nir: move glsl_types.{cpp,h} to compiler
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info.system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->reg_offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &sampler)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85 const fs_reg srcs[] = {
86 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
87 sampler, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
88 };
89 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
90 ARRAY_SIZE(srcs));
91
92 /* We only care about one or two regs of response, but the sampler always
93 * writes 4/8.
94 */
95 inst->regs_written = 4 * dispatch_width / 8;
96
97 return dest;
98 }
99
100 void
101 fs_visitor::emit_texture(ir_texture_opcode op,
102 const glsl_type *dest_type,
103 fs_reg coordinate, int coord_components,
104 fs_reg shadow_c,
105 fs_reg lod, fs_reg lod2, int grad_components,
106 fs_reg sample_index,
107 fs_reg offset_value,
108 fs_reg mcs,
109 int gather_component,
110 bool is_cube_array,
111 uint32_t sampler,
112 fs_reg sampler_reg)
113 {
114 fs_inst *inst = NULL;
115
116 if (op == ir_query_levels) {
117 /* textureQueryLevels() is implemented in terms of TXS so we need to
118 * pass a valid LOD argument.
119 */
120 assert(lod.file == BAD_FILE);
121 lod = brw_imm_ud(0u);
122 }
123
124 if (op == ir_samples_identical) {
125 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
126
127 /* If mcs is an immediate value, it means there is no MCS. In that case
128 * just return false.
129 */
130 if (mcs.file == BRW_IMMEDIATE_VALUE) {
131 bld.MOV(dst, brw_imm_ud(0u));
132 } else if ((key_tex->msaa_16 & (1 << sampler))) {
133 fs_reg tmp = vgrf(glsl_type::uint_type);
134 bld.OR(tmp, mcs, offset(mcs, bld, 1));
135 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
136 } else {
137 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
138 }
139
140 this->result = dst;
141 return;
142 }
143
144 /* Writemasking doesn't eliminate channels on SIMD8 texture
145 * samples, so don't worry about them.
146 */
147 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
148 const fs_reg srcs[] = {
149 coordinate, shadow_c, lod, lod2,
150 sample_index, mcs, sampler_reg, offset_value,
151 brw_imm_d(coord_components), brw_imm_d(grad_components)
152 };
153 enum opcode opcode;
154
155 switch (op) {
156 case ir_tex:
157 opcode = SHADER_OPCODE_TEX_LOGICAL;
158 break;
159 case ir_txb:
160 opcode = FS_OPCODE_TXB_LOGICAL;
161 break;
162 case ir_txl:
163 opcode = SHADER_OPCODE_TXL_LOGICAL;
164 break;
165 case ir_txd:
166 opcode = SHADER_OPCODE_TXD_LOGICAL;
167 break;
168 case ir_txf:
169 opcode = SHADER_OPCODE_TXF_LOGICAL;
170 break;
171 case ir_txf_ms:
172 if ((key_tex->msaa_16 & (1 << sampler)))
173 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
174 else
175 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
176 break;
177 case ir_txs:
178 case ir_query_levels:
179 opcode = SHADER_OPCODE_TXS_LOGICAL;
180 break;
181 case ir_lod:
182 opcode = SHADER_OPCODE_LOD_LOGICAL;
183 break;
184 case ir_tg4:
185 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
186 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
187 break;
188 default:
189 unreachable("Invalid texture opcode.");
190 }
191
192 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
193 inst->regs_written = 4 * dispatch_width / 8;
194
195 if (shadow_c.file != BAD_FILE)
196 inst->shadow_compare = true;
197
198 if (offset_value.file == IMM)
199 inst->offset = offset_value.ud;
200
201 if (op == ir_tg4) {
202 if (gather_component == 1 &&
203 key_tex->gather_channel_quirk_mask & (1 << sampler)) {
204 /* gather4 sampler is broken for green channel on RG32F --
205 * we must ask for blue instead.
