i965/fs: Implement GL_CLAMP behavior on texture rectangles on gen6+.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (ir->mode == ir_var_in) {
62 if (!strcmp(ir->name, "gl_FragCoord")) {
63 reg = emit_fragcoord_interpolation(ir);
64 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65 reg = emit_frontfacing_interpolation(ir);
66 } else {
67 reg = emit_general_interpolation(ir);
68 }
69 assert(reg);
70 hash_table_insert(this->variable_ht, reg, ir);
71 return;
72 } else if (ir->mode == ir_var_out) {
73 reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75 if (ir->location == FRAG_RESULT_COLOR) {
76 /* Writing gl_FragColor outputs to all color regions. */
77 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78 this->outputs[i] = *reg;
79 }
80 } else if (ir->location == FRAG_RESULT_DEPTH) {
81 this->frag_depth = ir;
82 } else {
83 /* gl_FragData or a user-defined FS output */
84 assert(ir->location >= FRAG_RESULT_DATA0 &&
85 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87 /* General color output. */
88 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89 int output = ir->location - FRAG_RESULT_DATA0 + i;
90 this->outputs[output] = *reg;
91 this->outputs[output].reg_offset += 4 * i;
92 }
93 }
94 } else if (ir->mode == ir_var_uniform) {
95 int param_index = c->prog_data.nr_params;
96
97 if (c->dispatch_width == 16) {
98 if (!variable_storage(ir)) {
99 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100 }
101 return;
102 }
103
104 if (!strncmp(ir->name, "gl_", 3)) {
105 setup_builtin_uniform_values(ir);
106 } else {
107 setup_uniform_values(ir->location, ir->type);
108 }
109
110 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111 reg->type = brw_type_for_base_type(ir->type);
112 }
113
114 if (!reg)
115 reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117 hash_table_insert(this->variable_ht, reg, ir);
118 }
119
120 void
121 fs_visitor::visit(ir_dereference_variable *ir)
122 {
123 fs_reg *reg = variable_storage(ir->var);
124 this->result = *reg;
125 }
126
127 void
128 fs_visitor::visit(ir_dereference_record *ir)
129 {
130 const glsl_type *struct_type = ir->record->type;
131
132 ir->record->accept(this);
133
134 unsigned int offset = 0;
135 for (unsigned int i = 0; i < struct_type->length; i++) {
136 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137 break;
138 offset += type_size(struct_type->fields.structure[i].type);
139 }
140 this->result.reg_offset += offset;
141 this->result.type = brw_type_for_base_type(ir->type);
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_array *ir)
146 {
147 ir_constant *index;
148 int element_size;
149
150 ir->array->accept(this);
151 index = ir->array_index->as_constant();
152
153 element_size = type_size(ir->type);
154 this->result.type = brw_type_for_base_type(ir->type);
155
156 if (index) {
157 assert(this->result.file == UNIFORM || this->result.file == GRF);
158 this->result.reg_offset += index->value.i[0] * element_size;
159 } else {
160 assert(!"FINISHME: non-constant array element");
161 }
162 }
163
164 /* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167 bool
168 fs_visitor::try_emit_saturate(ir_expression *ir)
169 {
170 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172 if (!sat_val)
173 return false;
174
175 sat_val->accept(this);
176 fs_reg src = this->result;
177
178 this->result = fs_reg(this, ir->type);
179 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180 inst->saturate = true;
181
182 return true;
183 }
184
185 void
186 fs_visitor::visit(ir_expression *ir)
187 {
188 unsigned int operand;
189 fs_reg op[2], temp;
190 fs_inst *inst;
191
192 assert(ir->get_num_operands() <= 2);
193
194 if (try_emit_saturate(ir))
195 return;
196
197 for (operand = 0; operand < ir->get_num_operands(); operand++) {
198 ir->operands[operand]->accept(this);
199 if (this->result.file == BAD_FILE) {
200 ir_print_visitor v;
201 fail("Failed to get tree for expression operand:\n");
202 ir->operands[operand]->accept(&v);
203 }
204 op[operand] = this->result;
205
206 /* Matrix expression operands should have been broken down to vector
207 * operations already.
208 */
209 assert(!ir->operands[operand]->type->is_matrix());
210 /* And then those vector operands should have been broken down to scalar.
211 */
212 assert(!ir->operands[operand]->type->is_vector());
213 }
214
215 /* Storage for our result. If our result goes into an assignment, it will
216 * just get copy-propagated out, so no worries.
217 */
218 this->result = fs_reg(this, ir->type);
219
220 switch (ir->operation) {
221 case ir_unop_logic_not:
222 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
223 * ones complement of the whole register, not just bit 0.
224 */
225 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
226 break;
227 case ir_unop_neg:
228 op[0].negate = !op[0].negate;
229 this->result = op[0];
230 break;
231 case ir_unop_abs:
232 op[0].abs = true;
233 op[0].negate = false;
234 this->result = op[0];
235 break;
236 case ir_unop_sign:
237 temp = fs_reg(this, ir->type);
238
239 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
240
241 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
242 inst->conditional_mod = BRW_CONDITIONAL_G;
243 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
244 inst->predicated = true;
245
246 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
247 inst->conditional_mod = BRW_CONDITIONAL_L;
248 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
249 inst->predicated = true;
250
251 break;
252 case ir_unop_rcp:
253 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
254 break;
255
256 case ir_unop_exp2:
257 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
258 break;
259 case ir_unop_log2:
260 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
261 break;
262 case ir_unop_exp:
263 case ir_unop_log:
264 assert(!"not reached: should be handled by ir_explog_to_explog2");
265 break;
266 case ir_unop_sin:
267 case ir_unop_sin_reduced:
268 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
269 break;
270 case ir_unop_cos:
271 case ir_unop_cos_reduced:
272 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
273 break;
274
275 case ir_unop_dFdx:
276 emit(FS_OPCODE_DDX, this->result, op[0]);
277 break;
278 case ir_unop_dFdy:
279 emit(FS_OPCODE_DDY, this->result, op[0]);
280 break;
281
282 case ir_binop_add:
283 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
284 break;
285 case ir_binop_sub:
286 assert(!"not reached: should be handled by ir_sub_to_add_neg");
287 break;
288
289 case ir_binop_mul:
290 if (ir->type->is_integer()) {
291 /* For integer multiplication, the MUL uses the low 16 bits
292 * of one of the operands (src0 on gen6, src1 on gen7). The
293 * MACH accumulates in the contribution of the upper 16 bits
294 * of that operand.
295 *
296 * FINISHME: Emit just the MUL if we know an operand is small
297 * enough.
