Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info.system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->reg_offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &texture)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85
86 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
87 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
88 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
89 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
90 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
91 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
92
93 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
94 ARRAY_SIZE(srcs));
95
96 /* We only care about one or two regs of response, but the sampler always
97 * writes 4/8.
98 */
99 inst->regs_written = 4 * dispatch_width / 8;
100
101 return dest;
102 }
103
104 void
105 fs_visitor::emit_texture(ir_texture_opcode op,
106 const glsl_type *dest_type,
107 fs_reg coordinate, int coord_components,
108 fs_reg shadow_c,
109 fs_reg lod, fs_reg lod2, int grad_components,
110 fs_reg sample_index,
111 fs_reg offset_value,
112 fs_reg mcs,
113 int gather_component,
114 bool is_cube_array,
115 uint32_t surface,
116 fs_reg surface_reg,
117 uint32_t sampler,
118 fs_reg sampler_reg)
119 {
120 fs_inst *inst = NULL;
121
122 if (op == ir_query_levels) {
123 /* textureQueryLevels() is implemented in terms of TXS so we need to
124 * pass a valid LOD argument.
125 */
126 assert(lod.file == BAD_FILE);
127 lod = brw_imm_ud(0u);
128 }
129
130 if (op == ir_samples_identical) {
131 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
132
133 /* If mcs is an immediate value, it means there is no MCS. In that case
134 * just return false.
135 */
136 if (mcs.file == BRW_IMMEDIATE_VALUE) {
137 bld.MOV(dst, brw_imm_ud(0u));
138 } else if ((key_tex->msaa_16 & (1 << sampler))) {
139 fs_reg tmp = vgrf(glsl_type::uint_type);
140 bld.OR(tmp, mcs, offset(mcs, bld, 1));
141 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
142 } else {
143 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
144 }
145
146 this->result = dst;
147 return;
148 }
149
150 /* Writemasking doesn't eliminate channels on SIMD8 texture
151 * samples, so don't worry about them.
152 */
153 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
154
155 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
156 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
157 srcs[TEX_LOGICAL_SRC_SHADOW_C] = shadow_c;
158 srcs[TEX_LOGICAL_SRC_LOD] = lod;
159 srcs[TEX_LOGICAL_SRC_LOD2] = lod2;
160 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample_index;
161 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
162 srcs[TEX_LOGICAL_SRC_SURFACE] = surface_reg;
163 srcs[TEX_LOGICAL_SRC_SAMPLER] = sampler_reg;
164 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = offset_value;
165 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(coord_components);
166 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(grad_components);
167
168 enum opcode opcode;
169 switch (op) {
170 case ir_tex:
171 opcode = SHADER_OPCODE_TEX_LOGICAL;
172 break;
173 case ir_txb:
174 opcode = FS_OPCODE_TXB_LOGICAL;
175 break;
176 case ir_txl:
177 opcode = SHADER_OPCODE_TXL_LOGICAL;
178 break;
179 case ir_txd:
180 opcode = SHADER_OPCODE_TXD_LOGICAL;
181 break;
182 case ir_txf:
183 opcode = SHADER_OPCODE_TXF_LOGICAL;
184 break;
185 case ir_txf_ms:
186 if ((key_tex->msaa_16 & (1 << sampler)))
187 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
188 else
189 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
190 break;
191 case ir_txs:
192 case ir_query_levels:
193 opcode = SHADER_OPCODE_TXS_LOGICAL;
194 break;
195 case ir_lod:
196 opcode = SHADER_OPCODE_LOD_LOGICAL;
197 break;
198 case ir_tg4:
199 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
200 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
201 break;
202 default:
203 unreachable("Invalid texture opcode.");
204 }
205
206 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
207 inst->regs_written = 4 * dispatch_width / 8;
208
209 if (shadow_c.file != BAD_FILE)
210 inst->shadow_compare = true;
211
212 if (offset_value.file == IMM)
213 inst->offset = offset_value.ud;
214
215 if (op == ir_tg4) {
216 if (gather_component == 1 &&
217 key_tex->gather_channel_quirk_mask & (1 << surface)) {
218 /* gather4 sampler is broken for green channel on RG32F --
219 * we must ask for blue instead.
