a672ee624b2bab1557d866a28746ed64487dc1e4
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (ir->mode == ir_var_in) {
62 if (!strcmp(ir->name, "gl_FragCoord")) {
63 reg = emit_fragcoord_interpolation(ir);
64 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65 reg = emit_frontfacing_interpolation(ir);
66 } else {
67 reg = emit_general_interpolation(ir);
68 }
69 assert(reg);
70 hash_table_insert(this->variable_ht, reg, ir);
71 return;
72 } else if (ir->mode == ir_var_out) {
73 reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75 if (ir->location == FRAG_RESULT_COLOR) {
76 /* Writing gl_FragColor outputs to all color regions. */
77 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78 this->outputs[i] = *reg;
79 }
80 } else if (ir->location == FRAG_RESULT_DEPTH) {
81 this->frag_depth = ir;
82 } else {
83 /* gl_FragData or a user-defined FS output */
84 assert(ir->location >= FRAG_RESULT_DATA0 &&
85 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87 /* General color output. */
88 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89 int output = ir->location - FRAG_RESULT_DATA0 + i;
90 this->outputs[output] = *reg;
91 this->outputs[output].reg_offset += 4 * i;
92 }
93 }
94 } else if (ir->mode == ir_var_uniform) {
95 int param_index = c->prog_data.nr_params;
96
97 if (c->dispatch_width == 16) {
98 if (!variable_storage(ir)) {
99 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100 }
101 return;
102 }
103
104 if (!strncmp(ir->name, "gl_", 3)) {
105 setup_builtin_uniform_values(ir);
106 } else {
107 setup_uniform_values(ir->location, ir->type);
108 }
109
110 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111 reg->type = brw_type_for_base_type(ir->type);
112 }
113
114 if (!reg)
115 reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117 hash_table_insert(this->variable_ht, reg, ir);
118 }
119
120 void
121 fs_visitor::visit(ir_dereference_variable *ir)
122 {
123 fs_reg *reg = variable_storage(ir->var);
124 this->result = *reg;
125 }
126
127 void
128 fs_visitor::visit(ir_dereference_record *ir)
129 {
130 const glsl_type *struct_type = ir->record->type;
131
132 ir->record->accept(this);
133
134 unsigned int offset = 0;
135 for (unsigned int i = 0; i < struct_type->length; i++) {
136 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137 break;
138 offset += type_size(struct_type->fields.structure[i].type);
139 }
140 this->result.reg_offset += offset;
141 this->result.type = brw_type_for_base_type(ir->type);
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_array *ir)
146 {
147 ir_constant *index;
148 int element_size;
149
150 ir->array->accept(this);
151 index = ir->array_index->as_constant();
152
153 element_size = type_size(ir->type);
154 this->result.type = brw_type_for_base_type(ir->type);
155
156 if (index) {
157 assert(this->result.file == UNIFORM || this->result.file == GRF);
158 this->result.reg_offset += index->value.i[0] * element_size;
159 } else {
160 assert(!"FINISHME: non-constant array element");
161 }
162 }
163
164 /* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167 bool
168 fs_visitor::try_emit_saturate(ir_expression *ir)
169 {
170 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172 if (!sat_val)
173 return false;
174
175 sat_val->accept(this);
176 fs_reg src = this->result;
177
178 this->result = fs_reg(this, ir->type);
179 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180 inst->saturate = true;
181
182 return true;
183 }
184
185 bool
186 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
187 {
188 /* 3-src instructions were introduced in gen6. */
189 if (intel->gen < 6)
190 return false;
191
192 /* MAD can only handle floating-point data. */
193 if (ir->type != glsl_type::float_type)
194 return false;
195
196 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
197 ir_expression *mul = ir->operands[mul_arg]->as_expression();
198
199 if (!mul || mul->operation != ir_binop_mul)
200 return false;
201
202 if (nonmul->as_constant() ||
203 mul->operands[0]->as_constant() ||
204 mul->operands[1]->as_constant())
205 return false;
206
207 nonmul->accept(this);
208 fs_reg src0 = this->result;
209
210 mul->operands[0]->accept(this);
211 fs_reg src1 = this->result;
212
213 mul->operands[1]->accept(this);
214 fs_reg src2 = this->result;
215
216 this->result = fs_reg(this, ir->type);
217 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
218
219 return true;
220 }
221
222 void
223 fs_visitor::visit(ir_expression *ir)
224 {
225 unsigned int operand;
226 fs_reg op[2], temp;
227 fs_inst *inst;
228
229 assert(ir->get_num_operands() <= 2);
230
231 if (try_emit_saturate(ir))
232 return;
233 if (ir->operation == ir_binop_add) {
234 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
235 return;
236 }
237
238 for (operand = 0; operand < ir->get_num_operands(); operand++) {
239 ir->operands[operand]->accept(this);
240 if (this->result.file == BAD_FILE) {
241 ir_print_visitor v;
242 fail("Failed to get tree for expression operand:\n");
243 ir->operands[operand]->accept(&v);
244 }
245 op[operand] = this->result;
246
247 /* Matrix expression operands should have been broken down to vector
248 * operations already.
249 */
250 assert(!ir->operands[operand]->type->is_matrix());
251 /* And then those vector operands should have been broken down to scalar.
252 */
253 assert(!ir->operands[operand]->type->is_vector());
254 }
255
256 /* Storage for our result. If our result goes into an assignment, it will
257 * just get copy-propagated out, so no worries.
258 */
259 this->result = fs_reg(this, ir->type);
260
261 switch (ir->operation) {
262 case ir_unop_logic_not:
263 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
264 * ones complement of the whole register, not just bit 0.
265 */
266 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
267 break;
268 case ir_unop_neg:
269 op[0].negate = !op[0].negate;
270 this->result = op[0];
271 break;
272 case ir_unop_abs:
273 op[0].abs = true;
274 op[0].negate = false;
275 this->result = op[0];
276 break;
277 case ir_unop_sign:
278 temp = fs_reg(this, ir->type);
279
280 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
281
282 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
283 inst->conditional_mod = BRW_CONDITIONAL_G;
284 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
285 inst->predicated = true;
286
287 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
288 inst->conditional_mod = BRW_CONDITIONAL_L;
289 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
290 inst->predicated = true;
291
292 break;
293 case ir_unop_rcp:
294 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
295 break;
296
297 case ir_unop_exp2:
298 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
299 break;
300 case ir_unop_log2:
301 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
302 break;
303 case ir_unop_exp:
304 case ir_unop_log:
305 assert(!"not reached: should be handled by ir_explog_to_explog2");
306 break;
307 case ir_unop_sin:
308 case ir_unop_sin_reduced:
309 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
310 break;
311 case ir_unop_cos:
312 case ir_unop_cos_reduced:
313 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
314 break;
315
316 case ir_unop_dFdx:
317 emit(FS_OPCODE_DDX, this->result, op[0]);
318 break;
319 case ir_unop_dFdy:
320 emit(FS_OPCODE_DDY, this->result, op[0]);
321 break;
322
323 case ir_binop_add:
324 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
325 break;
326 case ir_binop_sub:
327 assert(!"not reached: should be handled by ir_sub_to_add_neg");
328 break;
329
330 case ir_binop_mul:
331 if (ir->type->is_integer()) {
332 /* For integer multiplication, the MUL uses the low 16 bits
333 * of one of the operands (src0 on gen6, src1 on gen7). The
334 * MACH accumulates in the contribution of the upper 16 bits
335 * of that operand.
