src;
273 }
274
275
276 return true;
277 }
278
279 bool
280 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
281 {
282 /* 3-src instructions were introduced in gen6. */
283 if (brw->gen < 6)
284 return false;
285
286 /* MAD can only handle floating-point data. */
287 if (ir->type != glsl_type::float_type)
288 return false;
289
290 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
291 ir_expression *mul = ir->operands[mul_arg]->as_expression();
292
293 if (!mul || mul->operation != ir_binop_mul)
294 return false;
295
296 if (nonmul->as_constant() ||
297 mul->operands[0]->as_constant() ||
298 mul->operands[1]->as_constant())
299 return false;
300
301 nonmul->accept(this);
302 fs_reg src0 = this->result;
303
304 mul->operands[0]->accept(this);
305 fs_reg src1 = this->result;
306
307 mul->operands[1]->accept(this);
308 fs_reg src2 = this->result;
309
310 this->result = fs_reg(this, ir->type);
311 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
312
313 return true;
314 }
315
316 void
317 fs_visitor::visit(ir_expression *ir)
318 {
319 unsigned int operand;
320 fs_reg op[3], temp;
321 fs_inst *inst;
322
323 assert(ir->get_num_operands() <= 3);
324
325 if (try_emit_saturate(ir))
326 return;
327 if (ir->operation == ir_binop_add) {
328 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
329 return;
330 }
331
332 for (operand = 0; operand < ir->get_num_operands(); operand++) {
333 ir->operands[operand]->accept(this);
334 if (this->result.file == BAD_FILE) {
335 fail("Failed to get tree for expression operand:\n");
336 ir->operands[operand]->print();
337 printf("\n");
338 }
339 assert(this->result.is_valid_3src());
340 op[operand] = this->result;
341
342 /* Matrix expression operands should have been broken down to vector
343 * operations already.
344 */
345 assert(!ir->operands[operand]->type->is_matrix());
346 /* And then those vector operands should have been broken down to scalar.
347 */
348 assert(!ir->operands[operand]->type->is_vector());
349 }
350
351 /* Storage for our result. If our result goes into an assignment, it will
352 * just get copy-propagated out, so no worries.
353 */
354 this->result = fs_reg(this, ir->type);
355
356 switch (ir->operation) {
357 case ir_unop_logic_not:
358 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
359 * ones complement of the whole register, not just bit 0.
360 */
361 emit(XOR(this->result, op[0], fs_reg(1)));
362 break;
363 case ir_unop_neg:
364 op[0].negate = !op[0].negate;
365 emit(MOV(this->result, op[0]));
366 break;
367 case ir_unop_abs:
368 op[0].abs = true;
369 op[0].negate = false;
370 emit(MOV(this->result, op[0]));
371 break;
372 case ir_unop_sign:
373 temp = fs_reg(this, ir->type);
374
375 emit(MOV(this->result, fs_reg(0.0f)));
376
377 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
378 inst = emit(MOV(this->result, fs_reg(1.0f)));
379 inst->predicate = BRW_PREDICATE_NORMAL;
380
381 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
382 inst = emit(MOV(this->result, fs_reg(-1.0f)));
383 inst->predicate = BRW_PREDICATE_NORMAL;
384
385 break;
386 case ir_unop_rcp:
387 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
388 break;
389
390 case ir_unop_exp2:
391 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
392 break;
393 case ir_unop_log2:
394 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
395 break;
396 case ir_unop_exp:
397 case ir_unop_log:
398 assert(!"not reached: should be handled by ir_explog_to_explog2");
399 break;
400 case ir_unop_sin:
401 case ir_unop_sin_reduced:
402 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
403 break;
404 case ir_unop_cos:
405 case ir_unop_cos_reduced:
406 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
407 break;
408
409 case ir_unop_dFdx:
410 emit(FS_OPCODE_DDX, this->result, op[0]);
411 break;
412 case ir_unop_dFdy:
413 emit(FS_OPCODE_DDY, this->result, op[0]);
414 break;
415
416 case ir_binop_add:
417 emit(ADD(this->result, op[0], op[1]));
418 break;
419 case ir_binop_sub:
420 assert(!"not reached: should be handled by ir_sub_to_add_neg");
421 break;
422
423 case ir_binop_mul:
424 if (ir->type->is_integer()) {
425 /* For integer multiplication, the MUL uses the low 16 bits
426 * of one of the operands (src0 on gen6, src1 on gen7). The
427 * MACH accumulates in the contribution of the upper 16 bits
428 * of that operand.
429 *
430 * FINISHME: Emit just the MUL if we know an operand is small
431 * enough.
432 */
433 if (brw->gen >= 7 && dispatch_width == 16)
434 fail("16-wide explicit accumulator operands unsupported\n");
435
436 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
437
438 emit(MUL(acc, op[0], op[1]));
439 emit(MACH(reg_null_d, op[0], op[1]));
440 emit(MOV(this->result, fs_reg(acc)));
441 } else {
442 emit(MUL(this->result, op[0], op[1]));
443 }
444 break;
445 case ir_binop_imul_high: {
446 if (brw->gen >= 7 && dispatch_width == 16)
447 fail("16-wide explicit accumulator operands unsupported\n");
448
449 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
450
451 emit(MUL(acc, op[0], op[1]));
452 emit(MACH(this->result, op[0], op[1]));
453 break;
454 }
455 case ir_binop_div:
456 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
457 assert(ir->type->is_integer());
458 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
459 break;
460 case ir_binop_carry: {
461 if (brw->gen >= 7 && dispatch_width == 16)
462 fail("16-wide explicit accumulator operands unsupported\n");
463
464 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
465
466 emit(ADDC(reg_null_ud, op[0], op[1]));
467 emit(MOV(this->result, fs_reg(acc)));
468 break;
469 }
470 case ir_binop_borrow: {
471 if (brw->gen >= 7 && dispatch_width == 16)
472 fail("16-wide explicit accumulator operands unsupported\n");
473
474 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
475
476 emit(SUBB(reg_null_ud, op[0], op[1]));
477 emit(MOV(this->result, fs_reg(acc)));
478 break;
479 }
480 case ir_binop_mod:
481 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
482 assert(ir->type->is_integer());
483 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
484 break;
485
486 case ir_binop_less:
487 case ir_binop_greater:
488 case ir_binop_lequal:
489 case ir_binop_gequal:
490 case ir_binop_equal:
491 case ir_binop_all_equal:
492 case ir_binop_nequal:
493 case ir_binop_any_nequal:
494 resolve_bool_comparison(ir->operands[0], &op[0]);
495 resolve_bool_comparison(ir->operands[1], &op[1]);
496
497 emit(CMP(this->result, op[0], op[1],
498 brw_conditional_for_comparison(ir->operation)));
499 break;
500
501 case ir_binop_logic_xor:
502 emit(XOR(this->result, op[0], op[1]));
503 break;
504
505 case ir_binop_logic_or:
506 emit(OR(this->result, op[0], op[1]));
507 break;
508
509 case ir_binop_logic_and:
510 emit(AND(this->result, op[0], op[1]));
511 break;
512
513 case ir_binop_dot:
514 case ir_unop_any:
515 assert(!"not reached: should be handled by brw_fs_channel_expressions");
516 break;
517
518 case ir_unop_noise:
519 assert(!"not reached: should be handled by lower_noise");
520 break;
521
522 case ir_quadop_vector:
523 assert(!"not reached: should be handled by lower_quadop_vector");
524 break;
525
526 case ir_binop_vector_extract:
527 assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
528 break;
529
530 case ir_triop_vector_insert:
531 assert(!"not reached: should be handled by lower_vector_insert()");
532 break;
533
534 case ir_binop_ldexp:
535 assert(!"not reached: should be handled by ldexp_to_arith()");
536 break;
537
538 case ir_unop_sqrt:
539 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
540 break;
541
542 case ir_unop_rsq:
543 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
544 break;
545
546 case ir_unop_bitcast_i2f:
547 case ir_unop_bitcast_u2f:
548 op[0].type = BRW_REGISTER_TYPE_F;
549 this->result = op[0];
550 break;
551 case ir_unop_i2u:
552 case ir_unop_bitcast_f2u:
553 op[0].type = BRW_REGISTER_TYPE_UD;
554 this->result = op[0];
555 break;
556 case ir_unop_u2i:
557 case ir_unop_bitcast_f2i:
558 op[0].type = BRW_REGISTER_TYPE_D;
559 this->result = op[0];
560 break;
561 case ir_unop_i2f:
562 case ir_unop_u2f:
563 case ir_unop_f2i:
564 case ir_unop_f2u:
565 emit(MOV(this->result, op[0]));
566 break;
567
568 case ir_unop_b2i:
569 emit(AND(this->result, op[0], fs_reg(1)));
570 break;
571 case ir_unop_b2f:
572 temp = fs_reg(this, glsl_type::int_type);
573 emit(AND(temp, op[0], fs_reg(1)));
574 emit(MOV(this->result, temp));
575 break;
576
577 case ir_unop_f2b:
578 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
579 break;
580 case ir_unop_i2b:
581 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
582 break;
583
584 case ir_unop_trunc:
585 emit(RNDZ(this->result, op[0]));
586 break;
587 case ir_unop_ceil:
588 op[0].negate = !op[0].negate;
589 emit(RNDD(this->result, op[0]));
590 this->result.negate = true;
591 break;
592 case ir_unop_floor:
593 emit(RNDD(this->result, op[0]));
594 break;
595 case ir_unop_fract:
596 emit(FRC(this->result, op[0]));
597 break;
598 case ir_unop_round_even:
599 emit(RNDE(this->result, op[0]));
600 break;
601
602 case ir_binop_min:
603 case ir_binop_max:
604 resolve_ud_negate(&op[0]);
605 resolve_ud_negate(&op[1]);
606 emit_minmax(ir->operation == ir_binop_min ?
