i965/fs: Always invert predicate of SEL with swapped arguments
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_vec4.h"
43 #include "brw_fs.h"
44 #include "main/uniforms.h"
45 #include "glsl/glsl_types.h"
46 #include "glsl/ir_optimization.h"
47 #include "program/sampler.h"
48
49
50 fs_reg *
51 fs_visitor::emit_vs_system_value(int location)
52 {
53 fs_reg *reg = new(this->mem_ctx)
54 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
55 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
56
57 switch (location) {
58 case SYSTEM_VALUE_BASE_VERTEX:
59 reg->reg_offset = 0;
60 vs_prog_data->uses_vertexid = true;
61 break;
62 case SYSTEM_VALUE_VERTEX_ID:
63 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
64 reg->reg_offset = 2;
65 vs_prog_data->uses_vertexid = true;
66 break;
67 case SYSTEM_VALUE_INSTANCE_ID:
68 reg->reg_offset = 3;
69 vs_prog_data->uses_instanceid = true;
70 break;
71 default:
72 unreachable("not reached");
73 }
74
75 return reg;
76 }
77
78 void
79 fs_visitor::visit(ir_variable *ir)
80 {
81 fs_reg *reg = NULL;
82
83 if (variable_storage(ir))
84 return;
85
86 if (ir->data.mode == ir_var_shader_in) {
87 assert(ir->data.location != -1);
88 if (stage == MESA_SHADER_VERTEX) {
89 reg = new(this->mem_ctx)
90 fs_reg(ATTR, ir->data.location,
91 brw_type_for_base_type(ir->type->get_scalar_type()));
92 } else if (ir->data.location == VARYING_SLOT_POS) {
93 reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer,
94 ir->data.origin_upper_left);
95 } else if (ir->data.location == VARYING_SLOT_FACE) {
96 reg = emit_frontfacing_interpolation();
97 } else {
98 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
99 emit_general_interpolation(*reg, ir->name, ir->type,
100 (glsl_interp_qualifier) ir->data.interpolation,
101 ir->data.location, ir->data.centroid,
102 ir->data.sample);
103 }
104 assert(reg);
105 hash_table_insert(this->variable_ht, reg, ir);
106 return;
107 } else if (ir->data.mode == ir_var_shader_out) {
108 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
109
110 if (stage == MESA_SHADER_VERTEX) {
111 int vector_elements =
112 ir->type->is_array() ? ir->type->fields.array->vector_elements
113 : ir->type->vector_elements;
114
115 for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) {
116 int output = ir->data.location + i;
117 this->outputs[output] = *reg;
118 this->outputs[output].reg_offset = i * 4;
119 this->output_components[output] = vector_elements;
120 }
121
122 } else if (ir->data.index > 0) {
123 assert(ir->data.location == FRAG_RESULT_DATA0);
124 assert(ir->data.index == 1);
125 this->dual_src_output = *reg;
126 this->do_dual_src = true;
127 } else if (ir->data.location == FRAG_RESULT_COLOR) {
128 /* Writing gl_FragColor outputs to all color regions. */
129 assert(stage == MESA_SHADER_FRAGMENT);
130 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
131 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
132 this->outputs[i] = *reg;
133 this->output_components[i] = 4;
134 }
135 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
136 this->frag_depth = *reg;
137 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
138 this->sample_mask = *reg;
139 } else {
140 /* gl_FragData or a user-defined FS output */
141 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
142 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
143
144 int vector_elements =
145 ir->type->is_array() ? ir->type->fields.array->vector_elements
146 : ir->type->vector_elements;
147
148 /* General color output. */
149 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
150 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
151 this->outputs[output] = offset(*reg, vector_elements * i);
152 this->output_components[output] = vector_elements;
153 }
154 }
155 } else if (ir->data.mode == ir_var_uniform) {
156 int param_index = uniforms;
157
158 /* Thanks to the lower_ubo_reference pass, we will see only
159 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
160 * variables, so no need for them to be in variable_ht.
161 *
162 * Some uniforms, such as samplers and atomic counters, have no actual
163 * storage, so we should ignore them.
164 */
165 if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
166 return;
167
168 if (dispatch_width == 16) {
169 if (!variable_storage(ir)) {
170 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
171 }
172 return;
173 }
174
175 param_size[param_index] = type_size(ir->type);
176 if (!strncmp(ir->name, "gl_", 3)) {
177 setup_builtin_uniform_values(ir);
178 } else {
179 setup_uniform_values(ir);
180 }
181
182 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
183 reg->type = brw_type_for_base_type(ir->type);
184
185 } else if (ir->data.mode == ir_var_system_value) {
186 switch (ir->data.location) {
187 case SYSTEM_VALUE_BASE_VERTEX:
188 case SYSTEM_VALUE_VERTEX_ID:
189 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
190 case SYSTEM_VALUE_INSTANCE_ID:
191 reg = emit_vs_system_value(ir->data.location);
192 break;
193 case SYSTEM_VALUE_SAMPLE_POS:
194 reg = emit_samplepos_setup();
195 break;
196 case SYSTEM_VALUE_SAMPLE_ID:
197 reg = emit_sampleid_setup();
198 break;
199 case SYSTEM_VALUE_SAMPLE_MASK_IN:
200 assert(brw->gen >= 7);
201 reg = new(mem_ctx)
202 fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
203 BRW_REGISTER_TYPE_D));
204 break;
205 }
206 }
207
208 if (!reg)
209 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
210
211 hash_table_insert(this->variable_ht, reg, ir);
212 }
213
214 void
215 fs_visitor::visit(ir_dereference_variable *ir)
216 {
217 fs_reg *reg = variable_storage(ir->var);
218
219 if (!reg) {
220 fail("Failed to find variable storage for %s\n", ir->var->name);
221 this->result = fs_reg(reg_null_d);
222 return;
223 }
224 this->result = *reg;
225 }
226
227 void
228 fs_visitor::visit(ir_dereference_record *ir)
229 {
230 const glsl_type *struct_type = ir->record->type;
231
232 ir->record->accept(this);
233
234 unsigned int off = 0;
235 for (unsigned int i = 0; i < struct_type->length; i++) {
236 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
237 break;
238 off += type_size(struct_type->fields.structure[i].type);
239 }
240 this->result = offset(this->result, off);
241 this->result.type = brw_type_for_base_type(ir->type);
242 }
243
244 void
245 fs_visitor::visit(ir_dereference_array *ir)
246 {
247 ir_constant *constant_index;
248 fs_reg src;
249 int element_size = type_size(ir->type);
250
251 constant_index = ir->array_index->as_constant();
252
253 ir->array->accept(this);
254 src = this->result;
255 src.type = brw_type_for_base_type(ir->type);
256
257 if (constant_index) {
258 if (src.file == ATTR) {
259 /* Attribute arrays get loaded as one vec4 per element. In that case
260 * offset the source register.
261 */
262 src.reg += constant_index->value.i[0];
263 } else {
264 assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
265 src = offset(src, constant_index->value.i[0] * element_size);
266 }
267 } else {
268 /* Variable index array dereference. We attach the variable index
269 * component to the reg as a pointer to a register containing the
270 * offset. Currently only uniform arrays are supported in this patch,
271 * and that reladdr pointer is resolved by
272 * move_uniform_array_access_to_pull_constants(). All other array types
273 * are lowered by lower_variable_index_to_cond_assign().
274 */
275 ir->array_index->accept(this);
276
277 fs_reg index_reg;
278 index_reg = vgrf(glsl_type::int_type);
279 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
280
281 if (src.reladdr) {
282 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
283 }
284
285 src.reladdr = ralloc(mem_ctx, fs_reg);
286 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
287 }
288 this->result = src;
289 }
290
291 fs_inst *
292 fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
293 const fs_reg &a)
294 {
295 if (brw->gen < 6) {
296 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
297 fs_reg y_times_a = vgrf(glsl_type::float_type);
298 fs_reg one_minus_a = vgrf(glsl_type::float_type);
299 fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type);
300
301 emit(MUL(y_times_a, y, a));
302
303 fs_reg negative_a = a;
304 negative_a.negate = !a.negate;
305 emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
306 emit(MUL(x_times_one_minus_a, x, one_minus_a));
307
308 return emit(ADD(dst, x_times_one_minus_a, y_times_a));
309 } else {
310 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
311 * we need to reorder the operands.
312 */
313 return emit(LRP(dst, a, y, x));
314 }
315 }
316
317 void
318 fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
319 const fs_reg &src0, const fs_reg &src1)
320 {
321 assert(conditionalmod == BRW_CONDITIONAL_GE ||
322 conditionalmod == BRW_CONDITIONAL_L);
323
324 fs_inst *inst;
325
326 if (brw->gen >= 6) {
327 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
328 inst->conditional_mod = conditionalmod;
329 } else {
330 emit(CMP(reg_null_d, src0, src1, conditionalmod));
331
332 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
333 inst->predicate = BRW_PREDICATE_NORMAL;
334 }
335 }
336
337 bool
338 fs_visitor::try_emit_saturate(ir_expression *ir)
339 {
340 if (ir->operation != ir_unop_saturate)
341 return false;
342
343 ir_rvalue *sat_val = ir->operands[0];
344
345 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
346
347 sat_val->accept(this);
348 fs_reg src = this->result;
349
350 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
351
352 /* If the last instruction from our accept() generated our
353 * src, just set the saturate flag instead of emmitting a separate mov.
354 */
355 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
356 if (modify && modify->regs_written == modify->dst.width / 8 &&
357 modify->can_do_saturate()) {
358 modify->saturate = true;
359 this->result = src;
360 return true;
361 }
362
363 return false;
364 }
365
366 bool
367 fs_visitor::try_emit_line(ir_expression *ir)
368 {
369 /* LINE's src0 must be of type float. */
370 if (ir->type != glsl_type::float_type)
371 return false;
372
373 ir_rvalue *nonmul = ir->operands[1];
374 ir_expression *mul = ir->operands[0]->as_expression();
375
376 if (!mul || mul->operation != ir_binop_mul) {
377 nonmul = ir->operands[0];
378 mul = ir->operands[1]->as_expression();
379
380 if (!mul || mul->operation != ir_binop_mul)
381 return false;
382 }
383
384 ir_constant *const_add = nonmul->as_constant();
385 if (!const_add)
386 return false;
387
388 int add_operand_vf = brw_float_to_vf(const_add->value.f[0]);
389 if (add_operand_vf == -1)
390 return false;
391
392 ir_rvalue *non_const_mul = mul->operands[1];
393 ir_constant *const_mul = mul->operands[0]->as_constant();
394 if (!const_mul) {
395 const_mul = mul->operands[1]->as_constant();
396
397 if (!const_mul)
398 return false;
399
400 non_const_mul = mul->operands[0];
401 }
402
403 int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]);
404 if (mul_operand_vf == -1)
405 return false;
406
407 non_const_mul->accept(this);
408 fs_reg src1 = this->result;
409
410 fs_reg src0 = vgrf(ir->type);
411 emit(BRW_OPCODE_MOV, src0,
412 fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf));
413
414 this->result = vgrf(ir->type);
415 emit(BRW_OPCODE_LINE, this->result, src0, src1);
416 return true;
417 }
418
419 bool
420 fs_visitor::try_emit_mad(ir_expression *ir)
421 {
422 /* 3-src instructions were introduced in gen6. */
423 if (brw->gen < 6)
424 return false;
425
426 /* MAD can only handle floating-point data. */
427 if (ir->type != glsl_type::float_type)
428 return false;
429
430 ir_rvalue *nonmul;
431 ir_expression *mul;
432 bool mul_negate, mul_abs;
433
434 for (int i = 0; i < 2; i++) {
435 mul_negate = false;
436 mul_abs = false;
437
438 mul = ir->operands[i]->as_expression();
439 nonmul = ir->operands[1 - i];
440
441 if (mul && mul->operation == ir_unop_abs) {
442 mul = mul->operands[0]->as_expression();
443 mul_abs = true;
444 } else if (mul && mul->operation == ir_unop_neg) {
445 mul = mul->operands[0]->as_expression();
446 mul_negate = true;
447 }
448
449 if (mul && mul->operation == ir_binop_mul)
450 break;
451 }
452
453 if (!mul || mul->operation != ir_binop_mul)
454 return false;
455
456 nonmul->accept(this);
457 fs_reg src0 = this->result;
458
459 mul->operands[0]->accept(this);
460 fs_reg src1 = this->result;
461 src1.negate ^= mul_negate;
462 src1.abs = mul_abs;
463 if (mul_abs)
464 src1.negate = false;
465
466 mul->operands[1]->accept(this);
467 fs_reg src2 = this->result;
468 src2.abs = mul_abs;
469 if (mul_abs)
470 src2.negate = false;
471
472 this->result = vgrf(ir->type);
473 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
474
475 return true;
476 }
477
478 bool
479 fs_visitor::try_emit_b2f_of_comparison(ir_expression *ir)
480 {
481 /* On platforms that do not natively generate 0u and ~0u for Boolean
482 * results, b2f expressions that look like
483 *
484 * f = b2f(expr cmp 0)
485 *
486 * will generate better code by pretending the expression is
487 *
488 * f = ir_triop_csel(0.0, 1.0, expr cmp 0)
489 *
490 * This is because the last instruction of "expr" can generate the
491 * condition code for the "cmp 0". This avoids having to do the "-(b & 1)"
492 * trick to generate 0u or ~0u for the Boolean result. This means code like
493 *
494 * mov(16) g16<1>F 1F
495 * mul.ge.f0(16) null g6<8,8,1>F g14<8,8,1>F
496 * (+f0) sel(16) m6<1>F g16<8,8,1>F 0F
497 *
498 * will be generated instead of
499 *
500 * mul(16) g2<1>F g12<8,8,1>F g4<8,8,1>F
501 * cmp.ge.f0(16) g2<1>D g4<8,8,1>F 0F
502 * and(16) g4<1>D g2<8,8,1>D 1D
503 * and(16) m6<1>D -g4<8,8,1>D 0x3f800000UD
504 *
505 * When the comparison is != 0.0 using the knowledge that the false case
506 * already results in zero would allow better code generation by possibly
507 * avoiding a load-immediate instruction.
508 */
509 ir_expression *cmp = ir->operands[0]->as_expression();
510 if (cmp == NULL)
511 return false;
512
513 if (cmp->operation == ir_binop_nequal) {
514 for (unsigned i = 0; i < 2; i++) {
515 ir_constant *c = cmp->operands[i]->as_constant();
516 if (c == NULL || !c->is_zero())
517 continue;
518
519 ir_expression *expr = cmp->operands[i ^ 1]->as_expression();
520 if (expr != NULL) {
521 fs_reg op[2];
522
523 for (unsigned j = 0; j < 2; j++) {
524 cmp->operands[j]->accept(this);
525 op[j] = this->result;
526
527 resolve_ud_negate(&op[j]);
528 }
529
530 emit_bool_to_cond_code_of_reg(cmp, op);
531
532 /* In this case we know when the condition is true, op[i ^ 1]
533 * contains zero. Invert the predicate, use op[i ^ 1] as src0,
534 * and immediate 1.0f as src1.
535 */
536 this->result = vgrf(ir->type);
537 op[i ^ 1].type = BRW_REGISTER_TYPE_F;
538
539 fs_inst *inst = emit(SEL(this->result, op[i ^ 1], fs_reg(1.0f)));
540 inst->predicate = BRW_PREDICATE_NORMAL;
541 inst->predicate_inverse = true;
542 return true;
543 }
544 }
545 }
546
547 emit_bool_to_cond_code(cmp);
548
549 fs_reg temp = vgrf(ir->type);
550 emit(MOV(temp, fs_reg(1.0f)));
551
552 this->result = vgrf(ir->type);
553 fs_inst *inst = emit(SEL(this->result, temp, fs_reg(0.0f)));
554 inst->predicate = BRW_PREDICATE_NORMAL;
555
556 return true;
557 }
558
559 static int
560 pack_pixel_offset(float x)
561 {
562 /* Clamp upper end of the range to +7/16. See explanation in non-constant
563 * offset case below. */
564 int n = MIN2((int)(x * 16), 7);
565 return n & 0xf;
566 }
567
568 void
569 fs_visitor::emit_interpolate_expression(ir_expression *ir)
570 {
571 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
572 * 8 channels at a time, same as the barycentric coords presented in
573 * the FS payload. this requires a bit of extra work to support.
