bf1da9d4588d9c06fffca57fd2bc526451518acc
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (ir->mode == ir_var_in) {
62 if (!strcmp(ir->name, "gl_FragCoord")) {
63 reg = emit_fragcoord_interpolation(ir);
64 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65 reg = emit_frontfacing_interpolation(ir);
66 } else {
67 reg = emit_general_interpolation(ir);
68 }
69 assert(reg);
70 hash_table_insert(this->variable_ht, reg, ir);
71 return;
72 } else if (ir->mode == ir_var_out) {
73 reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75 if (ir->location == FRAG_RESULT_COLOR) {
76 /* Writing gl_FragColor outputs to all color regions. */
77 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78 this->outputs[i] = *reg;
79 }
80 } else if (ir->location == FRAG_RESULT_DEPTH) {
81 this->frag_depth = ir;
82 } else {
83 /* gl_FragData or a user-defined FS output */
84 assert(ir->location >= FRAG_RESULT_DATA0 &&
85 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87 /* General color output. */
88 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89 int output = ir->location - FRAG_RESULT_DATA0 + i;
90 this->outputs[output] = *reg;
91 this->outputs[output].reg_offset += 4 * i;
92 }
93 }
94 } else if (ir->mode == ir_var_uniform) {
95 int param_index = c->prog_data.nr_params;
96
97 if (c->dispatch_width == 16) {
98 if (!variable_storage(ir)) {
99 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100 }
101 return;
102 }
103
104 if (!strncmp(ir->name, "gl_", 3)) {
105 setup_builtin_uniform_values(ir);
106 } else {
107 setup_uniform_values(ir->location, ir->type);
108 }
109
110 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111 reg->type = brw_type_for_base_type(ir->type);
112 }
113
114 if (!reg)
115 reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117 hash_table_insert(this->variable_ht, reg, ir);
118 }
119
120 void
121 fs_visitor::visit(ir_dereference_variable *ir)
122 {
123 fs_reg *reg = variable_storage(ir->var);
124 this->result = *reg;
125 }
126
127 void
128 fs_visitor::visit(ir_dereference_record *ir)
129 {
130 const glsl_type *struct_type = ir->record->type;
131
132 ir->record->accept(this);
133
134 unsigned int offset = 0;
135 for (unsigned int i = 0; i < struct_type->length; i++) {
136 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137 break;
138 offset += type_size(struct_type->fields.structure[i].type);
139 }
140 this->result.reg_offset += offset;
141 this->result.type = brw_type_for_base_type(ir->type);
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_array *ir)
146 {
147 ir_constant *index;
148 int element_size;
149
150 ir->array->accept(this);
151 index = ir->array_index->as_constant();
152
153 element_size = type_size(ir->type);
154 this->result.type = brw_type_for_base_type(ir->type);
155
156 if (index) {
157 assert(this->result.file == UNIFORM || this->result.file == GRF);
158 this->result.reg_offset += index->value.i[0] * element_size;
159 } else {
160 assert(!"FINISHME: non-constant array element");
161 }
162 }
163
164 /* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167 bool
168 fs_visitor::try_emit_saturate(ir_expression *ir)
169 {
170 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172 if (!sat_val)
173 return false;
174
175 sat_val->accept(this);
176 fs_reg src = this->result;
177
178 this->result = fs_reg(this, ir->type);
179 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180 inst->saturate = true;
181
182 return true;
183 }
184
185 bool
186 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
187 {
188 /* 3-src instructions were introduced in gen6. */
189 if (intel->gen < 6)
190 return false;
191
192 /* MAD can only handle floating-point data. */
193 if (ir->type != glsl_type::float_type)
194 return false;
195
196 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
197 ir_expression *mul = ir->operands[mul_arg]->as_expression();
198
199 if (!mul || mul->operation != ir_binop_mul)
200 return false;
201
202 if (nonmul->as_constant() ||
203 mul->operands[0]->as_constant() ||
204 mul->operands[1]->as_constant())
205 return false;
206
207 nonmul->accept(this);
208 fs_reg src0 = this->result;
209
210 mul->operands[0]->accept(this);
211 fs_reg src1 = this->result;
212
213 mul->operands[1]->accept(this);
214 fs_reg src2 = this->result;
215
216 this->result = fs_reg(this, ir->type);
217 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
218
219 return true;
220 }
221
222 void
223 fs_visitor::visit(ir_expression *ir)
224 {
225 unsigned int operand;
226 fs_reg op[2], temp;
227 fs_inst *inst;
228
229 assert(ir->get_num_operands() <= 2);
230
231 if (try_emit_saturate(ir))
232 return;
233 if (ir->operation == ir_binop_add) {
234 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
235 return;
236 }
237
238 for (operand = 0; operand < ir->get_num_operands(); operand++) {
239 ir->operands[operand]->accept(this);
240 if (this->result.file == BAD_FILE) {
241 ir_print_visitor v;
242 fail("Failed to get tree for expression operand:\n");
243 ir->operands[operand]->accept(&v);
244 }
245 op[operand] = this->result;
246
247 /* Matrix expression operands should have been broken down to vector
248 * operations already.
249 */
250 assert(!ir->operands[operand]->type->is_matrix());
251 /* And then those vector operands should have been broken down to scalar.
252 */
253 assert(!ir->operands[operand]->type->is_vector());
254 }
255
256 /* Storage for our result. If our result goes into an assignment, it will
257 * just get copy-propagated out, so no worries.
258 */
259 this->result = fs_reg(this, ir->type);
260
261 switch (ir->operation) {
262 case ir_unop_logic_not:
263 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
264 * ones complement of the whole register, not just bit 0.
265 */
266 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
267 break;
268 case ir_unop_neg:
269 op[0].negate = !op[0].negate;
270 this->result = op[0];
271 break;
272 case ir_unop_abs:
273 op[0].abs = true;
274 op[0].negate = false;
275 this->result = op[0];
276 break;
277 case ir_unop_sign:
278 temp = fs_reg(this, ir->type);
279
280 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
281
282 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
283 inst->conditional_mod = BRW_CONDITIONAL_G;
284 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
285 inst->predicated = true;
286
287 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
288 inst->conditional_mod = BRW_CONDITIONAL_L;
289 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
290 inst->predicated = true;
291
292 break;
293 case ir_unop_rcp:
294 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
295 break;
296
297 case ir_unop_exp2:
298 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
299 break;
300 case ir_unop_log2:
301 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
302 break;
303 case ir_unop_exp:
304 case ir_unop_log:
305 assert(!"not reached: should be handled by ir_explog_to_explog2");
306 break;
307 case ir_unop_sin:
308 case ir_unop_sin_reduced:
309 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
310 break;
311 case ir_unop_cos:
312 case ir_unop_cos_reduced:
313 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
314 break;
315
316 case ir_unop_dFdx:
317 emit(FS_OPCODE_DDX, this->result, op[0]);
318 break;
319 case ir_unop_dFdy:
320 emit(FS_OPCODE_DDY, this->result, op[0]);
321 break;
322
323 case ir_binop_add:
324 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
325 break;
326 case ir_binop_sub:
327 assert(!"not reached: should be handled by ir_sub_to_add_neg");
328 break;
329
330 case ir_binop_mul:
331 if (ir->type->is_integer()) {
332 /* For integer multiplication, the MUL uses the low 16 bits
333 * of one of the operands (src0 on gen6, src1 on gen7). The
334 * MACH accumulates in the contribution of the upper 16 bits
335 * of that operand.