298 */
299 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
300
301 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
302 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
303 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
304 } else {
305 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
306 }
307 break;
308 case ir_binop_div:
309 if (intel->gen >= 7 && c->dispatch_width == 16)
310 fail("16-wide INTDIV unsupported\n");
311
312 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
313 assert(ir->type->is_integer());
314 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
315 break;
316 case ir_binop_mod:
317 if (intel->gen >= 7 && c->dispatch_width == 16)
318 fail("16-wide INTDIV unsupported\n");
319
320 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
321 assert(ir->type->is_integer());
322 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
323 break;
324
325 case ir_binop_less:
326 case ir_binop_greater:
327 case ir_binop_lequal:
328 case ir_binop_gequal:
329 case ir_binop_equal:
330 case ir_binop_all_equal:
331 case ir_binop_nequal:
332 case ir_binop_any_nequal:
333 temp = this->result;
334 /* original gen4 does implicit conversion before comparison. */
335 if (intel->gen < 5)
336 temp.type = op[0].type;
337
338 resolve_ud_negate(&op[0]);
339 resolve_ud_negate(&op[1]);
340
341 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
342 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
343 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
344 break;
345
346 case ir_binop_logic_xor:
347 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
348 break;
349
350 case ir_binop_logic_or:
351 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
352 break;
353
354 case ir_binop_logic_and:
355 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
356 break;
357
358 case ir_binop_dot:
359 case ir_unop_any:
360 assert(!"not reached: should be handled by brw_fs_channel_expressions");
361 break;
362
363 case ir_unop_noise:
364 assert(!"not reached: should be handled by lower_noise");
365 break;
366
367 case ir_quadop_vector:
368 assert(!"not reached: should be handled by lower_quadop_vector");
369 break;
370
371 case ir_unop_sqrt:
372 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
373 break;
374
375 case ir_unop_rsq:
376 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
377 break;
378
379 case ir_unop_i2u:
380 op[0].type = BRW_REGISTER_TYPE_UD;
381 this->result = op[0];
382 break;
383 case ir_unop_u2i:
384 op[0].type = BRW_REGISTER_TYPE_D;
385 this->result = op[0];
386 break;
387 case ir_unop_i2f:
388 case ir_unop_u2f:
389 case ir_unop_b2f:
390 case ir_unop_b2i:
391 case ir_unop_f2i:
392 emit(BRW_OPCODE_MOV, this->result, op[0]);
393 break;
394 case ir_unop_f2b:
395 case ir_unop_i2b:
396 temp = this->result;
397 /* original gen4 does implicit conversion before comparison. */
398 if (intel->gen < 5)
399 temp.type = op[0].type;
400
401 resolve_ud_negate(&op[0]);
402
403 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
404 inst->conditional_mod = BRW_CONDITIONAL_NZ;
405 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
406 break;
407
408 case ir_unop_trunc:
409 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
410 break;
411 case ir_unop_ceil:
412 op[0].negate = !op[0].negate;
413 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
414 this->result.negate = true;
415 break;
416 case ir_unop_floor:
417 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
418 break;
419 case ir_unop_fract:
420 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
421 break;
422 case ir_unop_round_even:
423 emit(BRW_OPCODE_RNDE, this->result, op[0]);
424 break;
425
426 case ir_binop_min:
427 resolve_ud_negate(&op[0]);
428 resolve_ud_negate(&op[1]);
429
430 if (intel->gen >= 6) {
431 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
432 inst->conditional_mod = BRW_CONDITIONAL_L;
433 } else {
434 /* Unalias the destination */
435 this->result = fs_reg(this, ir->type);
436
437 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
438 inst->conditional_mod = BRW_CONDITIONAL_L;
439
440 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
441 inst->predicated = true;
442 }
443 break;
444 case ir_binop_max:
445 resolve_ud_negate(&op[0]);
446 resolve_ud_negate(&op[1]);
447
448 if (intel->gen >= 6) {
449 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
450 inst->conditional_mod = BRW_CONDITIONAL_GE;
451 } else {
452 /* Unalias the destination */
453 this->result = fs_reg(this, ir->type);
454
455 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
456 inst->conditional_mod = BRW_CONDITIONAL_G;
457
458 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
459 inst->predicated = true;
460 }
461 break;
462
463 case ir_binop_pow:
464 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
465 break;
466
467 case ir_unop_bit_not:
468 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
469 break;
470 case ir_binop_bit_and:
471 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
472 break;
473 case ir_binop_bit_xor:
474 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
475 break;
476 case ir_binop_bit_or:
477 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
478 break;
479
480 case ir_binop_lshift:
481 inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
482 break;
483
484 case ir_binop_rshift:
485 if (ir->type->base_type == GLSL_TYPE_INT)
486 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
487 else
488 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
489 break;
490 }
491 }
492
493 void
494 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
495 const glsl_type *type, bool predicated)
496 {
497 switch (type->base_type) {
498 case GLSL_TYPE_FLOAT:
499 case GLSL_TYPE_UINT:
500 case GLSL_TYPE_INT:
501 case GLSL_TYPE_BOOL:
502 for (unsigned int i = 0; i < type->components(); i++) {
503 l.type = brw_type_for_base_type(type);
504 r.type = brw_type_for_base_type(type);
505
506 if (predicated || !l.equals(&r)) {
507 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
508 inst->predicated = predicated;
509 }
510
511 l.reg_offset++;
512 r.reg_offset++;
513 }
514 break;
515 case GLSL_TYPE_ARRAY:
516 for (unsigned int i = 0; i < type->length; i++) {
517 emit_assignment_writes(l, r, type->fields.array, predicated);
518 }
519 break;
520
521 case GLSL_TYPE_STRUCT:
522 for (unsigned int i = 0; i < type->length; i++) {
523 emit_assignment_writes(l, r, type->fields.structure[i].type,
524 predicated);
525 }
526 break;
527
528 case GLSL_TYPE_SAMPLER:
529 break;
530
531 default:
532 assert(!"not reached");
533 break;
534 }
535 }
536
537 /* If the RHS processing resulted in an instruction generating a
538 * temporary value, and it would be easy to rewrite the instruction to
539 * generate its result right into the LHS instead, do so. This ends
540 * up reliably removing instructions where it can be tricky to do so
541 * later without real UD chain information.