574 */
575 no16("interpolate_at_* not yet supported in SIMD16 mode.");
576
577 assert(stage == MESA_SHADER_FRAGMENT);
578 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
579
580 ir_dereference * deref = ir->operands[0]->as_dereference();
581 ir_swizzle * swiz = NULL;
582 if (!deref) {
583 /* the api does not allow a swizzle here, but the varying packing code
584 * may have pushed one into here.
585 */
586 swiz = ir->operands[0]->as_swizzle();
587 assert(swiz);
588 deref = swiz->val->as_dereference();
589 }
590 assert(deref);
591 ir_variable * var = deref->variable_referenced();
592 assert(var);
593
594 /* 1. collect interpolation factors */
595
596 fs_reg dst_x = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1));
597 fs_reg dst_y = offset(dst_x, 1);
598
599 /* for most messages, we need one reg of ignored data; the hardware requires mlen==1
600 * even when there is no payload. in the per-slot offset case, we'll replace this with
601 * the proper source data. */
602 fs_reg src = vgrf(glsl_type::float_type);
603 int mlen = 1; /* one reg unless overriden */
604 int reg_width = dispatch_width / 8;
605 fs_inst *inst;
606
607 switch (ir->operation) {
608 case ir_unop_interpolate_at_centroid:
609 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
610 break;
611
612 case ir_binop_interpolate_at_sample: {
613 ir_constant *sample_num = ir->operands[1]->as_constant();
614 assert(sample_num || !"nonconstant sample number should have been lowered.");
615
616 unsigned msg_data = sample_num->value.i[0] << 4;
617 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src, fs_reg(msg_data));
618 break;
619 }
620
621 case ir_binop_interpolate_at_offset: {
622 ir_constant *const_offset = ir->operands[1]->as_constant();
623 if (const_offset) {
624 unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
625 (pack_pixel_offset(const_offset->value.f[1]) << 4);
626 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
627 fs_reg(msg_data));
628 } else {
629 /* pack the operands: hw wants offsets as 4 bit signed ints */
630 ir->operands[1]->accept(this);
631 src = vgrf(glsl_type::ivec2_type);
632 fs_reg src2 = src;
633 for (int i = 0; i < 2; i++) {
634 fs_reg temp = vgrf(glsl_type::float_type);
635 emit(MUL(temp, this->result, fs_reg(16.0f)));
636 emit(MOV(src2, temp)); /* float to int */
637
638 /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
639 * that we support a maximum offset of +0.5, which isn't representable
640 * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
641 * which is the opposite of what the shader author wanted.
642 *
643 * This is legal due to ARB_gpu_shader5's quantization rules:
644 *
645 * "Not all values of <offset> may be supported; x and y offsets may
646 * be rounded to fixed-point values with the number of fraction bits
647 * given by the implementation-dependent constant
648 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
649 */
650
651 fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
652 inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
653
654 src2 = offset(src2, 1);
655 this->result = offset(this->result, 1);
656 }
657
658 mlen = 2 * reg_width;
659 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
660 fs_reg(0u));
661 }
662 break;
663 }
664
665 default:
666 unreachable("not reached");
667 }
668
669 inst->mlen = mlen;
670 inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
671 inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
672 INTERP_QUALIFIER_NOPERSPECTIVE;
673
674 /* 2. emit linterp */
675
676 fs_reg res = vgrf(ir->type);
677 this->result = res;
678
679 for (int i = 0; i < ir->type->vector_elements; i++) {
680 int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
681 emit(FS_OPCODE_LINTERP, res,
682 dst_x, dst_y,
683 fs_reg(interp_reg(var->data.location, ch)));
684 res = offset(res, 1);
685 }
686 }
687
688 void
689 fs_visitor::visit(ir_expression *ir)
690 {
691 unsigned int operand;
692 fs_reg op[3], temp;
693 fs_inst *inst;
694 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
695
696 assert(ir->get_num_operands() <= 3);
697
698 if (try_emit_saturate(ir))
699 return;
700
701 /* Deal with the real oddball stuff first */
702 switch (ir->operation) {
703 case ir_binop_add:
704 if (brw->gen <= 5 && try_emit_line(ir))
705 return;
706 if (try_emit_mad(ir))
707 return;
708 break;
709
710 case ir_triop_csel:
711 ir->operands[1]->accept(this);
712 op[1] = this->result;
713 ir->operands[2]->accept(this);
714 op[2] = this->result;
715
716 emit_bool_to_cond_code(ir->operands[0]);
717
718 this->result = vgrf(ir->type);
719 inst = emit(SEL(this->result, op[1], op[2]));
720 inst->predicate = BRW_PREDICATE_NORMAL;
721 return;
722
723 case ir_unop_b2f:
724 if (brw->gen <= 5 && try_emit_b2f_of_comparison(ir))
725 return;
726 break;
727
728 case ir_unop_interpolate_at_centroid:
729 case ir_binop_interpolate_at_offset:
730 case ir_binop_interpolate_at_sample:
731 emit_interpolate_expression(ir);
732 return;
733
734 default:
735 break;
736 }
737
738 for (operand = 0; operand < ir->get_num_operands(); operand++) {
739 ir->operands[operand]->accept(this);
740 if (this->result.file == BAD_FILE) {
741 fail("Failed to get tree for expression operand:\n");
742 ir->operands[operand]->fprint(stderr);
743 fprintf(stderr, "\n");
744 }
745 assert(this->result.file == GRF ||
746 this->result.file == UNIFORM || this->result.file == ATTR);
747 op[operand] = this->result;
748
749 /* Matrix expression operands should have been broken down to vector
750 * operations already.
751 */
752 assert(!ir->operands[operand]->type->is_matrix());
753 /* And then those vector operands should have been broken down to scalar.
754 */
755 assert(!ir->operands[operand]->type->is_vector());
756 }
757
758 /* Storage for our result. If our result goes into an assignment, it will
759 * just get copy-propagated out, so no worries.
760 */
761 this->result = vgrf(ir->type);
762
763 switch (ir->operation) {
764 case ir_unop_logic_not:
765 emit(NOT(this->result, op[0]));
766 break;
767 case ir_unop_neg:
768 op[0].negate = !op[0].negate;
769 emit(MOV(this->result, op[0]));
770 break;
771 case ir_unop_abs:
772 op[0].abs = true;
773 op[0].negate = false;
774 emit(MOV(this->result, op[0]));
775 break;
776 case ir_unop_sign:
777 if (ir->type->is_float()) {
778 /* AND(val, 0x80000000) gives the sign bit.
779 *
780 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
781 * zero.
782 */
783 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
784
785 op[0].type = BRW_REGISTER_TYPE_UD;
786 this->result.type = BRW_REGISTER_TYPE_UD;
787 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
788
789 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
790 inst->predicate = BRW_PREDICATE_NORMAL;
791
792 this->result.type = BRW_REGISTER_TYPE_F;
793 } else {
794 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
795 * -> non-negative val generates 0x00000000.
796 * Predicated OR sets 1 if val is positive.
797 */
798 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
799
800 emit(ASR(this->result, op[0], fs_reg(31)));
801
802 inst = emit(OR(this->result, this->result, fs_reg(1)));
803 inst->predicate = BRW_PREDICATE_NORMAL;
804 }
805 break;
806 case ir_unop_rcp:
807 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
808 break;
809
810 case ir_unop_exp2:
811 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
812 break;
813 case ir_unop_log2:
814 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
815 break;
816 case ir_unop_exp:
817 case ir_unop_log:
818 unreachable("not reached: should be handled by ir_explog_to_explog2");
819 case ir_unop_sin:
820 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
821 break;
822 case ir_unop_cos:
823 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
824 break;
825
826 case ir_unop_dFdx:
827 /* Select one of the two opcodes based on the glHint value. */
828 if (fs_key->high_quality_derivatives)
829 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
830 else
831 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
832 break;
833
834 case ir_unop_dFdx_coarse:
835 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
836 break;
837
838 case ir_unop_dFdx_fine:
839 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
840 break;
841
842 case ir_unop_dFdy:
843 /* Select one of the two opcodes based on the glHint value. */
844 if (fs_key->high_quality_derivatives)
845 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
846 else
847 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
848 break;
849
850 case ir_unop_dFdy_coarse:
851 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
852 break;
853
854 case ir_unop_dFdy_fine:
855 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
856 break;
857
858 case ir_binop_add:
859 emit(ADD(this->result, op[0], op[1]));
860 break;
861 case ir_binop_sub:
862 unreachable("not reached: should be handled by ir_sub_to_add_neg");
863
864 case ir_binop_mul:
865 if (brw->gen < 8 && ir->type->is_integer()) {
866 /* For integer multiplication, the MUL uses the low 16 bits
867 * of one of the operands (src0 on gen6, src1 on gen7). The
868 * MACH accumulates in the contribution of the upper 16 bits
869 * of that operand.
870 */
871 if (ir->operands[0]->is_uint16_constant()) {
872 if (brw->gen < 7)
873 emit(MUL(this->result, op[0], op[1]));
874 else
875 emit(MUL(this->result, op[1], op[0]));
876 } else if (ir->operands[1]->is_uint16_constant()) {
877 if (brw->gen < 7)
878 emit(MUL(this->result, op[1], op[0]));
879 else
880 emit(MUL(this->result, op[0], op[1]));
881 } else {
882 if (brw->gen >= 7)
883 no16("SIMD16 explicit accumulator operands unsupported\n");
884
885 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
886 this->result.type);
887
888 emit(MUL(acc, op[0], op[1]));
889 emit(MACH(reg_null_d, op[0], op[1]));
890 emit(MOV(this->result, fs_reg(acc)));
891 }
892 } else {
893 emit(MUL(this->result, op[0], op[1]));
894 }
895 break;
896 case ir_binop_imul_high: {
897 if (brw->gen == 7)
898 no16("SIMD16 explicit accumulator operands unsupported\n");
899
900 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
901 this->result.type);
902
903 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
904 emit(MACH(this->result, op[0], op[1]));
905
906 /* Until Gen8, integer multiplies read 32-bits from one source, and
907 * 16-bits from the other, and relying on the MACH instruction to
908 * generate the high bits of the result.
909 *
910 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
911 * but in order to do a 64x64-bit multiply we have to simulate the
912 * previous behavior and then use a MACH instruction.
913 *
914 * FINISHME: Don't use source modifiers on src1.
915 */
916 if (brw->gen >= 8) {
917 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
918 mul->src[1].type == BRW_REGISTER_TYPE_UD);
919 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
920 mul->src[1].type = BRW_REGISTER_TYPE_W;
921 } else {
922 mul->src[1].type = BRW_REGISTER_TYPE_UW;
923 }
924 }
925
926 break;
927 }
928 case ir_binop_div:
929 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
930 assert(ir->type->is_integer());
931 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
932 break;
933 case ir_binop_carry: {
934 if (brw->gen == 7)
935 no16("SIMD16 explicit accumulator operands unsupported\n");
936
937 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
938 BRW_REGISTER_TYPE_UD);
939
940 emit(ADDC(reg_null_ud, op[0], op[1]));
941 emit(MOV(this->result, fs_reg(acc)));
942 break;
943 }
944 case ir_binop_borrow: {
945 if (brw->gen == 7)
946 no16("SIMD16 explicit accumulator operands unsupported\n");
947
948 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
949 BRW_REGISTER_TYPE_UD);
950
951 emit(SUBB(reg_null_ud, op[0], op[1]));
952 emit(MOV(this->result, fs_reg(acc)));
953 break;
954 }
955 case ir_binop_mod:
956 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
957 assert(ir->type->is_integer());
958 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
959 break;
960
961 case ir_binop_less:
962 case ir_binop_greater:
963 case ir_binop_lequal:
964 case ir_binop_gequal:
965 case ir_binop_equal:
966 case ir_binop_all_equal:
967 case ir_binop_nequal:
968 case ir_binop_any_nequal:
969 if (brw->gen <= 5) {
970 resolve_bool_comparison(ir->operands[0], &op[0]);
971 resolve_bool_comparison(ir->operands[1], &op[1]);
972 }
973
974 emit(CMP(this->result, op[0], op[1],
975 brw_conditional_for_comparison(ir->operation)));
976 break;
977
978 case ir_binop_logic_xor:
979 emit(XOR(this->result, op[0], op[1]));
980 break;
981
982 case ir_binop_logic_or:
983 emit(OR(this->result, op[0], op[1]));
984 break;
985
986 case ir_binop_logic_and:
987 emit(AND(this->result, op[0], op[1]));
988 break;
989
990 case ir_binop_dot:
991 case ir_unop_any:
992 unreachable("not reached: should be handled by brw_fs_channel_expressions");
993
994 case ir_unop_noise:
995 unreachable("not reached: should be handled by lower_noise");
996
997 case ir_quadop_vector:
998 unreachable("not reached: should be handled by lower_quadop_vector");
999
1000 case ir_binop_vector_extract:
1001 unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
1002
1003 case ir_triop_vector_insert:
1004 unreachable("not reached: should be handled by lower_vector_insert()");
1005
1006 case ir_binop_ldexp:
1007 unreachable("not reached: should be handled by ldexp_to_arith()");
1008
1009 case ir_unop_sqrt:
1010 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
1011 break;
1012
1013 case ir_unop_rsq:
1014 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
1015 break;
1016
1017 case ir_unop_bitcast_i2f:
1018 case ir_unop_bitcast_u2f:
1019 op[0].type = BRW_REGISTER_TYPE_F;
1020 this->result = op[0];
1021 break;
1022 case ir_unop_i2u:
1023 case ir_unop_bitcast_f2u:
1024 op[0].type = BRW_REGISTER_TYPE_UD;
1025 this->result = op[0];
1026 break;
1027 case ir_unop_u2i:
1028 case ir_unop_bitcast_f2i:
1029 op[0].type = BRW_REGISTER_TYPE_D;
1030 this->result = op[0];
1031 break;
1032 case ir_unop_i2f:
1033 case ir_unop_u2f:
1034 case ir_unop_f2i:
1035 case ir_unop_f2u:
1036 emit(MOV(this->result, op[0]));
1037 break;
1038
1039 case ir_unop_b2i:
1040 emit(AND(this->result, op[0], fs_reg(1)));
1041 break;
1042 case ir_unop_b2f:
1043 if (brw->gen <= 5) {
1044 resolve_bool_comparison(ir->operands[0], &op[0]);
1045 }
1046 op[0].type = BRW_REGISTER_TYPE_D;
1047 this->result.type = BRW_REGISTER_TYPE_D;
1048 emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
1049 this->result.type = BRW_REGISTER_TYPE_F;
1050 break;
1051
1052 case ir_unop_f2b:
1053 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1054 break;
1055 case ir_unop_i2b:
1056 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1057 break;
1058
1059 case ir_unop_trunc:
1060 emit(RNDZ(this->result, op[0]));
1061 break;
1062 case ir_unop_ceil: {
1063 fs_reg tmp = vgrf(ir->type);
1064 op[0].negate = !op[0].negate;
1065 emit(RNDD(tmp, op[0]));
1066 tmp.negate = true;
1067 emit(MOV(this->result, tmp));
1068 }
1069 break;
1070 case ir_unop_floor:
1071 emit(RNDD(this->result, op[0]));
1072 break;
1073 case ir_unop_fract:
1074 emit(FRC(this->result, op[0]));
1075 break;
1076 case ir_unop_round_even:
1077 emit(RNDE(this->result, op[0]));
1078 break;
1079
1080 case ir_binop_min:
1081 case ir_binop_max:
1082 resolve_ud_negate(&op[0]);
1083 resolve_ud_negate(&op[1]);
1084 emit_minmax(ir->operation == ir_binop_min ?
