i965: Add support for gl_BaseVertexARB and gl_BaseInstanceARB
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "glsl/nir/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 default:
63 unreachable("not reached");
64 }
65
66 return reg;
67 }
68
69 /* Sample from the MCS surface attached to this multisample texture. */
70 fs_reg
71 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
72 const fs_reg &sampler)
73 {
74 const fs_reg dest = vgrf(glsl_type::uvec4_type);
75 const fs_reg srcs[] = {
76 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
77 sampler, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
78 };
79 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
80 ARRAY_SIZE(srcs));
81
82 /* We only care about one or two regs of response, but the sampler always
83 * writes 4/8.
84 */
85 inst->regs_written = 4 * dispatch_width / 8;
86
87 return dest;
88 }
89
90 void
91 fs_visitor::emit_texture(ir_texture_opcode op,
92 const glsl_type *dest_type,
93 fs_reg coordinate, int coord_components,
94 fs_reg shadow_c,
95 fs_reg lod, fs_reg lod2, int grad_components,
96 fs_reg sample_index,
97 fs_reg offset_value,
98 fs_reg mcs,
99 int gather_component,
100 bool is_cube_array,
101 uint32_t sampler,
102 fs_reg sampler_reg)
103 {
104 fs_inst *inst = NULL;
105
106 if (op == ir_query_levels) {
107 /* textureQueryLevels() is implemented in terms of TXS so we need to
108 * pass a valid LOD argument.
109 */
110 assert(lod.file == BAD_FILE);
111 lod = brw_imm_ud(0u);
112 }
113
114 if (op == ir_samples_identical) {
115 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
116
117 /* If mcs is an immediate value, it means there is no MCS. In that case
118 * just return false.
119 */
120 if (mcs.file == BRW_IMMEDIATE_VALUE) {
121 bld.MOV(dst, brw_imm_ud(0u));
122 } else if ((key_tex->msaa_16 & (1 << sampler))) {
123 fs_reg tmp = vgrf(glsl_type::uint_type);
124 bld.OR(tmp, mcs, offset(mcs, bld, 1));
125 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
126 } else {
127 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
128 }
129
130 this->result = dst;
131 return;
132 }
133
134 /* Writemasking doesn't eliminate channels on SIMD8 texture
135 * samples, so don't worry about them.
136 */
137 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
138 const fs_reg srcs[] = {
139 coordinate, shadow_c, lod, lod2,
140 sample_index, mcs, sampler_reg, offset_value,
141 brw_imm_d(coord_components), brw_imm_d(grad_components)
142 };
143 enum opcode opcode;
144
145 switch (op) {
146 case ir_tex:
147 opcode = SHADER_OPCODE_TEX_LOGICAL;
148 break;
149 case ir_txb:
150 opcode = FS_OPCODE_TXB_LOGICAL;
151 break;
152 case ir_txl:
153 opcode = SHADER_OPCODE_TXL_LOGICAL;
154 break;
155 case ir_txd:
156 opcode = SHADER_OPCODE_TXD_LOGICAL;
157 break;
158 case ir_txf:
159 opcode = SHADER_OPCODE_TXF_LOGICAL;
160 break;
161 case ir_txf_ms:
162 if ((key_tex->msaa_16 & (1 << sampler)))
163 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
164 else
165 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
166 break;
167 case ir_txs:
168 case ir_query_levels:
169 opcode = SHADER_OPCODE_TXS_LOGICAL;
170 break;
171 case ir_lod:
172 opcode = SHADER_OPCODE_LOD_LOGICAL;
173 break;
174 case ir_tg4:
175 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
176 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
177 break;
178 default:
179 unreachable("Invalid texture opcode.");
180 }
181
182 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
183 inst->regs_written = 4 * dispatch_width / 8;
184
185 if (shadow_c.file != BAD_FILE)
186 inst->shadow_compare = true;
187
188 if (offset_value.file == IMM)
189 inst->offset = offset_value.ud;
190
191 if (op == ir_tg4) {
192 if (gather_component == 1 &&
193 key_tex->gather_channel_quirk_mask & (1 << sampler)) {
194 /* gather4 sampler is broken for green channel on RG32F --
195 * we must ask for blue instead.