542 */
543 bool
544 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
545 fs_reg dst,
546 fs_reg src,
547 fs_inst *pre_rhs_inst,
548 fs_inst *last_rhs_inst)
549 {
550 if (pre_rhs_inst == last_rhs_inst)
551 return false; /* No instructions generated to work with. */
552
553 /* Only attempt if we're doing a direct assignment. */
554 if (ir->condition ||
555 !(ir->lhs->type->is_scalar() ||
556 (ir->lhs->type->is_vector() &&
557 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
558 return false;
559
560 /* Make sure the last instruction generated our source reg. */
561 if (last_rhs_inst->predicated ||
562 last_rhs_inst->force_uncompressed ||
563 last_rhs_inst->force_sechalf ||
564 !src.equals(&last_rhs_inst->dst))
565 return false;
566
567 /* Success! Rewrite the instruction. */
568 last_rhs_inst->dst = dst;
569
570 return true;
571 }
572
573 void
574 fs_visitor::visit(ir_assignment *ir)
575 {
576 fs_reg l, r;
577 fs_inst *inst;
578
579 /* FINISHME: arrays on the lhs */
580 ir->lhs->accept(this);
581 l = this->result;
582
583 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
584
585 ir->rhs->accept(this);
586 r = this->result;
587
588 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
589
590 assert(l.file != BAD_FILE);
591 assert(r.file != BAD_FILE);
592
593 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
594 return;
595
596 if (ir->condition) {
597 emit_bool_to_cond_code(ir->condition);
598 }
599
600 if (ir->lhs->type->is_scalar() ||
601 ir->lhs->type->is_vector()) {
602 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
603 if (ir->write_mask & (1 << i)) {
604 inst = emit(BRW_OPCODE_MOV, l, r);
605 if (ir->condition)
606 inst->predicated = true;
607 r.reg_offset++;
608 }
609 l.reg_offset++;
610 }
611 } else {
612 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
613 }
614 }
615
616 fs_inst *
617 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
618 int sampler)
619 {
620 int mlen;
621 int base_mrf = 1;
622 bool simd16 = false;
623 fs_reg orig_dst;
624
625 /* g0 header. */
626 mlen = 1;
627
628 if (ir->shadow_comparitor && ir->op != ir_txd) {
629 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
630 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
631 coordinate.reg_offset++;
632 }
633 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
634 mlen += 3;
635
636 if (ir->op == ir_tex) {
637 /* There's no plain shadow compare message, so we use shadow
638 * compare with a bias of 0.0.
639 */
640 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
641 mlen++;
642 } else if (ir->op == ir_txb) {
643 ir->lod_info.bias->accept(this);
644 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
645 mlen++;
646 } else {
647 assert(ir->op == ir_txl);
648 ir->lod_info.lod->accept(this);
649 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
650 mlen++;
651 }
652
653 ir->shadow_comparitor->accept(this);
654 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
655 mlen++;
656 } else if (ir->op == ir_tex) {
657 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
658 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
659 coordinate.reg_offset++;
660 }
661 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
662 mlen += 3;
663 } else if (ir->op == ir_txd) {
664 ir->lod_info.grad.dPdx->accept(this);
665 fs_reg dPdx = this->result;
666
667 ir->lod_info.grad.dPdy->accept(this);
668 fs_reg dPdy = this->result;
669
670 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
671 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
672 coordinate.reg_offset++;
673 }
674 /* the slots for u and v are always present, but r is optional */
675 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
676
677 /* P = u, v, r
678 * dPdx = dudx, dvdx, drdx
679 * dPdy = dudy, dvdy, drdy
680 *
681 * 1-arg: Does not exist.
682 *
683 * 2-arg: dudx dvdx dudy dvdy
684 * dPdx.x dPdx.y dPdy.x dPdy.y
685 * m4 m5 m6 m7
686 *
687 * 3-arg: dudx dvdx drdx dudy dvdy drdy
688 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
689 * m5 m6 m7 m8 m9 m10
690 */
691 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
692 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
693 dPdx.reg_offset++;
694 }
695 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
696
697 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
698 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
699 dPdy.reg_offset++;
700 }
701 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
702 } else if (ir->op == ir_txs) {
703 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
704 simd16 = true;
705 ir->lod_info.lod->accept(this);
706 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
707 mlen += 2;
708 } else {
709 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
710 * instructions. We'll need to do SIMD16 here.
711 */
712 simd16 = true;
713 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
714
715 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
716 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
717 coordinate);
718 coordinate.reg_offset++;
719 }
720
721 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
722 * be necessary for TXF (ld), but seems wise to do for all messages.
723 */
724 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
725 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
726 }
727
728 /* lod/bias appears after u/v/r. */
729 mlen += 6;
730
731 if (ir->op == ir_txb) {
732 ir->lod_info.bias->accept(this);
733 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
734 mlen++;
735 } else {
736 ir->lod_info.lod->accept(this);
737 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
738 this->result);
739 mlen++;
740 }
741
742 /* The unused upper half. */
743 mlen++;
744 }
745
746 if (simd16) {
747 /* Now, since we're doing simd16, the return is 2 interleaved
748 * vec4s where the odd-indexed ones are junk. We'll need to move
749 * this weirdness around to the expected layout.
750 */
751 orig_dst = dst;
752 const glsl_type *vec_type =
753 glsl_type::get_instance(ir->type->base_type, 4, 1);
754 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
755 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
756 : BRW_REGISTER_TYPE_F;
757 }
758
759 fs_inst *inst = NULL;
760 switch (ir->op) {
761 case ir_tex:
762 inst = emit(SHADER_OPCODE_TEX, dst);
763 break;
764 case ir_txb:
765 inst = emit(FS_OPCODE_TXB, dst);
766 break;
767 case ir_txl:
768 inst = emit(SHADER_OPCODE_TXL, dst);
769 break;
770 case ir_txd:
771 inst = emit(SHADER_OPCODE_TXD, dst);
772 break;
773 case ir_txs:
774 inst = emit(SHADER_OPCODE_TXS, dst);
775 break;
776 case ir_txf:
777 inst = emit(SHADER_OPCODE_TXF, dst);
778 break;
779 }
780 inst->base_mrf = base_mrf;
781 inst->mlen = mlen;
782 inst->header_present = true;
783
784 if (simd16) {
785 for (int i = 0; i < 4; i++) {
786 emit(BRW_OPCODE_MOV, orig_dst, dst);
787 orig_dst.reg_offset++;
788 dst.reg_offset += 2;
789 }
790 }
791
792 return inst;
793 }
794
795 /* gen5's sampler has slots for u, v, r, array index, then optional
796 * parameters like shadow comparitor or LOD bias. If optional
797 * parameters aren't present, those base slots are optional and don't
798 * need to be included in the message.
799 *
800 * We don't fill in the unnecessary slots regardless, which may look
801 * surprising in the disassembly.
802 */
803 fs_inst *
804 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
805 int sampler)
806 {
807 int mlen = 0;
808 int base_mrf = 2;
809 int reg_width = c->dispatch_width / 8;
810 bool header_present = false;
811 const int vector_elements =
812 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
813
814 if (ir->offset) {
815 /* The offsets set up by the ir_texture visitor are in the
816 * m1 header, so we can't go headerless.