206 */
207 inst->offset |= 2 << 16;
208 } else {
209 inst->offset |= gather_component << 16;
210 }
211
212 if (devinfo->gen == 6)
213 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
214 }
215
216 /* fixup #layers for cube map arrays */
217 if (op == ir_txs && is_cube_array) {
218 fs_reg depth = offset(dst, bld, 2);
219 fs_reg fixed_depth = vgrf(glsl_type::int_type);
220 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
221
222 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
223 int components = inst->regs_written / (inst->exec_size / 8);
224 for (int i = 0; i < components; i++) {
225 if (i == 2) {
226 fixed_payload[i] = fixed_depth;
227 } else {
228 fixed_payload[i] = offset(dst, bld, i);
229 }
230 }
231 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
232 }
233
234 if (op == ir_query_levels) {
235 /* # levels is in .w */
236 dst = offset(dst, bld, 3);
237 }
238
239 this->result = dst;
240 }
241
242 /**
243 * Apply workarounds for Gen6 gather with UINT/SINT
244 */
245 void
246 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
247 {
248 if (!wa)
249 return;
250
251 int width = (wa & WA_8BIT) ? 8 : 16;
252
253 for (int i = 0; i < 4; i++) {
254 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
255 /* Convert from UNORM to UINT */
256 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
257 bld.MOV(dst, dst_f);
258
259 if (wa & WA_SIGN) {
260 /* Reinterpret the UINT value as a signed INT value by
261 * shifting the sign bit into place, then shifting back
262 * preserving sign.
263 */
264 bld.SHL(dst, dst, brw_imm_d(32 - width));
265 bld.ASR(dst, dst, brw_imm_d(32 - width));
266 }
267
268 dst = offset(dst, bld, 1);
269 }
270 }
271
272 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
273 void
274 fs_visitor::emit_dummy_fs()
275 {
276 int reg_width = dispatch_width / 8;
277
278 /* Everyone's favorite color. */
279 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
280 for (int i = 0; i < 4; i++) {
281 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
282 brw_imm_f(color[i]));
283 }
284
285 fs_inst *write;
286 write = bld.emit(FS_OPCODE_FB_WRITE);
287 write->eot = true;
288 if (devinfo->gen >= 6) {
289 write->base_mrf = 2;
290 write->mlen = 4 * reg_width;
291 } else {
292 write->header_size = 2;
293 write->base_mrf = 0;
294 write->mlen = 2 + 4 * reg_width;
295 }
296
297 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
298 * varying to avoid GPU hangs, so set that.
299 */
300 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
301 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
302 memset(wm_prog_data->urb_setup, -1,
303 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
304
305 /* We don't have any uniforms. */
306 stage_prog_data->nr_params = 0;
307 stage_prog_data->nr_pull_params = 0;
308 stage_prog_data->curb_read_length = 0;
309 stage_prog_data->dispatch_grf_start_reg = 2;
310 wm_prog_data->dispatch_grf_start_reg_16 = 2;
311 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
312
313 calculate_cfg();
314 }
315
316 /* The register location here is relative to the start of the URB
317 * data. It will get adjusted to be a real location before
318 * generate_code() time.
319 */
320 struct brw_reg
321 fs_visitor::interp_reg(int location, int channel)
322 {
323 assert(stage == MESA_SHADER_FRAGMENT);
324 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
325 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
326 int stride = (channel & 1) * 4;
327
328 assert(prog_data->urb_setup[location] != -1);
329
330 return brw_vec1_grf(regnr, stride);
331 }
332
333 /** Emits the interpolation for the varying inputs. */
334 void
335 fs_visitor::emit_interpolation_setup_gen4()
336 {
337 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
338
339 fs_builder abld = bld.annotate("compute pixel centers");
340 this->pixel_x = vgrf(glsl_type::uint_type);
341 this->pixel_y = vgrf(glsl_type::uint_type);
342 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
343 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
344 abld.ADD(this->pixel_x,
345 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
346 fs_reg(brw_imm_v(0x10101010)));
347 abld.ADD(this->pixel_y,
348 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
349 fs_reg(brw_imm_v(0x11001100)));
350
351 abld = bld.annotate("compute pixel deltas from v0");
352
353 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
354 vgrf(glsl_type::vec2_type);
355 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
356 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
357 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
358
359 if (devinfo->has_pln && dispatch_width == 16) {
360 for (unsigned i = 0; i < 2; i++) {
361 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
362 half(this->pixel_x, i), xstart);
363 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
364 half(this->pixel_y, i), ystart);
365 }
366 } else {
367 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
368 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
369 }
370
371 abld = bld.annotate("compute pos.w and 1/pos.w");
372 /* Compute wpos.w. It's always in our setup, since it's needed to
373 * interpolate the other attributes.