1085 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
1086 this->result, op[0], op[1]);
1087 break;
1088 case ir_unop_pack_snorm_2x16:
1089 case ir_unop_pack_snorm_4x8:
1090 case ir_unop_pack_unorm_2x16:
1091 case ir_unop_pack_unorm_4x8:
1092 case ir_unop_unpack_snorm_2x16:
1093 case ir_unop_unpack_snorm_4x8:
1094 case ir_unop_unpack_unorm_2x16:
1095 case ir_unop_unpack_unorm_4x8:
1096 case ir_unop_unpack_half_2x16:
1097 case ir_unop_pack_half_2x16:
1098 unreachable("not reached: should be handled by lower_packing_builtins");
1099 case ir_unop_unpack_half_2x16_split_x:
1100 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
1101 break;
1102 case ir_unop_unpack_half_2x16_split_y:
1103 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
1104 break;
1105 case ir_binop_pow:
1106 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
1107 break;
1108
1109 case ir_unop_bitfield_reverse:
1110 emit(BFREV(this->result, op[0]));
1111 break;
1112 case ir_unop_bit_count:
1113 emit(CBIT(this->result, op[0]));
1114 break;
1115 case ir_unop_find_msb:
1116 temp = vgrf(glsl_type::uint_type);
1117 emit(FBH(temp, op[0]));
1118
1119 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1120 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1121 * subtract the result from 31 to convert the MSB count into an LSB count.
1122 */
1123
1124 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1125 emit(MOV(this->result, temp));
1126 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1127
1128 temp.negate = true;
1129 inst = emit(ADD(this->result, temp, fs_reg(31)));
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132 case ir_unop_find_lsb:
1133 emit(FBL(this->result, op[0]));
1134 break;
1135 case ir_unop_saturate:
1136 inst = emit(MOV(this->result, op[0]));
1137 inst->saturate = true;
1138 break;
1139 case ir_triop_bitfield_extract:
1140 /* Note that the instruction's argument order is reversed from GLSL
1141 * and the IR.
1142 */
1143 emit(BFE(this->result, op[2], op[1], op[0]));
1144 break;
1145 case ir_binop_bfm:
1146 emit(BFI1(this->result, op[0], op[1]));
1147 break;
1148 case ir_triop_bfi:
1149 emit(BFI2(this->result, op[0], op[1], op[2]));
1150 break;
1151 case ir_quadop_bitfield_insert:
1152 unreachable("not reached: should be handled by "
1153 "lower_instructions::bitfield_insert_to_bfm_bfi");
1154
1155 case ir_unop_bit_not:
1156 emit(NOT(this->result, op[0]));
1157 break;
1158 case ir_binop_bit_and:
1159 emit(AND(this->result, op[0], op[1]));
1160 break;
1161 case ir_binop_bit_xor:
1162 emit(XOR(this->result, op[0], op[1]));
1163 break;
1164 case ir_binop_bit_or:
1165 emit(OR(this->result, op[0], op[1]));
1166 break;
1167
1168 case ir_binop_lshift:
1169 emit(SHL(this->result, op[0], op[1]));
1170 break;
1171
1172 case ir_binop_rshift:
1173 if (ir->type->base_type == GLSL_TYPE_INT)
1174 emit(ASR(this->result, op[0], op[1]));
1175 else
1176 emit(SHR(this->result, op[0], op[1]));
1177 break;
1178 case ir_binop_pack_half_2x16_split:
1179 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
1180 break;
1181 case ir_binop_ubo_load: {
1182 /* This IR node takes a constant uniform block and a constant or
1183 * variable byte offset within the block and loads a vector from that.
1184 */
1185 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1186 ir_constant *const_offset = ir->operands[1]->as_constant();
1187 fs_reg surf_index;
1188
1189 if (const_uniform_block) {
1190 /* The block index is a constant, so just emit the binding table entry
1191 * as an immediate.
1192 */
1193 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1194 const_uniform_block->value.u[0]);
1195 } else {
1196 /* The block index is not a constant. Evaluate the index expression
1197 * per-channel and add the base UBO index; the generator will select
1198 * a value from any live channel.
1199 */
1200 surf_index = vgrf(glsl_type::uint_type);
1201 emit(ADD(surf_index, op[0],
1202 fs_reg(stage_prog_data->binding_table.ubo_start)))
1203 ->force_writemask_all = true;
1204
1205 /* Assume this may touch any UBO. It would be nice to provide
1206 * a tighter bound, but the array information is already lowered away.
1207 */
1208 brw_mark_surface_used(prog_data,
1209 stage_prog_data->binding_table.ubo_start +
1210 shader_prog->NumUniformBlocks - 1);
1211 }
1212
1213 if (const_offset) {
1214 fs_reg packed_consts = vgrf(glsl_type::float_type);
1215 packed_consts.type = result.type;
1216
1217 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
1218 emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
1219 packed_consts, surf_index, const_offset_reg));
1220
1221 for (int i = 0; i < ir->type->vector_elements; i++) {
1222 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
1223
1224 /* The std140 packing rules don't allow vectors to cross 16-byte
1225 * boundaries, and a reg is 32 bytes.
1226 */
1227 assert(packed_consts.subreg_offset < 32);
1228
1229 /* UBO bools are any nonzero value. We consider bools to be
1230 * values with the low bit set to 1. Convert them using CMP.
1231 */
1232 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1233 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
1234 } else {
1235 emit(MOV(result, packed_consts));
1236 }
1237
1238 result = offset(result, 1);
1239 }
1240 } else {
1241 /* Turn the byte offset into a dword offset. */
1242 fs_reg base_offset = vgrf(glsl_type::int_type);
1243 emit(SHR(base_offset, op[1], fs_reg(2)));
1244
1245 for (int i = 0; i < ir->type->vector_elements; i++) {
1246 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
1247 base_offset, i));
1248
1249 if (ir->type->base_type == GLSL_TYPE_BOOL)
1250 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
1251
1252 result = offset(result, 1);
1253 }
1254 }
1255
1256 result.reg_offset = 0;
1257 break;
1258 }
1259
1260 case ir_triop_fma:
1261 /* Note that the instruction's argument order is reversed from GLSL
1262 * and the IR.
1263 */
1264 emit(MAD(this->result, op[2], op[1], op[0]));
1265 break;
1266
1267 case ir_triop_lrp:
1268 emit_lrp(this->result, op[0], op[1], op[2]);
1269 break;
1270
1271 case ir_triop_csel:
1272 case ir_unop_interpolate_at_centroid:
1273 case ir_binop_interpolate_at_offset:
1274 case ir_binop_interpolate_at_sample:
1275 unreachable("already handled above");
1276 break;
1277
1278 case ir_unop_d2f:
1279 case ir_unop_f2d:
1280 case ir_unop_d2i:
1281 case ir_unop_i2d:
1282 case ir_unop_d2u:
1283 case ir_unop_u2d:
1284 case ir_unop_d2b:
1285 case ir_unop_pack_double_2x32:
1286 case ir_unop_unpack_double_2x32:
1287 case ir_unop_frexp_sig:
1288 case ir_unop_frexp_exp:
1289 unreachable("fp64 todo");
1290 break;
1291 }
1292 }
1293
1294 void
1295 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1296 const glsl_type *type, bool predicated)
1297 {
1298 switch (type->base_type) {
1299 case GLSL_TYPE_FLOAT:
1300 case GLSL_TYPE_UINT:
1301 case GLSL_TYPE_INT:
1302 case GLSL_TYPE_BOOL:
1303 for (unsigned int i = 0; i < type->components(); i++) {
1304 l.type = brw_type_for_base_type(type);
1305 r.type = brw_type_for_base_type(type);
1306
1307 if (predicated || !l.equals(r)) {
1308 fs_inst *inst = emit(MOV(l, r));
1309 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
1310 }
1311
1312 l = offset(l, 1);
1313 r = offset(r, 1);
1314 }
1315 break;
1316 case GLSL_TYPE_ARRAY:
1317 for (unsigned int i = 0; i < type->length; i++) {
1318 emit_assignment_writes(l, r, type->fields.array, predicated);
1319 }
1320 break;
1321
1322 case GLSL_TYPE_STRUCT:
1323 for (unsigned int i = 0; i < type->length; i++) {
1324 emit_assignment_writes(l, r, type->fields.structure[i].type,
1325 predicated);
1326 }
1327 break;
1328
1329 case GLSL_TYPE_SAMPLER:
1330 case GLSL_TYPE_IMAGE:
1331 case GLSL_TYPE_ATOMIC_UINT:
1332 break;
1333
1334 case GLSL_TYPE_DOUBLE:
1335 case GLSL_TYPE_VOID:
1336 case GLSL_TYPE_ERROR:
1337 case GLSL_TYPE_INTERFACE:
1338 unreachable("not reached");
1339 }
1340 }
1341
1342 /* If the RHS processing resulted in an instruction generating a
1343 * temporary value, and it would be easy to rewrite the instruction to
1344 * generate its result right into the LHS instead, do so. This ends
1345 * up reliably removing instructions where it can be tricky to do so
1346 * later without real UD chain information.
1347 */
1348 bool
1349 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1350 fs_reg dst,
1351 fs_reg src,
1352 fs_inst *pre_rhs_inst,
1353 fs_inst *last_rhs_inst)
1354 {
1355 /* Only attempt if we're doing a direct assignment. */
1356 if (ir->condition ||
1357 !(ir->lhs->type->is_scalar() ||
1358 (ir->lhs->type->is_vector() &&
1359 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
1360 return false;
1361
1362 /* Make sure the last instruction generated our source reg. */
1363 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
1364 last_rhs_inst,
1365 src);
1366 if (!modify)
1367 return false;
1368
1369 /* If last_rhs_inst wrote a different number of components than our LHS,
1370 * we can't safely rewrite it.
1371 */
1372 if (alloc.sizes[dst.reg] != modify->regs_written)
1373 return false;
1374
1375 /* Success! Rewrite the instruction. */
1376 modify->dst = dst;
1377
1378 return true;
1379 }
1380
1381 void
1382 fs_visitor::visit(ir_assignment *ir)
1383 {
1384 fs_reg l, r;
1385 fs_inst *inst;
1386
1387 /* FINISHME: arrays on the lhs */
1388 ir->lhs->accept(this);
1389 l = this->result;
1390
1391 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
1392
1393 ir->rhs->accept(this);
1394 r = this->result;
1395
1396 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
1397
1398 assert(l.file != BAD_FILE);
1399 assert(r.file != BAD_FILE);
1400
1401 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
1402 return;
1403
1404 if (ir->condition) {
1405 emit_bool_to_cond_code(ir->condition);
1406 }
1407
1408 if (ir->lhs->type->is_scalar() ||
1409 ir->lhs->type->is_vector()) {
1410 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1411 if (ir->write_mask & (1 << i)) {
1412 inst = emit(MOV(l, r));
1413 if (ir->condition)
1414 inst->predicate = BRW_PREDICATE_NORMAL;
1415 r = offset(r, 1);
1416 }
1417 l = offset(l, 1);
1418 }
1419 } else {
1420 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1421 }
1422 }
1423
1424 fs_inst *
1425 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
1426 fs_reg coordinate, int coord_components,
1427 fs_reg shadow_c,
1428 fs_reg lod, fs_reg dPdy, int grad_components,
1429 uint32_t sampler)
1430 {
1431 int mlen;
1432 int base_mrf = 1;
1433 bool simd16 = false;
1434 fs_reg orig_dst;
1435
1436 /* g0 header. */
1437 mlen = 1;
1438
1439 if (shadow_c.file != BAD_FILE) {
1440 for (int i = 0; i < coord_components; i++) {
1441 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1442 coordinate = offset(coordinate, 1);
1443 }
1444
1445 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
1446 * the unused slots must be zeroed.
1447 */
1448 for (int i = coord_components; i < 3; i++) {
1449 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1450 }
1451 mlen += 3;
1452
1453 if (op == ir_tex) {
1454 /* There's no plain shadow compare message, so we use shadow
1455 * compare with a bias of 0.0.
1456 */
1457 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
1458 mlen++;
1459 } else if (op == ir_txb || op == ir_txl) {
1460 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1461 mlen++;
1462 } else {
1463 unreachable("Should not get here.");
1464 }
1465
1466 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1467 mlen++;
1468 } else if (op == ir_tex) {
1469 for (int i = 0; i < coord_components; i++) {
1470 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1471 coordinate = offset(coordinate, 1);
1472 }
1473 /* zero the others. */
1474 for (int i = coord_components; i<3; i++) {
1475 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1476 }
1477 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1478 mlen += 3;
1479 } else if (op == ir_txd) {
1480 fs_reg &dPdx = lod;
1481
1482 for (int i = 0; i < coord_components; i++) {
1483 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1484 coordinate = offset(coordinate, 1);
1485 }
1486 /* the slots for u and v are always present, but r is optional */
1487 mlen += MAX2(coord_components, 2);
1488
1489 /* P = u, v, r
1490 * dPdx = dudx, dvdx, drdx
1491 * dPdy = dudy, dvdy, drdy
1492 *
1493 * 1-arg: Does not exist.
1494 *
1495 * 2-arg: dudx dvdx dudy dvdy
1496 * dPdx.x dPdx.y dPdy.x dPdy.y
1497 * m4 m5 m6 m7
1498 *
1499 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1500 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1501 * m5 m6 m7 m8 m9 m10
1502 */
1503 for (int i = 0; i < grad_components; i++) {
1504 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1505 dPdx = offset(dPdx, 1);
1506 }
1507 mlen += MAX2(grad_components, 2);
1508
1509 for (int i = 0; i < grad_components; i++) {
1510 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1511 dPdy = offset(dPdy, 1);
1512 }
1513 mlen += MAX2(grad_components, 2);
1514 } else if (op == ir_txs) {
1515 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1516 simd16 = true;
1517 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1518 mlen += 2;
1519 } else {
1520 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1521 * instructions. We'll need to do SIMD16 here.
1522 */
1523 simd16 = true;
1524 assert(op == ir_txb || op == ir_txl || op == ir_txf);
1525
1526 for (int i = 0; i < coord_components; i++) {
1527 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1528 coordinate));
1529 coordinate = offset(coordinate, 1);
1530 }
1531
1532 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1533 * be necessary for TXF (ld), but seems wise to do for all messages.
1534 */
1535 for (int i = coord_components; i < 3; i++) {
1536 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1537 }
1538
1539 /* lod/bias appears after u/v/r. */
1540 mlen += 6;
1541
1542 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1543 mlen++;
1544
1545 /* The unused upper half. */
1546 mlen++;
1547 }
1548
1549 if (simd16) {
1550 /* Now, since we're doing simd16, the return is 2 interleaved
1551 * vec4s where the odd-indexed ones are junk. We'll need to move
1552 * this weirdness around to the expected layout.
1553 */
1554 orig_dst = dst;
1555 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
1556 }
1557
1558 enum opcode opcode;
1559 switch (op) {
1560 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1561 case ir_txb: opcode = FS_OPCODE_TXB; break;
1562 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1563 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1564 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1565 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1566 default:
1567 unreachable("not reached");
1568 }
1569
1570 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1571 inst->base_mrf = base_mrf;
1572 inst->mlen = mlen;
1573 inst->header_present = true;
1574 inst->regs_written = simd16 ? 8 : 4;
1575
1576 if (simd16) {
1577 for (int i = 0; i < 4; i++) {
1578 emit(MOV(orig_dst, dst));
1579 orig_dst = offset(orig_dst, 1);
1580 dst = offset(dst, 2);
1581 }
1582 }
1583
1584 return inst;
1585 }
1586
1587 fs_inst *
1588 fs_visitor::emit_texture_gen4_simd16(ir_texture_opcode op, fs_reg dst,
1589 fs_reg coordinate, int vector_elements,
1590 fs_reg shadow_c, fs_reg lod,
1591 uint32_t sampler)
1592 {
1593 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1594 bool has_lod = op == ir_txl || op == ir_txb || op == ir_txf;
1595
1596 if (has_lod && shadow_c.file != BAD_FILE)
1597 no16("TXB and TXL with shadow comparison unsupported in SIMD16.");
1598
1599 if (op == ir_txd)
1600 no16("textureGrad unsupported in SIMD16.");
1601
1602 /* Copy the coordinates. */
1603 for (int i = 0; i < vector_elements; i++) {
1604 emit(MOV(retype(offset(message, i), coordinate.type), coordinate));
1605 coordinate = offset(coordinate, 1);
1606 }
1607
1608 fs_reg msg_end = offset(message, vector_elements);
1609
1610 /* Messages other than sample and ld require all three components */
1611 if (has_lod || shadow_c.file != BAD_FILE) {
1612 for (int i = vector_elements; i < 3; i++) {
1613 emit(MOV(offset(message, i), fs_reg(0.0f)));
1614 }
1615 }
1616
1617 if (has_lod) {
1618 fs_reg msg_lod = retype(offset(message, 3), op == ir_txf ?