817 */
818 header_present = true;
819 mlen++;
820 base_mrf--;
821 }
822
823 for (int i = 0; i < vector_elements; i++) {
824 emit(BRW_OPCODE_MOV,
825 fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
826 coordinate);
827 coordinate.reg_offset++;
828 }
829 mlen += vector_elements * reg_width;
830
831 if (ir->shadow_comparitor && ir->op != ir_txd) {
832 mlen = MAX2(mlen, header_present + 4 * reg_width);
833
834 ir->shadow_comparitor->accept(this);
835 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
836 mlen += reg_width;
837 }
838
839 fs_inst *inst = NULL;
840 switch (ir->op) {
841 case ir_tex:
842 inst = emit(SHADER_OPCODE_TEX, dst);
843 break;
844 case ir_txb:
845 ir->lod_info.bias->accept(this);
846 mlen = MAX2(mlen, header_present + 4 * reg_width);
847 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
848 mlen += reg_width;
849
850 inst = emit(FS_OPCODE_TXB, dst);
851
852 break;
853 case ir_txl:
854 ir->lod_info.lod->accept(this);
855 mlen = MAX2(mlen, header_present + 4 * reg_width);
856 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
857 mlen += reg_width;
858
859 inst = emit(SHADER_OPCODE_TXL, dst);
860 break;
861 case ir_txd: {
862 ir->lod_info.grad.dPdx->accept(this);
863 fs_reg dPdx = this->result;
864
865 ir->lod_info.grad.dPdy->accept(this);
866 fs_reg dPdy = this->result;
867
868 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
869
870 /**
871 * P = u, v, r
872 * dPdx = dudx, dvdx, drdx
873 * dPdy = dudy, dvdy, drdy
874 *
875 * Load up these values:
876 * - dudx dudy dvdx dvdy drdx drdy
877 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
878 */
879 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
880 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
881 dPdx.reg_offset++;
882 mlen += reg_width;
883
884 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
885 dPdy.reg_offset++;
886 mlen += reg_width;
887 }
888
889 inst = emit(SHADER_OPCODE_TXD, dst);
890 break;
891 }
892 case ir_txs:
893 ir->lod_info.lod->accept(this);
894 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
895 mlen += reg_width;
896 inst = emit(SHADER_OPCODE_TXS, dst);
897 break;
898 case ir_txf:
899 mlen = header_present + 4 * reg_width;
900
901 ir->lod_info.lod->accept(this);
902 emit(BRW_OPCODE_MOV,
903 fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
904 this->result);
905 inst = emit(SHADER_OPCODE_TXF, dst);
906 break;
907 }
908 inst->base_mrf = base_mrf;
909 inst->mlen = mlen;
910 inst->header_present = header_present;
911
912 if (mlen > 11) {
913 fail("Message length >11 disallowed by hardware\n");
914 }
915
916 return inst;
917 }
918
919 fs_inst *
920 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
921 int sampler)
922 {
923 int mlen = 0;
924 int base_mrf = 2;
925 int reg_width = c->dispatch_width / 8;
926 bool header_present = false;
927
928 if (ir->offset) {
929 /* The offsets set up by the ir_texture visitor are in the
930 * m1 header, so we can't go headerless.
931 */
932 header_present = true;
933 mlen++;
934 base_mrf--;
935 }
936
937 if (ir->shadow_comparitor && ir->op != ir_txd) {
938 ir->shadow_comparitor->accept(this);
939 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
940 mlen += reg_width;
941 }
942
943 /* Set up the LOD info */
944 switch (ir->op) {
945 case ir_tex:
946 break;
947 case ir_txb:
948 ir->lod_info.bias->accept(this);
949 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
950 mlen += reg_width;
951 break;
952 case ir_txl:
953 ir->lod_info.lod->accept(this);
954 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
955 mlen += reg_width;
956 break;
957 case ir_txd: {
958 if (c->dispatch_width == 16)
959 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
960
961 ir->lod_info.grad.dPdx->accept(this);
962 fs_reg dPdx = this->result;
963
964 ir->lod_info.grad.dPdy->accept(this);
965 fs_reg dPdy = this->result;
966
967 /* Load dPdx and the coordinate together:
968 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
969 */
970 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
971 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
972 coordinate.reg_offset++;
973 mlen += reg_width;
974
975 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
976 dPdx.reg_offset++;
977 mlen += reg_width;
978
979 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
980 dPdy.reg_offset++;
981 mlen += reg_width;
982 }
983 break;
984 }
985 case ir_txs:
986 ir->lod_info.lod->accept(this);
987 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
988 mlen += reg_width;
989 break;
990 case ir_txf:
991 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
992 emit(BRW_OPCODE_MOV,
993 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
994 coordinate.reg_offset++;
995 mlen += reg_width;
996
997 ir->lod_info.lod->accept(this);
998 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
999 mlen += reg_width;
1000
1001 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1002 emit(BRW_OPCODE_MOV,
1003 fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1004 coordinate.reg_offset++;
1005 mlen += reg_width;
1006 }
1007 break;
1008 }
1009
1010 /* Set up the coordinate (except for cases where it was done above) */
1011 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1012 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1013 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1014 coordinate.reg_offset++;
1015 mlen += reg_width;
1016 }
1017 }
1018
1019 /* Generate the SEND */
1020 fs_inst *inst = NULL;
1021 switch (ir->op) {
1022 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1023 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1024 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1025 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1026 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1027 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1028 }
1029 inst->base_mrf = base_mrf;
1030 inst->mlen = mlen;
1031 inst->header_present = header_present;
1032
1033 if (mlen > 11) {
1034 fail("Message length >11 disallowed by hardware\n");
1035 }
1036
1037 return inst;
1038 }
1039
1040 void
1041 fs_visitor::visit(ir_texture *ir)
1042 {
1043 fs_inst *inst = NULL;
1044
1045 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1046 sampler = fp->Base.SamplerUnits[sampler];
1047
1048 /* Our hardware doesn't have a sample_d_c message, so shadow compares
1049 * for textureGrad/TXD need to be emulated with instructions.
1050 */
1051 bool hw_compare_supported = ir->op != ir_txd;
1052 if (ir->shadow_comparitor && !hw_compare_supported) {
1053 assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1054 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1055 if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1056 return swizzle_result(ir, fs_reg(1.0f), sampler);
1057 else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1058 return swizzle_result(ir, fs_reg(0.0f), sampler);
1059 }
1060
1061 if (ir->coordinate)
1062 ir->coordinate->accept(this);
1063 fs_reg coordinate = this->result;
1064
1065 if (ir->offset != NULL) {
1066 uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1067
1068 /* Explicitly set up the message header by copying g0 to msg reg m1. */
1069 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1070 fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1071
1072 /* Then set the offset bits in DWord 2 of the message header. */
1073 emit(BRW_OPCODE_MOV,
1074 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1075 BRW_REGISTER_TYPE_UD)),
1076 fs_reg(brw_imm_uw(offset_bits)));
1077 }
1078
1079 /* Should be lowered by do_lower_texture_projection */
1080 assert(!ir->projector);
1081
1082 bool needs_gl_clamp = true;
1083
1084 fs_reg scale_x, scale_y;
1085
1086 /* The 965 requires the EU to do the normalization of GL rectangle
1087 * texture coordinates. We use the program parameter state
1088 * tracking to get the scaling factor.