607 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
608 this->result, op[0], op[1]);
609 break;
610 case ir_unop_pack_snorm_2x16:
611 case ir_unop_pack_snorm_4x8:
612 case ir_unop_pack_unorm_2x16:
613 case ir_unop_pack_unorm_4x8:
614 case ir_unop_unpack_snorm_2x16:
615 case ir_unop_unpack_snorm_4x8:
616 case ir_unop_unpack_unorm_2x16:
617 case ir_unop_unpack_unorm_4x8:
618 case ir_unop_unpack_half_2x16:
619 case ir_unop_pack_half_2x16:
620 assert(!"not reached: should be handled by lower_packing_builtins");
621 break;
622 case ir_unop_unpack_half_2x16_split_x:
623 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
624 break;
625 case ir_unop_unpack_half_2x16_split_y:
626 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
627 break;
628 case ir_binop_pow:
629 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
630 break;
631
632 case ir_unop_bitfield_reverse:
633 emit(BFREV(this->result, op[0]));
634 break;
635 case ir_unop_bit_count:
636 emit(CBIT(this->result, op[0]));
637 break;
638 case ir_unop_find_msb:
639 temp = fs_reg(this, glsl_type::uint_type);
640 emit(FBH(temp, op[0]));
641
642 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
643 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
644 * subtract the result from 31 to convert the MSB count into an LSB count.
645 */
646
647 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
648 emit(MOV(this->result, temp));
649 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
650
651 temp.negate = true;
652 inst = emit(ADD(this->result, temp, fs_reg(31)));
653 inst->predicate = BRW_PREDICATE_NORMAL;
654 break;
655 case ir_unop_find_lsb:
656 emit(FBL(this->result, op[0]));
657 break;
658 case ir_triop_bitfield_extract:
659 /* Note that the instruction's argument order is reversed from GLSL
660 * and the IR.
661 */
662 emit(BFE(this->result, op[2], op[1], op[0]));
663 break;
664 case ir_binop_bfm:
665 emit(BFI1(this->result, op[0], op[1]));
666 break;
667 case ir_triop_bfi:
668 emit(BFI2(this->result, op[0], op[1], op[2]));
669 break;
670 case ir_quadop_bitfield_insert:
671 assert(!"not reached: should be handled by "
672 "lower_instructions::bitfield_insert_to_bfm_bfi");
673 break;
674
675 case ir_unop_bit_not:
676 emit(NOT(this->result, op[0]));
677 break;
678 case ir_binop_bit_and:
679 emit(AND(this->result, op[0], op[1]));
680 break;
681 case ir_binop_bit_xor:
682 emit(XOR(this->result, op[0], op[1]));
683 break;
684 case ir_binop_bit_or:
685 emit(OR(this->result, op[0], op[1]));
686 break;
687
688 case ir_binop_lshift:
689 emit(SHL(this->result, op[0], op[1]));
690 break;
691
692 case ir_binop_rshift:
693 if (ir->type->base_type == GLSL_TYPE_INT)
694 emit(ASR(this->result, op[0], op[1]));
695 else
696 emit(SHR(this->result, op[0], op[1]));
697 break;
698 case ir_binop_pack_half_2x16_split:
699 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
700 break;
701 case ir_binop_ubo_load: {
702 /* This IR node takes a constant uniform block and a constant or
703 * variable byte offset within the block and loads a vector from that.
704 */
705 ir_constant *uniform_block = ir->operands[0]->as_constant();
706 ir_constant *const_offset = ir->operands[1]->as_constant();
707 fs_reg surf_index = fs_reg(c->prog_data.base.binding_table.ubo_start +
708 uniform_block->value.u[0]);
709 if (const_offset) {
710 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
711 packed_consts.type = result.type;
712
713 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
714 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
715 packed_consts, surf_index, const_offset_reg));
716
717 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
718 for (int i = 0; i < ir->type->vector_elements; i++) {
719 /* UBO bools are any nonzero value. We consider bools to be
720 * values with the low bit set to 1. Convert them using CMP.
721 */
722 if (ir->type->base_type == GLSL_TYPE_BOOL) {
723 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
724 } else {
725 emit(MOV(result, packed_consts));
726 }
727
728 packed_consts.smear++;
729 result.reg_offset++;
730
731 /* The std140 packing rules don't allow vectors to cross 16-byte
732 * boundaries, and a reg is 32 bytes.
733 */
734 assert(packed_consts.smear < 8);
735 }
736 } else {
737 /* Turn the byte offset into a dword offset. */
738 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
739 emit(SHR(base_offset, op[1], fs_reg(2)));
740
741 for (int i = 0; i < ir->type->vector_elements; i++) {
742 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
743 base_offset, i));
744
745 if (ir->type->base_type == GLSL_TYPE_BOOL)
746 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
747
748 result.reg_offset++;
749 }
750 }
751
752 result.reg_offset = 0;
753 break;
754 }
755
756 case ir_triop_fma:
757 /* Note that the instruction's argument order is reversed from GLSL
758 * and the IR.
759 */
760 emit(MAD(this->result, op[2], op[1], op[0]));
761 break;
762
763 case ir_triop_lrp:
764 emit_lrp(this->result, op[0], op[1], op[2]);
765 break;
766
767 case ir_triop_csel:
768 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
769 inst = emit(BRW_OPCODE_SEL, this->result, op[1], op[2]);
770 inst->predicate = BRW_PREDICATE_NORMAL;
771 break;
772 }
773 }
774
775 void
776 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
777 const glsl_type *type, bool predicated)
778 {
779 switch (type->base_type) {
780 case GLSL_TYPE_FLOAT:
781 case GLSL_TYPE_UINT:
782 case GLSL_TYPE_INT:
783 case GLSL_TYPE_BOOL:
784 for (unsigned int i = 0; i < type->components(); i++) {
785 l.type = brw_type_for_base_type(type);
786 r.type = brw_type_for_base_type(type);
787
788 if (predicated || !l.equals(r)) {
789 fs_inst *inst = emit(MOV(l, r));
790 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
791 }
792
793 l.reg_offset++;
794 r.reg_offset++;
795 }
796 break;
797 case GLSL_TYPE_ARRAY:
798 for (unsigned int i = 0; i < type->length; i++) {
799 emit_assignment_writes(l, r, type->fields.array, predicated);
800 }
801 break;
802
803 case GLSL_TYPE_STRUCT:
804 for (unsigned int i = 0; i < type->length; i++) {
805 emit_assignment_writes(l, r, type->fields.structure[i].type,
806 predicated);
807 }
808 break;
809
810 case GLSL_TYPE_SAMPLER:
811 break;
812
813 case GLSL_TYPE_VOID:
814 case GLSL_TYPE_ERROR:
815 case GLSL_TYPE_INTERFACE:
816 assert(!"not reached");
817 break;
818 }
819 }
820
821 /* If the RHS processing resulted in an instruction generating a
822 * temporary value, and it would be easy to rewrite the instruction to
823 * generate its result right into the LHS instead, do so. This ends
824 * up reliably removing instructions where it can be tricky to do so
825 * later without real UD chain information.
826 */
827 bool
828 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
829 fs_reg dst,
830 fs_reg src,
831 fs_inst *pre_rhs_inst,
832 fs_inst *last_rhs_inst)
833 {
834 /* Only attempt if we're doing a direct assignment. */
835 if (ir->condition ||
836 !(ir->lhs->type->is_scalar() ||
837 (ir->lhs->type->is_vector() &&
838 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
839 return false;
840
841 /* Make sure the last instruction generated our source reg. */
842 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
843 last_rhs_inst,
844 src);
845 if (!modify)
846 return false;
847
848 /* If last_rhs_inst wrote a different number of components than our LHS,
849 * we can't safely rewrite it.
850 */
851 if (virtual_grf_sizes[dst.reg] != modify->regs_written)
852 return false;
853
854 /* Success! Rewrite the instruction. */
855 modify->dst = dst;
856
857 return true;
858 }
859
860 void
861 fs_visitor::visit(ir_assignment *ir)
862 {
863 fs_reg l, r;
864 fs_inst *inst;
865
866 /* FINISHME: arrays on the lhs */
867 ir->lhs->accept(this);
868 l = this->result;
869
870 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
871
872 ir->rhs->accept(this);
873 r = this->result;
874
875 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
876
877 assert(l.file != BAD_FILE);
878 assert(r.file != BAD_FILE);
879
880 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
881 return;
882
883 if (ir->condition) {
884 emit_bool_to_cond_code(ir->condition);
885 }
886
887 if (ir->lhs->type->is_scalar() ||
888 ir->lhs->type->is_vector()) {
889 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
890 if (ir->write_mask & (1 << i)) {
891 inst = emit(MOV(l, r));
892 if (ir->condition)
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 r.reg_offset++;
895 }
896 l.reg_offset++;
897 }
898 } else {
899 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
900 }
901 }
902
903 fs_inst *
904 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
905 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
906 {
907 int mlen;
908 int base_mrf = 1;
909 bool simd16 = false;
910 fs_reg orig_dst;
911
912 /* g0 header. */
913 mlen = 1;
914
915 if (ir->shadow_comparitor) {
916 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
917 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
918 coordinate.reg_offset++;
919 }
920
921 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
922 * the unused slots must be zeroed.