220 */
221 inst->offset |= 2 << 16;
222 } else {
223 inst->offset |= gather_component << 16;
224 }
225
226 if (devinfo->gen == 6)
227 emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], dst);
228 }
229
230 /* fixup #layers for cube map arrays */
231 if (op == ir_txs && (devinfo->gen < 7 || is_cube_array)) {
232 fs_reg depth = offset(dst, bld, 2);
233 fs_reg fixed_depth = vgrf(glsl_type::int_type);
234
235 if (is_cube_array) {
236 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
237 } else if (devinfo->gen < 7) {
238 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
239 bld.emit_minmax(fixed_depth, depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
240 }
241
242 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
243 int components = inst->regs_written / (inst->exec_size / 8);
244 for (int i = 0; i < components; i++) {
245 if (i == 2) {
246 fixed_payload[i] = fixed_depth;
247 } else {
248 fixed_payload[i] = offset(dst, bld, i);
249 }
250 }
251 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
252 }
253
254 if (op == ir_query_levels) {
255 /* # levels is in .w */
256 dst = offset(dst, bld, 3);
257 }
258
259 this->result = dst;
260 }
261
262 /**
263 * Apply workarounds for Gen6 gather with UINT/SINT
264 */
265 void
266 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
267 {
268 if (!wa)
269 return;
270
271 int width = (wa & WA_8BIT) ? 8 : 16;
272
273 for (int i = 0; i < 4; i++) {
274 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
275 /* Convert from UNORM to UINT */
276 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
277 bld.MOV(dst, dst_f);
278
279 if (wa & WA_SIGN) {
280 /* Reinterpret the UINT value as a signed INT value by
281 * shifting the sign bit into place, then shifting back
282 * preserving sign.
283 */
284 bld.SHL(dst, dst, brw_imm_d(32 - width));
285 bld.ASR(dst, dst, brw_imm_d(32 - width));
286 }
287
288 dst = offset(dst, bld, 1);
289 }
290 }
291
292 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
293 void
294 fs_visitor::emit_dummy_fs()
295 {
296 int reg_width = dispatch_width / 8;
297
298 /* Everyone's favorite color. */
299 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
300 for (int i = 0; i < 4; i++) {
301 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
302 brw_imm_f(color[i]));
303 }
304
305 fs_inst *write;
306 write = bld.emit(FS_OPCODE_FB_WRITE);
307 write->eot = true;
308 if (devinfo->gen >= 6) {
309 write->base_mrf = 2;
310 write->mlen = 4 * reg_width;
311 } else {
312 write->header_size = 2;
313 write->base_mrf = 0;
314 write->mlen = 2 + 4 * reg_width;
315 }
316
317 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
318 * varying to avoid GPU hangs, so set that.
319 */
320 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
321 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
322 memset(wm_prog_data->urb_setup, -1,
323 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
324
325 /* We don't have any uniforms. */
326 stage_prog_data->nr_params = 0;
327 stage_prog_data->nr_pull_params = 0;
328 stage_prog_data->curb_read_length = 0;
329 stage_prog_data->dispatch_grf_start_reg = 2;
330 wm_prog_data->dispatch_grf_start_reg_16 = 2;
331 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
332
333 calculate_cfg();
334 }
335
336 /* The register location here is relative to the start of the URB
337 * data. It will get adjusted to be a real location before
338 * generate_code() time.