336 *
337 * FINISHME: Emit just the MUL if we know an operand is small
338 * enough.
339 */
340 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
341
342 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
343 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
344 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
345 } else {
346 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
347 }
348 break;
349 case ir_binop_div:
350 if (intel->gen >= 7 && c->dispatch_width == 16)
351 fail("16-wide INTDIV unsupported\n");
352
353 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
354 assert(ir->type->is_integer());
355 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
356 break;
357 case ir_binop_mod:
358 if (intel->gen >= 7 && c->dispatch_width == 16)
359 fail("16-wide INTDIV unsupported\n");
360
361 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
362 assert(ir->type->is_integer());
363 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
364 break;
365
366 case ir_binop_less:
367 case ir_binop_greater:
368 case ir_binop_lequal:
369 case ir_binop_gequal:
370 case ir_binop_equal:
371 case ir_binop_all_equal:
372 case ir_binop_nequal:
373 case ir_binop_any_nequal:
374 temp = this->result;
375 /* original gen4 does implicit conversion before comparison. */
376 if (intel->gen < 5)
377 temp.type = op[0].type;
378
379 resolve_ud_negate(&op[0]);
380 resolve_ud_negate(&op[1]);
381
382 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
383 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
384 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
385 break;
386
387 case ir_binop_logic_xor:
388 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
389 break;
390
391 case ir_binop_logic_or:
392 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
393 break;
394
395 case ir_binop_logic_and:
396 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
397 break;
398
399 case ir_binop_dot:
400 case ir_unop_any:
401 assert(!"not reached: should be handled by brw_fs_channel_expressions");
402 break;
403
404 case ir_unop_noise:
405 assert(!"not reached: should be handled by lower_noise");
406 break;
407
408 case ir_quadop_vector:
409 assert(!"not reached: should be handled by lower_quadop_vector");
410 break;
411
412 case ir_unop_sqrt:
413 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
414 break;
415
416 case ir_unop_rsq:
417 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
418 break;
419
420 case ir_unop_i2u:
421 op[0].type = BRW_REGISTER_TYPE_UD;
422 this->result = op[0];
423 break;
424 case ir_unop_u2i:
425 op[0].type = BRW_REGISTER_TYPE_D;
426 this->result = op[0];
427 break;
428 case ir_unop_i2f:
429 case ir_unop_u2f:
430 case ir_unop_b2f:
431 case ir_unop_b2i:
432 case ir_unop_f2i:
433 emit(BRW_OPCODE_MOV, this->result, op[0]);
434 break;
435 case ir_unop_f2b:
436 case ir_unop_i2b:
437 temp = this->result;
438 /* original gen4 does implicit conversion before comparison. */
439 if (intel->gen < 5)
440 temp.type = op[0].type;
441
442 resolve_ud_negate(&op[0]);
443
444 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
445 inst->conditional_mod = BRW_CONDITIONAL_NZ;
446 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
447 break;
448
449 case ir_unop_trunc:
450 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
451 break;
452 case ir_unop_ceil:
453 op[0].negate = !op[0].negate;
454 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
455 this->result.negate = true;
456 break;
457 case ir_unop_floor:
458 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
459 break;
460 case ir_unop_fract:
461 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
462 break;
463 case ir_unop_round_even:
464 emit(BRW_OPCODE_RNDE, this->result, op[0]);
465 break;
466
467 case ir_binop_min:
468 resolve_ud_negate(&op[0]);
469 resolve_ud_negate(&op[1]);
470
471 if (intel->gen >= 6) {
472 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
473 inst->conditional_mod = BRW_CONDITIONAL_L;
474 } else {
475 /* Unalias the destination */
476 this->result = fs_reg(this, ir->type);
477
478 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
479 inst->conditional_mod = BRW_CONDITIONAL_L;
480
481 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
482 inst->predicated = true;
483 }
484 break;
485 case ir_binop_max:
486 resolve_ud_negate(&op[0]);
487 resolve_ud_negate(&op[1]);
488
489 if (intel->gen >= 6) {
490 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
491 inst->conditional_mod = BRW_CONDITIONAL_GE;
492 } else {
493 /* Unalias the destination */
494 this->result = fs_reg(this, ir->type);
495
496 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
497 inst->conditional_mod = BRW_CONDITIONAL_G;
498
499 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
500 inst->predicated = true;
501 }
502 break;
503
504 case ir_binop_pow:
505 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
506 break;
507
508 case ir_unop_bit_not:
509 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
510 break;
511 case ir_binop_bit_and:
512 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
513 break;
514 case ir_binop_bit_xor:
515 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
516 break;
517 case ir_binop_bit_or:
518 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
519 break;
520
521 case ir_binop_lshift:
522 inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
523 break;
524
525 case ir_binop_rshift:
526 if (ir->type->base_type == GLSL_TYPE_INT)
527 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
528 else
529 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
530 break;
531 }
532 }
533
534 void
535 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
536 const glsl_type *type, bool predicated)
537 {
538 switch (type->base_type) {
539 case GLSL_TYPE_FLOAT:
540 case GLSL_TYPE_UINT:
541 case GLSL_TYPE_INT:
542 case GLSL_TYPE_BOOL:
543 for (unsigned int i = 0; i < type->components(); i++) {
544 l.type = brw_type_for_base_type(type);
545 r.type = brw_type_for_base_type(type);
546
547 if (predicated || !l.equals(&r)) {
548 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
549 inst->predicated = predicated;
550 }
551
552 l.reg_offset++;
553 r.reg_offset++;
554 }
555 break;
556 case GLSL_TYPE_ARRAY:
557 for (unsigned int i = 0; i < type->length; i++) {
558 emit_assignment_writes(l, r, type->fields.array, predicated);
559 }
560 break;
561
562 case GLSL_TYPE_STRUCT:
563 for (unsigned int i = 0; i < type->length; i++) {
564 emit_assignment_writes(l, r, type->fields.structure[i].type,
565 predicated);
566 }
567 break;
568
569 case GLSL_TYPE_SAMPLER:
570 break;
571
572 default:
573 assert(!"not reached");
574 break;
575 }
576 }
577
578 /* If the RHS processing resulted in an instruction generating a
579 * temporary value, and it would be easy to rewrite the instruction to
580 * generate its result right into the LHS instead, do so. This ends
581 * up reliably removing instructions where it can be tricky to do so
582 * later without real UD chain information.