336 *
337 * FINISHME: Emit just the MUL if we know an operand is small
338 * enough.
339 */
340 if (intel->gen >= 7 && c->dispatch_width == 16)
341 fail("16-wide explicit accumulator operands unsupported\n");
342
343 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
344
345 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
346 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
347 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
348 } else {
349 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
350 }
351 break;
352 case ir_binop_div:
353 if (intel->gen >= 7 && c->dispatch_width == 16)
354 fail("16-wide INTDIV unsupported\n");
355
356 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
357 assert(ir->type->is_integer());
358 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
359 break;
360 case ir_binop_mod:
361 if (intel->gen >= 7 && c->dispatch_width == 16)
362 fail("16-wide INTDIV unsupported\n");
363
364 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
365 assert(ir->type->is_integer());
366 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
367 break;
368
369 case ir_binop_less:
370 case ir_binop_greater:
371 case ir_binop_lequal:
372 case ir_binop_gequal:
373 case ir_binop_equal:
374 case ir_binop_all_equal:
375 case ir_binop_nequal:
376 case ir_binop_any_nequal:
377 temp = this->result;
378 /* original gen4 does implicit conversion before comparison. */
379 if (intel->gen < 5)
380 temp.type = op[0].type;
381
382 resolve_ud_negate(&op[0]);
383 resolve_ud_negate(&op[1]);
384
385 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
386 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
387 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
388 break;
389
390 case ir_binop_logic_xor:
391 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
392 break;
393
394 case ir_binop_logic_or:
395 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
396 break;
397
398 case ir_binop_logic_and:
399 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
400 break;
401
402 case ir_binop_dot:
403 case ir_unop_any:
404 assert(!"not reached: should be handled by brw_fs_channel_expressions");
405 break;
406
407 case ir_unop_noise:
408 assert(!"not reached: should be handled by lower_noise");
409 break;
410
411 case ir_quadop_vector:
412 assert(!"not reached: should be handled by lower_quadop_vector");
413 break;
414
415 case ir_unop_sqrt:
416 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
417 break;
418
419 case ir_unop_rsq:
420 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
421 break;
422
423 case ir_unop_i2u:
424 op[0].type = BRW_REGISTER_TYPE_UD;
425 this->result = op[0];
426 break;
427 case ir_unop_u2i:
428 op[0].type = BRW_REGISTER_TYPE_D;
429 this->result = op[0];
430 break;
431 case ir_unop_i2f:
432 case ir_unop_u2f:
433 case ir_unop_b2f:
434 case ir_unop_b2i:
435 case ir_unop_f2i:
436 emit(BRW_OPCODE_MOV, this->result, op[0]);
437 break;
438 case ir_unop_f2b:
439 case ir_unop_i2b:
440 temp = this->result;
441 /* original gen4 does implicit conversion before comparison. */
442 if (intel->gen < 5)
443 temp.type = op[0].type;
444
445 resolve_ud_negate(&op[0]);
446
447 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
448 inst->conditional_mod = BRW_CONDITIONAL_NZ;
449 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
450 break;
451
452 case ir_unop_trunc:
453 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
454 break;
455 case ir_unop_ceil:
456 op[0].negate = !op[0].negate;
457 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
458 this->result.negate = true;
459 break;
460 case ir_unop_floor:
461 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
462 break;
463 case ir_unop_fract:
464 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
465 break;
466 case ir_unop_round_even:
467 emit(BRW_OPCODE_RNDE, this->result, op[0]);
468 break;
469
470 case ir_binop_min:
471 resolve_ud_negate(&op[0]);
472 resolve_ud_negate(&op[1]);
473
474 if (intel->gen >= 6) {
475 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
476 inst->conditional_mod = BRW_CONDITIONAL_L;
477 } else {
478 /* Unalias the destination */
479 this->result = fs_reg(this, ir->type);
480
481 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
482 inst->conditional_mod = BRW_CONDITIONAL_L;
483
484 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
485 inst->predicated = true;
486 }
487 break;
488 case ir_binop_max:
489 resolve_ud_negate(&op[0]);
490 resolve_ud_negate(&op[1]);
491
492 if (intel->gen >= 6) {
493 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
494 inst->conditional_mod = BRW_CONDITIONAL_GE;
495 } else {
496 /* Unalias the destination */
497 this->result = fs_reg(this, ir->type);
498
499 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
500 inst->conditional_mod = BRW_CONDITIONAL_G;
501
502 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
503 inst->predicated = true;
504 }
505 break;
506
507 case ir_binop_pow:
508 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
509 break;
510
511 case ir_unop_bit_not:
512 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
513 break;
514 case ir_binop_bit_and:
515 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
516 break;
517 case ir_binop_bit_xor:
518 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
519 break;
520 case ir_binop_bit_or:
521 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
522 break;
523
524 case ir_binop_lshift:
525 inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
526 break;
527
528 case ir_binop_rshift:
529 if (ir->type->base_type == GLSL_TYPE_INT)
530 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
531 else
532 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
533 break;
534 }
535 }
536
537 void
538 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
539 const glsl_type *type, bool predicated)
540 {
541 switch (type->base_type) {
542 case GLSL_TYPE_FLOAT:
543 case GLSL_TYPE_UINT:
544 case GLSL_TYPE_INT:
545 case GLSL_TYPE_BOOL:
546 for (unsigned int i = 0; i < type->components(); i++) {
547 l.type = brw_type_for_base_type(type);
548 r.type = brw_type_for_base_type(type);
549
550 if (predicated || !l.equals(&r)) {
551 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
552 inst->predicated = predicated;
553 }
554
555 l.reg_offset++;
556 r.reg_offset++;
557 }
558 break;
559 case GLSL_TYPE_ARRAY:
560 for (unsigned int i = 0; i < type->length; i++) {
561 emit_assignment_writes(l, r, type->fields.array, predicated);
562 }
563 break;
564
565 case GLSL_TYPE_STRUCT:
566 for (unsigned int i = 0; i < type->length; i++) {
567 emit_assignment_writes(l, r, type->fields.structure[i].type,
568 predicated);
569 }
570 break;
571
572 case GLSL_TYPE_SAMPLER:
573 break;
574
575 default:
576 assert(!"not reached");
577 break;
578 }
579 }
580
581 /* If the RHS processing resulted in an instruction generating a
582 * temporary value, and it would be easy to rewrite the instruction to
583 * generate its result right into the LHS instead, do so. This ends
584 * up reliably removing instructions where it can be tricky to do so
585 * later without real UD chain information.