1619 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
1620 emit(MOV(msg_lod, lod));
1621 msg_end = offset(msg_lod, 1);
1622 }
1623
1624 if (shadow_c.file != BAD_FILE) {
1625 fs_reg msg_ref = offset(message, 3 + has_lod);
1626 emit(MOV(msg_ref, shadow_c));
1627 msg_end = offset(msg_ref, 1);
1628 }
1629
1630 enum opcode opcode;
1631 switch (op) {
1632 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1633 case ir_txb: opcode = FS_OPCODE_TXB; break;
1634 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1635 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1636 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1637 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1638 default: unreachable("not reached");
1639 }
1640
1641 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1642 inst->base_mrf = message.reg - 1;
1643 inst->mlen = msg_end.reg - inst->base_mrf;
1644 inst->header_present = true;
1645 inst->regs_written = 8;
1646
1647 return inst;
1648 }
1649
1650 /* gen5's sampler has slots for u, v, r, array index, then optional
1651 * parameters like shadow comparitor or LOD bias. If optional
1652 * parameters aren't present, those base slots are optional and don't
1653 * need to be included in the message.
1654 *
1655 * We don't fill in the unnecessary slots regardless, which may look
1656 * surprising in the disassembly.
1657 */
1658 fs_inst *
1659 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
1660 fs_reg coordinate, int vector_elements,
1661 fs_reg shadow_c,
1662 fs_reg lod, fs_reg lod2, int grad_components,
1663 fs_reg sample_index, uint32_t sampler,
1664 bool has_offset)
1665 {
1666 int reg_width = dispatch_width / 8;
1667 bool header_present = false;
1668
1669 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1670 fs_reg msg_coords = message;
1671
1672 if (has_offset) {
1673 /* The offsets set up by the ir_texture visitor are in the
1674 * m1 header, so we can't go headerless.
1675 */
1676 header_present = true;
1677 message.reg--;
1678 }
1679
1680 for (int i = 0; i < vector_elements; i++) {
1681 emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
1682 coordinate = offset(coordinate, 1);
1683 }
1684 fs_reg msg_end = offset(msg_coords, vector_elements);
1685 fs_reg msg_lod = offset(msg_coords, 4);
1686
1687 if (shadow_c.file != BAD_FILE) {
1688 fs_reg msg_shadow = msg_lod;
1689 emit(MOV(msg_shadow, shadow_c));
1690 msg_lod = offset(msg_shadow, 1);
1691 msg_end = msg_lod;
1692 }
1693
1694 enum opcode opcode;
1695 switch (op) {
1696 case ir_tex:
1697 opcode = SHADER_OPCODE_TEX;
1698 break;
1699 case ir_txb:
1700 emit(MOV(msg_lod, lod));
1701 msg_end = offset(msg_lod, 1);
1702
1703 opcode = FS_OPCODE_TXB;
1704 break;
1705 case ir_txl:
1706 emit(MOV(msg_lod, lod));
1707 msg_end = offset(msg_lod, 1);
1708
1709 opcode = SHADER_OPCODE_TXL;
1710 break;
1711 case ir_txd: {
1712 /**
1713 * P = u, v, r
1714 * dPdx = dudx, dvdx, drdx
1715 * dPdy = dudy, dvdy, drdy
1716 *
1717 * Load up these values:
1718 * - dudx dudy dvdx dvdy drdx drdy
1719 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1720 */
1721 msg_end = msg_lod;
1722 for (int i = 0; i < grad_components; i++) {
1723 emit(MOV(msg_end, lod));
1724 lod = offset(lod, 1);
1725 msg_end = offset(msg_end, 1);
1726
1727 emit(MOV(msg_end, lod2));
1728 lod2 = offset(lod2, 1);
1729 msg_end = offset(msg_end, 1);
1730 }
1731
1732 opcode = SHADER_OPCODE_TXD;
1733 break;
1734 }
1735 case ir_txs:
1736 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
1737 emit(MOV(msg_lod, lod));
1738 msg_end = offset(msg_lod, 1);
1739
1740 opcode = SHADER_OPCODE_TXS;
1741 break;
1742 case ir_query_levels:
1743 msg_lod = msg_end;
1744 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1745 msg_end = offset(msg_lod, 1);
1746
1747 opcode = SHADER_OPCODE_TXS;
1748 break;
1749 case ir_txf:
1750 msg_lod = offset(msg_coords, 3);
1751 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
1752 msg_end = offset(msg_lod, 1);
1753
1754 opcode = SHADER_OPCODE_TXF;
1755 break;
1756 case ir_txf_ms:
1757 msg_lod = offset(msg_coords, 3);
1758 /* lod */
1759 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1760 /* sample index */
1761 emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
1762 msg_end = offset(msg_lod, 2);
1763
1764 opcode = SHADER_OPCODE_TXF_CMS;
1765 break;
1766 case ir_lod:
1767 opcode = SHADER_OPCODE_LOD;
1768 break;
1769 case ir_tg4:
1770 opcode = SHADER_OPCODE_TG4;
1771 break;
1772 default:
1773 unreachable("not reached");
1774 }
1775
1776 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1777 inst->base_mrf = message.reg;
1778 inst->mlen = msg_end.reg - message.reg;
1779 inst->header_present = header_present;
1780 inst->regs_written = 4 * reg_width;
1781
1782 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1783 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1784 " disallowed by hardware\n");
1785 }
1786
1787 return inst;
1788 }
1789
1790 static bool
1791 is_high_sampler(struct brw_context *brw, fs_reg sampler)
1792 {
1793 if (brw->gen < 8 && !brw->is_haswell)
1794 return false;
1795
1796 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
1797 }
1798
1799 fs_inst *
1800 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
1801 fs_reg coordinate, int coord_components,
1802 fs_reg shadow_c,
1803 fs_reg lod, fs_reg lod2, int grad_components,
1804 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
1805 fs_reg offset_value)
1806 {
1807 int reg_width = dispatch_width / 8;
1808 bool header_present = false;
1809
1810 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
1811 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
1812 sources[i] = vgrf(glsl_type::float_type);
1813 }
1814 int length = 0;
1815
1816 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
1817 is_high_sampler(brw, sampler)) {
1818 /* For general texture offsets (no txf workaround), we need a header to
1819 * put them in. Note that for SIMD16 we're making space for two actual
1820 * hardware registers here, so the emit will have to fix up for this.
1821 *
1822 * * ir4_tg4 needs to place its channel select in the header,
1823 * for interaction with ARB_texture_swizzle
1824 *
1825 * The sampler index is only 4-bits, so for larger sampler numbers we
1826 * need to offset the Sampler State Pointer in the header.
1827 */
1828 header_present = true;
1829 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1830 length++;
1831 }
1832
1833 if (shadow_c.file != BAD_FILE) {
1834 emit(MOV(sources[length], shadow_c));
1835 length++;
1836 }
1837
1838 bool has_nonconstant_offset =
1839 offset_value.file != BAD_FILE && offset_value.file != IMM;
1840 bool coordinate_done = false;
1841
1842 /* Set up the LOD info */
1843 switch (op) {
1844 case ir_tex:
1845 case ir_lod:
1846 break;
1847 case ir_txb:
1848 emit(MOV(sources[length], lod));
1849 length++;
1850 break;
1851 case ir_txl:
1852 emit(MOV(sources[length], lod));
1853 length++;
1854 break;
1855 case ir_txd: {
1856 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1857
1858 /* Load dPdx and the coordinate together:
1859 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1860 */
1861 for (int i = 0; i < coord_components; i++) {
1862 emit(MOV(sources[length], coordinate));
1863 coordinate = offset(coordinate, 1);
1864 length++;
1865
1866 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1867 * only derivatives for (u, v, r).
1868 */
1869 if (i < grad_components) {
1870 emit(MOV(sources[length], lod));
1871 lod = offset(lod, 1);
1872 length++;
1873
1874 emit(MOV(sources[length], lod2));
1875 lod2 = offset(lod2, 1);
1876 length++;
1877 }
1878 }
1879
1880 coordinate_done = true;
1881 break;
1882 }
1883 case ir_txs:
1884 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
1885 length++;
1886 break;
1887 case ir_query_levels:
1888 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1889 length++;
1890 break;
1891 case ir_txf:
1892 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
1893 * On Gen9 they are u, v, lod, r
1894 */
1895
1896 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1897 coordinate = offset(coordinate, 1);
1898 length++;
1899
1900 if (brw->gen >= 9) {
1901 if (coord_components >= 2) {
1902 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1903 coordinate = offset(coordinate, 1);
1904 }
1905 length++;
1906 }
1907
1908 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
1909 length++;
1910
1911 for (int i = brw->gen >= 9 ? 2 : 1; i < coord_components; i++) {
1912 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1913 coordinate = offset(coordinate, 1);
1914 length++;
1915 }
1916
1917 coordinate_done = true;
1918 break;
1919 case ir_txf_ms:
1920 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
1921 length++;
1922
1923 /* data from the multisample control surface */
1924 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
1925 length++;
1926
1927 /* there is no offsetting for this message; just copy in the integer
1928 * texture coordinates
1929 */
1930 for (int i = 0; i < coord_components; i++) {
1931 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1932 coordinate = offset(coordinate, 1);
1933 length++;
1934 }
1935
1936 coordinate_done = true;
1937 break;
1938 case ir_tg4:
1939 if (has_nonconstant_offset) {
1940 if (shadow_c.file != BAD_FILE)
1941 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
1942
1943 /* More crazy intermixing */
1944 for (int i = 0; i < 2; i++) { /* u, v */
1945 emit(MOV(sources[length], coordinate));
1946 coordinate = offset(coordinate, 1);
1947 length++;
1948 }
1949
1950 for (int i = 0; i < 2; i++) { /* offu, offv */
1951 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
1952 offset_value = offset(offset_value, 1);
1953 length++;
1954 }
1955
1956 if (coord_components == 3) { /* r if present */
1957 emit(MOV(sources[length], coordinate));
1958 coordinate = offset(coordinate, 1);
1959 length++;
1960 }
1961
1962 coordinate_done = true;
1963 }
1964 break;
1965 }
1966
1967 /* Set up the coordinate (except for cases where it was done above) */
1968 if (!coordinate_done) {
1969 for (int i = 0; i < coord_components; i++) {
1970 emit(MOV(sources[length], coordinate));
1971 coordinate = offset(coordinate, 1);
1972 length++;
1973 }
1974 }
1975
1976 int mlen;
1977 if (reg_width == 2)
1978 mlen = length * reg_width - header_present;
1979 else
1980 mlen = length * reg_width;
1981
1982 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1983 BRW_REGISTER_TYPE_F);
1984 emit(LOAD_PAYLOAD(src_payload, sources, length));
1985
1986 /* Generate the SEND */
1987 enum opcode opcode;
1988 switch (op) {
1989 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1990 case ir_txb: opcode = FS_OPCODE_TXB; break;
1991 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1992 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1993 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1994 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
1995 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1996 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
1997 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
1998 case ir_tg4:
1999 if (has_nonconstant_offset)
2000 opcode = SHADER_OPCODE_TG4_OFFSET;
2001 else
2002 opcode = SHADER_OPCODE_TG4;
2003 break;
2004 default:
2005 unreachable("not reached");
2006 }
2007 fs_inst *inst = emit(opcode, dst, src_payload, sampler);
2008 inst->base_mrf = -1;
2009 inst->mlen = mlen;
2010 inst->header_present = header_present;
2011 inst->regs_written = 4 * reg_width;
2012
2013 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
2014 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
2015 " disallowed by hardware\n");
2016 }
2017
2018 return inst;
2019 }
2020
2021 fs_reg
2022 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
2023 bool is_rect, uint32_t sampler, int texunit)
2024 {
2025 fs_inst *inst = NULL;
2026 bool needs_gl_clamp = true;
2027 fs_reg scale_x, scale_y;
2028
2029 /* The 965 requires the EU to do the normalization of GL rectangle
2030 * texture coordinates. We use the program parameter state
2031 * tracking to get the scaling factor.
2032 */
2033 if (is_rect &&
2034 (brw->gen < 6 ||
2035 (brw->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
2036 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
2037 struct gl_program_parameter_list *params = prog->Parameters;
2038 int tokens[STATE_LENGTH] = {
2039 STATE_INTERNAL,
2040 STATE_TEXRECT_SCALE,
2041 texunit,
2042 0,
2043 0
2044 };
2045
2046 no16("rectangle scale uniform setup not supported on SIMD16\n");
2047 if (dispatch_width == 16) {
2048 return coordinate;
2049 }
2050
2051 GLuint index = _mesa_add_state_reference(params,
2052 (gl_state_index *)tokens);
2053 /* Try to find existing copies of the texrect scale uniforms. */
2054 for (unsigned i = 0; i < uniforms; i++) {
2055 if (stage_prog_data->param[i] ==
2056 &prog->Parameters->ParameterValues[index][0]) {
2057 scale_x = fs_reg(UNIFORM, i);
2058 scale_y = fs_reg(UNIFORM, i + 1);
2059 break;
2060 }
2061 }
2062
2063 /* If we didn't already set them up, do so now. */
2064 if (scale_x.file == BAD_FILE) {
2065 scale_x = fs_reg(UNIFORM, uniforms);
2066 scale_y = fs_reg(UNIFORM, uniforms + 1);
2067
2068 stage_prog_data->param[uniforms++] =
2069 &prog->Parameters->ParameterValues[index][0];
2070 stage_prog_data->param[uniforms++] =
2071 &prog->Parameters->ParameterValues[index][1];
2072 }
2073 }
2074
2075 /* The 965 requires the EU to do the normalization of GL rectangle
2076 * texture coordinates. We use the program parameter state
2077 * tracking to get the scaling factor.
2078 */
2079 if (brw->gen < 6 && is_rect) {
2080 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
2081 fs_reg src = coordinate;
2082 coordinate = dst;
2083
2084 emit(MUL(dst, src, scale_x));
2085 dst = offset(dst, 1);
2086 src = offset(src, 1);
2087 emit(MUL(dst, src, scale_y));
2088 } else if (is_rect) {
2089 /* On gen6+, the sampler handles the rectangle coordinates
2090 * natively, without needing rescaling. But that means we have
2091 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
2092 * not [0, 1] like the default case below.
2093 */
2094 needs_gl_clamp = false;
2095
2096 for (int i = 0; i < 2; i++) {
2097 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2098 fs_reg chan = coordinate;
2099 chan = offset(chan, i);
2100
2101 inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
2102 inst->conditional_mod = BRW_CONDITIONAL_GE;
2103
2104 /* Our parameter comes in as 1.0/width or 1.0/height,
2105 * because that's what people normally want for doing
2106 * texture rectangle handling. We need width or height
2107 * for clamping, but we don't care enough to make a new
2108 * parameter type, so just invert back.
2109 */
2110 fs_reg limit = vgrf(glsl_type::float_type);
2111 emit(MOV(limit, i == 0 ? scale_x : scale_y));
2112 emit(SHADER_OPCODE_RCP, limit, limit);
2113
2114 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
2115 inst->conditional_mod = BRW_CONDITIONAL_L;
2116 }
2117 }
2118 }
2119
2120 if (coord_components > 0 && needs_gl_clamp) {
2121 for (int i = 0; i < MIN2(coord_components, 3); i++) {
2122 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2123 fs_reg chan = coordinate;
2124 chan = offset(chan, i);
2125
2126 fs_inst *inst = emit(MOV(chan, chan));
2127 inst->saturate = true;
2128 }
2129 }
2130 }
2131 return coordinate;
2132 }
2133
2134 /* Sample from the MCS surface attached to this multisample texture. */
2135 fs_reg
2136 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
2137 {
2138 int reg_width = dispatch_width / 8;
2139 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
2140 BRW_REGISTER_TYPE_F);
2141 fs_reg dest = vgrf(glsl_type::uvec4_type);
2142 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
2143
2144 /* parameters are: u, v, r; missing parameters are treated as zero */
2145 for (int i = 0; i < components; i++) {
2146 sources[i] = vgrf(glsl_type::float_type);
2147 emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
2148 coordinate = offset(coordinate, 1);
2149 }
2150
2151 emit(LOAD_PAYLOAD(payload, sources, components));
2152
2153 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
2154 inst->base_mrf = -1;
2155 inst->mlen = components * reg_width;
2156 inst->header_present = false;
2157 inst->regs_written = 4 * reg_width; /* we only care about one reg of
2158 * response, but the sampler always
2159 * writes 4/8
2160 */
2161
2162 return dest;
2163 }
2164
2165 void
2166 fs_visitor::emit_texture(ir_texture_opcode op,
2167 const glsl_type *dest_type,
2168 fs_reg coordinate, int coord_components,
2169 fs_reg shadow_c,
2170 fs_reg lod, fs_reg lod2, int grad_components,
2171 fs_reg sample_index,
2172 fs_reg offset_value,
2173 fs_reg mcs,
2174 int gather_component,
2175 bool is_cube_array,
2176 bool is_rect,
2177 uint32_t sampler,
2178 fs_reg sampler_reg, int texunit)
2179 {
2180 fs_inst *inst = NULL;
2181
2182 if (op == ir_tg4) {
2183 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2184 * emitting anything other than setting up the constant result.