583 */
584 bool
585 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
586 fs_reg dst,
587 fs_reg src,
588 fs_inst *pre_rhs_inst,
589 fs_inst *last_rhs_inst)
590 {
591 if (pre_rhs_inst == last_rhs_inst)
592 return false; /* No instructions generated to work with. */
593
594 /* Only attempt if we're doing a direct assignment. */
595 if (ir->condition ||
596 !(ir->lhs->type->is_scalar() ||
597 (ir->lhs->type->is_vector() &&
598 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
599 return false;
600
601 /* Make sure the last instruction generated our source reg. */
602 if (last_rhs_inst->predicated ||
603 last_rhs_inst->force_uncompressed ||
604 last_rhs_inst->force_sechalf ||
605 !src.equals(&last_rhs_inst->dst))
606 return false;
607
608 /* If last_rhs_inst wrote a different number of components than our LHS,
609 * we can't safely rewrite it.
610 */
611 if (ir->lhs->type->vector_elements != last_rhs_inst->regs_written())
612 return false;
613
614 /* Success! Rewrite the instruction. */
615 last_rhs_inst->dst = dst;
616
617 return true;
618 }
619
620 void
621 fs_visitor::visit(ir_assignment *ir)
622 {
623 fs_reg l, r;
624 fs_inst *inst;
625
626 /* FINISHME: arrays on the lhs */
627 ir->lhs->accept(this);
628 l = this->result;
629
630 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
631
632 ir->rhs->accept(this);
633 r = this->result;
634
635 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
636
637 assert(l.file != BAD_FILE);
638 assert(r.file != BAD_FILE);
639
640 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
641 return;
642
643 if (ir->condition) {
644 emit_bool_to_cond_code(ir->condition);
645 }
646
647 if (ir->lhs->type->is_scalar() ||
648 ir->lhs->type->is_vector()) {
649 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
650 if (ir->write_mask & (1 << i)) {
651 inst = emit(BRW_OPCODE_MOV, l, r);
652 if (ir->condition)
653 inst->predicated = true;
654 r.reg_offset++;
655 }
656 l.reg_offset++;
657 }
658 } else {
659 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
660 }
661 }
662
663 fs_inst *
664 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
665 int sampler)
666 {
667 int mlen;
668 int base_mrf = 1;
669 bool simd16 = false;
670 fs_reg orig_dst;
671
672 /* g0 header. */
673 mlen = 1;
674
675 if (ir->shadow_comparitor && ir->op != ir_txd) {
676 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
677 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
678 coordinate.reg_offset++;
679 }
680 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
681 mlen += 3;
682
683 if (ir->op == ir_tex) {
684 /* There's no plain shadow compare message, so we use shadow
685 * compare with a bias of 0.0.
686 */
687 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
688 mlen++;
689 } else if (ir->op == ir_txb) {
690 ir->lod_info.bias->accept(this);
691 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
692 mlen++;
693 } else {
694 assert(ir->op == ir_txl);
695 ir->lod_info.lod->accept(this);
696 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
697 mlen++;
698 }
699
700 ir->shadow_comparitor->accept(this);
701 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
702 mlen++;
703 } else if (ir->op == ir_tex) {
704 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
705 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
706 coordinate.reg_offset++;
707 }
708 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
709 mlen += 3;
710 } else if (ir->op == ir_txd) {
711 ir->lod_info.grad.dPdx->accept(this);
712 fs_reg dPdx = this->result;
713
714 ir->lod_info.grad.dPdy->accept(this);
715 fs_reg dPdy = this->result;
716
717 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
718 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
719 coordinate.reg_offset++;
720 }
721 /* the slots for u and v are always present, but r is optional */
722 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
723
724 /* P = u, v, r
725 * dPdx = dudx, dvdx, drdx
726 * dPdy = dudy, dvdy, drdy
727 *
728 * 1-arg: Does not exist.
729 *
730 * 2-arg: dudx dvdx dudy dvdy
731 * dPdx.x dPdx.y dPdy.x dPdy.y
732 * m4 m5 m6 m7
733 *
734 * 3-arg: dudx dvdx drdx dudy dvdy drdy
735 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
736 * m5 m6 m7 m8 m9 m10
737 */
738 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
739 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
740 dPdx.reg_offset++;
741 }
742 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
743
744 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
745 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
746 dPdy.reg_offset++;
747 }
748 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
749 } else if (ir->op == ir_txs) {
750 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
751 simd16 = true;
752 ir->lod_info.lod->accept(this);
753 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
754 mlen += 2;
755 } else {
756 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
757 * instructions. We'll need to do SIMD16 here.
758 */
759 simd16 = true;
760 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
761
762 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
763 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
764 coordinate);
765 coordinate.reg_offset++;
766 }
767
768 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
769 * be necessary for TXF (ld), but seems wise to do for all messages.
770 */
771 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
772 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
773 }
774
775 /* lod/bias appears after u/v/r. */
776 mlen += 6;
777
778 if (ir->op == ir_txb) {
779 ir->lod_info.bias->accept(this);
780 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
781 mlen++;
782 } else {
783 ir->lod_info.lod->accept(this);
784 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
785 this->result);
786 mlen++;
787 }
788
789 /* The unused upper half. */
790 mlen++;
791 }
792
793 if (simd16) {
794 /* Now, since we're doing simd16, the return is 2 interleaved
795 * vec4s where the odd-indexed ones are junk. We'll need to move
796 * this weirdness around to the expected layout.
797 */
798 orig_dst = dst;
799 const glsl_type *vec_type =
800 glsl_type::get_instance(ir->type->base_type, 4, 1);
801 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
802 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
803 : BRW_REGISTER_TYPE_F;
804 }
805
806 fs_inst *inst = NULL;
807 switch (ir->op) {
808 case ir_tex:
809 inst = emit(SHADER_OPCODE_TEX, dst);
810 break;
811 case ir_txb:
812 inst = emit(FS_OPCODE_TXB, dst);
813 break;
814 case ir_txl:
815 inst = emit(SHADER_OPCODE_TXL, dst);
816 break;
817 case ir_txd:
818 inst = emit(SHADER_OPCODE_TXD, dst);
819 break;
820 case ir_txs:
821 inst = emit(SHADER_OPCODE_TXS, dst);
822 break;
823 case ir_txf:
824 inst = emit(SHADER_OPCODE_TXF, dst);
825 break;
826 }
827 inst->base_mrf = base_mrf;
828 inst->mlen = mlen;
829 inst->header_present = true;
830
831 if (simd16) {
832 for (int i = 0; i < 4; i++) {
833 emit(BRW_OPCODE_MOV, orig_dst, dst);
834 orig_dst.reg_offset++;
835 dst.reg_offset += 2;
836 }
837 }
838
839 return inst;
840 }
841
842 /* gen5's sampler has slots for u, v, r, array index, then optional
843 * parameters like shadow comparitor or LOD bias. If optional
844 * parameters aren't present, those base slots are optional and don't
845 * need to be included in the message.
846 *
847 * We don't fill in the unnecessary slots regardless, which may look
848 * surprising in the disassembly.