586 */
587 bool
588 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
589 fs_reg dst,
590 fs_reg src,
591 fs_inst *pre_rhs_inst,
592 fs_inst *last_rhs_inst)
593 {
594 if (pre_rhs_inst == last_rhs_inst)
595 return false; /* No instructions generated to work with. */
596
597 /* Only attempt if we're doing a direct assignment. */
598 if (ir->condition ||
599 !(ir->lhs->type->is_scalar() ||
600 (ir->lhs->type->is_vector() &&
601 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
602 return false;
603
604 /* Make sure the last instruction generated our source reg. */
605 if (last_rhs_inst->predicated ||
606 last_rhs_inst->force_uncompressed ||
607 last_rhs_inst->force_sechalf ||
608 !src.equals(&last_rhs_inst->dst))
609 return false;
610
611 /* If last_rhs_inst wrote a different number of components than our LHS,
612 * we can't safely rewrite it.
613 */
614 if (ir->lhs->type->vector_elements != last_rhs_inst->regs_written())
615 return false;
616
617 /* Success! Rewrite the instruction. */
618 last_rhs_inst->dst = dst;
619
620 return true;
621 }
622
623 void
624 fs_visitor::visit(ir_assignment *ir)
625 {
626 fs_reg l, r;
627 fs_inst *inst;
628
629 /* FINISHME: arrays on the lhs */
630 ir->lhs->accept(this);
631 l = this->result;
632
633 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
634
635 ir->rhs->accept(this);
636 r = this->result;
637
638 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
639
640 assert(l.file != BAD_FILE);
641 assert(r.file != BAD_FILE);
642
643 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
644 return;
645
646 if (ir->condition) {
647 emit_bool_to_cond_code(ir->condition);
648 }
649
650 if (ir->lhs->type->is_scalar() ||
651 ir->lhs->type->is_vector()) {
652 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
653 if (ir->write_mask & (1 << i)) {
654 inst = emit(BRW_OPCODE_MOV, l, r);
655 if (ir->condition)
656 inst->predicated = true;
657 r.reg_offset++;
658 }
659 l.reg_offset++;
660 }
661 } else {
662 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
663 }
664 }
665
666 fs_inst *
667 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
668 int sampler)
669 {
670 int mlen;
671 int base_mrf = 1;
672 bool simd16 = false;
673 fs_reg orig_dst;
674
675 /* g0 header. */
676 mlen = 1;
677
678 if (ir->shadow_comparitor && ir->op != ir_txd) {
679 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
680 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
681 coordinate.reg_offset++;
682 }
683 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
684 mlen += 3;
685
686 if (ir->op == ir_tex) {
687 /* There's no plain shadow compare message, so we use shadow
688 * compare with a bias of 0.0.
689 */
690 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
691 mlen++;
692 } else if (ir->op == ir_txb) {
693 ir->lod_info.bias->accept(this);
694 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
695 mlen++;
696 } else {
697 assert(ir->op == ir_txl);
698 ir->lod_info.lod->accept(this);
699 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
700 mlen++;
701 }
702
703 ir->shadow_comparitor->accept(this);
704 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
705 mlen++;
706 } else if (ir->op == ir_tex) {
707 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
708 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
709 coordinate.reg_offset++;
710 }
711 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
712 mlen += 3;
713 } else if (ir->op == ir_txd) {
714 ir->lod_info.grad.dPdx->accept(this);
715 fs_reg dPdx = this->result;
716
717 ir->lod_info.grad.dPdy->accept(this);
718 fs_reg dPdy = this->result;
719
720 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
721 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
722 coordinate.reg_offset++;
723 }
724 /* the slots for u and v are always present, but r is optional */
725 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
726
727 /* P = u, v, r
728 * dPdx = dudx, dvdx, drdx
729 * dPdy = dudy, dvdy, drdy
730 *
731 * 1-arg: Does not exist.
732 *
733 * 2-arg: dudx dvdx dudy dvdy
734 * dPdx.x dPdx.y dPdy.x dPdy.y
735 * m4 m5 m6 m7
736 *
737 * 3-arg: dudx dvdx drdx dudy dvdy drdy
738 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
739 * m5 m6 m7 m8 m9 m10
740 */
741 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
742 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
743 dPdx.reg_offset++;
744 }
745 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
746
747 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
748 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
749 dPdy.reg_offset++;
750 }
751 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
752 } else if (ir->op == ir_txs) {
753 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
754 simd16 = true;
755 ir->lod_info.lod->accept(this);
756 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
757 mlen += 2;
758 } else {
759 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
760 * instructions. We'll need to do SIMD16 here.
761 */
762 simd16 = true;
763 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
764
765 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
766 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
767 coordinate);
768 coordinate.reg_offset++;
769 }
770
771 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
772 * be necessary for TXF (ld), but seems wise to do for all messages.
773 */
774 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
775 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
776 }
777
778 /* lod/bias appears after u/v/r. */
779 mlen += 6;
780
781 if (ir->op == ir_txb) {
782 ir->lod_info.bias->accept(this);
783 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
784 mlen++;
785 } else {
786 ir->lod_info.lod->accept(this);
787 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
788 this->result);
789 mlen++;
790 }
791
792 /* The unused upper half. */
793 mlen++;
794 }
795
796 if (simd16) {
797 /* Now, since we're doing simd16, the return is 2 interleaved
798 * vec4s where the odd-indexed ones are junk. We'll need to move
799 * this weirdness around to the expected layout.
800 */
801 orig_dst = dst;
802 const glsl_type *vec_type =
803 glsl_type::get_instance(ir->type->base_type, 4, 1);
804 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
805 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
806 : BRW_REGISTER_TYPE_F;
807 }
808
809 fs_inst *inst = NULL;
810 switch (ir->op) {
811 case ir_tex:
812 inst = emit(SHADER_OPCODE_TEX, dst);
813 break;
814 case ir_txb:
815 inst = emit(FS_OPCODE_TXB, dst);
816 break;
817 case ir_txl:
818 inst = emit(SHADER_OPCODE_TXL, dst);
819 break;
820 case ir_txd:
821 inst = emit(SHADER_OPCODE_TXD, dst);
822 break;
823 case ir_txs:
824 inst = emit(SHADER_OPCODE_TXS, dst);
825 break;
826 case ir_txf:
827 inst = emit(SHADER_OPCODE_TXF, dst);
828 break;
829 }
830 inst->base_mrf = base_mrf;
831 inst->mlen = mlen;
832 inst->header_present = true;
833
834 if (simd16) {
835 for (int i = 0; i < 4; i++) {
836 emit(BRW_OPCODE_MOV, orig_dst, dst);
837 orig_dst.reg_offset++;
838 dst.reg_offset += 2;
839 }
840 }
841
842 return inst;
843 }
844
845 /* gen5's sampler has slots for u, v, r, array index, then optional
846 * parameters like shadow comparitor or LOD bias. If optional
847 * parameters aren't present, those base slots are optional and don't
848 * need to be included in the message.
849 *
850 * We don't fill in the unnecessary slots regardless, which may look
851 * surprising in the disassembly.