374 */
375 this->wpos_w = vgrf(glsl_type::float_type);
376 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
377 interp_reg(VARYING_SLOT_POS, 3));
378 /* Compute the pixel 1/W value from wpos.w. */
379 this->pixel_w = vgrf(glsl_type::float_type);
380 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
381 }
382
383 /** Emits the interpolation for the varying inputs. */
384 void
385 fs_visitor::emit_interpolation_setup_gen6()
386 {
387 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
388
389 fs_builder abld = bld.annotate("compute pixel centers");
390 if (devinfo->gen >= 8 || dispatch_width == 8) {
391 /* The "Register Region Restrictions" page says for BDW (and newer,
392 * presumably):
393 *
394 * "When destination spans two registers, the source may be one or
395 * two registers. The destination elements must be evenly split
396 * between the two registers."
397 *
398 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
399 * compute our pixel centers.
400 */
401 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
402 BRW_REGISTER_TYPE_UW);
403
404 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
405 dbld.ADD(int_pixel_xy,
406 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
407 fs_reg(brw_imm_v(0x11001010)));
408
409 this->pixel_x = vgrf(glsl_type::float_type);
410 this->pixel_y = vgrf(glsl_type::float_type);
411 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
412 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
413 } else {
414 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
415 *
416 * "When destination spans two registers, the source MUST span two
417 * registers."
418 *
419 * Since the GRF source of the ADD will only read a single register, we
420 * must do two separate ADDs in SIMD16.
421 */
422 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
423 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
424 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
425 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
426 abld.ADD(int_pixel_x,
427 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
428 fs_reg(brw_imm_v(0x10101010)));
429 abld.ADD(int_pixel_y,
430 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
431 fs_reg(brw_imm_v(0x11001100)));
432
433 /* As of gen6, we can no longer mix float and int sources. We have
434 * to turn the integer pixel centers into floats for their actual
435 * use.
436 */
437 this->pixel_x = vgrf(glsl_type::float_type);
438 this->pixel_y = vgrf(glsl_type::float_type);
439 abld.MOV(this->pixel_x, int_pixel_x);
440 abld.MOV(this->pixel_y, int_pixel_y);
441 }
442
443 abld = bld.annotate("compute pos.w");
444 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
445 this->wpos_w = vgrf(glsl_type::float_type);
446 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
447
448 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
449 uint8_t reg = payload.barycentric_coord_reg[i];
450 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
451 }
452 }
453
454 static enum brw_conditional_mod
455 cond_for_alpha_func(GLenum func)
456 {
457 switch(func) {
458 case GL_GREATER:
459 return BRW_CONDITIONAL_G;
460 case GL_GEQUAL:
461 return BRW_CONDITIONAL_GE;
462 case GL_LESS:
463 return BRW_CONDITIONAL_L;
464 case GL_LEQUAL:
465 return BRW_CONDITIONAL_LE;
466 case GL_EQUAL:
467 return BRW_CONDITIONAL_EQ;
468 case GL_NOTEQUAL:
469 return BRW_CONDITIONAL_NEQ;
470 default:
471 unreachable("Not reached");
472 }
473 }
474
475 /**
476 * Alpha test support for when we compile it into the shader instead
477 * of using the normal fixed-function alpha test.