196 */
197 inst->offset |= 2 << 16;
198 } else {
199 inst->offset |= gather_component << 16;
200 }
201
202 if (devinfo->gen == 6)
203 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
204 }
205
206 /* fixup #layers for cube map arrays */
207 if (op == ir_txs && is_cube_array) {
208 fs_reg depth = offset(dst, bld, 2);
209 fs_reg fixed_depth = vgrf(glsl_type::int_type);
210 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
211
212 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
213 int components = inst->regs_written / (inst->exec_size / 8);
214 for (int i = 0; i < components; i++) {
215 if (i == 2) {
216 fixed_payload[i] = fixed_depth;
217 } else {
218 fixed_payload[i] = offset(dst, bld, i);
219 }
220 }
221 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
222 }
223
224 if (op == ir_query_levels) {
225 /* # levels is in .w */
226 dst = offset(dst, bld, 3);
227 }
228
229 this->result = dst;
230 }
231
232 /**
233 * Apply workarounds for Gen6 gather with UINT/SINT
234 */
235 void
236 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
237 {
238 if (!wa)
239 return;
240
241 int width = (wa & WA_8BIT) ? 8 : 16;
242
243 for (int i = 0; i < 4; i++) {
244 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
245 /* Convert from UNORM to UINT */
246 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
247 bld.MOV(dst, dst_f);
248
249 if (wa & WA_SIGN) {
250 /* Reinterpret the UINT value as a signed INT value by
251 * shifting the sign bit into place, then shifting back
252 * preserving sign.
253 */
254 bld.SHL(dst, dst, brw_imm_d(32 - width));
255 bld.ASR(dst, dst, brw_imm_d(32 - width));
256 }
257
258 dst = offset(dst, bld, 1);
259 }
260 }
261
262 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
263 void
264 fs_visitor::emit_dummy_fs()
265 {
266 int reg_width = dispatch_width / 8;
267
268 /* Everyone's favorite color. */
269 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
270 for (int i = 0; i < 4; i++) {
271 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
272 brw_imm_f(color[i]));
273 }
274
275 fs_inst *write;
276 write = bld.emit(FS_OPCODE_FB_WRITE);
277 write->eot = true;
278 if (devinfo->gen >= 6) {
279 write->base_mrf = 2;
280 write->mlen = 4 * reg_width;
281 } else {
282 write->header_size = 2;
283 write->base_mrf = 0;
284 write->mlen = 2 + 4 * reg_width;
285 }
286
287 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
288 * varying to avoid GPU hangs, so set that.
289 */
290 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
291 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
292 memset(wm_prog_data->urb_setup, -1,
293 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
294
295 /* We don't have any uniforms. */
296 stage_prog_data->nr_params = 0;
297 stage_prog_data->nr_pull_params = 0;
298 stage_prog_data->curb_read_length = 0;
299 stage_prog_data->dispatch_grf_start_reg = 2;
300 wm_prog_data->dispatch_grf_start_reg_16 = 2;
301 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
302
303 calculate_cfg();
304 }
305
306 /* The register location here is relative to the start of the URB
307 * data. It will get adjusted to be a real location before
308 * generate_code() time.
309 */
310 struct brw_reg
311 fs_visitor::interp_reg(int location, int channel)
312 {
313 assert(stage == MESA_SHADER_FRAGMENT);
314 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
315 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
316 int stride = (channel & 1) * 4;
317
318 assert(prog_data->urb_setup[location] != -1);
319
320 return brw_vec1_grf(regnr, stride);
321 }
322
323 /** Emits the interpolation for the varying inputs. */
324 void
325 fs_visitor::emit_interpolation_setup_gen4()
326 {
327 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
328
329 fs_builder abld = bld.annotate("compute pixel centers");
330 this->pixel_x = vgrf(glsl_type::uint_type);
331 this->pixel_y = vgrf(glsl_type::uint_type);
332 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
333 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
334 abld.ADD(this->pixel_x,
335 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
336 fs_reg(brw_imm_v(0x10101010)));
337 abld.ADD(this->pixel_y,
338 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
339 fs_reg(brw_imm_v(0x11001100)));
340
341 abld = bld.annotate("compute pixel deltas from v0");
342
343 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
344 vgrf(glsl_type::vec2_type);
345 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
346 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
347 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
348
349 if (devinfo->has_pln && dispatch_width == 16) {
350 for (unsigned i = 0; i < 2; i++) {
351 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
352 half(this->pixel_x, i), xstart);
353 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
354 half(this->pixel_y, i), ystart);
355 }
356 } else {
357 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
358 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
359 }
360
361 abld = bld.annotate("compute pos.w and 1/pos.w");
362 /* Compute wpos.w. It's always in our setup, since it's needed to
363 * interpolate the other attributes.