852 */
853 fs_inst *
854 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
855 int sampler)
856 {
857 int mlen = 0;
858 int base_mrf = 2;
859 int reg_width = c->dispatch_width / 8;
860 bool header_present = false;
861 const int vector_elements =
862 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
863
864 if (ir->offset) {
865 /* The offsets set up by the ir_texture visitor are in the
866 * m1 header, so we can't go headerless.
867 */
868 header_present = true;
869 mlen++;
870 base_mrf--;
871 }
872
873 for (int i = 0; i < vector_elements; i++) {
874 emit(BRW_OPCODE_MOV,
875 fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
876 coordinate);
877 coordinate.reg_offset++;
878 }
879 mlen += vector_elements * reg_width;
880
881 if (ir->shadow_comparitor && ir->op != ir_txd) {
882 mlen = MAX2(mlen, header_present + 4 * reg_width);
883
884 ir->shadow_comparitor->accept(this);
885 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
886 mlen += reg_width;
887 }
888
889 fs_inst *inst = NULL;
890 switch (ir->op) {
891 case ir_tex:
892 inst = emit(SHADER_OPCODE_TEX, dst);
893 break;
894 case ir_txb:
895 ir->lod_info.bias->accept(this);
896 mlen = MAX2(mlen, header_present + 4 * reg_width);
897 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
898 mlen += reg_width;
899
900 inst = emit(FS_OPCODE_TXB, dst);
901
902 break;
903 case ir_txl:
904 ir->lod_info.lod->accept(this);
905 mlen = MAX2(mlen, header_present + 4 * reg_width);
906 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
907 mlen += reg_width;
908
909 inst = emit(SHADER_OPCODE_TXL, dst);
910 break;
911 case ir_txd: {
912 ir->lod_info.grad.dPdx->accept(this);
913 fs_reg dPdx = this->result;
914
915 ir->lod_info.grad.dPdy->accept(this);
916 fs_reg dPdy = this->result;
917
918 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
919
920 /**
921 * P = u, v, r
922 * dPdx = dudx, dvdx, drdx
923 * dPdy = dudy, dvdy, drdy
924 *
925 * Load up these values:
926 * - dudx dudy dvdx dvdy drdx drdy
927 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
928 */
929 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
930 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
931 dPdx.reg_offset++;
932 mlen += reg_width;
933
934 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
935 dPdy.reg_offset++;
936 mlen += reg_width;
937 }
938
939 inst = emit(SHADER_OPCODE_TXD, dst);
940 break;
941 }
942 case ir_txs:
943 ir->lod_info.lod->accept(this);
944 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
945 mlen += reg_width;
946 inst = emit(SHADER_OPCODE_TXS, dst);
947 break;
948 case ir_txf:
949 mlen = header_present + 4 * reg_width;
950
951 ir->lod_info.lod->accept(this);
952 emit(BRW_OPCODE_MOV,
953 fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
954 this->result);
955 inst = emit(SHADER_OPCODE_TXF, dst);
956 break;
957 }
958 inst->base_mrf = base_mrf;
959 inst->mlen = mlen;
960 inst->header_present = header_present;
961
962 if (mlen > 11) {
963 fail("Message length >11 disallowed by hardware\n");
964 }
965
966 return inst;
967 }
968
969 fs_inst *
970 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
971 int sampler)
972 {
973 int mlen = 0;
974 int base_mrf = 2;
975 int reg_width = c->dispatch_width / 8;
976 bool header_present = false;
977
978 if (ir->offset) {
979 /* The offsets set up by the ir_texture visitor are in the
980 * m1 header, so we can't go headerless.
981 */
982 header_present = true;
983 mlen++;
984 base_mrf--;
985 }
986
987 if (ir->shadow_comparitor && ir->op != ir_txd) {
988 ir->shadow_comparitor->accept(this);
989 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
990 mlen += reg_width;
991 }
992
993 /* Set up the LOD info */
994 switch (ir->op) {
995 case ir_tex:
996 break;
997 case ir_txb:
998 ir->lod_info.bias->accept(this);
999 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1000 mlen += reg_width;
1001 break;
1002 case ir_txl:
1003 ir->lod_info.lod->accept(this);
1004 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1005 mlen += reg_width;
1006 break;
1007 case ir_txd: {
1008 if (c->dispatch_width == 16)
1009 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1010
1011 ir->lod_info.grad.dPdx->accept(this);
1012 fs_reg dPdx = this->result;
1013
1014 ir->lod_info.grad.dPdy->accept(this);
1015 fs_reg dPdy = this->result;
1016
1017 /* Load dPdx and the coordinate together:
1018 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1019 */
1020 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1021 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1022 coordinate.reg_offset++;
1023 mlen += reg_width;
1024
1025 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1026 dPdx.reg_offset++;
1027 mlen += reg_width;
1028
1029 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1030 dPdy.reg_offset++;
1031 mlen += reg_width;
1032 }
1033 break;
1034 }
1035 case ir_txs:
1036 ir->lod_info.lod->accept(this);
1037 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1038 mlen += reg_width;
1039 break;
1040 case ir_txf:
1041 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1042 emit(BRW_OPCODE_MOV,
1043 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1044 coordinate.reg_offset++;
1045 mlen += reg_width;
1046
1047 ir->lod_info.lod->accept(this);
1048 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1049 mlen += reg_width;
1050
1051 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1052 emit(BRW_OPCODE_MOV,
1053 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1054 coordinate.reg_offset++;
1055 mlen += reg_width;
1056 }
1057 break;
1058 }
1059
1060 /* Set up the coordinate (except for cases where it was done above) */
1061 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1062 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1063 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1064 coordinate.reg_offset++;
1065 mlen += reg_width;
1066 }
1067 }
1068
1069 /* Generate the SEND */
1070 fs_inst *inst = NULL;
1071 switch (ir->op) {
1072 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1073 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1074 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1075 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1076 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1077 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1078 }
1079 inst->base_mrf = base_mrf;
1080 inst->mlen = mlen;
1081 inst->header_present = header_present;
1082
1083 if (mlen > 11) {
1084 fail("Message length >11 disallowed by hardware\n");
1085 }
1086
1087 return inst;
1088 }
1089
1090 void
1091 fs_visitor::visit(ir_texture *ir)
1092 {
1093 fs_inst *inst = NULL;
1094
1095 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1096 sampler = fp->Base.SamplerUnits[sampler];
1097
1098 /* Our hardware doesn't have a sample_d_c message, so shadow compares
1099 * for textureGrad/TXD need to be emulated with instructions.