923 */
924 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
925 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
926 }
927 mlen += 3;
928
929 if (ir->op == ir_tex) {
930 /* There's no plain shadow compare message, so we use shadow
931 * compare with a bias of 0.0.
932 */
933 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
934 mlen++;
935 } else if (ir->op == ir_txb || ir->op == ir_txl) {
936 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
937 mlen++;
938 } else {
939 assert(!"Should not get here.");
940 }
941
942 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
943 mlen++;
944 } else if (ir->op == ir_tex) {
945 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
946 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
947 coordinate.reg_offset++;
948 }
949 /* zero the others. */
950 for (int i = ir->coordinate->type->vector_elements; i<3; i++) {
951 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
952 }
953 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
954 mlen += 3;
955 } else if (ir->op == ir_txd) {
956 fs_reg &dPdx = lod;
957
958 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
959 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
960 coordinate.reg_offset++;
961 }
962 /* the slots for u and v are always present, but r is optional */
963 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
964
965 /* P = u, v, r
966 * dPdx = dudx, dvdx, drdx
967 * dPdy = dudy, dvdy, drdy
968 *
969 * 1-arg: Does not exist.
970 *
971 * 2-arg: dudx dvdx dudy dvdy
972 * dPdx.x dPdx.y dPdy.x dPdy.y
973 * m4 m5 m6 m7
974 *
975 * 3-arg: dudx dvdx drdx dudy dvdy drdy
976 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
977 * m5 m6 m7 m8 m9 m10
978 */
979 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
980 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
981 dPdx.reg_offset++;
982 }
983 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
984
985 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
986 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
987 dPdy.reg_offset++;
988 }
989 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
990 } else if (ir->op == ir_txs) {
991 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
992 simd16 = true;
993 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
994 mlen += 2;
995 } else {
996 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
997 * instructions. We'll need to do SIMD16 here.
998 */
999 simd16 = true;
1000 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
1001
1002 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1003 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1004 coordinate));
1005 coordinate.reg_offset++;
1006 }
1007
1008 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1009 * be necessary for TXF (ld), but seems wise to do for all messages.
1010 */
1011 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
1012 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1013 }
1014
1015 /* lod/bias appears after u/v/r. */
1016 mlen += 6;
1017
1018 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1019 mlen++;
1020
1021 /* The unused upper half. */
1022 mlen++;
1023 }
1024
1025 if (simd16) {
1026 /* Now, since we're doing simd16, the return is 2 interleaved
1027 * vec4s where the odd-indexed ones are junk. We'll need to move
1028 * this weirdness around to the expected layout.
1029 */
1030 orig_dst = dst;
1031 dst = fs_reg(GRF, virtual_grf_alloc(8),
1032 (brw->is_g4x ?
1033 brw_type_for_base_type(ir->type) :
1034 BRW_REGISTER_TYPE_F));
1035 }
1036
1037 fs_inst *inst = NULL;
1038 switch (ir->op) {
1039 case ir_tex:
1040 inst = emit(SHADER_OPCODE_TEX, dst);
1041 break;
1042 case ir_txb:
1043 inst = emit(FS_OPCODE_TXB, dst);
1044 break;
1045 case ir_txl:
1046 inst = emit(SHADER_OPCODE_TXL, dst);
1047 break;
1048 case ir_txd:
1049 inst = emit(SHADER_OPCODE_TXD, dst);
1050 break;
1051 case ir_txs:
1052 inst = emit(SHADER_OPCODE_TXS, dst);
1053 break;
1054 case ir_txf:
1055 inst = emit(SHADER_OPCODE_TXF, dst);
1056 break;
1057 default:
1058 fail("unrecognized texture opcode");
1059 }
1060 inst->base_mrf = base_mrf;
1061 inst->mlen = mlen;
1062 inst->header_present = true;
1063 inst->regs_written = simd16 ? 8 : 4;
1064
1065 if (simd16) {
1066 for (int i = 0; i < 4; i++) {
1067 emit(MOV(orig_dst, dst));
1068 orig_dst.reg_offset++;
1069 dst.reg_offset += 2;
1070 }
1071 }
1072
1073 return inst;
1074 }
1075
1076 /* gen5's sampler has slots for u, v, r, array index, then optional
1077 * parameters like shadow comparitor or LOD bias. If optional
1078 * parameters aren't present, those base slots are optional and don't
1079 * need to be included in the message.
1080 *
1081 * We don't fill in the unnecessary slots regardless, which may look
1082 * surprising in the disassembly.
1083 */
1084 fs_inst *
1085 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1086 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1087 fs_reg sample_index)
1088 {
1089 int mlen = 0;
1090 int base_mrf = 2;
1091 int reg_width = dispatch_width / 8;
1092 bool header_present = false;
1093 const int vector_elements =
1094 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
1095
1096 if (ir->offset != NULL && ir->op == ir_txf) {
1097 /* It appears that the ld instruction used for txf does its
1098 * address bounds check before adding in the offset. To work
1099 * around this, just add the integer offset to the integer texel
1100 * coordinate, and don't put the offset in the header.
1101 */
1102 ir_constant *offset = ir->offset->as_constant();
1103 for (int i = 0; i < vector_elements; i++) {
1104 emit(ADD(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1105 coordinate,
1106 offset->value.i[i]));
1107 coordinate.reg_offset++;
1108 }
1109 } else {
1110 if (ir->offset) {
1111 /* The offsets set up by the ir_texture visitor are in the
1112 * m1 header, so we can't go headerless.
1113 */
1114 header_present = true;
1115 mlen++;
1116 base_mrf--;
1117 }
1118
1119 for (int i = 0; i < vector_elements; i++) {
1120 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1121 coordinate));
1122 coordinate.reg_offset++;
1123 }
1124 }
1125 mlen += vector_elements * reg_width;
1126
1127 if (ir->shadow_comparitor) {
1128 mlen = MAX2(mlen, header_present + 4 * reg_width);
1129
1130 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1131 mlen += reg_width;
1132 }
1133
1134 fs_inst *inst = NULL;
1135 switch (ir->op) {
1136 case ir_tex:
1137 inst = emit(SHADER_OPCODE_TEX, dst);
1138 break;
1139 case ir_txb:
1140 mlen = MAX2(mlen, header_present + 4 * reg_width);
1141 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1142 mlen += reg_width;
1143
1144 inst = emit(FS_OPCODE_TXB, dst);
1145 break;
1146 case ir_txl:
1147 mlen = MAX2(mlen, header_present + 4 * reg_width);
1148 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1149 mlen += reg_width;
1150
1151 inst = emit(SHADER_OPCODE_TXL, dst);
1152 break;
1153 case ir_txd: {
1154 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1155
1156 /**
1157 * P = u, v, r
1158 * dPdx = dudx, dvdx, drdx
1159 * dPdy = dudy, dvdy, drdy
1160 *
1161 * Load up these values:
1162 * - dudx dudy dvdx dvdy drdx drdy
1163 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1164 */
1165 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1166 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1167 lod.reg_offset++;
1168 mlen += reg_width;
1169
1170 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1171 lod2.reg_offset++;
1172 mlen += reg_width;
1173 }
1174
1175 inst = emit(SHADER_OPCODE_TXD, dst);
1176 break;
1177 }
1178 case ir_txs:
1179 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1180 mlen += reg_width;
1181 inst = emit(SHADER_OPCODE_TXS, dst);
1182 break;
1183 case ir_query_levels:
1184 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1185 mlen += reg_width;
1186 inst = emit(SHADER_OPCODE_TXS, dst);
1187 break;
1188 case ir_txf:
1189 mlen = header_present + 4 * reg_width;
1190 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1191 inst = emit(SHADER_OPCODE_TXF, dst);
1192 break;
1193 case ir_txf_ms:
1194 mlen = header_present + 4 * reg_width;
1195
1196 /* lod */
1197 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1198 /* sample index */
1199 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1200 mlen += reg_width;
1201 inst = emit(SHADER_OPCODE_TXF_MS, dst);
1202 break;
1203 case ir_lod:
1204 inst = emit(SHADER_OPCODE_LOD, dst);
1205 break;
1206 case ir_tg4:
1207 inst = emit(SHADER_OPCODE_TG4, dst);
1208 break;
1209 default:
1210 fail("unrecognized texture opcode");
1211 break;
1212 }
1213 inst->base_mrf = base_mrf;
1214 inst->mlen = mlen;
1215 inst->header_present = header_present;
1216 inst->regs_written = 4;
1217
1218 if (mlen > 11) {
1219 fail("Message length >11 disallowed by hardware\n");
1220 }
1221
1222 return inst;
1223 }
1224
1225 fs_inst *
1226 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1227 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1228 fs_reg sample_index)
1229 {
1230 int reg_width = dispatch_width / 8;
1231 bool header_present = false;
1232 int offsets[3];
1233
1234 fs_reg payload = fs_reg(this, glsl_type::float_type);
1235 fs_reg next = payload;
1236
1237 if (ir->op == ir_tg4 || (ir->offset && ir->op != ir_txf)) {
1238 /* For general texture offsets (no txf workaround), we need a header to
1239 * put them in. Note that for 16-wide we're making space for two actual
1240 * hardware registers here, so the emit will have to fix up for this.