849 */
850 fs_inst *
851 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
852 int sampler)
853 {
854 int mlen = 0;
855 int base_mrf = 2;
856 int reg_width = c->dispatch_width / 8;
857 bool header_present = false;
858 const int vector_elements =
859 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
860
861 if (ir->offset) {
862 /* The offsets set up by the ir_texture visitor are in the
863 * m1 header, so we can't go headerless.
864 */
865 header_present = true;
866 mlen++;
867 base_mrf--;
868 }
869
870 for (int i = 0; i < vector_elements; i++) {
871 emit(BRW_OPCODE_MOV,
872 fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
873 coordinate);
874 coordinate.reg_offset++;
875 }
876 mlen += vector_elements * reg_width;
877
878 if (ir->shadow_comparitor && ir->op != ir_txd) {
879 mlen = MAX2(mlen, header_present + 4 * reg_width);
880
881 ir->shadow_comparitor->accept(this);
882 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
883 mlen += reg_width;
884 }
885
886 fs_inst *inst = NULL;
887 switch (ir->op) {
888 case ir_tex:
889 inst = emit(SHADER_OPCODE_TEX, dst);
890 break;
891 case ir_txb:
892 ir->lod_info.bias->accept(this);
893 mlen = MAX2(mlen, header_present + 4 * reg_width);
894 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
895 mlen += reg_width;
896
897 inst = emit(FS_OPCODE_TXB, dst);
898
899 break;
900 case ir_txl:
901 ir->lod_info.lod->accept(this);
902 mlen = MAX2(mlen, header_present + 4 * reg_width);
903 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
904 mlen += reg_width;
905
906 inst = emit(SHADER_OPCODE_TXL, dst);
907 break;
908 case ir_txd: {
909 ir->lod_info.grad.dPdx->accept(this);
910 fs_reg dPdx = this->result;
911
912 ir->lod_info.grad.dPdy->accept(this);
913 fs_reg dPdy = this->result;
914
915 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
916
917 /**
918 * P = u, v, r
919 * dPdx = dudx, dvdx, drdx
920 * dPdy = dudy, dvdy, drdy
921 *
922 * Load up these values:
923 * - dudx dudy dvdx dvdy drdx drdy
924 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
925 */
926 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
927 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
928 dPdx.reg_offset++;
929 mlen += reg_width;
930
931 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
932 dPdy.reg_offset++;
933 mlen += reg_width;
934 }
935
936 inst = emit(SHADER_OPCODE_TXD, dst);
937 break;
938 }
939 case ir_txs:
940 ir->lod_info.lod->accept(this);
941 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
942 mlen += reg_width;
943 inst = emit(SHADER_OPCODE_TXS, dst);
944 break;
945 case ir_txf:
946 mlen = header_present + 4 * reg_width;
947
948 ir->lod_info.lod->accept(this);
949 emit(BRW_OPCODE_MOV,
950 fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
951 this->result);
952 inst = emit(SHADER_OPCODE_TXF, dst);
953 break;
954 }
955 inst->base_mrf = base_mrf;
956 inst->mlen = mlen;
957 inst->header_present = header_present;
958
959 if (mlen > 11) {
960 fail("Message length >11 disallowed by hardware\n");
961 }
962
963 return inst;
964 }
965
966 fs_inst *
967 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
968 int sampler)
969 {
970 int mlen = 0;
971 int base_mrf = 2;
972 int reg_width = c->dispatch_width / 8;
973 bool header_present = false;
974
975 if (ir->offset) {
976 /* The offsets set up by the ir_texture visitor are in the
977 * m1 header, so we can't go headerless.
978 */
979 header_present = true;
980 mlen++;
981 base_mrf--;
982 }
983
984 if (ir->shadow_comparitor && ir->op != ir_txd) {
985 ir->shadow_comparitor->accept(this);
986 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
987 mlen += reg_width;
988 }
989
990 /* Set up the LOD info */
991 switch (ir->op) {
992 case ir_tex:
993 break;
994 case ir_txb:
995 ir->lod_info.bias->accept(this);
996 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
997 mlen += reg_width;
998 break;
999 case ir_txl:
1000 ir->lod_info.lod->accept(this);
1001 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1002 mlen += reg_width;
1003 break;
1004 case ir_txd: {
1005 if (c->dispatch_width == 16)
1006 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1007
1008 ir->lod_info.grad.dPdx->accept(this);
1009 fs_reg dPdx = this->result;
1010
1011 ir->lod_info.grad.dPdy->accept(this);
1012 fs_reg dPdy = this->result;
1013
1014 /* Load dPdx and the coordinate together:
1015 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1016 */
1017 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1018 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1019 coordinate.reg_offset++;
1020 mlen += reg_width;
1021
1022 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1023 dPdx.reg_offset++;
1024 mlen += reg_width;
1025
1026 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1027 dPdy.reg_offset++;
1028 mlen += reg_width;
1029 }
1030 break;
1031 }
1032 case ir_txs:
1033 ir->lod_info.lod->accept(this);
1034 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1035 mlen += reg_width;
1036 break;
1037 case ir_txf:
1038 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1039 emit(BRW_OPCODE_MOV,
1040 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1041 coordinate.reg_offset++;
1042 mlen += reg_width;
1043
1044 ir->lod_info.lod->accept(this);
1045 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1046 mlen += reg_width;
1047
1048 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1049 emit(BRW_OPCODE_MOV,
1050 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1051 coordinate.reg_offset++;
1052 mlen += reg_width;
1053 }
1054 break;
1055 }
1056
1057 /* Set up the coordinate (except for cases where it was done above) */
1058 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1059 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1060 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1061 coordinate.reg_offset++;
1062 mlen += reg_width;
1063 }
1064 }
1065
1066 /* Generate the SEND */
1067 fs_inst *inst = NULL;
1068 switch (ir->op) {
1069 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1070 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1071 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1072 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1073 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1074 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1075 }
1076 inst->base_mrf = base_mrf;
1077 inst->mlen = mlen;
1078 inst->header_present = header_present;
1079
1080 if (mlen > 11) {
1081 fail("Message length >11 disallowed by hardware\n");
1082 }
1083
1084 return inst;
1085 }
1086
1087 void
1088 fs_visitor::visit(ir_texture *ir)
1089 {
1090 fs_inst *inst = NULL;
1091
1092 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1093 sampler = fp->Base.SamplerUnits[sampler];
1094
1095 /* Our hardware doesn't have a sample_d_c message, so shadow compares
1096 * for textureGrad/TXD need to be emulated with instructions.