1100 */
1101 bool hw_compare_supported = ir->op != ir_txd;
1102 if (ir->shadow_comparitor && !hw_compare_supported) {
1103 assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1104 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1105 if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1106 return swizzle_result(ir, fs_reg(1.0f), sampler);
1107 else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1108 return swizzle_result(ir, fs_reg(0.0f), sampler);
1109 }
1110
1111 if (ir->coordinate)
1112 ir->coordinate->accept(this);
1113 fs_reg coordinate = this->result;
1114
1115 if (ir->offset != NULL) {
1116 uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1117
1118 /* Explicitly set up the message header by copying g0 to msg reg m1. */
1119 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1120 fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1121
1122 /* Then set the offset bits in DWord 2 of the message header. */
1123 emit(BRW_OPCODE_MOV,
1124 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1125 BRW_REGISTER_TYPE_UD)),
1126 fs_reg(brw_imm_uw(offset_bits)));
1127 }
1128
1129 /* Should be lowered by do_lower_texture_projection */
1130 assert(!ir->projector);
1131
1132 bool needs_gl_clamp = true;
1133
1134 fs_reg scale_x, scale_y;
1135
1136 /* The 965 requires the EU to do the normalization of GL rectangle
1137 * texture coordinates. We use the program parameter state
1138 * tracking to get the scaling factor.
1139 */
1140 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1141 (intel->gen < 6 ||
1142 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1143 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1144 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1145 int tokens[STATE_LENGTH] = {
1146 STATE_INTERNAL,
1147 STATE_TEXRECT_SCALE,
1148 sampler,
1149 0,
1150 0
1151 };
1152
1153 if (c->dispatch_width == 16) {
1154 fail("rectangle scale uniform setup not supported on 16-wide\n");
1155 this->result = fs_reg(this, ir->type);
1156 return;
1157 }
1158
1159 c->prog_data.param_convert[c->prog_data.nr_params] =
1160 PARAM_NO_CONVERT;
1161 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1162 PARAM_NO_CONVERT;
1163
1164 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1165 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1166
1167 GLuint index = _mesa_add_state_reference(params,
1168 (gl_state_index *)tokens);
1169
1170 this->param_index[c->prog_data.nr_params] = index;
1171 this->param_offset[c->prog_data.nr_params] = 0;
1172 c->prog_data.nr_params++;
1173 this->param_index[c->prog_data.nr_params] = index;
1174 this->param_offset[c->prog_data.nr_params] = 1;
1175 c->prog_data.nr_params++;
1176 }
1177
1178 /* The 965 requires the EU to do the normalization of GL rectangle
1179 * texture coordinates. We use the program parameter state
1180 * tracking to get the scaling factor.
1181 */
1182 if (intel->gen < 6 &&
1183 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1184 fs_reg dst = fs_reg(this, ir->coordinate->type);
1185 fs_reg src = coordinate;
1186 coordinate = dst;
1187
1188 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1189 dst.reg_offset++;
1190 src.reg_offset++;
1191 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1192 } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1193 /* On gen6+, the sampler handles the rectangle coordinates
1194 * natively, without needing rescaling. But that means we have
1195 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1196 * not [0, 1] like the default case below.
1197 */
1198 needs_gl_clamp = false;
1199
1200 for (int i = 0; i < 2; i++) {
1201 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1202 fs_reg chan = coordinate;
1203 chan.reg_offset += i;
1204
1205 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1206 inst->conditional_mod = BRW_CONDITIONAL_G;
1207
1208 /* Our parameter comes in as 1.0/width or 1.0/height,
1209 * because that's what people normally want for doing
1210 * texture rectangle handling. We need width or height
1211 * for clamping, but we don't care enough to make a new
1212 * parameter type, so just invert back.
1213 */
1214 fs_reg limit = fs_reg(this, glsl_type::float_type);
1215 emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1216 emit(SHADER_OPCODE_RCP, limit, limit);
1217
1218 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1219 inst->conditional_mod = BRW_CONDITIONAL_L;
1220 }
1221 }
1222 }
1223
1224 if (ir->coordinate && needs_gl_clamp) {
1225 for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1226 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1227 fs_reg chan = coordinate;
1228 chan.reg_offset += i;
1229
1230 fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1231 inst->saturate = true;
1232 }
1233 }
1234 }
1235
1236 /* Writemasking doesn't eliminate channels on SIMD8 texture
1237 * samples, so don't worry about them.
1238 */
1239 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1240
1241 if (intel->gen >= 7) {
1242 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1243 } else if (intel->gen >= 5) {
1244 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1245 } else {
1246 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1247 }
1248
1249 /* If there's an offset, we already set up m1. To avoid the implied move,
1250 * use the null register. Otherwise, we want an implied move from g0.
1251 */
1252 if (ir->offset != NULL || !inst->header_present)
1253 inst->src[0] = reg_undef;
1254 else
1255 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1256
1257 inst->sampler = sampler;
1258
1259 if (ir->shadow_comparitor) {
1260 if (hw_compare_supported) {
1261 inst->shadow_compare = true;
1262 } else {
1263 ir->shadow_comparitor->accept(this);
1264 fs_reg ref = this->result;
1265
1266 fs_reg value = dst;
1267 dst = fs_reg(this, glsl_type::vec4_type);
1268
1269 /* FINISHME: This needs to be done pre-filtering. */
1270
1271 uint32_t conditional = 0;
1272 switch (c->key.tex.compare_funcs[sampler]) {
1273 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1274 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1275 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1276 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1277 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1278 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1279 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1280 default: assert(!"Should not get here: bad shadow compare function");
1281 }
1282
1283 /* Use conditional moves to load 0 or 1 as the result */
1284 this->current_annotation = "manual shadow comparison";
1285 for (int i = 0; i < 4; i++) {
1286 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1287
1288 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1289 inst->conditional_mod = conditional;
1290
1291 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1292 inst->predicated = true;
1293
1294 dst.reg_offset++;
1295 value.reg_offset++;
1296 }
1297 dst.reg_offset = 0;
1298 }
1299 }
1300
1301 swizzle_result(ir, dst, sampler);
1302 }
1303
1304 /**
1305 * Swizzle the result of a texture result. This is necessary for
1306 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1307 */
1308 void
1309 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1310 {
1311 this->result = orig_val;
1312
1313 if (ir->op == ir_txs)
1314 return;
1315
1316 if (ir->type == glsl_type::float_type) {
1317 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1318 assert(ir->sampler->type->sampler_shadow);
1319 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1320 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1321
1322 for (int i = 0; i < 4; i++) {
1323 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1324 fs_reg l = swizzled_result;
1325 l.reg_offset += i;
1326
1327 if (swiz == SWIZZLE_ZERO) {
1328 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1329 } else if (swiz == SWIZZLE_ONE) {
1330 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1331 } else {
1332 fs_reg r = orig_val;
1333 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1334 emit(BRW_OPCODE_MOV, l, r);
1335 }
1336 }
1337 this->result = swizzled_result;
1338 }
1339 }
1340
1341 void
1342 fs_visitor::visit(ir_swizzle *ir)
1343 {
1344 ir->val->accept(this);
1345 fs_reg val = this->result;
1346
1347 if (ir->type->vector_elements == 1) {
1348 this->result.reg_offset += ir->mask.x;
1349 return;
1350 }
1351
1352 fs_reg result = fs_reg(this, ir->type);
1353 this->result = result;
1354
1355 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1356 fs_reg channel = val;
1357 int swiz = 0;
1358
1359 switch (i) {
1360 case 0:
1361 swiz = ir->mask.x;
1362 break;
1363 case 1:
1364 swiz = ir->mask.y;
1365 break;
1366 case 2:
1367 swiz = ir->mask.z;
1368 break;
1369 case 3:
1370 swiz = ir->mask.w;
1371 break;
1372 }
1373
1374 channel.reg_offset += swiz;
1375 emit(BRW_OPCODE_MOV, result, channel);
1376 result.reg_offset++;
1377 }
1378 }
1379
1380 void
1381 fs_visitor::visit(ir_discard *ir)
1382 {
1383 assert(ir->condition == NULL); /* FINISHME */
1384
1385 emit(FS_OPCODE_DISCARD);
1386 kill_emitted = true;
1387 }
1388
1389 void
1390 fs_visitor::visit(ir_constant *ir)
1391 {
1392 /* Set this->result to reg at the bottom of the function because some code
1393 * paths will cause this visitor to be applied to other fields. This will
1394 * cause the value stored in this->result to be modified.