1241 *
1242 * * ir4_tg4 needs to place its channel select in the header,
1243 * for interaction with ARB_texture_swizzle
1244 */
1245 header_present = true;
1246 next.reg_offset++;
1247 }
1248
1249 if (ir->shadow_comparitor) {
1250 emit(MOV(next, shadow_c));
1251 next.reg_offset++;
1252 }
1253
1254 /* Set up the LOD info */
1255 switch (ir->op) {
1256 case ir_tex:
1257 case ir_lod:
1258 case ir_tg4:
1259 break;
1260 case ir_txb:
1261 emit(MOV(next, lod));
1262 next.reg_offset++;
1263 break;
1264 case ir_txl:
1265 emit(MOV(next, lod));
1266 next.reg_offset++;
1267 break;
1268 case ir_txd: {
1269 if (dispatch_width == 16)
1270 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1271
1272 /* Load dPdx and the coordinate together:
1273 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1274 */
1275 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1276 emit(MOV(next, coordinate));
1277 coordinate.reg_offset++;
1278 next.reg_offset++;
1279
1280 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1281 * only derivatives for (u, v, r).
1282 */
1283 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1284 emit(MOV(next, lod));
1285 lod.reg_offset++;
1286 next.reg_offset++;
1287
1288 emit(MOV(next, lod2));
1289 lod2.reg_offset++;
1290 next.reg_offset++;
1291 }
1292 }
1293 break;
1294 }
1295 case ir_txs:
1296 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), lod));
1297 next.reg_offset++;
1298 break;
1299 case ir_query_levels:
1300 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1301 next.reg_offset++;
1302 break;
1303 case ir_txf:
1304 /* It appears that the ld instruction used for txf does its
1305 * address bounds check before adding in the offset. To work
1306 * around this, just add the integer offset to the integer texel
1307 * coordinate, and don't put the offset in the header.
1308 */
1309 if (ir->offset) {
1310 ir_constant *offset = ir->offset->as_constant();
1311 offsets[0] = offset->value.i[0];
1312 offsets[1] = offset->value.i[1];
1313 offsets[2] = offset->value.i[2];
1314 } else {
1315 memset(offsets, 0, sizeof(offsets));
1316 }
1317
1318 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1319 emit(ADD(next.retype(BRW_REGISTER_TYPE_D), coordinate, offsets[0]));
1320 coordinate.reg_offset++;
1321 next.reg_offset++;
1322
1323 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), lod));
1324 next.reg_offset++;
1325
1326 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1327 emit(ADD(next.retype(BRW_REGISTER_TYPE_D), coordinate, offsets[i]));
1328 coordinate.reg_offset++;
1329 next.reg_offset++;
1330 }
1331 break;
1332 case ir_txf_ms:
1333 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), sample_index));
1334 next.reg_offset++;
1335
1336 /* constant zero MCS; we arrange to never actually have a compressed
1337 * multisample surface here for now. TODO: issue ld_mcs to get this first,
1338 * if we ever support texturing from compressed multisample surfaces
1339 */
1340 emit(MOV(next.retype(BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1341 next.reg_offset++;
1342
1343 /* there is no offsetting for this message; just copy in the integer
1344 * texture coordinates
1345 */
1346 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1347 emit(MOV(next.retype(BRW_REGISTER_TYPE_D), coordinate));
1348 coordinate.reg_offset++;
1349 next.reg_offset++;
1350 }
1351 break;
1352 }
1353
1354 /* Set up the coordinate (except for cases where it was done above) */
1355 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf && ir->op != ir_txf_ms && ir->op != ir_query_levels) {
1356 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1357 emit(MOV(next, coordinate));
1358 coordinate.reg_offset++;
1359 next.reg_offset++;
1360 }
1361 }
1362
1363 /* Generate the SEND */
1364 fs_inst *inst = NULL;
1365 switch (ir->op) {
1366 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst, payload); break;
1367 case ir_txb: inst = emit(FS_OPCODE_TXB, dst, payload); break;
1368 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst, payload); break;
1369 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst, payload); break;
1370 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst, payload); break;
1371 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst, payload); break;
1372 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1373 case ir_query_levels: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1374 case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst, payload); break;
1375 case ir_tg4: inst = emit(SHADER_OPCODE_TG4, dst, payload); break;
1376 }
1377 inst->base_mrf = -1;
1378 if (reg_width == 2)
1379 inst->mlen = next.reg_offset * reg_width - header_present;
1380 else
1381 inst->mlen = next.reg_offset * reg_width;
1382
1383 inst->header_present = header_present;
1384 inst->regs_written = 4;
1385
1386 virtual_grf_sizes[payload.reg] = next.reg_offset;
1387 if (inst->mlen > 11) {
1388 fail("Message length >11 disallowed by hardware\n");
1389 }
1390
1391 return inst;
1392 }
1393
1394 fs_reg
1395 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1396 bool is_rect, int sampler, int texunit)
1397 {
1398 fs_inst *inst = NULL;
1399 bool needs_gl_clamp = true;
1400 fs_reg scale_x, scale_y;
1401
1402 /* The 965 requires the EU to do the normalization of GL rectangle
1403 * texture coordinates. We use the program parameter state
1404 * tracking to get the scaling factor.
1405 */
1406 if (is_rect &&
1407 (brw->gen < 6 ||
1408 (brw->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1409 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1410 struct gl_program_parameter_list *params = prog->Parameters;
1411 int tokens[STATE_LENGTH] = {
1412 STATE_INTERNAL,
1413 STATE_TEXRECT_SCALE,
1414 texunit,
1415 0,
1416 0
1417 };
1418
1419 if (dispatch_width == 16) {
1420 fail("rectangle scale uniform setup not supported on 16-wide\n");
1421 return coordinate;
1422 }
1423
1424 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1425 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1426
1427 GLuint index = _mesa_add_state_reference(params,
1428 (gl_state_index *)tokens);
1429 c->prog_data.param[c->prog_data.nr_params++] =
1430 &prog->Parameters->ParameterValues[index][0].f;
1431 c->prog_data.param[c->prog_data.nr_params++] =
1432 &prog->Parameters->ParameterValues[index][1].f;
1433 }
1434
1435 /* The 965 requires the EU to do the normalization of GL rectangle
1436 * texture coordinates. We use the program parameter state
1437 * tracking to get the scaling factor.
1438 */
1439 if (brw->gen < 6 && is_rect) {
1440 fs_reg dst = fs_reg(this, ir->coordinate->type);
1441 fs_reg src = coordinate;
1442 coordinate = dst;
1443
1444 emit(MUL(dst, src, scale_x));
1445 dst.reg_offset++;
1446 src.reg_offset++;
1447 emit(MUL(dst, src, scale_y));
1448 } else if (is_rect) {
1449 /* On gen6+, the sampler handles the rectangle coordinates
1450 * natively, without needing rescaling. But that means we have
1451 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1452 * not [0, 1] like the default case below.
1453 */
1454 needs_gl_clamp = false;
1455
1456 for (int i = 0; i < 2; i++) {
1457 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1458 fs_reg chan = coordinate;
1459 chan.reg_offset += i;
1460
1461 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1462 inst->conditional_mod = BRW_CONDITIONAL_G;
1463
1464 /* Our parameter comes in as 1.0/width or 1.0/height,
1465 * because that's what people normally want for doing
1466 * texture rectangle handling. We need width or height
1467 * for clamping, but we don't care enough to make a new
1468 * parameter type, so just invert back.
1469 */
1470 fs_reg limit = fs_reg(this, glsl_type::float_type);
1471 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1472 emit(SHADER_OPCODE_RCP, limit, limit);
1473
1474 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1475 inst->conditional_mod = BRW_CONDITIONAL_L;
1476 }
1477 }
1478 }
1479
1480 if (ir->coordinate && needs_gl_clamp) {
1481 for (unsigned int i = 0;
1482 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1483 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1484 fs_reg chan = coordinate;
1485 chan.reg_offset += i;
1486
1487 fs_inst *inst = emit(MOV(chan, chan));
1488 inst->saturate = true;
1489 }
1490 }
1491 }
1492 return coordinate;
1493 }
1494
1495 void
1496 fs_visitor::visit(ir_texture *ir)
1497 {
1498 fs_inst *inst = NULL;
1499
1500 int sampler =
1501 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
1502 /* FINISHME: We're failing to recompile our programs when the sampler is
1503 * updated. This only matters for the texture rectangle scale parameters
1504 * (pre-gen6, or gen6+ with GL_CLAMP).