364 */
365 this->wpos_w = vgrf(glsl_type::float_type);
366 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
367 interp_reg(VARYING_SLOT_POS, 3));
368 /* Compute the pixel 1/W value from wpos.w. */
369 this->pixel_w = vgrf(glsl_type::float_type);
370 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
371 }
372
373 /** Emits the interpolation for the varying inputs. */
374 void
375 fs_visitor::emit_interpolation_setup_gen6()
376 {
377 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
378
379 fs_builder abld = bld.annotate("compute pixel centers");
380 if (devinfo->gen >= 8 || dispatch_width == 8) {
381 /* The "Register Region Restrictions" page says for BDW (and newer,
382 * presumably):
383 *
384 * "When destination spans two registers, the source may be one or
385 * two registers. The destination elements must be evenly split
386 * between the two registers."
387 *
388 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
389 * compute our pixel centers.
390 */
391 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
392 BRW_REGISTER_TYPE_UW);
393
394 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
395 dbld.ADD(int_pixel_xy,
396 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
397 fs_reg(brw_imm_v(0x11001010)));
398
399 this->pixel_x = vgrf(glsl_type::float_type);
400 this->pixel_y = vgrf(glsl_type::float_type);
401 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
402 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
403 } else {
404 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
405 *
406 * "When destination spans two registers, the source MUST span two
407 * registers."
408 *
409 * Since the GRF source of the ADD will only read a single register, we
410 * must do two separate ADDs in SIMD16.
411 */
412 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
413 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
414 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
415 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
416 abld.ADD(int_pixel_x,
417 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
418 fs_reg(brw_imm_v(0x10101010)));
419 abld.ADD(int_pixel_y,
420 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
421 fs_reg(brw_imm_v(0x11001100)));
422
423 /* As of gen6, we can no longer mix float and int sources. We have
424 * to turn the integer pixel centers into floats for their actual
425 * use.
426 */
427 this->pixel_x = vgrf(glsl_type::float_type);
428 this->pixel_y = vgrf(glsl_type::float_type);
429 abld.MOV(this->pixel_x, int_pixel_x);
430 abld.MOV(this->pixel_y, int_pixel_y);
431 }
432
433 abld = bld.annotate("compute pos.w");
434 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
435 this->wpos_w = vgrf(glsl_type::float_type);
436 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
437
438 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
439 uint8_t reg = payload.barycentric_coord_reg[i];
440 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
441 }
442 }
443
444 static enum brw_conditional_mod
445 cond_for_alpha_func(GLenum func)
446 {
447 switch(func) {
448 case GL_GREATER:
449 return BRW_CONDITIONAL_G;
450 case GL_GEQUAL:
451 return BRW_CONDITIONAL_GE;
452 case GL_LESS:
453 return BRW_CONDITIONAL_L;
454 case GL_LEQUAL:
455 return BRW_CONDITIONAL_LE;
456 case GL_EQUAL:
457 return BRW_CONDITIONAL_EQ;
458 case GL_NOTEQUAL:
459 return BRW_CONDITIONAL_NEQ;
460 default:
461 unreachable("Not reached");
462 }
463 }
464
465 /**
466 * Alpha test support for when we compile it into the shader instead
467 * of using the normal fixed-function alpha test.