1395 *
1396 * Make reg constant so that it doesn't get accidentally modified along the
1397 * way. Yes, I actually had this problem. :(
1398 */
1399 const fs_reg reg(this, ir->type);
1400 fs_reg dst_reg = reg;
1401
1402 if (ir->type->is_array()) {
1403 const unsigned size = type_size(ir->type->fields.array);
1404
1405 for (unsigned i = 0; i < ir->type->length; i++) {
1406 ir->array_elements[i]->accept(this);
1407 fs_reg src_reg = this->result;
1408
1409 dst_reg.type = src_reg.type;
1410 for (unsigned j = 0; j < size; j++) {
1411 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1412 src_reg.reg_offset++;
1413 dst_reg.reg_offset++;
1414 }
1415 }
1416 } else if (ir->type->is_record()) {
1417 foreach_list(node, &ir->components) {
1418 ir_instruction *const field = (ir_instruction *) node;
1419 const unsigned size = type_size(field->type);
1420
1421 field->accept(this);
1422 fs_reg src_reg = this->result;
1423
1424 dst_reg.type = src_reg.type;
1425 for (unsigned j = 0; j < size; j++) {
1426 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1427 src_reg.reg_offset++;
1428 dst_reg.reg_offset++;
1429 }
1430 }
1431 } else {
1432 const unsigned size = type_size(ir->type);
1433
1434 for (unsigned i = 0; i < size; i++) {
1435 switch (ir->type->base_type) {
1436 case GLSL_TYPE_FLOAT:
1437 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1438 break;
1439 case GLSL_TYPE_UINT:
1440 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1441 break;
1442 case GLSL_TYPE_INT:
1443 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1444 break;
1445 case GLSL_TYPE_BOOL:
1446 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1447 break;
1448 default:
1449 assert(!"Non-float/uint/int/bool constant");
1450 }
1451 dst_reg.reg_offset++;
1452 }
1453 }
1454
1455 this->result = reg;
1456 }
1457
1458 void
1459 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1460 {
1461 ir_expression *expr = ir->as_expression();
1462
1463 if (expr) {
1464 fs_reg op[2];
1465 fs_inst *inst;
1466
1467 assert(expr->get_num_operands() <= 2);
1468 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1469 assert(expr->operands[i]->type->is_scalar());
1470
1471 expr->operands[i]->accept(this);
1472 op[i] = this->result;
1473
1474 resolve_ud_negate(&op[i]);
1475 }
1476
1477 switch (expr->operation) {
1478 case ir_unop_logic_not:
1479 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1480 inst->conditional_mod = BRW_CONDITIONAL_Z;
1481 break;
1482
1483 case ir_binop_logic_xor:
1484 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1485 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1486 break;
1487
1488 case ir_binop_logic_or:
1489 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1490 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1491 break;
1492
1493 case ir_binop_logic_and:
1494 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1495 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1496 break;
1497
1498 case ir_unop_f2b:
1499 if (intel->gen >= 6) {
1500 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1501 } else {
1502 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1503 }
1504 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1505 break;
1506
1507 case ir_unop_i2b:
1508 if (intel->gen >= 6) {
1509 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1510 } else {
1511 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1512 }
1513 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1514 break;
1515
1516 case ir_binop_greater:
1517 case ir_binop_gequal:
1518 case ir_binop_less:
1519 case ir_binop_lequal:
1520 case ir_binop_equal:
1521 case ir_binop_all_equal:
1522 case ir_binop_nequal:
1523 case ir_binop_any_nequal:
1524 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1525 inst->conditional_mod =
1526 brw_conditional_for_comparison(expr->operation);
1527 break;
1528
1529 default:
1530 assert(!"not reached");
1531 fail("bad cond code\n");
1532 break;
1533 }
1534 return;
1535 }
1536
1537 ir->accept(this);
1538
1539 if (intel->gen >= 6) {
1540 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1541 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1542 } else {
1543 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1544 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1545 }
1546 }
1547
1548 /**
1549 * Emit a gen6 IF statement with the comparison folded into the IF
1550 * instruction.
1551 */
1552 void
1553 fs_visitor::emit_if_gen6(ir_if *ir)
1554 {
1555 ir_expression *expr = ir->condition->as_expression();
1556
1557 if (expr) {
1558 fs_reg op[2];
1559 fs_inst *inst;
1560 fs_reg temp;
1561
1562 assert(expr->get_num_operands() <= 2);
1563 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1564 assert(expr->operands[i]->type->is_scalar());
1565
1566 expr->operands[i]->accept(this);
1567 op[i] = this->result;
1568 }
1569
1570 switch (expr->operation) {
1571 case ir_unop_logic_not:
1572 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1573 inst->conditional_mod = BRW_CONDITIONAL_Z;
1574 return;
1575
1576 case ir_binop_logic_xor:
1577 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1578 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1579 return;
1580
1581 case ir_binop_logic_or:
1582 temp = fs_reg(this, glsl_type::bool_type);
1583 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1584 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1585 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586 return;
1587
1588 case ir_binop_logic_and:
1589 temp = fs_reg(this, glsl_type::bool_type);
1590 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1591 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1592 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1593 return;
1594
1595 case ir_unop_f2b:
1596 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1597 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1598 return;
1599
1600 case ir_unop_i2b:
1601 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1602 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603 return;
1604
1605 case ir_binop_greater:
1606 case ir_binop_gequal:
1607 case ir_binop_less:
1608 case ir_binop_lequal:
1609 case ir_binop_equal:
1610 case ir_binop_all_equal:
1611 case ir_binop_nequal:
1612 case ir_binop_any_nequal:
1613 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1614 inst->conditional_mod =
1615 brw_conditional_for_comparison(expr->operation);
1616 return;
1617 default:
1618 assert(!"not reached");
1619 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1620 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1621 fail("bad condition\n");
1622 return;
1623 }
1624 return;
1625 }
1626
1627 ir->condition->accept(this);
1628
1629 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1630 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1631 }
1632
1633 void
1634 fs_visitor::visit(ir_if *ir)
1635 {
1636 fs_inst *inst;
1637
1638 if (intel->gen < 6 && c->dispatch_width == 16) {
1639 fail("Can't support (non-uniform) control flow on 16-wide\n");
1640 }
1641
1642 /* Don't point the annotation at the if statement, because then it plus
1643 * the then and else blocks get printed.