478 */
479 void
480 fs_visitor::emit_alpha_test()
481 {
482 assert(stage == MESA_SHADER_FRAGMENT);
483 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
484 const fs_builder abld = bld.annotate("Alpha test");
485
486 fs_inst *cmp;
487 if (key->alpha_test_func == GL_ALWAYS)
488 return;
489
490 if (key->alpha_test_func == GL_NEVER) {
491 /* f0.1 = 0 */
492 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
493 BRW_REGISTER_TYPE_UW));
494 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
495 BRW_CONDITIONAL_NEQ);
496 } else {
497 /* RT0 alpha */
498 fs_reg color = offset(outputs[0], bld, 3);
499
500 /* f0.1 &= func(color, ref) */
501 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
502 cond_for_alpha_func(key->alpha_test_func));
503 }
504 cmp->predicate = BRW_PREDICATE_NORMAL;
505 cmp->flag_subreg = 1;
506 }
507
508 fs_inst *
509 fs_visitor::emit_single_fb_write(const fs_builder &bld,
510 fs_reg color0, fs_reg color1,
511 fs_reg src0_alpha, unsigned components)
512 {
513 assert(stage == MESA_SHADER_FRAGMENT);
514 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
515
516 /* Hand over gl_FragDepth or the payload depth. */
517 const fs_reg dst_depth = (payload.dest_depth_reg ?
518 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
519 fs_reg());
520 fs_reg src_depth, src_stencil;
521
522 if (source_depth_to_render_target) {
523 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
524 src_depth = frag_depth;
525 else
526 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
527 }
528
529 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
530 src_stencil = frag_stencil;
531
532 const fs_reg sources[] = {
533 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
534 sample_mask, brw_imm_ud(components)
535 };
536 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
537 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
538 sources, ARRAY_SIZE(sources));
539
540 if (prog_data->uses_kill) {
541 write->predicate = BRW_PREDICATE_NORMAL;
542 write->flag_subreg = 1;
543 }
544
545 return write;
546 }
547
548 void
549 fs_visitor::emit_fb_writes()
550 {
551 assert(stage == MESA_SHADER_FRAGMENT);
552 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
553 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
554
555 fs_inst *inst = NULL;
556
557 if (source_depth_to_render_target && devinfo->gen == 6) {
558 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
559 * would require SIMD8 moves of each half to message regs, e.g. by using
560 * the SIMD lowering pass. Unfortunately this is more difficult than it
561 * sounds because the SIMD8 single-source message lacks channel selects
562 * for the second and third subspans.
563 */
564 no16("Missing support for simd16 depth writes on gen6\n");
565 }
566
567 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
568 /* From the 'Render Target Write message' section of the docs:
569 * "Output Stencil is not supported with SIMD16 Render Target Write
570 * Messages."
571 *
572 * FINISHME: split 16 into 2 8s
573 */
574 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
575 }
576
577 if (do_dual_src) {
578 const fs_builder abld = bld.annotate("FB dual-source write");
579
580 inst = emit_single_fb_write(abld, this->outputs[0],
581 this->dual_src_output, reg_undef, 4);
582 inst->target = 0;
583
584 prog_data->dual_src_blend = true;
585 } else {
586 for (int target = 0; target < key->nr_color_regions; target++) {
587 /* Skip over outputs that weren't written. */
588 if (this->outputs[target].file == BAD_FILE)
589 continue;
590
591 const fs_builder abld = bld.annotate(
592 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
593
594 fs_reg src0_alpha;
595 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
596 src0_alpha = offset(outputs[0], bld, 3);
597
598 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
599 src0_alpha,
600 this->output_components[target]);
601 inst->target = target;
602 }
603 }
604
605 if (inst == NULL) {
606 /* Even if there's no color buffers enabled, we still need to send
607 * alpha out the pipeline to our null renderbuffer to support
608 * alpha-testing, alpha-to-coverage, and so on.
609 */
610 /* FINISHME: Factor out this frequently recurring pattern into a
611 * helper function.
612 */
613 const fs_reg srcs[] = { reg_undef, reg_undef,
614 reg_undef, offset(this->outputs[0], bld, 3) };
615 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
616 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
617
618 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
619 inst->target = 0;
620 }
621
622 inst->eot = true;
623 }
624
625 void
626 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
627 {
628 const struct brw_vs_prog_key *key =
629 (const struct brw_vs_prog_key *) this->key;
630
631 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
632 this->userplane[i] = fs_reg(UNIFORM, uniforms);
633 for (int j = 0; j < 4; ++j) {
634 stage_prog_data->param[uniforms + j] =
635 (gl_constant_value *) &clip_planes[i][j];
636 }
637 uniforms += 4;
638 }
639 }
640
641 /**
642 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
643 *
644 * This does nothing if the shader uses gl_ClipDistance or user clipping is
645 * disabled altogether.