1097 */
1098 bool hw_compare_supported = ir->op != ir_txd;
1099 if (ir->shadow_comparitor && !hw_compare_supported) {
1100 assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1101 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1102 if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1103 return swizzle_result(ir, fs_reg(1.0f), sampler);
1104 else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1105 return swizzle_result(ir, fs_reg(0.0f), sampler);
1106 }
1107
1108 if (ir->coordinate)
1109 ir->coordinate->accept(this);
1110 fs_reg coordinate = this->result;
1111
1112 if (ir->offset != NULL) {
1113 uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1114
1115 /* Explicitly set up the message header by copying g0 to msg reg m1. */
1116 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1117 fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1118
1119 /* Then set the offset bits in DWord 2 of the message header. */
1120 emit(BRW_OPCODE_MOV,
1121 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1122 BRW_REGISTER_TYPE_UD)),
1123 fs_reg(brw_imm_uw(offset_bits)));
1124 }
1125
1126 /* Should be lowered by do_lower_texture_projection */
1127 assert(!ir->projector);
1128
1129 bool needs_gl_clamp = true;
1130
1131 fs_reg scale_x, scale_y;
1132
1133 /* The 965 requires the EU to do the normalization of GL rectangle
1134 * texture coordinates. We use the program parameter state
1135 * tracking to get the scaling factor.
1136 */
1137 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1138 (intel->gen < 6 ||
1139 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1140 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1141 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1142 int tokens[STATE_LENGTH] = {
1143 STATE_INTERNAL,
1144 STATE_TEXRECT_SCALE,
1145 sampler,
1146 0,
1147 0
1148 };
1149
1150 if (c->dispatch_width == 16) {
1151 fail("rectangle scale uniform setup not supported on 16-wide\n");
1152 this->result = fs_reg(this, ir->type);
1153 return;
1154 }
1155
1156 c->prog_data.param_convert[c->prog_data.nr_params] =
1157 PARAM_NO_CONVERT;
1158 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1159 PARAM_NO_CONVERT;
1160
1161 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1162 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1163
1164 GLuint index = _mesa_add_state_reference(params,
1165 (gl_state_index *)tokens);
1166
1167 this->param_index[c->prog_data.nr_params] = index;
1168 this->param_offset[c->prog_data.nr_params] = 0;
1169 c->prog_data.nr_params++;
1170 this->param_index[c->prog_data.nr_params] = index;
1171 this->param_offset[c->prog_data.nr_params] = 1;
1172 c->prog_data.nr_params++;
1173 }
1174
1175 /* The 965 requires the EU to do the normalization of GL rectangle
1176 * texture coordinates. We use the program parameter state
1177 * tracking to get the scaling factor.
1178 */
1179 if (intel->gen < 6 &&
1180 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1181 fs_reg dst = fs_reg(this, ir->coordinate->type);
1182 fs_reg src = coordinate;
1183 coordinate = dst;
1184
1185 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1186 dst.reg_offset++;
1187 src.reg_offset++;
1188 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1189 } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1190 /* On gen6+, the sampler handles the rectangle coordinates
1191 * natively, without needing rescaling. But that means we have
1192 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1193 * not [0, 1] like the default case below.
1194 */
1195 needs_gl_clamp = false;
1196
1197 for (int i = 0; i < 2; i++) {
1198 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1199 fs_reg chan = coordinate;
1200 chan.reg_offset += i;
1201
1202 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1203 inst->conditional_mod = BRW_CONDITIONAL_G;
1204
1205 /* Our parameter comes in as 1.0/width or 1.0/height,
1206 * because that's what people normally want for doing
1207 * texture rectangle handling. We need width or height
1208 * for clamping, but we don't care enough to make a new
1209 * parameter type, so just invert back.
1210 */
1211 fs_reg limit = fs_reg(this, glsl_type::float_type);
1212 emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1213 emit(SHADER_OPCODE_RCP, limit, limit);
1214
1215 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1216 inst->conditional_mod = BRW_CONDITIONAL_L;
1217 }
1218 }
1219 }
1220
1221 if (ir->coordinate && needs_gl_clamp) {
1222 for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1223 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1224 fs_reg chan = coordinate;
1225 chan.reg_offset += i;
1226
1227 fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1228 inst->saturate = true;
1229 }
1230 }
1231 }
1232
1233 /* Writemasking doesn't eliminate channels on SIMD8 texture
1234 * samples, so don't worry about them.
1235 */
1236 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1237
1238 if (intel->gen >= 7) {
1239 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1240 } else if (intel->gen >= 5) {
1241 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1242 } else {
1243 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1244 }
1245
1246 /* If there's an offset, we already set up m1. To avoid the implied move,
1247 * use the null register. Otherwise, we want an implied move from g0.
1248 */
1249 if (ir->offset != NULL || !inst->header_present)
1250 inst->src[0] = reg_undef;
1251 else
1252 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1253
1254 inst->sampler = sampler;
1255
1256 if (ir->shadow_comparitor) {
1257 if (hw_compare_supported) {
1258 inst->shadow_compare = true;
1259 } else {
1260 ir->shadow_comparitor->accept(this);
1261 fs_reg ref = this->result;
1262
1263 fs_reg value = dst;
1264 dst = fs_reg(this, glsl_type::vec4_type);
1265
1266 /* FINISHME: This needs to be done pre-filtering. */
1267
1268 uint32_t conditional = 0;
1269 switch (c->key.tex.compare_funcs[sampler]) {
1270 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1271 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1272 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1273 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1274 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1275 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1276 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1277 default: assert(!"Should not get here: bad shadow compare function");
1278 }
1279
1280 /* Use conditional moves to load 0 or 1 as the result */
1281 this->current_annotation = "manual shadow comparison";
1282 for (int i = 0; i < 4; i++) {
1283 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1284
1285 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1286 inst->conditional_mod = conditional;
1287
1288 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1289 inst->predicated = true;
1290
1291 dst.reg_offset++;
1292 value.reg_offset++;
1293 }
1294 dst.reg_offset = 0;
1295 }
1296 }
1297
1298 swizzle_result(ir, dst, sampler);
1299 }
1300
1301 /**
1302 * Swizzle the result of a texture result. This is necessary for
1303 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1304 */
1305 void
1306 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1307 {
1308 this->result = orig_val;
1309
1310 if (ir->op == ir_txs)
1311 return;
1312
1313 if (ir->type == glsl_type::float_type) {
1314 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1315 assert(ir->sampler->type->sampler_shadow);
1316 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1317 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1318
1319 for (int i = 0; i < 4; i++) {
1320 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1321 fs_reg l = swizzled_result;
1322 l.reg_offset += i;
1323
1324 if (swiz == SWIZZLE_ZERO) {
1325 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1326 } else if (swiz == SWIZZLE_ONE) {
1327 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1328 } else {
1329 fs_reg r = orig_val;
1330 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1331 emit(BRW_OPCODE_MOV, l, r);
1332 }
1333 }
1334 this->result = swizzled_result;
1335 }
1336 }
1337
1338 void
1339 fs_visitor::visit(ir_swizzle *ir)
1340 {
1341 ir->val->accept(this);
1342 fs_reg val = this->result;
1343
1344 if (ir->type->vector_elements == 1) {
1345 this->result.reg_offset += ir->mask.x;
1346 return;
1347 }
1348
1349 fs_reg result = fs_reg(this, ir->type);
1350 this->result = result;
1351
1352 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1353 fs_reg channel = val;
1354 int swiz = 0;
1355
1356 switch (i) {
1357 case 0:
1358 swiz = ir->mask.x;
1359 break;
1360 case 1:
1361 swiz = ir->mask.y;
1362 break;
1363 case 2:
1364 swiz = ir->mask.z;
1365 break;
1366 case 3:
1367 swiz = ir->mask.w;
1368 break;
1369 }
1370
1371 channel.reg_offset += swiz;
1372 emit(BRW_OPCODE_MOV, result, channel);
1373 result.reg_offset++;
1374 }
1375 }
1376
1377 void
1378 fs_visitor::visit(ir_discard *ir)
1379 {
1380 assert(ir->condition == NULL); /* FINISHME */
1381
1382 emit(FS_OPCODE_DISCARD);
1383 kill_emitted = true;
1384 }
1385
1386 void
1387 fs_visitor::visit(ir_constant *ir)
1388 {
1389 /* Set this->result to reg at the bottom of the function because some code
1390 * paths will cause this visitor to be applied to other fields. This will
1391 * cause the value stored in this->result to be modified.