468 */
469 void
470 fs_visitor::emit_alpha_test()
471 {
472 assert(stage == MESA_SHADER_FRAGMENT);
473 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
474 const fs_builder abld = bld.annotate("Alpha test");
475
476 fs_inst *cmp;
477 if (key->alpha_test_func == GL_ALWAYS)
478 return;
479
480 if (key->alpha_test_func == GL_NEVER) {
481 /* f0.1 = 0 */
482 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
483 BRW_REGISTER_TYPE_UW));
484 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
485 BRW_CONDITIONAL_NEQ);
486 } else {
487 /* RT0 alpha */
488 fs_reg color = offset(outputs[0], bld, 3);
489
490 /* f0.1 &= func(color, ref) */
491 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
492 cond_for_alpha_func(key->alpha_test_func));
493 }
494 cmp->predicate = BRW_PREDICATE_NORMAL;
495 cmp->flag_subreg = 1;
496 }
497
498 fs_inst *
499 fs_visitor::emit_single_fb_write(const fs_builder &bld,
500 fs_reg color0, fs_reg color1,
501 fs_reg src0_alpha, unsigned components)
502 {
503 assert(stage == MESA_SHADER_FRAGMENT);
504 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
505
506 /* Hand over gl_FragDepth or the payload depth. */
507 const fs_reg dst_depth = (payload.dest_depth_reg ?
508 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
509 fs_reg());
510 fs_reg src_depth, src_stencil;
511
512 if (source_depth_to_render_target) {
513 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
514 src_depth = frag_depth;
515 else
516 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
517 }
518
519 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
520 src_stencil = frag_stencil;
521
522 const fs_reg sources[] = {
523 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
524 sample_mask, brw_imm_ud(components)
525 };
526 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
527 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
528 sources, ARRAY_SIZE(sources));
529
530 if (prog_data->uses_kill) {
531 write->predicate = BRW_PREDICATE_NORMAL;
532 write->flag_subreg = 1;
533 }
534
535 return write;
536 }
537
538 void
539 fs_visitor::emit_fb_writes()
540 {
541 assert(stage == MESA_SHADER_FRAGMENT);
542 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
543 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
544
545 fs_inst *inst = NULL;
546
547 if (source_depth_to_render_target && devinfo->gen == 6) {
548 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
549 * would require SIMD8 moves of each half to message regs, e.g. by using
550 * the SIMD lowering pass. Unfortunately this is more difficult than it
551 * sounds because the SIMD8 single-source message lacks channel selects
552 * for the second and third subspans.
553 */
554 no16("Missing support for simd16 depth writes on gen6\n");
555 }
556
557 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
558 /* From the 'Render Target Write message' section of the docs:
559 * "Output Stencil is not supported with SIMD16 Render Target Write
560 * Messages."
561 *
562 * FINISHME: split 16 into 2 8s
563 */
564 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
565 }
566
567 if (do_dual_src) {
568 const fs_builder abld = bld.annotate("FB dual-source write");
569
570 inst = emit_single_fb_write(abld, this->outputs[0],
571 this->dual_src_output, reg_undef, 4);
572 inst->target = 0;
573
574 prog_data->dual_src_blend = true;
575 } else {
576 for (int target = 0; target < key->nr_color_regions; target++) {
577 /* Skip over outputs that weren't written. */
578 if (this->outputs[target].file == BAD_FILE)
579 continue;
580
581 const fs_builder abld = bld.annotate(
582 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
583
584 fs_reg src0_alpha;
585 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
586 src0_alpha = offset(outputs[0], bld, 3);
587
588 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
589 src0_alpha,
590 this->output_components[target]);
591 inst->target = target;
592 }
593 }
594
595 if (inst == NULL) {
596 /* Even if there's no color buffers enabled, we still need to send
597 * alpha out the pipeline to our null renderbuffer to support
598 * alpha-testing, alpha-to-coverage, and so on.
599 */
600 /* FINISHME: Factor out this frequently recurring pattern into a
601 * helper function.
602 */
603 const fs_reg srcs[] = { reg_undef, reg_undef,
604 reg_undef, offset(this->outputs[0], bld, 3) };
605 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
606 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
607
608 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
609 inst->target = 0;
610 }
611
612 inst->eot = true;
613 }
614
615 void
616 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
617 {
618 const struct brw_vs_prog_key *key =
619 (const struct brw_vs_prog_key *) this->key;
620
621 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
622 this->userplane[i] = fs_reg(UNIFORM, uniforms);
623 for (int j = 0; j < 4; ++j) {
624 stage_prog_data->param[uniforms + j] =
625 (gl_constant_value *) &clip_planes[i][j];
626 }
627 uniforms += 4;
628 }
629 }
630
631 /**
632 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
633 *
634 * This does nothing if the shader uses gl_ClipDistance or user clipping is
635 * disabled altogether.