646 */
647 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
648 {
649 struct brw_vue_prog_data *vue_prog_data =
650 (struct brw_vue_prog_data *) prog_data;
651 const struct brw_vs_prog_key *key =
652 (const struct brw_vs_prog_key *) this->key;
653
654 /* Bail unless some sort of legacy clipping is enabled */
655 if (key->nr_userclip_plane_consts == 0)
656 return;
657
658 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
659 *
660 * "If a linked set of shaders forming the vertex stage contains no
661 * static write to gl_ClipVertex or gl_ClipDistance, but the
662 * application has requested clipping against user clip planes through
663 * the API, then the coordinate written to gl_Position is used for
664 * comparison against the user clip planes."
665 *
666 * This function is only called if the shader didn't write to
667 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
668 * if the user wrote to it; otherwise we use gl_Position.
669 */
670
671 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
672 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
673 clip_vertex = VARYING_SLOT_POS;
674
675 /* If the clip vertex isn't written, skip this. Typically this means
676 * the GS will set up clipping. */
677 if (outputs[clip_vertex].file == BAD_FILE)
678 return;
679
680 setup_uniform_clipplane_values(clip_planes);
681
682 const fs_builder abld = bld.annotate("user clip distances");
683
684 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
685 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
686 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
687 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
688
689 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
690 fs_reg u = userplane[i];
691 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
692 output.reg_offset = i & 3;
693
694 abld.MUL(output, outputs[clip_vertex], u);
695 for (int j = 1; j < 4; j++) {
696 u.nr = userplane[i].nr + j;
697 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
698 }
699 }
700 }
701
702 void
703 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
704 {
705 int slot, urb_offset, length;
706 int starting_urb_offset = 0;
707 const struct brw_vue_prog_data *vue_prog_data =
708 (const struct brw_vue_prog_data *) this->prog_data;
709 const struct brw_vs_prog_key *vs_key =
710 (const struct brw_vs_prog_key *) this->key;
711 const GLbitfield64 psiz_mask =
712 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
713 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
714 bool flush;
715 fs_reg sources[8];
716 fs_reg urb_handle;
717
718 if (stage == MESA_SHADER_TESS_EVAL)
719 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
720 else
721 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
722
723 /* If we don't have any valid slots to write, just do a minimal urb write
724 * send to terminate the shader. This includes 1 slot of undefined data,
725 * because it's invalid to write 0 data:
726 *
727 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
728 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
729 * Write Data Payload:
730 *
731 * "The write data payload can be between 1 and 8 message phases long."
732 */
733 if (vue_map->slots_valid == 0) {
734 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
735 bld.exec_all().MOV(payload, urb_handle);
736
737 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
738 inst->eot = true;
739 inst->mlen = 2;
740 inst->offset = 1;
741 return;
742 }
743
744 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
745 int header_size = 1;
746 fs_reg per_slot_offsets;
747
748 if (stage == MESA_SHADER_GEOMETRY) {
749 const struct brw_gs_prog_data *gs_prog_data =
750 (const struct brw_gs_prog_data *) this->prog_data;
751
752 /* We need to increment the Global Offset to skip over the control data
753 * header and the extra "Vertex Count" field (1 HWord) at the beginning
754 * of the VUE. We're counting in OWords, so the units are doubled.
755 */
756 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
757 if (gs_prog_data->static_vertex_count == -1)
758 starting_urb_offset += 2;
759
760 /* We also need to use per-slot offsets. The per-slot offset is the
761 * Vertex Count. SIMD8 mode processes 8 different primitives at a
762 * time; each may output a different number of vertices.