1505 */
1506 int texunit = prog->SamplerUnits[sampler];
1507
1508 if (ir->op == ir_tg4) {
1509 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
1510 * emitting anything other than setting up the constant result.
1511 */
1512 ir_constant *chan = ir->lod_info.component->as_constant();
1513 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1514 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
1515
1516 fs_reg res = fs_reg(this, glsl_type::vec4_type);
1517 this->result = res;
1518
1519 for (int i=0; i<4; i++) {
1520 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
1521 res.reg_offset++;
1522 }
1523 return;
1524 }
1525 }
1526
1527 /* Should be lowered by do_lower_texture_projection */
1528 assert(!ir->projector);
1529
1530 /* Generate code to compute all the subexpression trees. This has to be
1531 * done before loading any values into MRFs for the sampler message since
1532 * generating these values may involve SEND messages that need the MRFs.
1533 */
1534 fs_reg coordinate;
1535 if (ir->coordinate) {
1536 ir->coordinate->accept(this);
1537
1538 coordinate = rescale_texcoord(ir, this->result,
1539 ir->sampler->type->sampler_dimensionality ==
1540 GLSL_SAMPLER_DIM_RECT,
1541 sampler, texunit);
1542 }
1543
1544 fs_reg shadow_comparitor;
1545 if (ir->shadow_comparitor) {
1546 ir->shadow_comparitor->accept(this);
1547 shadow_comparitor = this->result;
1548 }
1549
1550 fs_reg lod, lod2, sample_index;
1551 switch (ir->op) {
1552 case ir_tex:
1553 case ir_lod:
1554 case ir_tg4:
1555 case ir_query_levels:
1556 break;
1557 case ir_txb:
1558 ir->lod_info.bias->accept(this);
1559 lod = this->result;
1560 break;
1561 case ir_txd:
1562 ir->lod_info.grad.dPdx->accept(this);
1563 lod = this->result;
1564
1565 ir->lod_info.grad.dPdy->accept(this);
1566 lod2 = this->result;
1567 break;
1568 case ir_txf:
1569 case ir_txl:
1570 case ir_txs:
1571 ir->lod_info.lod->accept(this);
1572 lod = this->result;
1573 break;
1574 case ir_txf_ms:
1575 ir->lod_info.sample_index->accept(this);
1576 sample_index = this->result;
1577 break;
1578 default:
1579 assert(!"Unrecognized texture opcode");
1580 };
1581
1582 /* Writemasking doesn't eliminate channels on SIMD8 texture
1583 * samples, so don't worry about them.
1584 */
1585 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1586
1587 if (brw->gen >= 7) {
1588 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1589 lod, lod2, sample_index);
1590 } else if (brw->gen >= 5) {
1591 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1592 lod, lod2, sample_index);
1593 } else {
1594 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1595 lod, lod2);
1596 }
1597
1598 if (ir->offset != NULL && ir->op != ir_txf)
1599 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1600
1601 if (ir->op == ir_tg4)
1602 inst->texture_offset |= gather_channel(ir, sampler) << 16; // M0.2:16-17
1603
1604 inst->sampler = sampler;
1605
1606 if (ir->shadow_comparitor)
1607 inst->shadow_compare = true;
1608
1609 /* fixup #layers for cube map arrays */
1610 if (ir->op == ir_txs) {
1611 glsl_type const *type = ir->sampler->type;
1612 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1613 type->sampler_array) {
1614 fs_reg depth = dst;
1615 depth.reg_offset = 2;
1616 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1617 }
1618 }
1619
1620 swizzle_result(ir, dst, sampler);
1621 }
1622
1623 /**
1624 * Set up the gather channel based on the swizzle, for gather4.
1625 */
1626 uint32_t
1627 fs_visitor::gather_channel(ir_texture *ir, int sampler)
1628 {
1629 ir_constant *chan = ir->lod_info.component->as_constant();
1630 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1631 switch (swiz) {
1632 case SWIZZLE_X: return 0;
1633 case SWIZZLE_Y:
1634 /* gather4 sampler is broken for green channel on RG32F --
1635 * we must ask for blue instead.
1636 */
1637 if (c->key.tex.gather_channel_quirk_mask & (1<<sampler))
1638 return 2;
1639 return 1;
1640 case SWIZZLE_Z: return 2;
1641 case SWIZZLE_W: return 3;
1642 default:
1643 assert(!"Not reached"); /* zero, one swizzles handled already */
1644 return 0;
1645 }
1646 }
1647
1648 /**
1649 * Swizzle the result of a texture result. This is necessary for
1650 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1651 */
1652 void
1653 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1654 {
1655 if (ir->op == ir_query_levels) {
1656 /* # levels is in .w */
1657 orig_val.reg_offset += 3;
1658 this->result = orig_val;
1659 return;
1660 }
1661
1662 this->result = orig_val;
1663
1664 /* txs,lod don't actually sample the texture, so swizzling the result
1665 * makes no sense.
1666 */
1667 if (ir->op == ir_txs || ir->op == ir_lod || ir->op == ir_tg4)
1668 return;
1669
1670 if (ir->type == glsl_type::float_type) {
1671 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1672 assert(ir->sampler->type->sampler_shadow);
1673 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1674 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1675
1676 for (int i = 0; i < 4; i++) {
1677 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1678 fs_reg l = swizzled_result;
1679 l.reg_offset += i;
1680
1681 if (swiz == SWIZZLE_ZERO) {
1682 emit(MOV(l, fs_reg(0.0f)));
1683 } else if (swiz == SWIZZLE_ONE) {
1684 emit(MOV(l, fs_reg(1.0f)));
1685 } else {
1686 fs_reg r = orig_val;
1687 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1688 emit(MOV(l, r));
1689 }
1690 }
1691 this->result = swizzled_result;
1692 }
1693 }
1694
1695 void
1696 fs_visitor::visit(ir_swizzle *ir)
1697 {
1698 ir->val->accept(this);
1699 fs_reg val = this->result;
1700
1701 if (ir->type->vector_elements == 1) {
1702 this->result.reg_offset += ir->mask.x;
1703 return;
1704 }
1705
1706 fs_reg result = fs_reg(this, ir->type);
1707 this->result = result;
1708
1709 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1710 fs_reg channel = val;
1711 int swiz = 0;
1712
1713 switch (i) {
1714 case 0:
1715 swiz = ir->mask.x;
1716 break;
1717 case 1:
1718 swiz = ir->mask.y;
1719 break;
1720 case 2:
1721 swiz = ir->mask.z;
1722 break;
1723 case 3:
1724 swiz = ir->mask.w;
1725 break;
1726 }
1727
1728 channel.reg_offset += swiz;
1729 emit(MOV(result, channel));
1730 result.reg_offset++;
1731 }
1732 }
1733
1734 void
1735 fs_visitor::visit(ir_discard *ir)
1736 {
1737 assert(ir->condition == NULL); /* FINISHME */
1738
1739 /* We track our discarded pixels in f0.1. By predicating on it, we can
1740 * update just the flag bits that aren't yet discarded. By emitting a
1741 * CMP of g0 != g0, all our currently executing channels will get turned
1742 * off.
1743 */
1744 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1745 BRW_REGISTER_TYPE_UW));
1746 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1747 BRW_CONDITIONAL_NZ));
1748 cmp->predicate = BRW_PREDICATE_NORMAL;
1749 cmp->flag_subreg = 1;
1750
1751 if (brw->gen >= 6) {
1752 /* For performance, after a discard, jump to the end of the shader.
1753 * However, many people will do foliage by discarding based on a
1754 * texture's alpha mask, and then continue on to texture with the
1755 * remaining pixels. To avoid trashing the derivatives for those
1756 * texture samples, we'll only jump if all of the pixels in the subspan
1757 * have been discarded.
1758 */
1759 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1760 discard_jump->flag_subreg = 1;
1761 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1762 discard_jump->predicate_inverse = true;
1763 }
1764 }
1765
1766 void
1767 fs_visitor::visit(ir_constant *ir)
1768 {
1769 /* Set this->result to reg at the bottom of the function because some code
1770 * paths will cause this visitor to be applied to other fields. This will
1771 * cause the value stored in this->result to be modified.