636 */
637 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
638 {
639 struct brw_vue_prog_data *vue_prog_data =
640 (struct brw_vue_prog_data *) prog_data;
641 const struct brw_vs_prog_key *key =
642 (const struct brw_vs_prog_key *) this->key;
643
644 /* Bail unless some sort of legacy clipping is enabled */
645 if (key->nr_userclip_plane_consts == 0)
646 return;
647
648 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
649 *
650 * "If a linked set of shaders forming the vertex stage contains no
651 * static write to gl_ClipVertex or gl_ClipDistance, but the
652 * application has requested clipping against user clip planes through
653 * the API, then the coordinate written to gl_Position is used for
654 * comparison against the user clip planes."
655 *
656 * This function is only called if the shader didn't write to
657 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
658 * if the user wrote to it; otherwise we use gl_Position.
659 */
660
661 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
662 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
663 clip_vertex = VARYING_SLOT_POS;
664
665 /* If the clip vertex isn't written, skip this. Typically this means
666 * the GS will set up clipping. */
667 if (outputs[clip_vertex].file == BAD_FILE)
668 return;
669
670 setup_uniform_clipplane_values(clip_planes);
671
672 const fs_builder abld = bld.annotate("user clip distances");
673
674 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
675 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
676 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
677 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
678
679 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
680 fs_reg u = userplane[i];
681 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
682 output.reg_offset = i & 3;
683
684 abld.MUL(output, outputs[clip_vertex], u);
685 for (int j = 1; j < 4; j++) {
686 u.nr = userplane[i].nr + j;
687 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
688 }
689 }
690 }
691
692 void
693 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
694 {
695 int slot, urb_offset, length;
696 int starting_urb_offset = 0;
697 const struct brw_vue_prog_data *vue_prog_data =
698 (const struct brw_vue_prog_data *) this->prog_data;
699 const struct brw_vs_prog_key *vs_key =
700 (const struct brw_vs_prog_key *) this->key;
701 const GLbitfield64 psiz_mask =
702 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
703 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
704 bool flush;
705 fs_reg sources[8];
706 fs_reg urb_handle;
707
708 if (stage == MESA_SHADER_TESS_EVAL)
709 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
710 else
711 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
712
713 /* If we don't have any valid slots to write, just do a minimal urb write
714 * send to terminate the shader. This includes 1 slot of undefined data,
715 * because it's invalid to write 0 data:
716 *
717 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
718 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
719 * Write Data Payload:
720 *
721 * "The write data payload can be between 1 and 8 message phases long."
722 */
723 if (vue_map->slots_valid == 0) {
724 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
725 bld.exec_all().MOV(payload, urb_handle);
726
727 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
728 inst->eot = true;
729 inst->mlen = 2;
730 inst->offset = 1;
731 return;
732 }
733
734 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
735 int header_size = 1;
736 fs_reg per_slot_offsets;
737
738 if (stage == MESA_SHADER_GEOMETRY) {
739 const struct brw_gs_prog_data *gs_prog_data =
740 (const struct brw_gs_prog_data *) this->prog_data;
741
742 /* We need to increment the Global Offset to skip over the control data
743 * header and the extra "Vertex Count" field (1 HWord) at the beginning
744 * of the VUE. We're counting in OWords, so the units are doubled.
745 */
746 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
747 if (gs_prog_data->static_vertex_count == -1)
748 starting_urb_offset += 2;
749
750 /* We also need to use per-slot offsets. The per-slot offset is the
751 * Vertex Count. SIMD8 mode processes 8 different primitives at a
752 * time; each may output a different number of vertices.