1644 */
1645 this->base_ir = ir->condition;
1646
1647 if (intel->gen == 6) {
1648 emit_if_gen6(ir);
1649 } else {
1650 emit_bool_to_cond_code(ir->condition);
1651
1652 inst = emit(BRW_OPCODE_IF);
1653 inst->predicated = true;
1654 }
1655
1656 foreach_list(node, &ir->then_instructions) {
1657 ir_instruction *ir = (ir_instruction *)node;
1658 this->base_ir = ir;
1659
1660 ir->accept(this);
1661 }
1662
1663 if (!ir->else_instructions.is_empty()) {
1664 emit(BRW_OPCODE_ELSE);
1665
1666 foreach_list(node, &ir->else_instructions) {
1667 ir_instruction *ir = (ir_instruction *)node;
1668 this->base_ir = ir;
1669
1670 ir->accept(this);
1671 }
1672 }
1673
1674 emit(BRW_OPCODE_ENDIF);
1675 }
1676
1677 void
1678 fs_visitor::visit(ir_loop *ir)
1679 {
1680 fs_reg counter = reg_undef;
1681
1682 if (intel->gen < 6 && c->dispatch_width == 16) {
1683 fail("Can't support (non-uniform) control flow on 16-wide\n");
1684 }
1685
1686 if (ir->counter) {
1687 this->base_ir = ir->counter;
1688 ir->counter->accept(this);
1689 counter = *(variable_storage(ir->counter));
1690
1691 if (ir->from) {
1692 this->base_ir = ir->from;
1693 ir->from->accept(this);
1694
1695 emit(BRW_OPCODE_MOV, counter, this->result);
1696 }
1697 }
1698
1699 emit(BRW_OPCODE_DO);
1700
1701 if (ir->to) {
1702 this->base_ir = ir->to;
1703 ir->to->accept(this);
1704
1705 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1706 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1707
1708 inst = emit(BRW_OPCODE_BREAK);
1709 inst->predicated = true;
1710 }
1711
1712 foreach_list(node, &ir->body_instructions) {
1713 ir_instruction *ir = (ir_instruction *)node;
1714
1715 this->base_ir = ir;
1716 ir->accept(this);
1717 }
1718
1719 if (ir->increment) {
1720 this->base_ir = ir->increment;
1721 ir->increment->accept(this);
1722 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1723 }
1724
1725 emit(BRW_OPCODE_WHILE);
1726 }
1727
1728 void
1729 fs_visitor::visit(ir_loop_jump *ir)
1730 {
1731 switch (ir->mode) {
1732 case ir_loop_jump::jump_break:
1733 emit(BRW_OPCODE_BREAK);
1734 break;
1735 case ir_loop_jump::jump_continue:
1736 emit(BRW_OPCODE_CONTINUE);
1737 break;
1738 }
1739 }
1740
1741 void
1742 fs_visitor::visit(ir_call *ir)
1743 {
1744 assert(!"FINISHME");
1745 }
1746
1747 void
1748 fs_visitor::visit(ir_return *ir)
1749 {
1750 assert(!"FINISHME");
1751 }
1752
1753 void
1754 fs_visitor::visit(ir_function *ir)
1755 {
1756 /* Ignore function bodies other than main() -- we shouldn't see calls to
1757 * them since they should all be inlined before we get to ir_to_mesa.
1758 */
1759 if (strcmp(ir->name, "main") == 0) {
1760 const ir_function_signature *sig;
1761 exec_list empty;
1762
1763 sig = ir->matching_signature(&empty);
1764
1765 assert(sig);
1766
1767 foreach_list(node, &sig->body) {
1768 ir_instruction *ir = (ir_instruction *)node;
1769 this->base_ir = ir;
1770
1771 ir->accept(this);
1772 }
1773 }
1774 }
1775
1776 void
1777 fs_visitor::visit(ir_function_signature *ir)
1778 {
1779 assert(!"not reached");
1780 (void)ir;
1781 }
1782
1783 fs_inst *
1784 fs_visitor::emit(fs_inst inst)
1785 {
1786 fs_inst *list_inst = new(mem_ctx) fs_inst;
1787 *list_inst = inst;
1788
1789 if (force_uncompressed_stack > 0)
1790 list_inst->force_uncompressed = true;
1791 else if (force_sechalf_stack > 0)
1792 list_inst->force_sechalf = true;
1793
1794 list_inst->annotation = this->current_annotation;
1795 list_inst->ir = this->base_ir;
1796
1797 this->instructions.push_tail(list_inst);
1798
1799 return list_inst;
1800 }
1801
1802 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1803 void
1804 fs_visitor::emit_dummy_fs()
1805 {
1806 int reg_width = c->dispatch_width / 8;
1807
1808 /* Everyone's favorite color. */
1809 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1810 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1811 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1812 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1813
1814 fs_inst *write;
1815 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1816 write->base_mrf = 2;
1817 write->mlen = 4 * reg_width;
1818 write->eot = true;
1819 }
1820
1821 /* The register location here is relative to the start of the URB
1822 * data. It will get adjusted to be a real location before
1823 * generate_code() time.
1824 */
1825 struct brw_reg
1826 fs_visitor::interp_reg(int location, int channel)
1827 {
1828 int regnr = urb_setup[location] * 2 + channel / 2;
1829 int stride = (channel & 1) * 4;
1830
1831 assert(urb_setup[location] != -1);
1832
1833 return brw_vec1_grf(regnr, stride);
1834 }
1835
1836 /** Emits the interpolation for the varying inputs. */
1837 void
1838 fs_visitor::emit_interpolation_setup_gen4()
1839 {
1840 this->current_annotation = "compute pixel centers";
1841 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1842 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1843 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1844 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1845
1846 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1847 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1848
1849 this->current_annotation = "compute pixel deltas from v0";
1850 if (brw->has_pln) {
1851 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1852 fs_reg(this, glsl_type::vec2_type);
1853 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1854 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1855 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1856 } else {
1857 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1858 fs_reg(this, glsl_type::float_type);
1859 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1860 fs_reg(this, glsl_type::float_type);
1861 }
1862 emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1863 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1864 emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1865 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1866
1867 this->current_annotation = "compute pos.w and 1/pos.w";
1868 /* Compute wpos.w. It's always in our setup, since it's needed to
1869 * interpolate the other attributes.