1772 *
1773 * Make reg constant so that it doesn't get accidentally modified along the
1774 * way. Yes, I actually had this problem. :(
1775 */
1776 const fs_reg reg(this, ir->type);
1777 fs_reg dst_reg = reg;
1778
1779 if (ir->type->is_array()) {
1780 const unsigned size = type_size(ir->type->fields.array);
1781
1782 for (unsigned i = 0; i < ir->type->length; i++) {
1783 ir->array_elements[i]->accept(this);
1784 fs_reg src_reg = this->result;
1785
1786 dst_reg.type = src_reg.type;
1787 for (unsigned j = 0; j < size; j++) {
1788 emit(MOV(dst_reg, src_reg));
1789 src_reg.reg_offset++;
1790 dst_reg.reg_offset++;
1791 }
1792 }
1793 } else if (ir->type->is_record()) {
1794 foreach_list(node, &ir->components) {
1795 ir_constant *const field = (ir_constant *) node;
1796 const unsigned size = type_size(field->type);
1797
1798 field->accept(this);
1799 fs_reg src_reg = this->result;
1800
1801 dst_reg.type = src_reg.type;
1802 for (unsigned j = 0; j < size; j++) {
1803 emit(MOV(dst_reg, src_reg));
1804 src_reg.reg_offset++;
1805 dst_reg.reg_offset++;
1806 }
1807 }
1808 } else {
1809 const unsigned size = type_size(ir->type);
1810
1811 for (unsigned i = 0; i < size; i++) {
1812 switch (ir->type->base_type) {
1813 case GLSL_TYPE_FLOAT:
1814 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1815 break;
1816 case GLSL_TYPE_UINT:
1817 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1818 break;
1819 case GLSL_TYPE_INT:
1820 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1821 break;
1822 case GLSL_TYPE_BOOL:
1823 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1824 break;
1825 default:
1826 assert(!"Non-float/uint/int/bool constant");
1827 }
1828 dst_reg.reg_offset++;
1829 }
1830 }
1831
1832 this->result = reg;
1833 }
1834
1835 void
1836 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1837 {
1838 ir_expression *expr = ir->as_expression();
1839
1840 if (expr &&
1841 expr->operation != ir_binop_logic_and &&
1842 expr->operation != ir_binop_logic_or &&
1843 expr->operation != ir_binop_logic_xor) {
1844 fs_reg op[2];
1845 fs_inst *inst;
1846
1847 assert(expr->get_num_operands() <= 2);
1848 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1849 assert(expr->operands[i]->type->is_scalar());
1850
1851 expr->operands[i]->accept(this);
1852 op[i] = this->result;
1853
1854 resolve_ud_negate(&op[i]);
1855 }
1856
1857 switch (expr->operation) {
1858 case ir_unop_logic_not:
1859 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1860 inst->conditional_mod = BRW_CONDITIONAL_Z;
1861 break;
1862
1863 case ir_unop_f2b:
1864 if (brw->gen >= 6) {
1865 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1866 } else {
1867 inst = emit(MOV(reg_null_f, op[0]));
1868 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1869 }
1870 break;
1871
1872 case ir_unop_i2b:
1873 if (brw->gen >= 6) {
1874 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1875 } else {
1876 inst = emit(MOV(reg_null_d, op[0]));
1877 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1878 }
1879 break;
1880
1881 case ir_binop_greater:
1882 case ir_binop_gequal:
1883 case ir_binop_less:
1884 case ir_binop_lequal:
1885 case ir_binop_equal:
1886 case ir_binop_all_equal:
1887 case ir_binop_nequal:
1888 case ir_binop_any_nequal:
1889 resolve_bool_comparison(expr->operands[0], &op[0]);
1890 resolve_bool_comparison(expr->operands[1], &op[1]);
1891
1892 emit(CMP(reg_null_d, op[0], op[1],
1893 brw_conditional_for_comparison(expr->operation)));
1894 break;
1895
1896 default:
1897 assert(!"not reached");
1898 fail("bad cond code\n");
1899 break;
1900 }
1901 return;
1902 }
1903
1904 ir->accept(this);
1905
1906 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1907 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1908 }
1909
1910 /**
1911 * Emit a gen6 IF statement with the comparison folded into the IF
1912 * instruction.
1913 */
1914 void
1915 fs_visitor::emit_if_gen6(ir_if *ir)
1916 {
1917 ir_expression *expr = ir->condition->as_expression();
1918
1919 if (expr) {
1920 fs_reg op[2];
1921 fs_inst *inst;
1922 fs_reg temp;
1923
1924 assert(expr->get_num_operands() <= 2);
1925 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1926 assert(expr->operands[i]->type->is_scalar());
1927
1928 expr->operands[i]->accept(this);
1929 op[i] = this->result;
1930 }
1931
1932 switch (expr->operation) {
1933 case ir_unop_logic_not:
1934 case ir_binop_logic_xor:
1935 case ir_binop_logic_or:
1936 case ir_binop_logic_and:
1937 /* For operations on bool arguments, only the low bit of the bool is
1938 * valid, and the others are undefined. Fall back to the condition
1939 * code path.
1940 */
1941 break;
1942
1943 case ir_unop_f2b:
1944 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1945 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1946 return;
1947
1948 case ir_unop_i2b:
1949 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1950 return;
1951
1952 case ir_binop_greater:
1953 case ir_binop_gequal:
1954 case ir_binop_less:
1955 case ir_binop_lequal:
1956 case ir_binop_equal:
1957 case ir_binop_all_equal:
1958 case ir_binop_nequal:
1959 case ir_binop_any_nequal:
1960 resolve_bool_comparison(expr->operands[0], &op[0]);
1961 resolve_bool_comparison(expr->operands[1], &op[1]);
1962
1963 emit(IF(op[0], op[1],
1964 brw_conditional_for_comparison(expr->operation)));
1965 return;
1966 default:
1967 assert(!"not reached");
1968 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1969 fail("bad condition\n");
1970 return;
1971 }
1972 }
1973
1974 emit_bool_to_cond_code(ir->condition);
1975 fs_inst *inst = emit(BRW_OPCODE_IF);
1976 inst->predicate = BRW_PREDICATE_NORMAL;
1977 }
1978
1979 /**
1980 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
1981 *
1982 * Many GLSL shaders contain the following pattern:
1983 *
1984 * x = condition ? foo : bar
1985 *
1986 * The compiler emits an ir_if tree for this, since each subexpression might be
1987 * a complex tree that could have side-effects or short-circuit logic.
1988 *
1989 * However, the common case is to simply select one of two constants or
1990 * variable values---which is exactly what SEL is for. In this case, the
1991 * assembly looks like:
1992 *
1993 * (+f0) IF
1994 * MOV dst src0
1995 * ELSE
1996 * MOV dst src1
1997 * ENDIF
1998 *
1999 * which can be easily translated into:
2000 *
2001 * (+f0) SEL dst src0 src1
2002 *
2003 * If src0 is an immediate value, we promote it to a temporary GRF.
2004 */
2005 void
2006 fs_visitor::try_replace_with_sel()
2007 {
2008 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2009 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2010
2011 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2012 int opcodes[] = {
2013 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2014 };
2015
2016 fs_inst *match = (fs_inst *) endif_inst->prev;
2017 for (int i = 0; i < 4; i++) {
2018 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2019 return;
2020 match = (fs_inst *) match->prev;
2021 }
2022
2023 /* The opcodes match; it looks like the right sequence of instructions. */
2024 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2025 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2026 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2027
2028 /* Check that the MOVs are the right form. */
2029 if (then_mov->dst.equals(else_mov->dst) &&
2030 !then_mov->is_partial_write() &&
2031 !else_mov->is_partial_write()) {
2032
2033 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2034 while (!if_inst->next->is_tail_sentinel())
2035 if_inst->next->remove();
2036 if_inst->remove();
2037
2038 /* Only the last source register can be a constant, so if the MOV in
2039 * the "then" clause uses a constant, we need to put it in a temporary.
2040 */
2041 fs_reg src0(then_mov->src[0]);
2042 if (src0.file == IMM) {
2043 src0 = fs_reg(this, glsl_type::float_type);
2044 src0.type = then_mov->src[0].type;
2045 emit(MOV(src0, then_mov->src[0]));
2046 }
2047
2048 fs_inst *sel;
2049 if (if_inst->conditional_mod) {
2050 /* Sandybridge-specific IF with embedded comparison */
2051 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2052 if_inst->conditional_mod));
2053 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2054 sel->predicate = BRW_PREDICATE_NORMAL;
2055 } else {
2056 /* Separate CMP and IF instructions */
2057 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2058 sel->predicate = if_inst->predicate;
2059 sel->predicate_inverse = if_inst->predicate_inverse;
2060 }
2061 }
2062 }
2063
2064 void
2065 fs_visitor::visit(ir_if *ir)
2066 {
2067 if (brw->gen < 6 && dispatch_width == 16) {
2068 fail("Can't support (non-uniform) control flow on 16-wide\n");
2069 }
2070
2071 /* Don't point the annotation at the if statement, because then it plus
2072 * the then and else blocks get printed.