753 */
754 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
755 header_size++;
756
757 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
758 const int output_vertex_size_owords =
759 gs_prog_data->output_vertex_size_hwords * 2;
760
761 if (gs_vertex_count.file == IMM) {
762 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
763 gs_vertex_count.ud);
764 } else {
765 per_slot_offsets = vgrf(glsl_type::int_type);
766 bld.MUL(per_slot_offsets, gs_vertex_count,
767 brw_imm_ud(output_vertex_size_owords));
768 }
769 }
770
771 length = 0;
772 urb_offset = starting_urb_offset;
773 flush = false;
774 for (slot = 0; slot < vue_map->num_slots; slot++) {
775 int varying = vue_map->slot_to_varying[slot];
776 switch (varying) {
777 case VARYING_SLOT_PSIZ: {
778 /* The point size varying slot is the vue header and is always in the
779 * vue map. But often none of the special varyings that live there
780 * are written and in that case we can skip writing to the vue
781 * header, provided the corresponding state properly clamps the
782 * values further down the pipeline. */
783 if ((vue_map->slots_valid & psiz_mask) == 0) {
784 assert(length == 0);
785 urb_offset++;
786 break;
787 }
788
789 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
790 bld.MOV(zero, brw_imm_ud(0u));
791
792 sources[length++] = zero;
793 if (vue_map->slots_valid & VARYING_BIT_LAYER)
794 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
795 else
796 sources[length++] = zero;
797
798 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
799 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
800 else
801 sources[length++] = zero;
802
803 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
804 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
805 else
806 sources[length++] = zero;
807 break;
808 }
809 case BRW_VARYING_SLOT_NDC:
810 case VARYING_SLOT_EDGE:
811 unreachable("unexpected scalar vs output");
812 break;
813
814 default:
815 /* gl_Position is always in the vue map, but isn't always written by
816 * the shader. Other varyings (clip distances) get added to the vue
817 * map but don't always get written. In those cases, the
818 * corresponding this->output[] slot will be invalid we and can skip
819 * the urb write for the varying. If we've already queued up a vue
820 * slot for writing we flush a mlen 5 urb write, otherwise we just
821 * advance the urb_offset.
822 */
823 if (varying == BRW_VARYING_SLOT_PAD ||
824 this->outputs[varying].file == BAD_FILE) {
825 if (length > 0)
826 flush = true;
827 else
828 urb_offset++;
829 break;
830 }
831
832 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
833 (varying == VARYING_SLOT_COL0 ||
834 varying == VARYING_SLOT_COL1 ||
835 varying == VARYING_SLOT_BFC0 ||
836 varying == VARYING_SLOT_BFC1)) {
837 /* We need to clamp these guys, so do a saturating MOV into a
838 * temp register and use that for the payload.
839 */
840 for (int i = 0; i < 4; i++) {
841 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
842 fs_reg src = offset(this->outputs[varying], bld, i);
843 set_saturate(true, bld.MOV(reg, src));
844 sources[length++] = reg;
845 }
846 } else {
847 for (unsigned i = 0; i < output_components[varying]; i++)
848 sources[length++] = offset(this->outputs[varying], bld, i);
849 for (unsigned i = output_components[varying]; i < 4; i++)
850 sources[length++] = brw_imm_d(0);
851 }
852 break;
853 }
854
855 const fs_builder abld = bld.annotate("URB write");
856
857 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
858 * the last slot or if we need to flush (see BAD_FILE varying case
859 * above), emit a URB write send now to flush out the data.
860 */
861 int last = slot == vue_map->num_slots - 1;
862 if (length == 8 || last)
863 flush = true;
864 if (flush) {
865 fs_reg *payload_sources =
866 ralloc_array(mem_ctx, fs_reg, length + header_size);
867 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
868 BRW_REGISTER_TYPE_F);
869 payload_sources[0] = urb_handle;
870
871 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
872 payload_sources[1] = per_slot_offsets;
873
874 memcpy(&payload_sources[header_size], sources,
875 length * sizeof sources[0]);
876
877 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
878 header_size);
879
880 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
881 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
882 inst->mlen = length + header_size;
883 inst->offset = urb_offset;
884 urb_offset = starting_urb_offset + slot + 1;
885 length = 0;
886 flush = false;
887 }
888 }
889 }
890
891 void
892 fs_visitor::emit_cs_terminate()
893 {
894 assert(devinfo->gen >= 7);
895
896 /* We are getting the thread ID from the compute shader header */
897 assert(stage == MESA_SHADER_COMPUTE);
898
899 /* We can't directly send from g0, since sends with EOT have to use
900 * g112-127. So, copy it to a virtual register, The register allocator will
901 * make sure it uses the appropriate register range.