2185 */
2186 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
2187 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2188
2189 fs_reg res = vgrf(glsl_type::vec4_type);
2190 this->result = res;
2191
2192 for (int i=0; i<4; i++) {
2193 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
2194 res = offset(res, 1);
2195 }
2196 return;
2197 }
2198 }
2199
2200 if (coordinate.file != BAD_FILE) {
2201 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
2202 * samplers. This should only be a problem with GL_CLAMP on Gen7.
2203 */
2204 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
2205 sampler, texunit);
2206 }
2207
2208 /* Writemasking doesn't eliminate channels on SIMD8 texture
2209 * samples, so don't worry about them.
2210 */
2211 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
2212
2213 if (brw->gen >= 7) {
2214 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
2215 shadow_c, lod, lod2, grad_components,
2216 sample_index, mcs, sampler_reg,
2217 offset_value);
2218 } else if (brw->gen >= 5) {
2219 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
2220 shadow_c, lod, lod2, grad_components,
2221 sample_index, sampler,
2222 offset_value.file != BAD_FILE);
2223 } else if (dispatch_width == 16) {
2224 inst = emit_texture_gen4_simd16(op, dst, coordinate, coord_components,
2225 shadow_c, lod, sampler);
2226 } else {
2227 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
2228 shadow_c, lod, lod2, grad_components,
2229 sampler);
2230 }
2231
2232 if (shadow_c.file != BAD_FILE)
2233 inst->shadow_compare = true;
2234
2235 if (offset_value.file == IMM)
2236 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
2237
2238 if (op == ir_tg4) {
2239 inst->offset |=
2240 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
2241
2242 if (brw->gen == 6)
2243 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
2244 }
2245
2246 /* fixup #layers for cube map arrays */
2247 if (op == ir_txs && is_cube_array) {
2248 fs_reg depth = offset(dst, 2);
2249 fs_reg fixed_depth = vgrf(glsl_type::int_type);
2250 emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
2251
2252 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
2253 int components = inst->regs_written / (dst.width / 8);
2254 for (int i = 0; i < components; i++) {
2255 if (i == 2) {
2256 fixed_payload[i] = fixed_depth;
2257 } else {
2258 fixed_payload[i] = offset(dst, i);
2259 }
2260 }
2261 emit(LOAD_PAYLOAD(dst, fixed_payload, components));
2262 }
2263
2264 swizzle_result(op, dest_type->vector_elements, dst, sampler);
2265 }
2266
2267 void
2268 fs_visitor::visit(ir_texture *ir)
2269 {
2270 uint32_t sampler =
2271 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2272
2273 ir_rvalue *nonconst_sampler_index =
2274 _mesa_get_sampler_array_nonconst_index(ir->sampler);
2275
2276 /* Handle non-constant sampler array indexing */
2277 fs_reg sampler_reg;
2278 if (nonconst_sampler_index) {
2279 /* The highest sampler which may be used by this operation is
2280 * the last element of the array. Mark it here, because the generator
2281 * doesn't have enough information to determine the bound.
2282 */
2283 uint32_t array_size = ir->sampler->as_dereference_array()
2284 ->array->type->array_size();
2285
2286 uint32_t max_used = sampler + array_size - 1;
2287 if (ir->op == ir_tg4 && brw->gen < 8) {
2288 max_used += stage_prog_data->binding_table.gather_texture_start;
2289 } else {
2290 max_used += stage_prog_data->binding_table.texture_start;
2291 }
2292
2293 brw_mark_surface_used(prog_data, max_used);
2294
2295 /* Emit code to evaluate the actual indexing expression */
2296 nonconst_sampler_index->accept(this);
2297 fs_reg temp = vgrf(glsl_type::uint_type);
2298 emit(ADD(temp, this->result, fs_reg(sampler)))
2299 ->force_writemask_all = true;
2300 sampler_reg = temp;
2301 } else {
2302 /* Single sampler, or constant array index; the indexing expression
2303 * is just an immediate.
2304 */
2305 sampler_reg = fs_reg(sampler);
2306 }
2307
2308 /* FINISHME: We're failing to recompile our programs when the sampler is
2309 * updated. This only matters for the texture rectangle scale parameters
2310 * (pre-gen6, or gen6+ with GL_CLAMP).
2311 */
2312 int texunit = prog->SamplerUnits[sampler];
2313
2314 /* Should be lowered by do_lower_texture_projection */
2315 assert(!ir->projector);
2316
2317 /* Should be lowered */
2318 assert(!ir->offset || !ir->offset->type->is_array());
2319
2320 /* Generate code to compute all the subexpression trees. This has to be
2321 * done before loading any values into MRFs for the sampler message since
2322 * generating these values may involve SEND messages that need the MRFs.
2323 */
2324 fs_reg coordinate;
2325 int coord_components = 0;
2326 if (ir->coordinate) {
2327 coord_components = ir->coordinate->type->vector_elements;
2328 ir->coordinate->accept(this);
2329 coordinate = this->result;
2330 }
2331
2332 fs_reg shadow_comparitor;
2333 if (ir->shadow_comparitor) {
2334 ir->shadow_comparitor->accept(this);
2335 shadow_comparitor = this->result;
2336 }
2337
2338 fs_reg offset_value;
2339 if (ir->offset) {
2340 ir_constant *const_offset = ir->offset->as_constant();
2341 if (const_offset) {
2342 /* Store the header bitfield in an IMM register. This allows us to
2343 * use offset_value.file to distinguish between no offset, a constant
2344 * offset, and a non-constant offset.
2345 */
2346 offset_value =
2347 fs_reg(brw_texture_offset(ctx, const_offset->value.i,
2348 const_offset->type->vector_elements));
2349 } else {
2350 ir->offset->accept(this);
2351 offset_value = this->result;
2352 }
2353 }
2354
2355 fs_reg lod, lod2, sample_index, mcs;
2356 int grad_components = 0;
2357 switch (ir->op) {
2358 case ir_tex:
2359 case ir_lod:
2360 case ir_tg4:
2361 case ir_query_levels:
2362 break;
2363 case ir_txb:
2364 ir->lod_info.bias->accept(this);
2365 lod = this->result;
2366 break;
2367 case ir_txd:
2368 ir->lod_info.grad.dPdx->accept(this);
2369 lod = this->result;
2370
2371 ir->lod_info.grad.dPdy->accept(this);
2372 lod2 = this->result;
2373
2374 grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
2375 break;
2376 case ir_txf:
2377 case ir_txl:
2378 case ir_txs:
2379 ir->lod_info.lod->accept(this);
2380 lod = this->result;
2381 break;
2382 case ir_txf_ms:
2383 ir->lod_info.sample_index->accept(this);
2384 sample_index = this->result;
2385
2386 if (brw->gen >= 7 &&
2387 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2388 mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
2389 sampler_reg);
2390 } else {
2391 mcs = fs_reg(0u);
2392 }
2393 break;
2394 default:
2395 unreachable("Unrecognized texture opcode");
2396 };
2397
2398 int gather_component = 0;
2399 if (ir->op == ir_tg4)
2400 gather_component = ir->lod_info.component->as_constant()->value.i[0];
2401
2402 bool is_rect =
2403 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
2404
2405 bool is_cube_array =
2406 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2407 ir->sampler->type->sampler_array;
2408
2409 emit_texture(ir->op, ir->type, coordinate, coord_components,
2410 shadow_comparitor, lod, lod2, grad_components,
2411 sample_index, offset_value, mcs,
2412 gather_component, is_cube_array, is_rect, sampler,
2413 sampler_reg, texunit);
2414 }
2415
2416 /**
2417 * Apply workarounds for Gen6 gather with UINT/SINT
2418 */
2419 void
2420 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
2421 {
2422 if (!wa)
2423 return;
2424
2425 int width = (wa & WA_8BIT) ? 8 : 16;
2426
2427 for (int i = 0; i < 4; i++) {
2428 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
2429 /* Convert from UNORM to UINT */
2430 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
2431 emit(MOV(dst, dst_f));
2432
2433 if (wa & WA_SIGN) {
2434 /* Reinterpret the UINT value as a signed INT value by
2435 * shifting the sign bit into place, then shifting back
2436 * preserving sign.
2437 */
2438 emit(SHL(dst, dst, fs_reg(32 - width)));
2439 emit(ASR(dst, dst, fs_reg(32 - width)));
2440 }
2441
2442 dst = offset(dst, 1);
2443 }
2444 }
2445
2446 /**
2447 * Set up the gather channel based on the swizzle, for gather4.
2448 */
2449 uint32_t
2450 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
2451 {
2452 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
2453 switch (swiz) {
2454 case SWIZZLE_X: return 0;
2455 case SWIZZLE_Y:
2456 /* gather4 sampler is broken for green channel on RG32F --
2457 * we must ask for blue instead.
2458 */
2459 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
2460 return 2;
2461 return 1;
2462 case SWIZZLE_Z: return 2;
2463 case SWIZZLE_W: return 3;
2464 default:
2465 unreachable("Not reached"); /* zero, one swizzles handled already */
2466 }
2467 }
2468
2469 /**
2470 * Swizzle the result of a texture result. This is necessary for
2471 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
2472 */
2473 void
2474 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
2475 fs_reg orig_val, uint32_t sampler)
2476 {
2477 if (op == ir_query_levels) {
2478 /* # levels is in .w */
2479 this->result = offset(orig_val, 3);
2480 return;
2481 }
2482
2483 this->result = orig_val;
2484
2485 /* txs,lod don't actually sample the texture, so swizzling the result
2486 * makes no sense.
2487 */
2488 if (op == ir_txs || op == ir_lod || op == ir_tg4)
2489 return;
2490
2491 if (dest_components == 1) {
2492 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
2493 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
2494 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
2495 swizzled_result.type = orig_val.type;
2496
2497 for (int i = 0; i < 4; i++) {
2498 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
2499 fs_reg l = swizzled_result;
2500 l = offset(l, i);
2501
2502 if (swiz == SWIZZLE_ZERO) {
2503 emit(MOV(l, fs_reg(0.0f)));
2504 } else if (swiz == SWIZZLE_ONE) {
2505 emit(MOV(l, fs_reg(1.0f)));
2506 } else {
2507 emit(MOV(l, offset(orig_val,
2508 GET_SWZ(key_tex->swizzles[sampler], i))));
2509 }
2510 }
2511 this->result = swizzled_result;
2512 }
2513 }
2514
2515 void
2516 fs_visitor::visit(ir_swizzle *ir)
2517 {
2518 ir->val->accept(this);
2519 fs_reg val = this->result;
2520
2521 if (ir->type->vector_elements == 1) {
2522 this->result = offset(this->result, ir->mask.x);
2523 return;
2524 }
2525
2526 fs_reg result = vgrf(ir->type);
2527 this->result = result;
2528
2529 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
2530 fs_reg channel = val;
2531 int swiz = 0;
2532
2533 switch (i) {
2534 case 0:
2535 swiz = ir->mask.x;
2536 break;
2537 case 1:
2538 swiz = ir->mask.y;
2539 break;
2540 case 2:
2541 swiz = ir->mask.z;
2542 break;
2543 case 3:
2544 swiz = ir->mask.w;
2545 break;
2546 }
2547
2548 emit(MOV(result, offset(channel, swiz)));
2549 result = offset(result, 1);
2550 }
2551 }
2552
2553 void
2554 fs_visitor::visit(ir_discard *ir)
2555 {
2556 /* We track our discarded pixels in f0.1. By predicating on it, we can
2557 * update just the flag bits that aren't yet discarded. If there's no
2558 * condition, we emit a CMP of g0 != g0, so all currently executing
2559 * channels will get turned off.
2560 */
2561 fs_inst *cmp;
2562 if (ir->condition) {
2563 emit_bool_to_cond_code(ir->condition);
2564 cmp = (fs_inst *) this->instructions.get_tail();
2565 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
2566 } else {
2567 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2568 BRW_REGISTER_TYPE_UW));
2569 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
2570 }
2571 cmp->predicate = BRW_PREDICATE_NORMAL;
2572 cmp->flag_subreg = 1;
2573
2574 if (brw->gen >= 6) {
2575 emit_discard_jump();
2576 }
2577 }
2578
2579 void
2580 fs_visitor::visit(ir_constant *ir)
2581 {
2582 /* Set this->result to reg at the bottom of the function because some code
2583 * paths will cause this visitor to be applied to other fields. This will
2584 * cause the value stored in this->result to be modified.