763 */
764 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
765 header_size++;
766
767 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
768 const int output_vertex_size_owords =
769 gs_prog_data->output_vertex_size_hwords * 2;
770
771 if (gs_vertex_count.file == IMM) {
772 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
773 gs_vertex_count.ud);
774 } else {
775 per_slot_offsets = vgrf(glsl_type::int_type);
776 bld.MUL(per_slot_offsets, gs_vertex_count,
777 brw_imm_ud(output_vertex_size_owords));
778 }
779 }
780
781 length = 0;
782 urb_offset = starting_urb_offset;
783 flush = false;
784 for (slot = 0; slot < vue_map->num_slots; slot++) {
785 int varying = vue_map->slot_to_varying[slot];
786 switch (varying) {
787 case VARYING_SLOT_PSIZ: {
788 /* The point size varying slot is the vue header and is always in the
789 * vue map. But often none of the special varyings that live there
790 * are written and in that case we can skip writing to the vue
791 * header, provided the corresponding state properly clamps the
792 * values further down the pipeline. */
793 if ((vue_map->slots_valid & psiz_mask) == 0) {
794 assert(length == 0);
795 urb_offset++;
796 break;
797 }
798
799 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
800 bld.MOV(zero, brw_imm_ud(0u));
801
802 sources[length++] = zero;
803 if (vue_map->slots_valid & VARYING_BIT_LAYER)
804 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
805 else
806 sources[length++] = zero;
807
808 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
809 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
810 else
811 sources[length++] = zero;
812
813 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
814 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
815 else
816 sources[length++] = zero;
817 break;
818 }
819 case BRW_VARYING_SLOT_NDC:
820 case VARYING_SLOT_EDGE:
821 unreachable("unexpected scalar vs output");
822 break;
823
824 default:
825 /* gl_Position is always in the vue map, but isn't always written by
826 * the shader. Other varyings (clip distances) get added to the vue
827 * map but don't always get written. In those cases, the
828 * corresponding this->output[] slot will be invalid we and can skip
829 * the urb write for the varying. If we've already queued up a vue
830 * slot for writing we flush a mlen 5 urb write, otherwise we just
831 * advance the urb_offset.
832 */
833 if (varying == BRW_VARYING_SLOT_PAD ||
834 this->outputs[varying].file == BAD_FILE) {
835 if (length > 0)
836 flush = true;
837 else
838 urb_offset++;
839 break;
840 }
841
842 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
843 (varying == VARYING_SLOT_COL0 ||
844 varying == VARYING_SLOT_COL1 ||
845 varying == VARYING_SLOT_BFC0 ||
846 varying == VARYING_SLOT_BFC1)) {
847 /* We need to clamp these guys, so do a saturating MOV into a
848 * temp register and use that for the payload.
849 */
850 for (int i = 0; i < 4; i++) {
851 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
852 fs_reg src = offset(this->outputs[varying], bld, i);
853 set_saturate(true, bld.MOV(reg, src));
854 sources[length++] = reg;
855 }
856 } else {
857 for (unsigned i = 0; i < output_components[varying]; i++)
858 sources[length++] = offset(this->outputs[varying], bld, i);
859 for (unsigned i = output_components[varying]; i < 4; i++)
860 sources[length++] = brw_imm_d(0);
861 }
862 break;
863 }
864
865 const fs_builder abld = bld.annotate("URB write");
866
867 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
868 * the last slot or if we need to flush (see BAD_FILE varying case
869 * above), emit a URB write send now to flush out the data.
870 */
871 int last = slot == vue_map->num_slots - 1;
872 if (length == 8 || last)
873 flush = true;
874 if (flush) {
875 fs_reg *payload_sources =
876 ralloc_array(mem_ctx, fs_reg, length + header_size);
877 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
878 BRW_REGISTER_TYPE_F);
879 payload_sources[0] = urb_handle;
880
881 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
882 payload_sources[1] = per_slot_offsets;
883
884 memcpy(&payload_sources[header_size], sources,
885 length * sizeof sources[0]);
886
887 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
888 header_size);
889
890 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
891 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
892 inst->mlen = length + header_size;
893 inst->offset = urb_offset;
894 urb_offset = starting_urb_offset + slot + 1;
895 length = 0;
896 flush = false;
897 }
898 }
899 }
900
901 void
902 fs_visitor::emit_cs_terminate()
903 {
904 assert(devinfo->gen >= 7);
905
906 /* We are getting the thread ID from the compute shader header */
907 assert(stage == MESA_SHADER_COMPUTE);
908
909 /* We can't directly send from g0, since sends with EOT have to use
910 * g112-127. So, copy it to a virtual register, The register allocator will
911 * make sure it uses the appropriate register range.