2073 */
2074 this->base_ir = ir->condition;
2075
2076 if (brw->gen == 6) {
2077 emit_if_gen6(ir);
2078 } else {
2079 emit_bool_to_cond_code(ir->condition);
2080
2081 emit(IF(BRW_PREDICATE_NORMAL));
2082 }
2083
2084 foreach_list(node, &ir->then_instructions) {
2085 ir_instruction *ir = (ir_instruction *)node;
2086 this->base_ir = ir;
2087
2088 ir->accept(this);
2089 }
2090
2091 if (!ir->else_instructions.is_empty()) {
2092 emit(BRW_OPCODE_ELSE);
2093
2094 foreach_list(node, &ir->else_instructions) {
2095 ir_instruction *ir = (ir_instruction *)node;
2096 this->base_ir = ir;
2097
2098 ir->accept(this);
2099 }
2100 }
2101
2102 emit(BRW_OPCODE_ENDIF);
2103
2104 try_replace_with_sel();
2105 }
2106
2107 void
2108 fs_visitor::visit(ir_loop *ir)
2109 {
2110 fs_reg counter = reg_undef;
2111
2112 if (brw->gen < 6 && dispatch_width == 16) {
2113 fail("Can't support (non-uniform) control flow on 16-wide\n");
2114 }
2115
2116 if (ir->counter) {
2117 this->base_ir = ir->counter;
2118 ir->counter->accept(this);
2119 counter = *(variable_storage(ir->counter));
2120
2121 if (ir->from) {
2122 this->base_ir = ir->from;
2123 ir->from->accept(this);
2124
2125 emit(MOV(counter, this->result));
2126 }
2127 }
2128
2129 this->base_ir = NULL;
2130 emit(BRW_OPCODE_DO);
2131
2132 if (ir->to) {
2133 this->base_ir = ir->to;
2134 ir->to->accept(this);
2135
2136 emit(CMP(reg_null_d, counter, this->result,
2137 brw_conditional_for_comparison(ir->cmp)));
2138
2139 fs_inst *inst = emit(BRW_OPCODE_BREAK);
2140 inst->predicate = BRW_PREDICATE_NORMAL;
2141 }
2142
2143 foreach_list(node, &ir->body_instructions) {
2144 ir_instruction *ir = (ir_instruction *)node;
2145
2146 this->base_ir = ir;
2147 ir->accept(this);
2148 }
2149
2150 if (ir->increment) {
2151 this->base_ir = ir->increment;
2152 ir->increment->accept(this);
2153 emit(ADD(counter, counter, this->result));
2154 }
2155
2156 this->base_ir = NULL;
2157 emit(BRW_OPCODE_WHILE);
2158 }
2159
2160 void
2161 fs_visitor::visit(ir_loop_jump *ir)
2162 {
2163 switch (ir->mode) {
2164 case ir_loop_jump::jump_break:
2165 emit(BRW_OPCODE_BREAK);
2166 break;
2167 case ir_loop_jump::jump_continue:
2168 emit(BRW_OPCODE_CONTINUE);
2169 break;
2170 }
2171 }
2172
2173 void
2174 fs_visitor::visit(ir_call *ir)
2175 {
2176 assert(!"FINISHME");
2177 }
2178
2179 void
2180 fs_visitor::visit(ir_return *ir)
2181 {
2182 assert(!"FINISHME");
2183 }
2184
2185 void
2186 fs_visitor::visit(ir_function *ir)
2187 {
2188 /* Ignore function bodies other than main() -- we shouldn't see calls to
2189 * them since they should all be inlined before we get to ir_to_mesa.
2190 */
2191 if (strcmp(ir->name, "main") == 0) {
2192 const ir_function_signature *sig;
2193 exec_list empty;
2194
2195 sig = ir->matching_signature(NULL, &empty);
2196
2197 assert(sig);
2198
2199 foreach_list(node, &sig->body) {
2200 ir_instruction *ir = (ir_instruction *)node;
2201 this->base_ir = ir;
2202
2203 ir->accept(this);
2204 }
2205 }
2206 }
2207
2208 void
2209 fs_visitor::visit(ir_function_signature *ir)
2210 {
2211 assert(!"not reached");
2212 (void)ir;
2213 }
2214
2215 void
2216 fs_visitor::visit(ir_emit_vertex *)
2217 {
2218 assert(!"not reached");
2219 }
2220
2221 void
2222 fs_visitor::visit(ir_end_primitive *)
2223 {
2224 assert(!"not reached");
2225 }
2226
2227 fs_inst *
2228 fs_visitor::emit(fs_inst inst)
2229 {
2230 fs_inst *list_inst = new(mem_ctx) fs_inst;
2231 *list_inst = inst;
2232 emit(list_inst);
2233 return list_inst;
2234 }
2235
2236 fs_inst *
2237 fs_visitor::emit(fs_inst *inst)
2238 {
2239 if (force_uncompressed_stack > 0)
2240 inst->force_uncompressed = true;
2241 else if (force_sechalf_stack > 0)
2242 inst->force_sechalf = true;
2243
2244 inst->annotation = this->current_annotation;
2245 inst->ir = this->base_ir;
2246
2247 this->instructions.push_tail(inst);
2248
2249 return inst;
2250 }
2251
2252 void
2253 fs_visitor::emit(exec_list list)
2254 {
2255 foreach_list_safe(node, &list) {
2256 fs_inst *inst = (fs_inst *)node;
2257 inst->remove();
2258 emit(inst);
2259 }
2260 }
2261
2262 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
2263 void
2264 fs_visitor::emit_dummy_fs()
2265 {
2266 int reg_width = dispatch_width / 8;
2267
2268 /* Everyone's favorite color. */
2269 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
2270 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
2271 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
2272 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
2273
2274 fs_inst *write;
2275 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
2276 write->base_mrf = 2;
2277 write->mlen = 4 * reg_width;
2278 write->eot = true;
2279 }
2280
2281 /* The register location here is relative to the start of the URB
2282 * data. It will get adjusted to be a real location before
2283 * generate_code() time.
2284 */
2285 struct brw_reg
2286 fs_visitor::interp_reg(int location, int channel)
2287 {
2288 int regnr = c->prog_data.urb_setup[location] * 2 + channel / 2;
2289 int stride = (channel & 1) * 4;
2290
2291 assert(c->prog_data.urb_setup[location] != -1);
2292
2293 return brw_vec1_grf(regnr, stride);
2294 }
2295
2296 /** Emits the interpolation for the varying inputs. */
2297 void
2298 fs_visitor::emit_interpolation_setup_gen4()
2299 {
2300 this->current_annotation = "compute pixel centers";
2301 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2302 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2303 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2304 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2305
2306 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2307 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2308
2309 this->current_annotation = "compute pixel deltas from v0";
2310 if (brw->has_pln) {
2311 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2312 fs_reg(this, glsl_type::vec2_type);
2313 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2314 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2315 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2316 } else {
2317 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2318 fs_reg(this, glsl_type::float_type);
2319 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2320 fs_reg(this, glsl_type::float_type);
2321 }
2322 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2323 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2324 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2325 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2326
2327 this->current_annotation = "compute pos.w and 1/pos.w";
2328 /* Compute wpos.w. It's always in our setup, since it's needed to
2329 * interpolate the other attributes.
2330 */
2331 this->wpos_w = fs_reg(this, glsl_type::float_type);
2332 emit(FS_OPCODE_LINTERP, wpos_w,
2333 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2334 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2335 interp_reg(VARYING_SLOT_POS, 3));
2336 /* Compute the pixel 1/W value from wpos.w. */
2337 this->pixel_w = fs_reg(this, glsl_type::float_type);
2338 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2339 this->current_annotation = NULL;
2340 }
2341
2342 /** Emits the interpolation for the varying inputs. */
2343 void
2344 fs_visitor::emit_interpolation_setup_gen6()
2345 {
2346 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2347
2348 /* If the pixel centers end up used, the setup is the same as for gen4. */
2349 this->current_annotation = "compute pixel centers";
2350 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2351 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2352 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2353 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2354 emit(ADD(int_pixel_x,
2355 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2356 fs_reg(brw_imm_v(0x10101010))));
2357 emit(ADD(int_pixel_y,
2358 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2359 fs_reg(brw_imm_v(0x11001100))));
2360
2361 /* As of gen6, we can no longer mix float and int sources. We have
2362 * to turn the integer pixel centers into floats for their actual
2363 * use.
2364 */
2365 this->pixel_x = fs_reg(this, glsl_type::float_type);
2366 this->pixel_y = fs_reg(this, glsl_type::float_type);
2367 emit(MOV(this->pixel_x, int_pixel_x));
2368 emit(MOV(this->pixel_y, int_pixel_y));
2369
2370 this->current_annotation = "compute pos.w";
2371 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2372 this->wpos_w = fs_reg(this, glsl_type::float_type);
2373 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2374
2375 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2376 uint8_t reg = c->barycentric_coord_reg[i];
2377 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2378 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2379 }
2380
2381 this->current_annotation = NULL;
2382 }
2383
2384 void
2385 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2386 {
2387 int reg_width = dispatch_width / 8;
2388 fs_inst *inst;
2389 fs_reg color = outputs[target];
2390 fs_reg mrf;
2391
2392 /* If there's no color data to be written, skip it. */
2393 if (color.file == BAD_FILE)
2394 return;
2395
2396 color.reg_offset += index;
2397
2398 if (dispatch_width == 8 || brw->gen >= 6) {
2399 /* SIMD8 write looks like:
2400 * m + 0: r0
2401 * m + 1: r1
2402 * m + 2: g0
2403 * m + 3: g1
2404 *
2405 * gen6 SIMD16 DP write looks like:
2406 * m + 0: r0
2407 * m + 1: r1
2408 * m + 2: g0
2409 * m + 3: g1
2410 * m + 4: b0
2411 * m + 5: b1
2412 * m + 6: a0
2413 * m + 7: a1
2414 */
2415 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2416 color.type),
2417 color));
2418 inst->saturate = c->key.clamp_fragment_color;
2419 } else {
2420 /* pre-gen6 SIMD16 single source DP write looks like:
2421 * m + 0: r0
2422 * m + 1: g0
2423 * m + 2: b0
2424 * m + 3: a0
2425 * m + 4: r1
2426 * m + 5: g1
2427 * m + 6: b1
2428 * m + 7: a1
2429 */
2430 if (brw->has_compr4) {
2431 /* By setting the high bit of the MRF register number, we
2432 * indicate that we want COMPR4 mode - instead of doing the
2433 * usual destination + 1 for the second half we get
2434 * destination + 4.