2585 *
2586 * Make reg constant so that it doesn't get accidentally modified along the
2587 * way. Yes, I actually had this problem. :(
2588 */
2589 const fs_reg reg = vgrf(ir->type);
2590 fs_reg dst_reg = reg;
2591
2592 if (ir->type->is_array()) {
2593 const unsigned size = type_size(ir->type->fields.array);
2594
2595 for (unsigned i = 0; i < ir->type->length; i++) {
2596 ir->array_elements[i]->accept(this);
2597 fs_reg src_reg = this->result;
2598
2599 dst_reg.type = src_reg.type;
2600 for (unsigned j = 0; j < size; j++) {
2601 emit(MOV(dst_reg, src_reg));
2602 src_reg = offset(src_reg, 1);
2603 dst_reg = offset(dst_reg, 1);
2604 }
2605 }
2606 } else if (ir->type->is_record()) {
2607 foreach_in_list(ir_constant, field, &ir->components) {
2608 const unsigned size = type_size(field->type);
2609
2610 field->accept(this);
2611 fs_reg src_reg = this->result;
2612
2613 dst_reg.type = src_reg.type;
2614 for (unsigned j = 0; j < size; j++) {
2615 emit(MOV(dst_reg, src_reg));
2616 src_reg = offset(src_reg, 1);
2617 dst_reg = offset(dst_reg, 1);
2618 }
2619 }
2620 } else {
2621 const unsigned size = type_size(ir->type);
2622
2623 for (unsigned i = 0; i < size; i++) {
2624 switch (ir->type->base_type) {
2625 case GLSL_TYPE_FLOAT:
2626 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
2627 break;
2628 case GLSL_TYPE_UINT:
2629 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
2630 break;
2631 case GLSL_TYPE_INT:
2632 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
2633 break;
2634 case GLSL_TYPE_BOOL:
2635 emit(MOV(dst_reg,
2636 fs_reg(ir->value.b[i] != 0 ? (int)ctx->Const.UniformBooleanTrue
2637 : 0)));
2638 break;
2639 default:
2640 unreachable("Non-float/uint/int/bool constant");
2641 }
2642 dst_reg = offset(dst_reg, 1);
2643 }
2644 }
2645
2646 this->result = reg;
2647 }
2648
2649 void
2650 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
2651 {
2652 ir_expression *expr = ir->as_expression();
2653
2654 if (!expr || expr->operation == ir_binop_ubo_load) {
2655 ir->accept(this);
2656
2657 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2658 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2659 return;
2660 }
2661
2662 fs_reg op[3];
2663
2664 assert(expr->get_num_operands() <= 3);
2665 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2666 assert(expr->operands[i]->type->is_scalar());
2667
2668 expr->operands[i]->accept(this);
2669 op[i] = this->result;
2670
2671 resolve_ud_negate(&op[i]);
2672 }
2673
2674 emit_bool_to_cond_code_of_reg(expr, op);
2675 }
2676
2677 void
2678 fs_visitor::emit_bool_to_cond_code_of_reg(ir_expression *expr, fs_reg op[3])
2679 {
2680 fs_inst *inst;
2681
2682 switch (expr->operation) {
2683 case ir_unop_logic_not:
2684 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
2685 inst->conditional_mod = BRW_CONDITIONAL_Z;
2686 break;
2687
2688 case ir_binop_logic_xor:
2689 if (brw->gen <= 5) {
2690 fs_reg temp = vgrf(expr->type);
2691 emit(XOR(temp, op[0], op[1]));
2692 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2693 } else {
2694 inst = emit(XOR(reg_null_d, op[0], op[1]));
2695 }
2696 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2697 break;
2698
2699 case ir_binop_logic_or:
2700 if (brw->gen <= 5) {
2701 fs_reg temp = vgrf(expr->type);
2702 emit(OR(temp, op[0], op[1]));
2703 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2704 } else {
2705 inst = emit(OR(reg_null_d, op[0], op[1]));
2706 }
2707 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2708 break;
2709
2710 case ir_binop_logic_and:
2711 if (brw->gen <= 5) {
2712 fs_reg temp = vgrf(expr->type);
2713 emit(AND(temp, op[0], op[1]));
2714 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2715 } else {
2716 inst = emit(AND(reg_null_d, op[0], op[1]));
2717 }
2718 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2719 break;
2720
2721 case ir_unop_f2b:
2722 if (brw->gen >= 6) {
2723 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
2724 } else {
2725 inst = emit(MOV(reg_null_f, op[0]));
2726 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2727 }
2728 break;
2729
2730 case ir_unop_i2b:
2731 if (brw->gen >= 6) {
2732 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2733 } else {
2734 inst = emit(MOV(reg_null_d, op[0]));
2735 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2736 }
2737 break;
2738
2739 case ir_binop_greater:
2740 case ir_binop_gequal:
2741 case ir_binop_less:
2742 case ir_binop_lequal:
2743 case ir_binop_equal:
2744 case ir_binop_all_equal:
2745 case ir_binop_nequal:
2746 case ir_binop_any_nequal:
2747 if (brw->gen <= 5) {
2748 resolve_bool_comparison(expr->operands[0], &op[0]);
2749 resolve_bool_comparison(expr->operands[1], &op[1]);
2750 }
2751
2752 emit(CMP(reg_null_d, op[0], op[1],
2753 brw_conditional_for_comparison(expr->operation)));
2754 break;
2755
2756 case ir_triop_csel: {
2757 /* Expand the boolean condition into the flag register. */
2758 inst = emit(MOV(reg_null_d, op[0]));
2759 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2760
2761 /* Select which boolean to return. */
2762 fs_reg temp = vgrf(expr->operands[1]->type);
2763 inst = emit(SEL(temp, op[1], op[2]));
2764 inst->predicate = BRW_PREDICATE_NORMAL;
2765
2766 /* Expand the result to a condition code. */
2767 inst = emit(MOV(reg_null_d, temp));
2768 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2769 break;
2770 }
2771
2772 default:
2773 unreachable("not reached");
2774 }
2775 }
2776
2777 /**
2778 * Emit a gen6 IF statement with the comparison folded into the IF
2779 * instruction.
2780 */
2781 void
2782 fs_visitor::emit_if_gen6(ir_if *ir)
2783 {
2784 ir_expression *expr = ir->condition->as_expression();
2785
2786 if (expr && expr->operation != ir_binop_ubo_load) {
2787 fs_reg op[3];
2788 fs_inst *inst;
2789 fs_reg temp;
2790
2791 assert(expr->get_num_operands() <= 3);
2792 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2793 assert(expr->operands[i]->type->is_scalar());
2794
2795 expr->operands[i]->accept(this);
2796 op[i] = this->result;
2797 }
2798
2799 switch (expr->operation) {
2800 case ir_unop_logic_not:
2801 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
2802 return;
2803
2804 case ir_binop_logic_xor:
2805 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
2806 return;
2807
2808 case ir_binop_logic_or:
2809 temp = vgrf(glsl_type::bool_type);
2810 emit(OR(temp, op[0], op[1]));
2811 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2812 return;
2813
2814 case ir_binop_logic_and:
2815 temp = vgrf(glsl_type::bool_type);
2816 emit(AND(temp, op[0], op[1]));
2817 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2818 return;
2819
2820 case ir_unop_f2b:
2821 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2822 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2823 return;
2824
2825 case ir_unop_i2b:
2826 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2827 return;
2828
2829 case ir_binop_greater:
2830 case ir_binop_gequal:
2831 case ir_binop_less:
2832 case ir_binop_lequal:
2833 case ir_binop_equal:
2834 case ir_binop_all_equal:
2835 case ir_binop_nequal:
2836 case ir_binop_any_nequal:
2837 if (brw->gen <= 5) {
2838 resolve_bool_comparison(expr->operands[0], &op[0]);
2839 resolve_bool_comparison(expr->operands[1], &op[1]);
2840 }
2841
2842 emit(IF(op[0], op[1],
2843 brw_conditional_for_comparison(expr->operation)));
2844 return;
2845
2846 case ir_triop_csel: {
2847 /* Expand the boolean condition into the flag register. */
2848 fs_inst *inst = emit(MOV(reg_null_d, op[0]));
2849 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2850
2851 /* Select which boolean to use as the result. */
2852 fs_reg temp = vgrf(expr->operands[1]->type);
2853 inst = emit(SEL(temp, op[1], op[2]));
2854 inst->predicate = BRW_PREDICATE_NORMAL;
2855
2856 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2857 return;
2858 }
2859
2860 default:
2861 unreachable("not reached");
2862 }
2863 }
2864
2865 ir->condition->accept(this);
2866 emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
2867 }
2868
2869 bool
2870 fs_visitor::try_opt_frontfacing_ternary(ir_if *ir)
2871 {
2872 ir_dereference_variable *deref = ir->condition->as_dereference_variable();
2873 if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0)
2874 return false;
2875
2876 if (ir->then_instructions.length() != 1 ||
2877 ir->else_instructions.length() != 1)
2878 return false;
2879
2880 ir_assignment *then_assign =
2881 ((ir_instruction *)ir->then_instructions.head)->as_assignment();
2882 ir_assignment *else_assign =
2883 ((ir_instruction *)ir->else_instructions.head)->as_assignment();
2884
2885 if (!then_assign || then_assign->condition ||
2886 !else_assign || else_assign->condition ||
2887 then_assign->write_mask != else_assign->write_mask ||
2888 !then_assign->lhs->equals(else_assign->lhs))
2889 return false;
2890
2891 ir_constant *then_rhs = then_assign->rhs->as_constant();
2892 ir_constant *else_rhs = else_assign->rhs->as_constant();
2893
2894 if (!then_rhs || !else_rhs)
2895 return false;
2896
2897 if (then_rhs->type->base_type != GLSL_TYPE_FLOAT)
2898 return false;
2899
2900 if ((then_rhs->is_one() && else_rhs->is_negative_one()) ||
2901 (else_rhs->is_one() && then_rhs->is_negative_one())) {
2902 then_assign->lhs->accept(this);
2903 fs_reg dst = this->result;
2904 dst.type = BRW_REGISTER_TYPE_D;
2905 fs_reg tmp = vgrf(glsl_type::int_type);
2906
2907 if (brw->gen >= 6) {
2908 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
2909 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
2910
2911 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2912 *
2913 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
2914 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2915 *
2916 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
2917 */
2918
2919 if (then_rhs->is_negative_one()) {
2920 assert(else_rhs->is_one());
2921 g0.negate = true;
2922 }
2923
2924 tmp.type = BRW_REGISTER_TYPE_W;
2925 tmp.subreg_offset = 2;
2926 tmp.stride = 2;
2927
2928 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
2929 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
2930
2931 tmp.type = BRW_REGISTER_TYPE_D;
2932 tmp.subreg_offset = 0;
2933 tmp.stride = 1;
2934 } else {
2935 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
2936 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
2937
2938 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2939 *
2940 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
2941 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2942 *
2943 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
2944 */
2945
2946 if (then_rhs->is_negative_one()) {
2947 assert(else_rhs->is_one());
2948 g1_6.negate = true;
2949 }
2950
2951 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
2952 }
2953 emit(AND(dst, tmp, fs_reg(0xbf800000)));
2954 return true;
2955 }
2956
2957 return false;
2958 }
2959
2960 /**
2961 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2962 *
2963 * Many GLSL shaders contain the following pattern:
2964 *
2965 * x = condition ? foo : bar
2966 *
2967 * The compiler emits an ir_if tree for this, since each subexpression might be
2968 * a complex tree that could have side-effects or short-circuit logic.
2969 *
2970 * However, the common case is to simply select one of two constants or
2971 * variable values---which is exactly what SEL is for. In this case, the
2972 * assembly looks like:
2973 *
2974 * (+f0) IF
2975 * MOV dst src0
2976 * ELSE
2977 * MOV dst src1
2978 * ENDIF
2979 *
2980 * which can be easily translated into:
2981 *
2982 * (+f0) SEL dst src0 src1
2983 *
2984 * If src0 is an immediate value, we promote it to a temporary GRF.
2985 */
2986 bool
2987 fs_visitor::try_replace_with_sel()
2988 {
2989 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2990 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2991
2992 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2993 int opcodes[] = {
2994 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2995 };
2996
2997 fs_inst *match = (fs_inst *) endif_inst->prev;
2998 for (int i = 0; i < 4; i++) {
2999 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
3000 return false;
3001 match = (fs_inst *) match->prev;
3002 }
3003
3004 /* The opcodes match; it looks like the right sequence of instructions. */
3005 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
3006 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
3007 fs_inst *if_inst = (fs_inst *) then_mov->prev;
3008
3009 /* Check that the MOVs are the right form. */
3010 if (then_mov->dst.equals(else_mov->dst) &&
3011 !then_mov->is_partial_write() &&
3012 !else_mov->is_partial_write()) {
3013
3014 /* Remove the matched instructions; we'll emit a SEL to replace them. */
3015 while (!if_inst->next->is_tail_sentinel())
3016 if_inst->next->exec_node::remove();
3017 if_inst->exec_node::remove();
3018
3019 /* Only the last source register can be a constant, so if the MOV in
3020 * the "then" clause uses a constant, we need to put it in a temporary.
3021 */
3022 fs_reg src0(then_mov->src[0]);
3023 if (src0.file == IMM) {
3024 src0 = vgrf(glsl_type::float_type);
3025 src0.type = then_mov->src[0].type;
3026 emit(MOV(src0, then_mov->src[0]));
3027 }
3028
3029 fs_inst *sel;
3030 if (if_inst->conditional_mod) {
3031 /* Sandybridge-specific IF with embedded comparison */
3032 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
3033 if_inst->conditional_mod));
3034 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3035 sel->predicate = BRW_PREDICATE_NORMAL;
3036 } else {
3037 /* Separate CMP and IF instructions */
3038 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3039 sel->predicate = if_inst->predicate;
3040 sel->predicate_inverse = if_inst->predicate_inverse;
3041 }
3042
3043 return true;
3044 }
3045
3046 return false;
3047 }
3048
3049 void
3050 fs_visitor::visit(ir_if *ir)
3051 {
3052 if (try_opt_frontfacing_ternary(ir))
3053 return;
3054
3055 /* Don't point the annotation at the if statement, because then it plus
3056 * the then and else blocks get printed.
3057 */
3058 this->base_ir = ir->condition;
3059
3060 if (brw->gen == 6) {
3061 emit_if_gen6(ir);
3062 } else {
3063 emit_bool_to_cond_code(ir->condition);
3064
3065 emit(IF(BRW_PREDICATE_NORMAL));
3066 }
3067
3068 foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
3069 this->base_ir = ir_;
3070 ir_->accept(this);
3071 }
3072
3073 if (!ir->else_instructions.is_empty()) {
3074 emit(BRW_OPCODE_ELSE);
3075
3076 foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
3077 this->base_ir = ir_;
3078 ir_->accept(this);
3079 }
3080 }
3081
3082 emit(BRW_OPCODE_ENDIF);
3083
3084 if (!try_replace_with_sel() && brw->gen < 6) {
3085 no16("Can't support (non-uniform) control flow on SIMD16\n");
3086 }
3087 }
3088
3089 void
3090 fs_visitor::visit(ir_loop *ir)
3091 {
3092 if (brw->gen < 6) {
3093 no16("Can't support (non-uniform) control flow on SIMD16\n");
3094 }
3095
3096 this->base_ir = NULL;
3097 emit(BRW_OPCODE_DO);
3098
3099 foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
3100 this->base_ir = ir_;
3101 ir_->accept(this);
3102 }
3103
3104 this->base_ir = NULL;
3105 emit(BRW_OPCODE_WHILE);
3106 }
3107
3108 void
3109 fs_visitor::visit(ir_loop_jump *ir)
3110 {
3111 switch (ir->mode) {
3112 case ir_loop_jump::jump_break:
3113 emit(BRW_OPCODE_BREAK);
3114 break;
3115 case ir_loop_jump::jump_continue:
3116 emit(BRW_OPCODE_CONTINUE);
3117 break;
3118 }
3119 }
3120
3121 void
3122 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3123 {
3124 ir_dereference *deref = static_cast<ir_dereference *>(
3125 ir->actual_parameters.get_head());
3126 ir_variable *location = deref->variable_referenced();
3127 unsigned surf_index = (stage_prog_data->binding_table.abo_start +
3128 location->data.binding);
3129
3130 /* Calculate the surface offset */
3131 fs_reg offset = vgrf(glsl_type::uint_type);
3132 ir_dereference_array *deref_array = deref->as_dereference_array();
3133
3134 if (deref_array) {
3135 deref_array->array_index->accept(this);
3136
3137 fs_reg tmp = vgrf(glsl_type::uint_type);
3138 emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
3139 emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
3140 } else {
3141 offset = fs_reg(location->data.atomic.offset);
3142 }
3143
3144 /* Emit the appropriate machine instruction */
3145 const char *callee = ir->callee->function_name();
3146 ir->return_deref->accept(this);
3147 fs_reg dst = this->result;
3148
3149 if (!strcmp("__intrinsic_atomic_read", callee)) {
3150 emit_untyped_surface_read(surf_index, dst, offset);
3151
3152 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
3153 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
3154 fs_reg(), fs_reg());
3155
3156 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
3157 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
3158 fs_reg(), fs_reg());
3159 }
3160 }
3161
3162 void
3163 fs_visitor::visit(ir_call *ir)
3164 {
3165 const char *callee = ir->callee->function_name();
3166
3167 if (!strcmp("__intrinsic_atomic_read", callee) ||
3168 !strcmp("__intrinsic_atomic_increment", callee) ||
3169 !strcmp("__intrinsic_atomic_predecrement", callee)) {
3170 visit_atomic_counter_intrinsic(ir);
3171 } else {
3172 unreachable("Unsupported intrinsic.");
3173 }
3174 }
3175
3176 void
3177 fs_visitor::visit(ir_return *)
3178 {
3179 unreachable("FINISHME");
3180 }
3181
3182 void
3183 fs_visitor::visit(ir_function *ir)
3184 {
3185 /* Ignore function bodies other than main() -- we shouldn't see calls to
3186 * them since they should all be inlined before we get to ir_to_mesa.
3187 */
3188 if (strcmp(ir->name, "main") == 0) {
3189 const ir_function_signature *sig;
3190 exec_list empty;
3191
3192 sig = ir->matching_signature(NULL, &empty, false);
3193
3194 assert(sig);
3195
3196 foreach_in_list(ir_instruction, ir_, &sig->body) {
3197 this->base_ir = ir_;
3198 ir_->accept(this);
3199 }
3200 }
3201 }
3202
3203 void
3204 fs_visitor::visit(ir_function_signature *)
3205 {
3206 unreachable("not reached");
3207 }
3208
3209 void
3210 fs_visitor::visit(ir_emit_vertex *)
3211 {
3212 unreachable("not reached");
3213 }
3214
3215 void
3216 fs_visitor::visit(ir_end_primitive *)
3217 {
3218 unreachable("not reached");
3219 }
3220
3221 void
3222 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
3223 fs_reg dst, fs_reg offset, fs_reg src0,
3224 fs_reg src1)
3225 {
3226 int reg_width = dispatch_width / 8;
3227 int length = 0;
3228
3229 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
3230
3231 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3232 /* Initialize the sample mask in the message header. */
3233 emit(MOV(sources[0], fs_reg(0u)))
3234 ->force_writemask_all = true;
3235
3236 if (stage == MESA_SHADER_FRAGMENT) {
3237 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3238 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3239 ->force_writemask_all = true;
3240 } else {
3241 emit(MOV(component(sources[0], 7),
3242 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3243 ->force_writemask_all = true;
3244 }
3245 } else {
3246 /* The execution mask is part of the side-band information sent together with
3247 * the message payload to the data port. It's implicitly ANDed with the sample
3248 * mask sent in the header to compute the actual set of channels that execute
3249 * the atomic operation.