1089 */
1090 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1091 (intel->gen < 6 ||
1092 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1093 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1094 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1095 int tokens[STATE_LENGTH] = {
1096 STATE_INTERNAL,
1097 STATE_TEXRECT_SCALE,
1098 sampler,
1099 0,
1100 0
1101 };
1102
1103 if (c->dispatch_width == 16) {
1104 fail("rectangle scale uniform setup not supported on 16-wide\n");
1105 this->result = fs_reg(this, ir->type);
1106 return;
1107 }
1108
1109 c->prog_data.param_convert[c->prog_data.nr_params] =
1110 PARAM_NO_CONVERT;
1111 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1112 PARAM_NO_CONVERT;
1113
1114 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1115 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1116
1117 GLuint index = _mesa_add_state_reference(params,
1118 (gl_state_index *)tokens);
1119
1120 this->param_index[c->prog_data.nr_params] = index;
1121 this->param_offset[c->prog_data.nr_params] = 0;
1122 c->prog_data.nr_params++;
1123 this->param_index[c->prog_data.nr_params] = index;
1124 this->param_offset[c->prog_data.nr_params] = 1;
1125 c->prog_data.nr_params++;
1126 }
1127
1128 /* The 965 requires the EU to do the normalization of GL rectangle
1129 * texture coordinates. We use the program parameter state
1130 * tracking to get the scaling factor.
1131 */
1132 if (intel->gen < 6 &&
1133 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1134 fs_reg dst = fs_reg(this, ir->coordinate->type);
1135 fs_reg src = coordinate;
1136 coordinate = dst;
1137
1138 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1139 dst.reg_offset++;
1140 src.reg_offset++;
1141 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1142 } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1143 /* On gen6+, the sampler handles the rectangle coordinates
1144 * natively, without needing rescaling. But that means we have
1145 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1146 * not [0, 1] like the default case below.
1147 */
1148 needs_gl_clamp = false;
1149
1150 for (int i = 0; i < 2; i++) {
1151 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1152 fs_reg chan = coordinate;
1153 chan.reg_offset += i;
1154
1155 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1156 inst->conditional_mod = BRW_CONDITIONAL_G;
1157
1158 /* Our parameter comes in as 1.0/width or 1.0/height,
1159 * because that's what people normally want for doing
1160 * texture rectangle handling. We need width or height
1161 * for clamping, but we don't care enough to make a new
1162 * parameter type, so just invert back.
1163 */
1164 fs_reg limit = fs_reg(this, glsl_type::float_type);
1165 emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1166 emit(SHADER_OPCODE_RCP, limit, limit);
1167
1168 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1169 inst->conditional_mod = BRW_CONDITIONAL_L;
1170 }
1171 }
1172 }
1173
1174 if (ir->coordinate && needs_gl_clamp) {
1175 for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1176 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1177 fs_reg chan = coordinate;
1178 chan.reg_offset += i;
1179
1180 fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1181 inst->saturate = true;
1182 }
1183 }
1184 }
1185
1186 /* Writemasking doesn't eliminate channels on SIMD8 texture
1187 * samples, so don't worry about them.
1188 */
1189 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1190
1191 if (intel->gen >= 7) {
1192 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1193 } else if (intel->gen >= 5) {
1194 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1195 } else {
1196 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1197 }
1198
1199 /* If there's an offset, we already set up m1. To avoid the implied move,
1200 * use the null register. Otherwise, we want an implied move from g0.
1201 */
1202 if (ir->offset != NULL || !inst->header_present)
1203 inst->src[0] = reg_undef;
1204 else
1205 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1206
1207 inst->sampler = sampler;
1208
1209 if (ir->shadow_comparitor) {
1210 if (hw_compare_supported) {
1211 inst->shadow_compare = true;
1212 } else {
1213 ir->shadow_comparitor->accept(this);
1214 fs_reg ref = this->result;
1215
1216 fs_reg value = dst;
1217 dst = fs_reg(this, glsl_type::vec4_type);
1218
1219 /* FINISHME: This needs to be done pre-filtering. */
1220
1221 uint32_t conditional = 0;
1222 switch (c->key.tex.compare_funcs[sampler]) {
1223 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1224 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1225 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1226 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1227 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1228 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1229 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1230 default: assert(!"Should not get here: bad shadow compare function");
1231 }
1232
1233 /* Use conditional moves to load 0 or 1 as the result */
1234 this->current_annotation = "manual shadow comparison";
1235 for (int i = 0; i < 4; i++) {
1236 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1237
1238 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1239 inst->conditional_mod = conditional;
1240
1241 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1242 inst->predicated = true;
1243
1244 dst.reg_offset++;
1245 value.reg_offset++;
1246 }
1247 dst.reg_offset = 0;
1248 }
1249 }
1250
1251 swizzle_result(ir, dst, sampler);
1252 }
1253
1254 /**
1255 * Swizzle the result of a texture result. This is necessary for
1256 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1257 */
1258 void
1259 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1260 {
1261 this->result = orig_val;
1262
1263 if (ir->op == ir_txs)
1264 return;
1265
1266 if (ir->type == glsl_type::float_type) {
1267 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1268 assert(ir->sampler->type->sampler_shadow);
1269 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1270 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1271
1272 for (int i = 0; i < 4; i++) {
1273 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1274 fs_reg l = swizzled_result;
1275 l.reg_offset += i;
1276
1277 if (swiz == SWIZZLE_ZERO) {
1278 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1279 } else if (swiz == SWIZZLE_ONE) {
1280 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1281 } else {
1282 fs_reg r = orig_val;
1283 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1284 emit(BRW_OPCODE_MOV, l, r);
1285 }
1286 }
1287 this->result = swizzled_result;
1288 }
1289 }
1290
1291 void
1292 fs_visitor::visit(ir_swizzle *ir)
1293 {
1294 ir->val->accept(this);
1295 fs_reg val = this->result;
1296
1297 if (ir->type->vector_elements == 1) {
1298 this->result.reg_offset += ir->mask.x;
1299 return;
1300 }
1301
1302 fs_reg result = fs_reg(this, ir->type);
1303 this->result = result;
1304
1305 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1306 fs_reg channel = val;
1307 int swiz = 0;
1308
1309 switch (i) {
1310 case 0:
1311 swiz = ir->mask.x;
1312 break;
1313 case 1:
1314 swiz = ir->mask.y;
1315 break;
1316 case 2:
1317 swiz = ir->mask.z;
1318 break;
1319 case 3:
1320 swiz = ir->mask.w;
1321 break;
1322 }
1323
1324 channel.reg_offset += swiz;
1325 emit(BRW_OPCODE_MOV, result, channel);
1326 result.reg_offset++;
1327 }
1328 }
1329
1330 void
1331 fs_visitor::visit(ir_discard *ir)
1332 {
1333 assert(ir->condition == NULL); /* FINISHME */
1334
1335 emit(FS_OPCODE_DISCARD);
1336 kill_emitted = true;
1337 }
1338
1339 void
1340 fs_visitor::visit(ir_constant *ir)
1341 {
1342 /* Set this->result to reg at the bottom of the function because some code
1343 * paths will cause this visitor to be applied to other fields. This will
1344 * cause the value stored in this->result to be modified.