902 */
903 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
904 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
905 bld.group(8, 0).exec_all().MOV(payload, g0);
906
907 /* Send a message to the thread spawner to terminate the thread. */
908 fs_inst *inst = bld.exec_all()
909 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
910 inst->eot = true;
911 }
912
913 void
914 fs_visitor::emit_barrier()
915 {
916 assert(devinfo->gen >= 7);
917
918 /* We are getting the barrier ID from the compute shader header */
919 assert(stage == MESA_SHADER_COMPUTE);
920
921 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
922
923 const fs_builder pbld = bld.exec_all().group(8, 0);
924
925 /* Clear the message payload */
926 pbld.MOV(payload, brw_imm_ud(0u));
927
928 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
929 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
930 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(0x0f000000u));
931
932 /* Emit a gateway "barrier" message using the payload we set up, followed
933 * by a wait instruction.
934 */
935 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
936 }
937
938 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
939 void *mem_ctx,
940 const void *key,
941 struct brw_stage_prog_data *prog_data,
942 struct gl_program *prog,
943 const nir_shader *shader,
944 unsigned dispatch_width,
945 int shader_time_index,
946 const struct brw_vue_map *input_vue_map)
947 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
948 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
949 input_vue_map(input_vue_map),
950 dispatch_width(dispatch_width),
951 shader_time_index(shader_time_index),
952 bld(fs_builder(this, dispatch_width).at_end())
953 {
954 init();
955 }
956
957 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
958 void *mem_ctx,
959 struct brw_gs_compile *c,
960 struct brw_gs_prog_data *prog_data,
961 const nir_shader *shader,
962 int shader_time_index)
963 : backend_shader(compiler, log_data, mem_ctx, shader,
964 &prog_data->base.base),
965 key(&c->key), gs_compile(c),
966 prog_data(&prog_data->base.base), prog(NULL),
967 dispatch_width(8),
968 shader_time_index(shader_time_index),
969 bld(fs_builder(this, dispatch_width).at_end())
970 {
971 init();
972 }
973
974
975 void
976 fs_visitor::init()
977 {
978 switch (stage) {
979 case MESA_SHADER_FRAGMENT:
980 key_tex = &((const brw_wm_prog_key *) key)->tex;
981 break;
982 case MESA_SHADER_VERTEX:
983 key_tex = &((const brw_vs_prog_key *) key)->tex;
984 break;
985 case MESA_SHADER_TESS_EVAL:
986 key_tex = &((const brw_tes_prog_key *) key)->tex;
987 break;
988 case MESA_SHADER_GEOMETRY:
989 key_tex = &((const brw_gs_prog_key *) key)->tex;
990 break;
991 case MESA_SHADER_COMPUTE:
992 key_tex = &((const brw_cs_prog_key*) key)->tex;
993 break;
994 default:
995 unreachable("unhandled shader stage");
996 }
997
998 this->prog_data = this->stage_prog_data;
999
1000 this->failed = false;
1001 this->simd16_unsupported = false;
1002 this->no16_msg = NULL;
1003
1004 this->nir_locals = NULL;
1005 this->nir_ssa_values = NULL;
1006
1007 memset(&this->payload, 0, sizeof(this->payload));
1008 memset(this->output_components, 0, sizeof(this->output_components));
1009 this->source_depth_to_render_target = false;
1010 this->runtime_check_aads_emit = false;
1011 this->first_non_payload_grf = 0;
1012 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1013
1014 this->virtual_grf_start = NULL;
1015 this->virtual_grf_end = NULL;
1016 this->live_intervals = NULL;
1017 this->regs_live_at_ip = NULL;
1018
1019 this->uniforms = 0;
1020 this->last_scratch = 0;
1021 this->pull_constant_loc = NULL;
1022 this->push_constant_loc = NULL;
1023
1024 this->promoted_constants = 0,
1025
1026 this->spilled_any_registers = false;
1027 this->do_dual_src = false;
1028
1029 if (dispatch_width == 8)
1030 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1031 }
1032
1033 fs_visitor::~fs_visitor()
1034 {
1035 }