1392 *
1393 * Make reg constant so that it doesn't get accidentally modified along the
1394 * way. Yes, I actually had this problem. :(
1395 */
1396 const fs_reg reg(this, ir->type);
1397 fs_reg dst_reg = reg;
1398
1399 if (ir->type->is_array()) {
1400 const unsigned size = type_size(ir->type->fields.array);
1401
1402 for (unsigned i = 0; i < ir->type->length; i++) {
1403 ir->array_elements[i]->accept(this);
1404 fs_reg src_reg = this->result;
1405
1406 dst_reg.type = src_reg.type;
1407 for (unsigned j = 0; j < size; j++) {
1408 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1409 src_reg.reg_offset++;
1410 dst_reg.reg_offset++;
1411 }
1412 }
1413 } else if (ir->type->is_record()) {
1414 foreach_list(node, &ir->components) {
1415 ir_instruction *const field = (ir_instruction *) node;
1416 const unsigned size = type_size(field->type);
1417
1418 field->accept(this);
1419 fs_reg src_reg = this->result;
1420
1421 dst_reg.type = src_reg.type;
1422 for (unsigned j = 0; j < size; j++) {
1423 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1424 src_reg.reg_offset++;
1425 dst_reg.reg_offset++;
1426 }
1427 }
1428 } else {
1429 const unsigned size = type_size(ir->type);
1430
1431 for (unsigned i = 0; i < size; i++) {
1432 switch (ir->type->base_type) {
1433 case GLSL_TYPE_FLOAT:
1434 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1435 break;
1436 case GLSL_TYPE_UINT:
1437 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1438 break;
1439 case GLSL_TYPE_INT:
1440 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1441 break;
1442 case GLSL_TYPE_BOOL:
1443 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1444 break;
1445 default:
1446 assert(!"Non-float/uint/int/bool constant");
1447 }
1448 dst_reg.reg_offset++;
1449 }
1450 }
1451
1452 this->result = reg;
1453 }
1454
1455 void
1456 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1457 {
1458 ir_expression *expr = ir->as_expression();
1459
1460 if (expr) {
1461 fs_reg op[2];
1462 fs_inst *inst;
1463
1464 assert(expr->get_num_operands() <= 2);
1465 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1466 assert(expr->operands[i]->type->is_scalar());
1467
1468 expr->operands[i]->accept(this);
1469 op[i] = this->result;
1470
1471 resolve_ud_negate(&op[i]);
1472 }
1473
1474 switch (expr->operation) {
1475 case ir_unop_logic_not:
1476 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1477 inst->conditional_mod = BRW_CONDITIONAL_Z;
1478 break;
1479
1480 case ir_binop_logic_xor:
1481 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1482 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1483 break;
1484
1485 case ir_binop_logic_or:
1486 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1487 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1488 break;
1489
1490 case ir_binop_logic_and:
1491 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1492 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1493 break;
1494
1495 case ir_unop_f2b:
1496 if (intel->gen >= 6) {
1497 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1498 } else {
1499 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1500 }
1501 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1502 break;
1503
1504 case ir_unop_i2b:
1505 if (intel->gen >= 6) {
1506 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1507 } else {
1508 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1509 }
1510 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1511 break;
1512
1513 case ir_binop_greater:
1514 case ir_binop_gequal:
1515 case ir_binop_less:
1516 case ir_binop_lequal:
1517 case ir_binop_equal:
1518 case ir_binop_all_equal:
1519 case ir_binop_nequal:
1520 case ir_binop_any_nequal:
1521 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1522 inst->conditional_mod =
1523 brw_conditional_for_comparison(expr->operation);
1524 break;
1525
1526 default:
1527 assert(!"not reached");
1528 fail("bad cond code\n");
1529 break;
1530 }
1531 return;
1532 }
1533
1534 ir->accept(this);
1535
1536 if (intel->gen >= 6) {
1537 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1538 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1539 } else {
1540 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1541 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1542 }
1543 }
1544
1545 /**
1546 * Emit a gen6 IF statement with the comparison folded into the IF
1547 * instruction.
1548 */
1549 void
1550 fs_visitor::emit_if_gen6(ir_if *ir)
1551 {
1552 ir_expression *expr = ir->condition->as_expression();
1553
1554 if (expr) {
1555 fs_reg op[2];
1556 fs_inst *inst;
1557 fs_reg temp;
1558
1559 assert(expr->get_num_operands() <= 2);
1560 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1561 assert(expr->operands[i]->type->is_scalar());
1562
1563 expr->operands[i]->accept(this);
1564 op[i] = this->result;
1565 }
1566
1567 switch (expr->operation) {
1568 case ir_unop_logic_not:
1569 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1570 inst->conditional_mod = BRW_CONDITIONAL_Z;
1571 return;
1572
1573 case ir_binop_logic_xor:
1574 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1575 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1576 return;
1577
1578 case ir_binop_logic_or:
1579 temp = fs_reg(this, glsl_type::bool_type);
1580 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1581 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1582 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1583 return;
1584
1585 case ir_binop_logic_and:
1586 temp = fs_reg(this, glsl_type::bool_type);
1587 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1588 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1589 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1590 return;
1591
1592 case ir_unop_f2b:
1593 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1594 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1595 return;
1596
1597 case ir_unop_i2b:
1598 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1599 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1600 return;
1601
1602 case ir_binop_greater:
1603 case ir_binop_gequal:
1604 case ir_binop_less:
1605 case ir_binop_lequal:
1606 case ir_binop_equal:
1607 case ir_binop_all_equal:
1608 case ir_binop_nequal:
1609 case ir_binop_any_nequal:
1610 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1611 inst->conditional_mod =
1612 brw_conditional_for_comparison(expr->operation);
1613 return;
1614 default:
1615 assert(!"not reached");
1616 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1617 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1618 fail("bad condition\n");
1619 return;
1620 }
1621 return;
1622 }
1623
1624 ir->condition->accept(this);
1625
1626 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1627 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1628 }
1629
1630 void
1631 fs_visitor::visit(ir_if *ir)
1632 {
1633 fs_inst *inst;
1634
1635 if (intel->gen < 6 && c->dispatch_width == 16) {
1636 fail("Can't support (non-uniform) control flow on 16-wide\n");
1637 }
1638
1639 /* Don't point the annotation at the if statement, because then it plus
1640 * the then and else blocks get printed.