1345 *
1346 * Make reg constant so that it doesn't get accidentally modified along the
1347 * way. Yes, I actually had this problem. :(
1348 */
1349 const fs_reg reg(this, ir->type);
1350 fs_reg dst_reg = reg;
1351
1352 if (ir->type->is_array()) {
1353 const unsigned size = type_size(ir->type->fields.array);
1354
1355 for (unsigned i = 0; i < ir->type->length; i++) {
1356 ir->array_elements[i]->accept(this);
1357 fs_reg src_reg = this->result;
1358
1359 dst_reg.type = src_reg.type;
1360 for (unsigned j = 0; j < size; j++) {
1361 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1362 src_reg.reg_offset++;
1363 dst_reg.reg_offset++;
1364 }
1365 }
1366 } else if (ir->type->is_record()) {
1367 foreach_list(node, &ir->components) {
1368 ir_instruction *const field = (ir_instruction *) node;
1369 const unsigned size = type_size(field->type);
1370
1371 field->accept(this);
1372 fs_reg src_reg = this->result;
1373
1374 dst_reg.type = src_reg.type;
1375 for (unsigned j = 0; j < size; j++) {
1376 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1377 src_reg.reg_offset++;
1378 dst_reg.reg_offset++;
1379 }
1380 }
1381 } else {
1382 const unsigned size = type_size(ir->type);
1383
1384 for (unsigned i = 0; i < size; i++) {
1385 switch (ir->type->base_type) {
1386 case GLSL_TYPE_FLOAT:
1387 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1388 break;
1389 case GLSL_TYPE_UINT:
1390 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1391 break;
1392 case GLSL_TYPE_INT:
1393 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1394 break;
1395 case GLSL_TYPE_BOOL:
1396 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1397 break;
1398 default:
1399 assert(!"Non-float/uint/int/bool constant");
1400 }
1401 dst_reg.reg_offset++;
1402 }
1403 }
1404
1405 this->result = reg;
1406 }
1407
1408 void
1409 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1410 {
1411 ir_expression *expr = ir->as_expression();
1412
1413 if (expr) {
1414 fs_reg op[2];
1415 fs_inst *inst;
1416
1417 assert(expr->get_num_operands() <= 2);
1418 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1419 assert(expr->operands[i]->type->is_scalar());
1420
1421 expr->operands[i]->accept(this);
1422 op[i] = this->result;
1423
1424 resolve_ud_negate(&op[i]);
1425 }
1426
1427 switch (expr->operation) {
1428 case ir_unop_logic_not:
1429 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1430 inst->conditional_mod = BRW_CONDITIONAL_Z;
1431 break;
1432
1433 case ir_binop_logic_xor:
1434 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1435 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1436 break;
1437
1438 case ir_binop_logic_or:
1439 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1440 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1441 break;
1442
1443 case ir_binop_logic_and:
1444 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1445 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1446 break;
1447
1448 case ir_unop_f2b:
1449 if (intel->gen >= 6) {
1450 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1451 } else {
1452 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1453 }
1454 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1455 break;
1456
1457 case ir_unop_i2b:
1458 if (intel->gen >= 6) {
1459 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1460 } else {
1461 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1462 }
1463 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1464 break;
1465
1466 case ir_binop_greater:
1467 case ir_binop_gequal:
1468 case ir_binop_less:
1469 case ir_binop_lequal:
1470 case ir_binop_equal:
1471 case ir_binop_all_equal:
1472 case ir_binop_nequal:
1473 case ir_binop_any_nequal:
1474 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1475 inst->conditional_mod =
1476 brw_conditional_for_comparison(expr->operation);
1477 break;
1478
1479 default:
1480 assert(!"not reached");
1481 fail("bad cond code\n");
1482 break;
1483 }
1484 return;
1485 }
1486
1487 ir->accept(this);
1488
1489 if (intel->gen >= 6) {
1490 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1491 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1492 } else {
1493 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1494 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1495 }
1496 }
1497
1498 /**
1499 * Emit a gen6 IF statement with the comparison folded into the IF
1500 * instruction.
1501 */
1502 void
1503 fs_visitor::emit_if_gen6(ir_if *ir)
1504 {
1505 ir_expression *expr = ir->condition->as_expression();
1506
1507 if (expr) {
1508 fs_reg op[2];
1509 fs_inst *inst;
1510 fs_reg temp;
1511
1512 assert(expr->get_num_operands() <= 2);
1513 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1514 assert(expr->operands[i]->type->is_scalar());
1515
1516 expr->operands[i]->accept(this);
1517 op[i] = this->result;
1518 }
1519
1520 switch (expr->operation) {
1521 case ir_unop_logic_not:
1522 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1523 inst->conditional_mod = BRW_CONDITIONAL_Z;
1524 return;
1525
1526 case ir_binop_logic_xor:
1527 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1528 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1529 return;
1530
1531 case ir_binop_logic_or:
1532 temp = fs_reg(this, glsl_type::bool_type);
1533 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1534 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1535 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1536 return;
1537
1538 case ir_binop_logic_and:
1539 temp = fs_reg(this, glsl_type::bool_type);
1540 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1541 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1542 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1543 return;
1544
1545 case ir_unop_f2b:
1546 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1547 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1548 return;
1549
1550 case ir_unop_i2b:
1551 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1552 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1553 return;
1554
1555 case ir_binop_greater:
1556 case ir_binop_gequal:
1557 case ir_binop_less:
1558 case ir_binop_lequal:
1559 case ir_binop_equal:
1560 case ir_binop_all_equal:
1561 case ir_binop_nequal:
1562 case ir_binop_any_nequal:
1563 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1564 inst->conditional_mod =
1565 brw_conditional_for_comparison(expr->operation);
1566 return;
1567 default:
1568 assert(!"not reached");
1569 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1570 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1571 fail("bad condition\n");
1572 return;
1573 }
1574 return;
1575 }
1576
1577 ir->condition->accept(this);
1578
1579 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1580 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1581 }
1582
1583 void
1584 fs_visitor::visit(ir_if *ir)
1585 {
1586 fs_inst *inst;
1587
1588 if (intel->gen < 6 && c->dispatch_width == 16) {
1589 fail("Can't support (non-uniform) control flow on 16-wide\n");
1590 }
1591
1592 /* Don't point the annotation at the if statement, because then it plus
1593 * the then and else blocks get printed.