1870 */
1871 this->wpos_w = fs_reg(this, glsl_type::float_type);
1872 emit(FS_OPCODE_LINTERP, wpos_w,
1873 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1874 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1875 interp_reg(FRAG_ATTRIB_WPOS, 3));
1876 /* Compute the pixel 1/W value from wpos.w. */
1877 this->pixel_w = fs_reg(this, glsl_type::float_type);
1878 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1879 this->current_annotation = NULL;
1880 }
1881
1882 /** Emits the interpolation for the varying inputs. */
1883 void
1884 fs_visitor::emit_interpolation_setup_gen6()
1885 {
1886 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1887
1888 /* If the pixel centers end up used, the setup is the same as for gen4. */
1889 this->current_annotation = "compute pixel centers";
1890 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1891 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1892 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1893 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1894 emit(BRW_OPCODE_ADD,
1895 int_pixel_x,
1896 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1897 fs_reg(brw_imm_v(0x10101010)));
1898 emit(BRW_OPCODE_ADD,
1899 int_pixel_y,
1900 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1901 fs_reg(brw_imm_v(0x11001100)));
1902
1903 /* As of gen6, we can no longer mix float and int sources. We have
1904 * to turn the integer pixel centers into floats for their actual
1905 * use.
1906 */
1907 this->pixel_x = fs_reg(this, glsl_type::float_type);
1908 this->pixel_y = fs_reg(this, glsl_type::float_type);
1909 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1910 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1911
1912 this->current_annotation = "compute pos.w";
1913 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1914 this->wpos_w = fs_reg(this, glsl_type::float_type);
1915 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1916
1917 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1918 uint8_t reg = c->barycentric_coord_reg[i];
1919 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1920 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1921 }
1922
1923 this->current_annotation = NULL;
1924 }
1925
1926 void
1927 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1928 {
1929 int reg_width = c->dispatch_width / 8;
1930 fs_inst *inst;
1931 fs_reg color = outputs[target];
1932 fs_reg mrf;
1933
1934 /* If there's no color data to be written, skip it. */
1935 if (color.file == BAD_FILE)
1936 return;
1937
1938 color.reg_offset += index;
1939
1940 if (c->dispatch_width == 8 || intel->gen >= 6) {
1941 /* SIMD8 write looks like:
1942 * m + 0: r0
1943 * m + 1: r1
1944 * m + 2: g0
1945 * m + 3: g1
1946 *
1947 * gen6 SIMD16 DP write looks like:
1948 * m + 0: r0
1949 * m + 1: r1
1950 * m + 2: g0
1951 * m + 3: g1
1952 * m + 4: b0
1953 * m + 5: b1
1954 * m + 6: a0
1955 * m + 7: a1
1956 */
1957 inst = emit(BRW_OPCODE_MOV,
1958 fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1959 color);
1960 inst->saturate = c->key.clamp_fragment_color;
1961 } else {
1962 /* pre-gen6 SIMD16 single source DP write looks like:
1963 * m + 0: r0
1964 * m + 1: g0
1965 * m + 2: b0
1966 * m + 3: a0
1967 * m + 4: r1
1968 * m + 5: g1
1969 * m + 6: b1
1970 * m + 7: a1
1971 */
1972 if (brw->has_compr4) {
1973 /* By setting the high bit of the MRF register number, we
1974 * indicate that we want COMPR4 mode - instead of doing the
1975 * usual destination + 1 for the second half we get
1976 * destination + 4.
1977 */
1978 inst = emit(BRW_OPCODE_MOV,
1979 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1980 color.type),
1981 color);
1982 inst->saturate = c->key.clamp_fragment_color;
1983 } else {
1984 push_force_uncompressed();
1985 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1986 color.type),
1987 color);
1988 inst->saturate = c->key.clamp_fragment_color;
1989 pop_force_uncompressed();
1990
1991 push_force_sechalf();
1992 color.sechalf = true;
1993 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1994 color.type),
1995 color);
1996 inst->saturate = c->key.clamp_fragment_color;
1997 pop_force_sechalf();
1998 color.sechalf = false;
1999 }
2000 }
2001 }
2002
2003 void
2004 fs_visitor::emit_fb_writes()
2005 {
2006 this->current_annotation = "FB write header";
2007 bool header_present = true;
2008 int base_mrf = 2;
2009 int nr = base_mrf;
2010 int reg_width = c->dispatch_width / 8;
2011
2012 if (intel->gen >= 6 &&
2013 !this->kill_emitted &&
2014 c->key.nr_color_regions == 1) {
2015 header_present = false;
2016 }
2017
2018 if (header_present) {
2019 /* m2, m3 header */
2020 nr += 2;
2021 }
2022
2023 if (c->aa_dest_stencil_reg) {
2024 push_force_uncompressed();
2025 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2026 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2027 pop_force_uncompressed();
2028 }
2029
2030 /* Reserve space for color. It'll be filled in per MRT below. */
2031 int color_mrf = nr;
2032 nr += 4 * reg_width;
2033
2034 if (c->source_depth_to_render_target) {
2035 if (intel->gen == 6 && c->dispatch_width == 16) {
2036 /* For outputting oDepth on gen6, SIMD8 writes have to be
2037 * used. This would require 8-wide moves of each half to
2038 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2039 * Just bail on doing so for now.
2040 */
2041 fail("Missing support for simd16 depth writes on gen6\n");
2042 }
2043
2044 if (c->computes_depth) {
2045 /* Hand over gl_FragDepth. */
2046 assert(this->frag_depth);
2047 fs_reg depth = *(variable_storage(this->frag_depth));
2048
2049 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2050 } else {
2051 /* Pass through the payload depth. */
2052 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2053 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2054 }
2055 nr += reg_width;
2056 }
2057
2058 if (c->dest_depth_reg) {
2059 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2060 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2061 nr += reg_width;
2062 }
2063
2064 for (int target = 0; target < c->key.nr_color_regions; target++) {
2065 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2066 "FB write target %d",
2067 target);
2068 for (int i = 0; i < 4; i++)
2069 emit_color_write(target, i, color_mrf);
2070
2071 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2072 inst->target = target;
2073 inst->base_mrf = base_mrf;
2074 inst->mlen = nr - base_mrf;
2075 if (target == c->key.nr_color_regions - 1)
2076 inst->eot = true;
2077 inst->header_present = header_present;
2078 }
2079
2080 if (c->key.nr_color_regions == 0) {
2081 if (c->key.alpha_test) {
2082 /* If the alpha test is enabled but there's no color buffer,
2083 * we still need to send alpha out the pipeline to our null
2084 * renderbuffer.
2085 */
2086 emit_color_write(0, 3, color_mrf);
2087 }
2088
2089 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2090 inst->base_mrf = base_mrf;
2091 inst->mlen = nr - base_mrf;
2092 inst->eot = true;
2093 inst->header_present = header_present;
2094 }
2095
2096 this->current_annotation = NULL;
2097 }
2098
2099 void
2100 fs_visitor::resolve_ud_negate(fs_reg *reg)
2101 {
2102 if (reg->type != BRW_REGISTER_TYPE_UD ||
2103 !reg->negate)
2104 return;
2105
2106 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2107 emit(BRW_OPCODE_MOV, temp, *reg);
2108 *reg = temp;
2109 }