3250 */
3251 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3252 emit(MOV(component(sources[0], 7),
3253 fs_reg(0xffffu)))->force_writemask_all = true;
3254 }
3255 length++;
3256
3257 /* Set the atomic operation offset. */
3258 sources[1] = vgrf(glsl_type::uint_type);
3259 emit(MOV(sources[1], offset));
3260 length++;
3261
3262 /* Set the atomic operation arguments. */
3263 if (src0.file != BAD_FILE) {
3264 sources[length] = vgrf(glsl_type::uint_type);
3265 emit(MOV(sources[length], src0));
3266 length++;
3267 }
3268
3269 if (src1.file != BAD_FILE) {
3270 sources[length] = vgrf(glsl_type::uint_type);
3271 emit(MOV(sources[length], src1));
3272 length++;
3273 }
3274
3275 int mlen = 1 + (length - 1) * reg_width;
3276 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3277 BRW_REGISTER_TYPE_UD);
3278 emit(LOAD_PAYLOAD(src_payload, sources, length));
3279
3280 /* Emit the instruction. */
3281 fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
3282 fs_reg(atomic_op), fs_reg(surf_index));
3283 inst->mlen = mlen;
3284 }
3285
3286 void
3287 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
3288 fs_reg offset)
3289 {
3290 int reg_width = dispatch_width / 8;
3291
3292 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
3293
3294 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3295 /* Initialize the sample mask in the message header. */
3296 emit(MOV(sources[0], fs_reg(0u)))
3297 ->force_writemask_all = true;
3298
3299 if (stage == MESA_SHADER_FRAGMENT) {
3300 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3301 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3302 ->force_writemask_all = true;
3303 } else {
3304 emit(MOV(component(sources[0], 7),
3305 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3306 ->force_writemask_all = true;
3307 }
3308 } else {
3309 /* The execution mask is part of the side-band information sent together with
3310 * the message payload to the data port. It's implicitly ANDed with the sample
3311 * mask sent in the header to compute the actual set of channels that execute
3312 * the atomic operation.
3313 */
3314 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3315 emit(MOV(component(sources[0], 7),
3316 fs_reg(0xffffu)))->force_writemask_all = true;
3317 }
3318
3319 /* Set the surface read offset. */
3320 sources[1] = vgrf(glsl_type::uint_type);
3321 emit(MOV(sources[1], offset));
3322
3323 int mlen = 1 + reg_width;
3324 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3325 BRW_REGISTER_TYPE_UD);
3326 fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
3327
3328 /* Emit the instruction. */
3329 inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
3330 fs_reg(surf_index));
3331 inst->mlen = mlen;
3332 }
3333
3334 fs_inst *
3335 fs_visitor::emit(fs_inst *inst)
3336 {
3337 if (dispatch_width == 16 && inst->exec_size == 8)
3338 inst->force_uncompressed = true;
3339
3340 inst->annotation = this->current_annotation;
3341 inst->ir = this->base_ir;
3342
3343 this->instructions.push_tail(inst);
3344
3345 return inst;
3346 }
3347
3348 void
3349 fs_visitor::emit(exec_list list)
3350 {
3351 foreach_in_list_safe(fs_inst, inst, &list) {
3352 inst->exec_node::remove();
3353 emit(inst);
3354 }
3355 }
3356
3357 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
3358 void
3359 fs_visitor::emit_dummy_fs()
3360 {
3361 int reg_width = dispatch_width / 8;
3362
3363 /* Everyone's favorite color. */
3364 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
3365 for (int i = 0; i < 4; i++) {
3366 emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F,
3367 dispatch_width), fs_reg(color[i])));
3368 }
3369
3370 fs_inst *write;
3371 write = emit(FS_OPCODE_FB_WRITE);
3372 write->eot = true;
3373 if (brw->gen >= 6) {
3374 write->base_mrf = 2;
3375 write->mlen = 4 * reg_width;
3376 } else {
3377 write->header_present = true;
3378 write->base_mrf = 0;
3379 write->mlen = 2 + 4 * reg_width;
3380 }
3381
3382 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
3383 * varying to avoid GPU hangs, so set that.
3384 */
3385 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3386 wm_prog_data->num_varying_inputs = brw->gen < 6 ? 1 : 0;
3387 memset(wm_prog_data->urb_setup, -1,
3388 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
3389
3390 /* We don't have any uniforms. */
3391 stage_prog_data->nr_params = 0;
3392 stage_prog_data->nr_pull_params = 0;
3393 stage_prog_data->curb_read_length = 0;
3394 stage_prog_data->dispatch_grf_start_reg = 2;
3395 wm_prog_data->dispatch_grf_start_reg_16 = 2;
3396 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
3397
3398 calculate_cfg();
3399 }
3400
3401 /* The register location here is relative to the start of the URB
3402 * data. It will get adjusted to be a real location before
3403 * generate_code() time.
3404 */
3405 struct brw_reg
3406 fs_visitor::interp_reg(int location, int channel)
3407 {
3408 assert(stage == MESA_SHADER_FRAGMENT);
3409 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3410 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
3411 int stride = (channel & 1) * 4;
3412
3413 assert(prog_data->urb_setup[location] != -1);
3414
3415 return brw_vec1_grf(regnr, stride);
3416 }
3417
3418 /** Emits the interpolation for the varying inputs. */
3419 void
3420 fs_visitor::emit_interpolation_setup_gen4()
3421 {
3422 this->current_annotation = "compute pixel centers";
3423 this->pixel_x = vgrf(glsl_type::uint_type);
3424 this->pixel_y = vgrf(glsl_type::uint_type);
3425 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
3426 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
3427
3428 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
3429 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
3430
3431 this->current_annotation = "compute pixel deltas from v0";
3432 if (brw->has_pln) {
3433 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3434 vgrf(glsl_type::vec2_type);
3435 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3436 offset(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 1);
3437 } else {
3438 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3439 vgrf(glsl_type::float_type);
3440 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3441 vgrf(glsl_type::float_type);
3442 }
3443 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3444 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
3445 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3446 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
3447
3448 this->current_annotation = "compute pos.w and 1/pos.w";
3449 /* Compute wpos.w. It's always in our setup, since it's needed to
3450 * interpolate the other attributes.
3451 */
3452 this->wpos_w = vgrf(glsl_type::float_type);
3453 emit(FS_OPCODE_LINTERP, wpos_w,
3454 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3455 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3456 interp_reg(VARYING_SLOT_POS, 3));
3457 /* Compute the pixel 1/W value from wpos.w. */
3458 this->pixel_w = vgrf(glsl_type::float_type);
3459 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
3460 this->current_annotation = NULL;
3461 }
3462
3463 /** Emits the interpolation for the varying inputs. */
3464 void
3465 fs_visitor::emit_interpolation_setup_gen6()
3466 {
3467 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3468
3469 /* If the pixel centers end up used, the setup is the same as for gen4. */
3470 this->current_annotation = "compute pixel centers";
3471 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
3472 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
3473 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
3474 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
3475 emit(ADD(int_pixel_x,
3476 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3477 fs_reg(brw_imm_v(0x10101010))));
3478 emit(ADD(int_pixel_y,
3479 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3480 fs_reg(brw_imm_v(0x11001100))));
3481
3482 /* As of gen6, we can no longer mix float and int sources. We have
3483 * to turn the integer pixel centers into floats for their actual
3484 * use.
3485 */
3486 this->pixel_x = vgrf(glsl_type::float_type);
3487 this->pixel_y = vgrf(glsl_type::float_type);
3488 emit(MOV(this->pixel_x, int_pixel_x));
3489 emit(MOV(this->pixel_y, int_pixel_y));
3490
3491 this->current_annotation = "compute pos.w";
3492 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
3493 this->wpos_w = vgrf(glsl_type::float_type);
3494 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
3495
3496 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3497 uint8_t reg = payload.barycentric_coord_reg[i];
3498 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
3499 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
3500 }
3501
3502 this->current_annotation = NULL;
3503 }
3504
3505 int
3506 fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components,
3507 bool use_2nd_half)
3508 {
3509 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3510 fs_inst *inst;
3511
3512 if (color.file == BAD_FILE) {
3513 return 4 * (dispatch_width / 8);
3514 }
3515
3516 uint8_t colors_enabled;
3517 if (components == 0) {
3518 /* We want to write one component to the alpha channel */
3519 colors_enabled = 0x8;
3520 } else {
3521 /* Enable the first components-many channels */
3522 colors_enabled = (1 << components) - 1;
3523 }
3524
3525 if (dispatch_width == 8 || (brw->gen >= 6 && !do_dual_src)) {
3526 /* SIMD8 write looks like:
3527 * m + 0: r0
3528 * m + 1: r1
3529 * m + 2: g0
3530 * m + 3: g1
3531 *
3532 * gen6 SIMD16 DP write looks like:
3533 * m + 0: r0
3534 * m + 1: r1
3535 * m + 2: g0
3536 * m + 3: g1
3537 * m + 4: b0
3538 * m + 5: b1
3539 * m + 6: a0
3540 * m + 7: a1
3541 */
3542 int len = 0;
3543 for (unsigned i = 0; i < 4; ++i) {
3544 if (colors_enabled & (1 << i)) {
3545 dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8),
3546 color.type, color.width);
3547 inst = emit(MOV(dst[len], offset(color, i)));
3548 inst->saturate = key->clamp_fragment_color;
3549 } else if (color.width == 16) {
3550 /* We need two BAD_FILE slots for a 16-wide color */
3551 len++;
3552 }
3553 len++;
3554 }
3555 return len;
3556 } else if (brw->gen >= 6 && do_dual_src) {
3557 /* SIMD16 dual source blending for gen6+.
3558 *
3559 * From the SNB PRM, volume 4, part 1, page 193:
3560 *
3561 * "The dual source render target messages only have SIMD8 forms due to
3562 * maximum message length limitations. SIMD16 pixel shaders must send two
3563 * of these messages to cover all of the pixels. Each message contains
3564 * two colors (4 channels each) for each pixel in the message payload."
3565 *
3566 * So in SIMD16 dual source blending we will send 2 SIMD8 messages,
3567 * each one will call this function twice (one for each color involved),
3568 * so in each pass we only write 4 registers. Notice that the second
3569 * SIMD8 message needs to read color data from the 2nd half of the color
3570 * registers, so it needs to call this with use_2nd_half = true.
3571 */
3572 for (unsigned i = 0; i < 4; ++i) {
3573 if (colors_enabled & (1 << i)) {
3574 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3575 inst = emit(MOV(dst[i], half(offset(color, i),
3576 use_2nd_half ? 1 : 0)));
3577 inst->saturate = key->clamp_fragment_color;
3578 if (use_2nd_half)
3579 inst->force_sechalf = true;
3580 }
3581 }
3582 return 4;
3583 } else {
3584 /* pre-gen6 SIMD16 single source DP write looks like:
3585 * m + 0: r0
3586 * m + 1: g0
3587 * m + 2: b0
3588 * m + 3: a0
3589 * m + 4: r1
3590 * m + 5: g1
3591 * m + 6: b1
3592 * m + 7: a1
3593 */
3594 for (unsigned i = 0; i < 4; ++i) {
3595 if (colors_enabled & (1 << i)) {
3596 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3597 inst = emit(MOV(dst[i], half(offset(color, i), 0)));
3598 inst->saturate = key->clamp_fragment_color;
3599
3600 dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type);
3601 inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
3602 inst->saturate = key->clamp_fragment_color;
3603 inst->force_sechalf = true;
3604 }
3605 }
3606 return 8;
3607 }
3608 }
3609
3610 static enum brw_conditional_mod
3611 cond_for_alpha_func(GLenum func)
3612 {
3613 switch(func) {
3614 case GL_GREATER:
3615 return BRW_CONDITIONAL_G;
3616 case GL_GEQUAL:
3617 return BRW_CONDITIONAL_GE;
3618 case GL_LESS:
3619 return BRW_CONDITIONAL_L;
3620 case GL_LEQUAL:
3621 return BRW_CONDITIONAL_LE;
3622 case GL_EQUAL:
3623 return BRW_CONDITIONAL_EQ;
3624 case GL_NOTEQUAL:
3625 return BRW_CONDITIONAL_NEQ;
3626 default:
3627 unreachable("Not reached");
3628 }
3629 }
3630
3631 /**
3632 * Alpha test support for when we compile it into the shader instead
3633 * of using the normal fixed-function alpha test.
3634 */
3635 void
3636 fs_visitor::emit_alpha_test()
3637 {
3638 assert(stage == MESA_SHADER_FRAGMENT);
3639 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3640 this->current_annotation = "Alpha test";
3641
3642 fs_inst *cmp;
3643 if (key->alpha_test_func == GL_ALWAYS)
3644 return;
3645
3646 if (key->alpha_test_func == GL_NEVER) {
3647 /* f0.1 = 0 */
3648 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3649 BRW_REGISTER_TYPE_UW));
3650 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
3651 BRW_CONDITIONAL_NEQ));
3652 } else {
3653 /* RT0 alpha */
3654 fs_reg color = offset(outputs[0], 3);
3655
3656 /* f0.1 &= func(color, ref) */
3657 cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
3658 cond_for_alpha_func(key->alpha_test_func)));
3659 }
3660 cmp->predicate = BRW_PREDICATE_NORMAL;
3661 cmp->flag_subreg = 1;
3662 }
3663
3664 fs_inst *
3665 fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
3666 fs_reg src0_alpha, unsigned components,
3667 bool use_2nd_half)
3668 {
3669 assert(stage == MESA_SHADER_FRAGMENT);
3670 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3671 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3672
3673 this->current_annotation = "FB write header";
3674 bool header_present = true;
3675 int reg_size = dispatch_width / 8;
3676
3677 /* We can potentially have a message length of up to 15, so we have to set
3678 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3679 */
3680 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
3681 int length = 0;
3682
3683 /* From the Sandy Bridge PRM, volume 4, page 198:
3684 *
3685 * "Dispatched Pixel Enables. One bit per pixel indicating
3686 * which pixels were originally enabled when the thread was
3687 * dispatched. This field is only required for the end-of-
3688 * thread message and on all dual-source messages."
3689 */
3690 if (brw->gen >= 6 &&
3691 (brw->is_haswell || brw->gen >= 8 || !prog_data->uses_kill) &&
3692 color1.file == BAD_FILE &&
3693 key->nr_color_regions == 1) {
3694 header_present = false;
3695 }
3696
3697 if (header_present)
3698 /* Allocate 2 registers for a header */
3699 length += 2;
3700
3701 if (payload.aa_dest_stencil_reg) {
3702 sources[length] = fs_reg(GRF, alloc.allocate(1));
3703 emit(MOV(sources[length],
3704 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
3705 length++;
3706 }
3707
3708 prog_data->uses_omask =
3709 prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
3710 if (prog_data->uses_omask) {
3711 this->current_annotation = "FB write oMask";
3712 assert(this->sample_mask.file != BAD_FILE);
3713 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
3714 * it's unsinged single words, one vgrf is always 16-wide.
3715 */
3716 sources[length] = fs_reg(GRF, alloc.allocate(1),
3717 BRW_REGISTER_TYPE_UW, 16);
3718 emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
3719 length++;
3720 }
3721
3722 if (color0.file == BAD_FILE) {
3723 /* Even if there's no color buffers enabled, we still need to send
3724 * alpha out the pipeline to our null renderbuffer to support
3725 * alpha-testing, alpha-to-coverage, and so on.