1641 */
1642 this->base_ir = ir->condition;
1643
1644 if (intel->gen == 6) {
1645 emit_if_gen6(ir);
1646 } else {
1647 emit_bool_to_cond_code(ir->condition);
1648
1649 inst = emit(BRW_OPCODE_IF);
1650 inst->predicated = true;
1651 }
1652
1653 foreach_list(node, &ir->then_instructions) {
1654 ir_instruction *ir = (ir_instruction *)node;
1655 this->base_ir = ir;
1656
1657 ir->accept(this);
1658 }
1659
1660 if (!ir->else_instructions.is_empty()) {
1661 emit(BRW_OPCODE_ELSE);
1662
1663 foreach_list(node, &ir->else_instructions) {
1664 ir_instruction *ir = (ir_instruction *)node;
1665 this->base_ir = ir;
1666
1667 ir->accept(this);
1668 }
1669 }
1670
1671 emit(BRW_OPCODE_ENDIF);
1672 }
1673
1674 void
1675 fs_visitor::visit(ir_loop *ir)
1676 {
1677 fs_reg counter = reg_undef;
1678
1679 if (c->dispatch_width == 16) {
1680 fail("Can't support (non-uniform) control flow on 16-wide\n");
1681 }
1682
1683 if (ir->counter) {
1684 this->base_ir = ir->counter;
1685 ir->counter->accept(this);
1686 counter = *(variable_storage(ir->counter));
1687
1688 if (ir->from) {
1689 this->base_ir = ir->from;
1690 ir->from->accept(this);
1691
1692 emit(BRW_OPCODE_MOV, counter, this->result);
1693 }
1694 }
1695
1696 emit(BRW_OPCODE_DO);
1697
1698 if (ir->to) {
1699 this->base_ir = ir->to;
1700 ir->to->accept(this);
1701
1702 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1703 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1704
1705 inst = emit(BRW_OPCODE_BREAK);
1706 inst->predicated = true;
1707 }
1708
1709 foreach_list(node, &ir->body_instructions) {
1710 ir_instruction *ir = (ir_instruction *)node;
1711
1712 this->base_ir = ir;
1713 ir->accept(this);
1714 }
1715
1716 if (ir->increment) {
1717 this->base_ir = ir->increment;
1718 ir->increment->accept(this);
1719 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1720 }
1721
1722 emit(BRW_OPCODE_WHILE);
1723 }
1724
1725 void
1726 fs_visitor::visit(ir_loop_jump *ir)
1727 {
1728 switch (ir->mode) {
1729 case ir_loop_jump::jump_break:
1730 emit(BRW_OPCODE_BREAK);
1731 break;
1732 case ir_loop_jump::jump_continue:
1733 emit(BRW_OPCODE_CONTINUE);
1734 break;
1735 }
1736 }
1737
1738 void
1739 fs_visitor::visit(ir_call *ir)
1740 {
1741 assert(!"FINISHME");
1742 }
1743
1744 void
1745 fs_visitor::visit(ir_return *ir)
1746 {
1747 assert(!"FINISHME");
1748 }
1749
1750 void
1751 fs_visitor::visit(ir_function *ir)
1752 {
1753 /* Ignore function bodies other than main() -- we shouldn't see calls to
1754 * them since they should all be inlined before we get to ir_to_mesa.
1755 */
1756 if (strcmp(ir->name, "main") == 0) {
1757 const ir_function_signature *sig;
1758 exec_list empty;
1759
1760 sig = ir->matching_signature(&empty);
1761
1762 assert(sig);
1763
1764 foreach_list(node, &sig->body) {
1765 ir_instruction *ir = (ir_instruction *)node;
1766 this->base_ir = ir;
1767
1768 ir->accept(this);
1769 }
1770 }
1771 }
1772
1773 void
1774 fs_visitor::visit(ir_function_signature *ir)
1775 {
1776 assert(!"not reached");
1777 (void)ir;
1778 }
1779
1780 fs_inst *
1781 fs_visitor::emit(fs_inst inst)
1782 {
1783 fs_inst *list_inst = new(mem_ctx) fs_inst;
1784 *list_inst = inst;
1785
1786 if (force_uncompressed_stack > 0)
1787 list_inst->force_uncompressed = true;
1788 else if (force_sechalf_stack > 0)
1789 list_inst->force_sechalf = true;
1790
1791 list_inst->annotation = this->current_annotation;
1792 list_inst->ir = this->base_ir;
1793
1794 this->instructions.push_tail(list_inst);
1795
1796 return list_inst;
1797 }
1798
1799 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1800 void
1801 fs_visitor::emit_dummy_fs()
1802 {
1803 /* Everyone's favorite color. */
1804 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1805 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1806 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1807 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1808
1809 fs_inst *write;
1810 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1811 write->base_mrf = 2;
1812 }
1813
1814 /* The register location here is relative to the start of the URB
1815 * data. It will get adjusted to be a real location before
1816 * generate_code() time.
1817 */
1818 struct brw_reg
1819 fs_visitor::interp_reg(int location, int channel)
1820 {
1821 int regnr = urb_setup[location] * 2 + channel / 2;
1822 int stride = (channel & 1) * 4;
1823
1824 assert(urb_setup[location] != -1);
1825
1826 return brw_vec1_grf(regnr, stride);
1827 }
1828
1829 /** Emits the interpolation for the varying inputs. */
1830 void
1831 fs_visitor::emit_interpolation_setup_gen4()
1832 {
1833 this->current_annotation = "compute pixel centers";
1834 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1835 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1836 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1837 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1838
1839 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1840 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1841
1842 this->current_annotation = "compute pixel deltas from v0";
1843 if (brw->has_pln) {
1844 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1845 fs_reg(this, glsl_type::vec2_type);
1846 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1847 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1848 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1849 } else {
1850 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1851 fs_reg(this, glsl_type::float_type);
1852 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1853 fs_reg(this, glsl_type::float_type);
1854 }
1855 emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1856 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1857 emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1858 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1859
1860 this->current_annotation = "compute pos.w and 1/pos.w";
1861 /* Compute wpos.w. It's always in our setup, since it's needed to
1862 * interpolate the other attributes.