1594 */
1595 this->base_ir = ir->condition;
1596
1597 if (intel->gen == 6) {
1598 emit_if_gen6(ir);
1599 } else {
1600 emit_bool_to_cond_code(ir->condition);
1601
1602 inst = emit(BRW_OPCODE_IF);
1603 inst->predicated = true;
1604 }
1605
1606 foreach_list(node, &ir->then_instructions) {
1607 ir_instruction *ir = (ir_instruction *)node;
1608 this->base_ir = ir;
1609
1610 ir->accept(this);
1611 }
1612
1613 if (!ir->else_instructions.is_empty()) {
1614 emit(BRW_OPCODE_ELSE);
1615
1616 foreach_list(node, &ir->else_instructions) {
1617 ir_instruction *ir = (ir_instruction *)node;
1618 this->base_ir = ir;
1619
1620 ir->accept(this);
1621 }
1622 }
1623
1624 emit(BRW_OPCODE_ENDIF);
1625 }
1626
1627 void
1628 fs_visitor::visit(ir_loop *ir)
1629 {
1630 fs_reg counter = reg_undef;
1631
1632 if (c->dispatch_width == 16) {
1633 fail("Can't support (non-uniform) control flow on 16-wide\n");
1634 }
1635
1636 if (ir->counter) {
1637 this->base_ir = ir->counter;
1638 ir->counter->accept(this);
1639 counter = *(variable_storage(ir->counter));
1640
1641 if (ir->from) {
1642 this->base_ir = ir->from;
1643 ir->from->accept(this);
1644
1645 emit(BRW_OPCODE_MOV, counter, this->result);
1646 }
1647 }
1648
1649 emit(BRW_OPCODE_DO);
1650
1651 if (ir->to) {
1652 this->base_ir = ir->to;
1653 ir->to->accept(this);
1654
1655 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1656 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1657
1658 inst = emit(BRW_OPCODE_BREAK);
1659 inst->predicated = true;
1660 }
1661
1662 foreach_list(node, &ir->body_instructions) {
1663 ir_instruction *ir = (ir_instruction *)node;
1664
1665 this->base_ir = ir;
1666 ir->accept(this);
1667 }
1668
1669 if (ir->increment) {
1670 this->base_ir = ir->increment;
1671 ir->increment->accept(this);
1672 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1673 }
1674
1675 emit(BRW_OPCODE_WHILE);
1676 }
1677
1678 void
1679 fs_visitor::visit(ir_loop_jump *ir)
1680 {
1681 switch (ir->mode) {
1682 case ir_loop_jump::jump_break:
1683 emit(BRW_OPCODE_BREAK);
1684 break;
1685 case ir_loop_jump::jump_continue:
1686 emit(BRW_OPCODE_CONTINUE);
1687 break;
1688 }
1689 }
1690
1691 void
1692 fs_visitor::visit(ir_call *ir)
1693 {
1694 assert(!"FINISHME");
1695 }
1696
1697 void
1698 fs_visitor::visit(ir_return *ir)
1699 {
1700 assert(!"FINISHME");
1701 }
1702
1703 void
1704 fs_visitor::visit(ir_function *ir)
1705 {
1706 /* Ignore function bodies other than main() -- we shouldn't see calls to
1707 * them since they should all be inlined before we get to ir_to_mesa.
1708 */
1709 if (strcmp(ir->name, "main") == 0) {
1710 const ir_function_signature *sig;
1711 exec_list empty;
1712
1713 sig = ir->matching_signature(&empty);
1714
1715 assert(sig);
1716
1717 foreach_list(node, &sig->body) {
1718 ir_instruction *ir = (ir_instruction *)node;
1719 this->base_ir = ir;
1720
1721 ir->accept(this);
1722 }
1723 }
1724 }
1725
1726 void
1727 fs_visitor::visit(ir_function_signature *ir)
1728 {
1729 assert(!"not reached");
1730 (void)ir;
1731 }
1732
1733 fs_inst *
1734 fs_visitor::emit(fs_inst inst)
1735 {
1736 fs_inst *list_inst = new(mem_ctx) fs_inst;
1737 *list_inst = inst;
1738
1739 if (force_uncompressed_stack > 0)
1740 list_inst->force_uncompressed = true;
1741 else if (force_sechalf_stack > 0)
1742 list_inst->force_sechalf = true;
1743
1744 list_inst->annotation = this->current_annotation;
1745 list_inst->ir = this->base_ir;
1746
1747 this->instructions.push_tail(list_inst);
1748
1749 return list_inst;
1750 }
1751
1752 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1753 void
1754 fs_visitor::emit_dummy_fs()
1755 {
1756 /* Everyone's favorite color. */
1757 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1758 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1759 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1760 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1761
1762 fs_inst *write;
1763 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1764 write->base_mrf = 2;
1765 }
1766
1767 /* The register location here is relative to the start of the URB
1768 * data. It will get adjusted to be a real location before
1769 * generate_code() time.
1770 */
1771 struct brw_reg
1772 fs_visitor::interp_reg(int location, int channel)
1773 {
1774 int regnr = urb_setup[location] * 2 + channel / 2;
1775 int stride = (channel & 1) * 4;
1776
1777 assert(urb_setup[location] != -1);
1778
1779 return brw_vec1_grf(regnr, stride);
1780 }
1781
1782 /** Emits the interpolation for the varying inputs. */
1783 void
1784 fs_visitor::emit_interpolation_setup_gen4()
1785 {
1786 this->current_annotation = "compute pixel centers";
1787 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1788 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1789 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1790 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1791
1792 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1793 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1794
1795 this->current_annotation = "compute pixel deltas from v0";
1796 if (brw->has_pln) {
1797 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1798 fs_reg(this, glsl_type::vec2_type);
1799 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1800 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1801 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1802 } else {
1803 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1804 fs_reg(this, glsl_type::float_type);
1805 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1806 fs_reg(this, glsl_type::float_type);
1807 }
1808 emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1809 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1810 emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1811 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1812
1813 this->current_annotation = "compute pos.w and 1/pos.w";
1814 /* Compute wpos.w. It's always in our setup, since it's needed to
1815 * interpolate the other attributes.