2435 */
2436 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2437 color.type),
2438 color));
2439 inst->saturate = c->key.clamp_fragment_color;
2440 } else {
2441 push_force_uncompressed();
2442 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2443 color));
2444 inst->saturate = c->key.clamp_fragment_color;
2445 pop_force_uncompressed();
2446
2447 push_force_sechalf();
2448 color.sechalf = true;
2449 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2450 color));
2451 inst->saturate = c->key.clamp_fragment_color;
2452 pop_force_sechalf();
2453 color.sechalf = false;
2454 }
2455 }
2456 }
2457
2458 void
2459 fs_visitor::emit_fb_writes()
2460 {
2461 this->current_annotation = "FB write header";
2462 bool header_present = true;
2463 /* We can potentially have a message length of up to 15, so we have to set
2464 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2465 */
2466 int base_mrf = 1;
2467 int nr = base_mrf;
2468 int reg_width = dispatch_width / 8;
2469 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2470 bool src0_alpha_to_render_target = false;
2471
2472 if (dispatch_width == 16 && do_dual_src) {
2473 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2474 do_dual_src = false;
2475 }
2476
2477 /* From the Sandy Bridge PRM, volume 4, page 198:
2478 *
2479 * "Dispatched Pixel Enables. One bit per pixel indicating
2480 * which pixels were originally enabled when the thread was
2481 * dispatched. This field is only required for the end-of-
2482 * thread message and on all dual-source messages."
2483 */
2484 if (brw->gen >= 6 &&
2485 !this->fp->UsesKill &&
2486 !do_dual_src &&
2487 c->key.nr_color_regions == 1) {
2488 header_present = false;
2489 }
2490
2491 if (header_present) {
2492 src0_alpha_to_render_target = brw->gen >= 6 &&
2493 !do_dual_src &&
2494 c->key.replicate_alpha;
2495 /* m2, m3 header */
2496 nr += 2;
2497 }
2498
2499 if (c->aa_dest_stencil_reg) {
2500 push_force_uncompressed();
2501 emit(MOV(fs_reg(MRF, nr++),
2502 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2503 pop_force_uncompressed();
2504 }
2505
2506 /* Reserve space for color. It'll be filled in per MRT below. */
2507 int color_mrf = nr;
2508 nr += 4 * reg_width;
2509 if (do_dual_src)
2510 nr += 4;
2511 if (src0_alpha_to_render_target)
2512 nr += reg_width;
2513
2514 if (c->source_depth_to_render_target) {
2515 if (brw->gen == 6 && dispatch_width == 16) {
2516 /* For outputting oDepth on gen6, SIMD8 writes have to be
2517 * used. This would require 8-wide moves of each half to
2518 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2519 * Just bail on doing so for now.
2520 */
2521 fail("Missing support for simd16 depth writes on gen6\n");
2522 }
2523
2524 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2525 /* Hand over gl_FragDepth. */
2526 assert(this->frag_depth.file != BAD_FILE);
2527 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2528 } else {
2529 /* Pass through the payload depth. */
2530 emit(MOV(fs_reg(MRF, nr),
2531 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2532 }
2533 nr += reg_width;
2534 }
2535
2536 if (c->dest_depth_reg) {
2537 emit(MOV(fs_reg(MRF, nr),
2538 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2539 nr += reg_width;
2540 }
2541
2542 if (do_dual_src) {
2543 fs_reg src0 = this->outputs[0];
2544 fs_reg src1 = this->dual_src_output;
2545
2546 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2547 "FB write src0");
2548 for (int i = 0; i < 4; i++) {
2549 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2550 src0.reg_offset++;
2551 inst->saturate = c->key.clamp_fragment_color;
2552 }
2553
2554 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2555 "FB write src1");
2556 for (int i = 0; i < 4; i++) {
2557 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2558 src1));
2559 src1.reg_offset++;
2560 inst->saturate = c->key.clamp_fragment_color;
2561 }
2562
2563 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2564 emit_shader_time_end();
2565
2566 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2567 inst->target = 0;
2568 inst->base_mrf = base_mrf;
2569 inst->mlen = nr - base_mrf;
2570 inst->eot = true;
2571 inst->header_present = header_present;
2572
2573 c->prog_data.dual_src_blend = true;
2574 this->current_annotation = NULL;
2575 return;
2576 }
2577
2578 for (int target = 0; target < c->key.nr_color_regions; target++) {
2579 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2580 "FB write target %d",
2581 target);
2582 /* If src0_alpha_to_render_target is true, include source zero alpha
2583 * data in RenderTargetWrite message for targets > 0.
2584 */
2585 int write_color_mrf = color_mrf;
2586 if (src0_alpha_to_render_target && target != 0) {
2587 fs_inst *inst;
2588 fs_reg color = outputs[0];
2589 color.reg_offset += 3;
2590
2591 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2592 color));
2593 inst->saturate = c->key.clamp_fragment_color;
2594 write_color_mrf = color_mrf + reg_width;
2595 }
2596
2597 for (unsigned i = 0; i < this->output_components[target]; i++)
2598 emit_color_write(target, i, write_color_mrf);
2599
2600 bool eot = false;
2601 if (target == c->key.nr_color_regions - 1) {
2602 eot = true;
2603
2604 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2605 emit_shader_time_end();
2606 }
2607
2608 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2609 inst->target = target;
2610 inst->base_mrf = base_mrf;
2611 if (src0_alpha_to_render_target && target == 0)
2612 inst->mlen = nr - base_mrf - reg_width;
2613 else
2614 inst->mlen = nr - base_mrf;
2615 inst->eot = eot;
2616 inst->header_present = header_present;
2617 }
2618
2619 if (c->key.nr_color_regions == 0) {
2620 /* Even if there's no color buffers enabled, we still need to send
2621 * alpha out the pipeline to our null renderbuffer to support
2622 * alpha-testing, alpha-to-coverage, and so on.
2623 */
2624 emit_color_write(0, 3, color_mrf);
2625
2626 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2627 emit_shader_time_end();
2628
2629 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2630 inst->base_mrf = base_mrf;
2631 inst->mlen = nr - base_mrf;
2632 inst->eot = true;
2633 inst->header_present = header_present;
2634 }
2635
2636 this->current_annotation = NULL;
2637 }
2638
2639 void
2640 fs_visitor::resolve_ud_negate(fs_reg *reg)
2641 {
2642 if (reg->type != BRW_REGISTER_TYPE_UD ||
2643 !reg->negate)
2644 return;
2645
2646 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2647 emit(MOV(temp, *reg));
2648 *reg = temp;
2649 }
2650
2651 void
2652 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2653 {
2654 if (rvalue->type != glsl_type::bool_type)
2655 return;
2656
2657 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2658 emit(AND(temp, *reg, fs_reg(1)));
2659 *reg = temp;
2660 }
2661
2662 fs_visitor::fs_visitor(struct brw_context *brw,
2663 struct brw_wm_compile *c,
2664 struct gl_shader_program *shader_prog,
2665 struct gl_fragment_program *fp,
2666 unsigned dispatch_width)
2667 : dispatch_width(dispatch_width)
2668 {
2669 this->c = c;
2670 this->brw = brw;
2671 this->fp = fp;
2672 this->prog = &fp->Base;
2673 this->shader_prog = shader_prog;
2674 this->prog = &fp->Base;
2675 this->stage_prog_data = &c->prog_data.base;
2676 this->ctx = &brw->ctx;
2677 this->mem_ctx = ralloc_context(NULL);
2678 if (shader_prog)
2679 shader = (struct brw_shader *)
2680 shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2681 else
2682 shader = NULL;
2683 this->failed = false;
2684 this->variable_ht = hash_table_ctor(0,
2685 hash_table_pointer_hash,
2686 hash_table_pointer_compare);
2687
2688 memset(this->outputs, 0, sizeof(this->outputs));
2689 memset(this->output_components, 0, sizeof(this->output_components));
2690 this->first_non_payload_grf = 0;
2691 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2692
2693 this->current_annotation = NULL;
2694 this->base_ir = NULL;
2695
2696 this->virtual_grf_sizes = NULL;
2697 this->virtual_grf_count = 0;
2698 this->virtual_grf_array_size = 0;
2699 this->virtual_grf_start = NULL;
2700 this->virtual_grf_end = NULL;
2701 this->live_intervals = NULL;
2702
2703 this->params_remap = NULL;
2704 this->nr_params_remap = 0;
2705
2706 this->force_uncompressed_stack = 0;
2707 this->force_sechalf_stack = 0;
2708
2709 memset(&this->param_size, 0, sizeof(this->param_size));
2710 }
2711
2712 fs_visitor::~fs_visitor()
2713 {
2714 ralloc_free(this->mem_ctx);
2715 hash_table_dtor(this->variable_ht);
2716 }