1863 */
1864 this->wpos_w = fs_reg(this, glsl_type::float_type);
1865 emit(FS_OPCODE_LINTERP, wpos_w,
1866 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1867 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1868 interp_reg(FRAG_ATTRIB_WPOS, 3));
1869 /* Compute the pixel 1/W value from wpos.w. */
1870 this->pixel_w = fs_reg(this, glsl_type::float_type);
1871 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1872 this->current_annotation = NULL;
1873 }
1874
1875 /** Emits the interpolation for the varying inputs. */
1876 void
1877 fs_visitor::emit_interpolation_setup_gen6()
1878 {
1879 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1880
1881 /* If the pixel centers end up used, the setup is the same as for gen4. */
1882 this->current_annotation = "compute pixel centers";
1883 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1884 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1885 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1886 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1887 emit(BRW_OPCODE_ADD,
1888 int_pixel_x,
1889 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1890 fs_reg(brw_imm_v(0x10101010)));
1891 emit(BRW_OPCODE_ADD,
1892 int_pixel_y,
1893 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1894 fs_reg(brw_imm_v(0x11001100)));
1895
1896 /* As of gen6, we can no longer mix float and int sources. We have
1897 * to turn the integer pixel centers into floats for their actual
1898 * use.
1899 */
1900 this->pixel_x = fs_reg(this, glsl_type::float_type);
1901 this->pixel_y = fs_reg(this, glsl_type::float_type);
1902 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1903 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1904
1905 this->current_annotation = "compute pos.w";
1906 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1907 this->wpos_w = fs_reg(this, glsl_type::float_type);
1908 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1909
1910 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1911 uint8_t reg = c->barycentric_coord_reg[i];
1912 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1913 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1914 }
1915
1916 this->current_annotation = NULL;
1917 }
1918
1919 void
1920 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1921 {
1922 int reg_width = c->dispatch_width / 8;
1923 fs_inst *inst;
1924 fs_reg color = outputs[target];
1925 fs_reg mrf;
1926
1927 /* If there's no color data to be written, skip it. */
1928 if (color.file == BAD_FILE)
1929 return;
1930
1931 color.reg_offset += index;
1932
1933 if (c->dispatch_width == 8 || intel->gen >= 6) {
1934 /* SIMD8 write looks like:
1935 * m + 0: r0
1936 * m + 1: r1
1937 * m + 2: g0
1938 * m + 3: g1
1939 *
1940 * gen6 SIMD16 DP write looks like:
1941 * m + 0: r0
1942 * m + 1: r1
1943 * m + 2: g0
1944 * m + 3: g1
1945 * m + 4: b0
1946 * m + 5: b1
1947 * m + 6: a0
1948 * m + 7: a1
1949 */
1950 inst = emit(BRW_OPCODE_MOV,
1951 fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1952 color);
1953 inst->saturate = c->key.clamp_fragment_color;
1954 } else {
1955 /* pre-gen6 SIMD16 single source DP write looks like:
1956 * m + 0: r0
1957 * m + 1: g0
1958 * m + 2: b0
1959 * m + 3: a0
1960 * m + 4: r1
1961 * m + 5: g1
1962 * m + 6: b1
1963 * m + 7: a1
1964 */
1965 if (brw->has_compr4) {
1966 /* By setting the high bit of the MRF register number, we
1967 * indicate that we want COMPR4 mode - instead of doing the
1968 * usual destination + 1 for the second half we get
1969 * destination + 4.
1970 */
1971 inst = emit(BRW_OPCODE_MOV,
1972 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1973 color.type),
1974 color);
1975 inst->saturate = c->key.clamp_fragment_color;
1976 } else {
1977 push_force_uncompressed();
1978 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1979 color.type),
1980 color);
1981 inst->saturate = c->key.clamp_fragment_color;
1982 pop_force_uncompressed();
1983
1984 push_force_sechalf();
1985 color.sechalf = true;
1986 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1987 color.type),
1988 color);
1989 inst->saturate = c->key.clamp_fragment_color;
1990 pop_force_sechalf();
1991 color.sechalf = false;
1992 }
1993 }
1994 }
1995
1996 void
1997 fs_visitor::emit_fb_writes()
1998 {
1999 this->current_annotation = "FB write header";
2000 bool header_present = true;
2001 int base_mrf = 2;
2002 int nr = base_mrf;
2003 int reg_width = c->dispatch_width / 8;
2004
2005 if (intel->gen >= 6 &&
2006 !this->kill_emitted &&
2007 c->key.nr_color_regions == 1) {
2008 header_present = false;
2009 }
2010
2011 if (header_present) {
2012 /* m2, m3 header */
2013 nr += 2;
2014 }
2015
2016 if (c->aa_dest_stencil_reg) {
2017 push_force_uncompressed();
2018 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2019 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2020 pop_force_uncompressed();
2021 }
2022
2023 /* Reserve space for color. It'll be filled in per MRT below. */
2024 int color_mrf = nr;
2025 nr += 4 * reg_width;
2026
2027 if (c->source_depth_to_render_target) {
2028 if (intel->gen == 6 && c->dispatch_width == 16) {
2029 /* For outputting oDepth on gen6, SIMD8 writes have to be
2030 * used. This would require 8-wide moves of each half to
2031 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2032 * Just bail on doing so for now.
2033 */
2034 fail("Missing support for simd16 depth writes on gen6\n");
2035 }
2036
2037 if (c->computes_depth) {
2038 /* Hand over gl_FragDepth. */
2039 assert(this->frag_depth);
2040 fs_reg depth = *(variable_storage(this->frag_depth));
2041
2042 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2043 } else {
2044 /* Pass through the payload depth. */
2045 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2046 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2047 }
2048 nr += reg_width;
2049 }
2050
2051 if (c->dest_depth_reg) {
2052 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2053 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2054 nr += reg_width;
2055 }
2056
2057 for (int target = 0; target < c->key.nr_color_regions; target++) {
2058 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2059 "FB write target %d",
2060 target);
2061 for (int i = 0; i < 4; i++)
2062 emit_color_write(target, i, color_mrf);
2063
2064 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2065 inst->target = target;
2066 inst->base_mrf = base_mrf;
2067 inst->mlen = nr - base_mrf;
2068 if (target == c->key.nr_color_regions - 1)
2069 inst->eot = true;
2070 inst->header_present = header_present;
2071 }
2072
2073 if (c->key.nr_color_regions == 0) {
2074 if (c->key.alpha_test) {
2075 /* If the alpha test is enabled but there's no color buffer,
2076 * we still need to send alpha out the pipeline to our null
2077 * renderbuffer.
2078 */
2079 emit_color_write(0, 3, color_mrf);
2080 }
2081
2082 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2083 inst->base_mrf = base_mrf;
2084 inst->mlen = nr - base_mrf;
2085 inst->eot = true;
2086 inst->header_present = header_present;
2087 }
2088
2089 this->current_annotation = NULL;
2090 }
2091
2092 void
2093 fs_visitor::resolve_ud_negate(fs_reg *reg)
2094 {
2095 if (reg->type != BRW_REGISTER_TYPE_UD ||
2096 !reg->negate)
2097 return;
2098
2099 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2100 emit(BRW_OPCODE_MOV, temp, *reg);
2101 *reg = temp;
2102 }