3726 */
3727 length += setup_color_payload(sources + length, this->outputs[0], 0,
3728 false);
3729 } else if (color1.file == BAD_FILE) {
3730 if (src0_alpha.file != BAD_FILE) {
3731 sources[length] = fs_reg(GRF, alloc.allocate(reg_size),
3732 src0_alpha.type, src0_alpha.width);
3733 fs_inst *inst = emit(MOV(sources[length], src0_alpha));
3734 inst->saturate = key->clamp_fragment_color;
3735 length++;
3736 }
3737
3738 length += setup_color_payload(sources + length, color0, components,
3739 false);
3740 } else {
3741 length += setup_color_payload(sources + length, color0, components,
3742 use_2nd_half);
3743 length += setup_color_payload(sources + length, color1, components,
3744 use_2nd_half);
3745 }
3746
3747 if (source_depth_to_render_target) {
3748 if (brw->gen == 6) {
3749 /* For outputting oDepth on gen6, SIMD8 writes have to be
3750 * used. This would require SIMD8 moves of each half to
3751 * message regs, kind of like pre-gen5 SIMD16 FB writes.
3752 * Just bail on doing so for now.
3753 */
3754 no16("Missing support for simd16 depth writes on gen6\n");
3755 }
3756
3757 sources[length] = vgrf(glsl_type::float_type);
3758 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3759 /* Hand over gl_FragDepth. */
3760 assert(this->frag_depth.file != BAD_FILE);
3761 emit(MOV(sources[length], this->frag_depth));
3762 } else {
3763 /* Pass through the payload depth. */
3764 emit(MOV(sources[length],
3765 fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
3766 }
3767 length++;
3768 }
3769
3770 if (payload.dest_depth_reg) {
3771 sources[length] = vgrf(glsl_type::float_type);
3772 emit(MOV(sources[length],
3773 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
3774 length++;
3775 }
3776
3777 fs_inst *load;
3778 fs_inst *write;
3779 if (brw->gen >= 7) {
3780 /* Send from the GRF */
3781 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3782 load = emit(LOAD_PAYLOAD(payload, sources, length));
3783 payload.reg = alloc.allocate(load->regs_written);
3784 payload.width = dispatch_width;
3785 load->dst = payload;
3786 write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
3787 write->base_mrf = -1;
3788 } else {
3789 /* Send from the MRF */
3790 load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3791 sources, length));
3792 write = emit(FS_OPCODE_FB_WRITE);
3793 write->exec_size = dispatch_width;
3794 write->base_mrf = 1;
3795 }
3796
3797 write->mlen = load->regs_written;
3798 write->header_present = header_present;
3799 if (prog_data->uses_kill) {
3800 write->predicate = BRW_PREDICATE_NORMAL;
3801 write->flag_subreg = 1;
3802 }
3803 return write;
3804 }
3805
3806 void
3807 fs_visitor::emit_fb_writes()
3808 {
3809 assert(stage == MESA_SHADER_FRAGMENT);
3810 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3811 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3812
3813 fs_inst *inst = NULL;
3814 if (do_dual_src) {
3815 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3816 "FB dual-source write");
3817 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3818 reg_undef, 4);
3819 inst->target = 0;
3820
3821 /* SIMD16 dual source blending requires to send two SIMD8 dual source
3822 * messages, where each message contains color data for 8 pixels. Color
3823 * data for the first group of pixels is stored in the "lower" half of
3824 * the color registers, so in SIMD16, the previous message did:
3825 * m + 0: r0
3826 * m + 1: g0
3827 * m + 2: b0
3828 * m + 3: a0
3829 *
3830 * Here goes the second message, which packs color data for the
3831 * remaining 8 pixels. Color data for these pixels is stored in the
3832 * "upper" half of the color registers, so we need to do:
3833 * m + 0: r1
3834 * m + 1: g1
3835 * m + 2: b1
3836 * m + 3: a1
3837 */
3838 if (dispatch_width == 16) {
3839 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3840 reg_undef, 4, true);
3841 inst->target = 0;
3842 }
3843
3844 prog_data->dual_src_blend = true;
3845 } else {
3846 for (int target = 0; target < key->nr_color_regions; target++) {
3847 /* Skip over outputs that weren't written. */
3848 if (this->outputs[target].file == BAD_FILE)
3849 continue;
3850
3851 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3852 "FB write target %d",
3853 target);
3854 fs_reg src0_alpha;
3855 if (brw->gen >= 6 && key->replicate_alpha && target != 0)
3856 src0_alpha = offset(outputs[0], 3);
3857
3858 inst = emit_single_fb_write(this->outputs[target], reg_undef,
3859 src0_alpha,
3860 this->output_components[target]);
3861 inst->target = target;
3862 }
3863 }
3864
3865 if (inst == NULL) {
3866 /* Even if there's no color buffers enabled, we still need to send
3867 * alpha out the pipeline to our null renderbuffer to support
3868 * alpha-testing, alpha-to-coverage, and so on.
3869 */
3870 inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
3871 inst->target = 0;
3872 }
3873
3874 inst->eot = true;
3875 this->current_annotation = NULL;
3876 }
3877
3878 void
3879 fs_visitor::setup_uniform_clipplane_values()
3880 {
3881 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
3882 const struct brw_vue_prog_key *key =
3883 (const struct brw_vue_prog_key *) this->key;
3884
3885 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3886 this->userplane[i] = fs_reg(UNIFORM, uniforms);
3887 for (int j = 0; j < 4; ++j) {
3888 stage_prog_data->param[uniforms + j] =
3889 (gl_constant_value *) &clip_planes[i][j];
3890 }
3891 uniforms += 4;
3892 }
3893 }
3894
3895 void fs_visitor::compute_clip_distance()
3896 {
3897 struct brw_vue_prog_data *vue_prog_data =
3898 (struct brw_vue_prog_data *) prog_data;
3899 const struct brw_vue_prog_key *key =
3900 (const struct brw_vue_prog_key *) this->key;
3901
3902 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
3903 *
3904 * "If a linked set of shaders forming the vertex stage contains no
3905 * static write to gl_ClipVertex or gl_ClipDistance, but the
3906 * application has requested clipping against user clip planes through
3907 * the API, then the coordinate written to gl_Position is used for
3908 * comparison against the user clip planes."
3909 *
3910 * This function is only called if the shader didn't write to
3911 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
3912 * if the user wrote to it; otherwise we use gl_Position.
3913 */
3914
3915 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
3916 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
3917 clip_vertex = VARYING_SLOT_POS;
3918
3919 /* If the clip vertex isn't written, skip this. Typically this means
3920 * the GS will set up clipping. */
3921 if (outputs[clip_vertex].file == BAD_FILE)
3922 return;
3923
3924 setup_uniform_clipplane_values();
3925
3926 current_annotation = "user clip distances";
3927
3928 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
3929 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
3930
3931 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3932 fs_reg u = userplane[i];
3933 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
3934 output.reg_offset = i & 3;
3935
3936 emit(MUL(output, outputs[clip_vertex], u));
3937 for (int j = 1; j < 4; j++) {
3938 u.reg = userplane[i].reg + j;
3939 emit(MAD(output, output, offset(outputs[clip_vertex], j), u));
3940 }
3941 }
3942 }
3943
3944 void
3945 fs_visitor::emit_urb_writes()
3946 {
3947 int slot, urb_offset, length;
3948 struct brw_vs_prog_data *vs_prog_data =
3949 (struct brw_vs_prog_data *) prog_data;
3950 const struct brw_vs_prog_key *key =
3951 (const struct brw_vs_prog_key *) this->key;
3952 const GLbitfield64 psiz_mask =
3953 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
3954 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
3955 bool flush;
3956 fs_reg sources[8];
3957
3958 /* Lower legacy ff and ClipVertex clipping to clip distances */
3959 if (key->base.userclip_active && !prog->UsesClipDistanceOut)
3960 compute_clip_distance();
3961
3962 /* If we don't have any valid slots to write, just do a minimal urb write
3963 * send to terminate the shader. */
3964 if (vue_map->slots_valid == 0) {
3965
3966 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3967 fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
3968 BRW_REGISTER_TYPE_UD))));
3969 inst->force_writemask_all = true;
3970
3971 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
3972 inst->eot = true;
3973 inst->mlen = 1;
3974 inst->offset = 1;
3975 return;
3976 }
3977
3978 length = 0;
3979 urb_offset = 0;
3980 flush = false;
3981 for (slot = 0; slot < vue_map->num_slots; slot++) {
3982 fs_reg reg, src, zero;
3983
3984 int varying = vue_map->slot_to_varying[slot];
3985 switch (varying) {
3986 case VARYING_SLOT_PSIZ:
3987
3988 /* The point size varying slot is the vue header and is always in the
3989 * vue map. But often none of the special varyings that live there
3990 * are written and in that case we can skip writing to the vue
3991 * header, provided the corresponding state properly clamps the
3992 * values further down the pipeline. */
3993 if ((vue_map->slots_valid & psiz_mask) == 0) {
3994 assert(length == 0);
3995 urb_offset++;
3996 break;
3997 }
3998
3999 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4000 emit(MOV(zero, fs_reg(0u)));
4001
4002 sources[length++] = zero;
4003 if (vue_map->slots_valid & VARYING_BIT_LAYER)
4004 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
4005 else
4006 sources[length++] = zero;
4007
4008 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
4009 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
4010 else
4011 sources[length++] = zero;
4012
4013 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
4014 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
4015 else
4016 sources[length++] = zero;
4017 break;
4018
4019 case BRW_VARYING_SLOT_NDC:
4020 case VARYING_SLOT_EDGE:
4021 unreachable("unexpected scalar vs output");
4022 break;
4023
4024 case BRW_VARYING_SLOT_PAD:
4025 break;
4026
4027 default:
4028 /* gl_Position is always in the vue map, but isn't always written by
4029 * the shader. Other varyings (clip distances) get added to the vue
4030 * map but don't always get written. In those cases, the
4031 * corresponding this->output[] slot will be invalid we and can skip
4032 * the urb write for the varying. If we've already queued up a vue
4033 * slot for writing we flush a mlen 5 urb write, otherwise we just
4034 * advance the urb_offset.
4035 */
4036 if (this->outputs[varying].file == BAD_FILE) {
4037 if (length > 0)
4038 flush = true;
4039 else
4040 urb_offset++;
4041 break;
4042 }
4043
4044 if ((varying == VARYING_SLOT_COL0 ||
4045 varying == VARYING_SLOT_COL1 ||
4046 varying == VARYING_SLOT_BFC0 ||
4047 varying == VARYING_SLOT_BFC1) &&
4048 key->clamp_vertex_color) {
4049 /* We need to clamp these guys, so do a saturating MOV into a
4050 * temp register and use that for the payload.
4051 */
4052 for (int i = 0; i < 4; i++) {
4053 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
4054 src = offset(this->outputs[varying], i);
4055 fs_inst *inst = emit(MOV(reg, src));
4056 inst->saturate = true;
4057 sources[length++] = reg;
4058 }
4059 } else {
4060 for (int i = 0; i < 4; i++)
4061 sources[length++] = offset(this->outputs[varying], i);
4062 }
4063 break;
4064 }
4065
4066 current_annotation = "URB write";
4067
4068 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
4069 * the last slot or if we need to flush (see BAD_FILE varying case
4070 * above), emit a URB write send now to flush out the data.
4071 */
4072 int last = slot == vue_map->num_slots - 1;
4073 if (length == 8 || last)
4074 flush = true;
4075 if (flush) {
4076 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
4077 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
4078 BRW_REGISTER_TYPE_F);
4079
4080 /* We need WE_all on the MOV for the message header (the URB handles)
4081 * so do a MOV to a dummy register and set force_writemask_all on the
4082 * MOV. LOAD_PAYLOAD will preserve that.
4083 */
4084 fs_reg dummy = fs_reg(GRF, alloc.allocate(1),
4085 BRW_REGISTER_TYPE_UD);
4086 fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0),
4087 BRW_REGISTER_TYPE_UD))));
4088 inst->force_writemask_all = true;
4089 payload_sources[0] = dummy;
4090
4091 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
4092 emit(LOAD_PAYLOAD(payload, payload_sources, length + 1));
4093
4094 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4095 inst->eot = last;
4096 inst->mlen = length + 1;
4097 inst->offset = urb_offset;
4098 urb_offset = slot + 1;
4099 length = 0;
4100 flush = false;
4101 }
4102 }
4103 }
4104
4105 void
4106 fs_visitor::resolve_ud_negate(fs_reg *reg)
4107 {
4108 if (reg->type != BRW_REGISTER_TYPE_UD ||
4109 !reg->negate)
4110 return;
4111
4112 fs_reg temp = vgrf(glsl_type::uint_type);
4113 emit(MOV(temp, *reg));
4114 *reg = temp;
4115 }
4116
4117 /**
4118 * Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
4119 *
4120 * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
4121 * If we need a proper boolean value, we have to fix it up to be 0 or ~0.
4122 */
4123 void
4124 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
4125 {
4126 assert(brw->gen <= 5);
4127
4128 if (rvalue->type != glsl_type::bool_type)
4129 return;
4130
4131 fs_reg and_result = vgrf(glsl_type::bool_type);
4132 fs_reg neg_result = vgrf(glsl_type::bool_type);
4133 emit(AND(and_result, *reg, fs_reg(1)));
4134 emit(MOV(neg_result, negate(and_result)));
4135 *reg = neg_result;
4136 }
4137
4138 fs_visitor::fs_visitor(struct brw_context *brw,
4139 void *mem_ctx,
4140 const struct brw_wm_prog_key *key,
4141 struct brw_wm_prog_data *prog_data,
4142 struct gl_shader_program *shader_prog,
4143 struct gl_fragment_program *fp,
4144 unsigned dispatch_width)
4145 : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
4146 MESA_SHADER_FRAGMENT),
4147 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4148 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4149 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4150 key(key), prog_data(&prog_data->base),
4151 dispatch_width(dispatch_width), promoted_constants(0)
4152 {
4153 this->mem_ctx = mem_ctx;
4154 init();
4155 }
4156
4157 fs_visitor::fs_visitor(struct brw_context *brw,
4158 void *mem_ctx,
4159 const struct brw_vs_prog_key *key,
4160 struct brw_vs_prog_data *prog_data,
4161 struct gl_shader_program *shader_prog,
4162 struct gl_vertex_program *cp,
4163 unsigned dispatch_width)
4164 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base,
4165 MESA_SHADER_VERTEX),
4166 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4167 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4168 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4169 key(key), prog_data(&prog_data->base.base),
4170 dispatch_width(dispatch_width), promoted_constants(0)
4171 {
4172 this->mem_ctx = mem_ctx;
4173 init();
4174 }
4175
4176 void
4177 fs_visitor::init()
4178 {
4179 switch (stage) {
4180 case MESA_SHADER_FRAGMENT:
4181 key_tex = &((const brw_wm_prog_key *) key)->tex;
4182 break;
4183 case MESA_SHADER_VERTEX:
4184 case MESA_SHADER_GEOMETRY:
4185 key_tex = &((const brw_vue_prog_key *) key)->tex;
4186 break;
4187 default:
4188 unreachable("unhandled shader stage");
4189 }
4190
4191 this->failed = false;
4192 this->simd16_unsupported = false;
4193 this->no16_msg = NULL;
4194 this->variable_ht = hash_table_ctor(0,
4195 hash_table_pointer_hash,
4196 hash_table_pointer_compare);
4197
4198 this->nir_locals = NULL;
4199 this->nir_globals = NULL;
4200
4201 memset(&this->payload, 0, sizeof(this->payload));
4202 memset(this->outputs, 0, sizeof(this->outputs));
4203 memset(this->output_components, 0, sizeof(this->output_components));
4204 this->source_depth_to_render_target = false;
4205 this->runtime_check_aads_emit = false;
4206 this->first_non_payload_grf = 0;
4207 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
4208
4209 this->current_annotation = NULL;
4210 this->base_ir = NULL;
4211
4212 this->virtual_grf_start = NULL;
4213 this->virtual_grf_end = NULL;
4214 this->live_intervals = NULL;
4215 this->regs_live_at_ip = NULL;
4216
4217 this->uniforms = 0;
4218 this->last_scratch = 0;
4219 this->pull_constant_loc = NULL;
4220 this->push_constant_loc = NULL;
4221
4222 this->spilled_any_registers = false;
4223 this->do_dual_src = false;
4224
4225 if (dispatch_width == 8)
4226 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
4227 }
4228
4229 fs_visitor::~fs_visitor()
4230 {
4231 hash_table_dtor(this->variable_ht);
4232 }