1816 */
1817 this->wpos_w = fs_reg(this, glsl_type::float_type);
1818 emit(FS_OPCODE_LINTERP, wpos_w,
1819 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1820 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1821 interp_reg(FRAG_ATTRIB_WPOS, 3));
1822 /* Compute the pixel 1/W value from wpos.w. */
1823 this->pixel_w = fs_reg(this, glsl_type::float_type);
1824 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1825 this->current_annotation = NULL;
1826 }
1827
1828 /** Emits the interpolation for the varying inputs. */
1829 void
1830 fs_visitor::emit_interpolation_setup_gen6()
1831 {
1832 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1833
1834 /* If the pixel centers end up used, the setup is the same as for gen4. */
1835 this->current_annotation = "compute pixel centers";
1836 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1837 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1838 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1839 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1840 emit(BRW_OPCODE_ADD,
1841 int_pixel_x,
1842 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1843 fs_reg(brw_imm_v(0x10101010)));
1844 emit(BRW_OPCODE_ADD,
1845 int_pixel_y,
1846 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1847 fs_reg(brw_imm_v(0x11001100)));
1848
1849 /* As of gen6, we can no longer mix float and int sources. We have
1850 * to turn the integer pixel centers into floats for their actual
1851 * use.
1852 */
1853 this->pixel_x = fs_reg(this, glsl_type::float_type);
1854 this->pixel_y = fs_reg(this, glsl_type::float_type);
1855 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1856 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1857
1858 this->current_annotation = "compute pos.w";
1859 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1860 this->wpos_w = fs_reg(this, glsl_type::float_type);
1861 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1862
1863 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1864 uint8_t reg = c->barycentric_coord_reg[i];
1865 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1866 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1867 }
1868
1869 this->current_annotation = NULL;
1870 }
1871
1872 void
1873 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1874 {
1875 int reg_width = c->dispatch_width / 8;
1876 fs_inst *inst;
1877 fs_reg color = outputs[target];
1878 fs_reg mrf;
1879
1880 /* If there's no color data to be written, skip it. */
1881 if (color.file == BAD_FILE)
1882 return;
1883
1884 color.reg_offset += index;
1885
1886 if (c->dispatch_width == 8 || intel->gen >= 6) {
1887 /* SIMD8 write looks like:
1888 * m + 0: r0
1889 * m + 1: r1
1890 * m + 2: g0
1891 * m + 3: g1
1892 *
1893 * gen6 SIMD16 DP write looks like:
1894 * m + 0: r0
1895 * m + 1: r1
1896 * m + 2: g0
1897 * m + 3: g1
1898 * m + 4: b0
1899 * m + 5: b1
1900 * m + 6: a0
1901 * m + 7: a1
1902 */
1903 inst = emit(BRW_OPCODE_MOV,
1904 fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1905 color);
1906 inst->saturate = c->key.clamp_fragment_color;
1907 } else {
1908 /* pre-gen6 SIMD16 single source DP write looks like:
1909 * m + 0: r0
1910 * m + 1: g0
1911 * m + 2: b0
1912 * m + 3: a0
1913 * m + 4: r1
1914 * m + 5: g1
1915 * m + 6: b1
1916 * m + 7: a1
1917 */
1918 if (brw->has_compr4) {
1919 /* By setting the high bit of the MRF register number, we
1920 * indicate that we want COMPR4 mode - instead of doing the
1921 * usual destination + 1 for the second half we get
1922 * destination + 4.
1923 */
1924 inst = emit(BRW_OPCODE_MOV,
1925 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1926 color.type),
1927 color);
1928 inst->saturate = c->key.clamp_fragment_color;
1929 } else {
1930 push_force_uncompressed();
1931 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1932 color.type),
1933 color);
1934 inst->saturate = c->key.clamp_fragment_color;
1935 pop_force_uncompressed();
1936
1937 push_force_sechalf();
1938 color.sechalf = true;
1939 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1940 color.type),
1941 color);
1942 inst->saturate = c->key.clamp_fragment_color;
1943 pop_force_sechalf();
1944 color.sechalf = false;
1945 }
1946 }
1947 }
1948
1949 void
1950 fs_visitor::emit_fb_writes()
1951 {
1952 this->current_annotation = "FB write header";
1953 bool header_present = true;
1954 int base_mrf = 2;
1955 int nr = base_mrf;
1956 int reg_width = c->dispatch_width / 8;
1957
1958 if (intel->gen >= 6 &&
1959 !this->kill_emitted &&
1960 c->key.nr_color_regions == 1) {
1961 header_present = false;
1962 }
1963
1964 if (header_present) {
1965 /* m2, m3 header */
1966 nr += 2;
1967 }
1968
1969 if (c->aa_dest_stencil_reg) {
1970 push_force_uncompressed();
1971 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1972 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1973 pop_force_uncompressed();
1974 }
1975
1976 /* Reserve space for color. It'll be filled in per MRT below. */
1977 int color_mrf = nr;
1978 nr += 4 * reg_width;
1979
1980 if (c->source_depth_to_render_target) {
1981 if (intel->gen == 6 && c->dispatch_width == 16) {
1982 /* For outputting oDepth on gen6, SIMD8 writes have to be
1983 * used. This would require 8-wide moves of each half to
1984 * message regs, kind of like pre-gen5 SIMD16 FB writes.
1985 * Just bail on doing so for now.
1986 */
1987 fail("Missing support for simd16 depth writes on gen6\n");
1988 }
1989
1990 if (c->computes_depth) {
1991 /* Hand over gl_FragDepth. */
1992 assert(this->frag_depth);
1993 fs_reg depth = *(variable_storage(this->frag_depth));
1994
1995 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1996 } else {
1997 /* Pass through the payload depth. */
1998 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1999 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2000 }
2001 nr += reg_width;
2002 }
2003
2004 if (c->dest_depth_reg) {
2005 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2006 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2007 nr += reg_width;
2008 }
2009
2010 for (int target = 0; target < c->key.nr_color_regions; target++) {
2011 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2012 "FB write target %d",
2013 target);
2014 for (int i = 0; i < 4; i++)
2015 emit_color_write(target, i, color_mrf);
2016
2017 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2018 inst->target = target;
2019 inst->base_mrf = base_mrf;
2020 inst->mlen = nr - base_mrf;
2021 if (target == c->key.nr_color_regions - 1)
2022 inst->eot = true;
2023 inst->header_present = header_present;
2024 }
2025
2026 if (c->key.nr_color_regions == 0) {
2027 if (c->key.alpha_test) {
2028 /* If the alpha test is enabled but there's no color buffer,
2029 * we still need to send alpha out the pipeline to our null
2030 * renderbuffer.
2031 */
2032 emit_color_write(0, 3, color_mrf);
2033 }
2034
2035 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2036 inst->base_mrf = base_mrf;
2037 inst->mlen = nr - base_mrf;
2038 inst->eot = true;
2039 inst->header_present = header_present;
2040 }
2041
2042 this->current_annotation = NULL;
2043 }
2044
2045 void
2046 fs_visitor::resolve_ud_negate(fs_reg *reg)
2047 {
2048 if (reg->type != BRW_REGISTER_TYPE_UD ||
2049 !reg->negate)
2050 return;
2051
2052 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2053 emit(BRW_OPCODE_MOV, temp, *reg);
2054 *reg = temp;
2055 }