912 */
913 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
914 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
915 bld.group(8, 0).exec_all().MOV(payload, g0);
916
917 /* Send a message to the thread spawner to terminate the thread. */
918 fs_inst *inst = bld.exec_all()
919 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
920 inst->eot = true;
921 }
922
923 void
924 fs_visitor::emit_barrier()
925 {
926 assert(devinfo->gen >= 7);
927
928 /* We are getting the barrier ID from the compute shader header */
929 assert(stage == MESA_SHADER_COMPUTE);
930
931 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
932
933 const fs_builder pbld = bld.exec_all().group(8, 0);
934
935 /* Clear the message payload */
936 pbld.MOV(payload, brw_imm_ud(0u));
937
938 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
939 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
940 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(0x0f000000u));
941
942 /* Emit a gateway "barrier" message using the payload we set up, followed
943 * by a wait instruction.
944 */
945 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
946 }
947
948 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
949 void *mem_ctx,
950 const void *key,
951 struct brw_stage_prog_data *prog_data,
952 struct gl_program *prog,
953 const nir_shader *shader,
954 unsigned dispatch_width,
955 int shader_time_index,
956 const struct brw_vue_map *input_vue_map)
957 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
958 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
959 input_vue_map(input_vue_map),
960 dispatch_width(dispatch_width),
961 shader_time_index(shader_time_index),
962 bld(fs_builder(this, dispatch_width).at_end())
963 {
964 init();
965 }
966
967 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
968 void *mem_ctx,
969 struct brw_gs_compile *c,
970 struct brw_gs_prog_data *prog_data,
971 const nir_shader *shader,
972 int shader_time_index)
973 : backend_shader(compiler, log_data, mem_ctx, shader,
974 &prog_data->base.base),
975 key(&c->key), gs_compile(c),
976 prog_data(&prog_data->base.base), prog(NULL),
977 dispatch_width(8),
978 shader_time_index(shader_time_index),
979 bld(fs_builder(this, dispatch_width).at_end())
980 {
981 init();
982 }
983
984
985 void
986 fs_visitor::init()
987 {
988 switch (stage) {
989 case MESA_SHADER_FRAGMENT:
990 key_tex = &((const brw_wm_prog_key *) key)->tex;
991 break;
992 case MESA_SHADER_VERTEX:
993 key_tex = &((const brw_vs_prog_key *) key)->tex;
994 break;
995 case MESA_SHADER_TESS_EVAL:
996 key_tex = &((const brw_tes_prog_key *) key)->tex;
997 break;
998 case MESA_SHADER_GEOMETRY:
999 key_tex = &((const brw_gs_prog_key *) key)->tex;
1000 break;
1001 case MESA_SHADER_COMPUTE:
1002 key_tex = &((const brw_cs_prog_key*) key)->tex;
1003 break;
1004 default:
1005 unreachable("unhandled shader stage");
1006 }
1007
1008 this->prog_data = this->stage_prog_data;
1009
1010 this->failed = false;
1011 this->simd16_unsupported = false;
1012 this->no16_msg = NULL;
1013
1014 this->nir_locals = NULL;
1015 this->nir_ssa_values = NULL;
1016
1017 memset(&this->payload, 0, sizeof(this->payload));
1018 memset(this->output_components, 0, sizeof(this->output_components));
1019 this->source_depth_to_render_target = false;
1020 this->runtime_check_aads_emit = false;
1021 this->first_non_payload_grf = 0;
1022 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1023
1024 this->virtual_grf_start = NULL;
1025 this->virtual_grf_end = NULL;
1026 this->live_intervals = NULL;
1027 this->regs_live_at_ip = NULL;
1028
1029 this->uniforms = 0;
1030 this->last_scratch = 0;
1031 this->pull_constant_loc = NULL;
1032 this->push_constant_loc = NULL;
1033
1034 this->promoted_constants = 0,
1035
1036 this->spilled_any_registers = false;
1037 this->do_dual_src = false;
1038
1039 if (dispatch_width == 8)
1040 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1041 }
1042
1043 fs_visitor::~fs_visitor()
1044 {
1045 }