339 */
340 struct brw_reg
341 fs_visitor::interp_reg(int location, int channel)
342 {
343 assert(stage == MESA_SHADER_FRAGMENT);
344 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
345 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
346 int stride = (channel & 1) * 4;
347
348 assert(prog_data->urb_setup[location] != -1);
349
350 return brw_vec1_grf(regnr, stride);
351 }
352
353 /** Emits the interpolation for the varying inputs. */
354 void
355 fs_visitor::emit_interpolation_setup_gen4()
356 {
357 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
358
359 fs_builder abld = bld.annotate("compute pixel centers");
360 this->pixel_x = vgrf(glsl_type::uint_type);
361 this->pixel_y = vgrf(glsl_type::uint_type);
362 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
363 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
364 abld.ADD(this->pixel_x,
365 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
366 fs_reg(brw_imm_v(0x10101010)));
367 abld.ADD(this->pixel_y,
368 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
369 fs_reg(brw_imm_v(0x11001100)));
370
371 abld = bld.annotate("compute pixel deltas from v0");
372
373 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
374 vgrf(glsl_type::vec2_type);
375 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
376 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
377 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
378
379 if (devinfo->has_pln && dispatch_width == 16) {
380 for (unsigned i = 0; i < 2; i++) {
381 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
382 half(this->pixel_x, i), xstart);
383 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
384 half(this->pixel_y, i), ystart);
385 }
386 } else {
387 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
388 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
389 }
390
391 abld = bld.annotate("compute pos.w and 1/pos.w");
392 /* Compute wpos.w. It's always in our setup, since it's needed to
393 * interpolate the other attributes.
394 */
395 this->wpos_w = vgrf(glsl_type::float_type);
396 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
397 interp_reg(VARYING_SLOT_POS, 3));
398 /* Compute the pixel 1/W value from wpos.w. */
399 this->pixel_w = vgrf(glsl_type::float_type);
400 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
401 }
402
403 /** Emits the interpolation for the varying inputs. */
404 void
405 fs_visitor::emit_interpolation_setup_gen6()
406 {
407 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
408
409 fs_builder abld = bld.annotate("compute pixel centers");
410 if (devinfo->gen >= 8 || dispatch_width == 8) {
411 /* The "Register Region Restrictions" page says for BDW (and newer,
412 * presumably):
413 *
414 * "When destination spans two registers, the source may be one or
415 * two registers. The destination elements must be evenly split
416 * between the two registers."
417 *
418 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
419 * compute our pixel centers.
420 */
421 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
422 BRW_REGISTER_TYPE_UW);
423
424 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
425 dbld.ADD(int_pixel_xy,
426 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
427 fs_reg(brw_imm_v(0x11001010)));
428
429 this->pixel_x = vgrf(glsl_type::float_type);
430 this->pixel_y = vgrf(glsl_type::float_type);
431 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
432 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
433 } else {
434 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
435 *
436 * "When destination spans two registers, the source MUST span two
437 * registers."
438 *
439 * Since the GRF source of the ADD will only read a single register, we
440 * must do two separate ADDs in SIMD16.
441 */
442 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
443 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
444 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
445 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
446 abld.ADD(int_pixel_x,
447 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
448 fs_reg(brw_imm_v(0x10101010)));
449 abld.ADD(int_pixel_y,
450 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
451 fs_reg(brw_imm_v(0x11001100)));
452
453 /* As of gen6, we can no longer mix float and int sources. We have
454 * to turn the integer pixel centers into floats for their actual
455 * use.
456 */
457 this->pixel_x = vgrf(glsl_type::float_type);
458 this->pixel_y = vgrf(glsl_type::float_type);
459 abld.MOV(this->pixel_x, int_pixel_x);
460 abld.MOV(this->pixel_y, int_pixel_y);
461 }
462
463 abld = bld.annotate("compute pos.w");
464 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
465 this->wpos_w = vgrf(glsl_type::float_type);
466 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
467
468 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
469 uint8_t reg = payload.barycentric_coord_reg[i];
470 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
471 }
472 }
473
474 static enum brw_conditional_mod
475 cond_for_alpha_func(GLenum func)
476 {
477 switch(func) {
478 case GL_GREATER:
479 return BRW_CONDITIONAL_G;
480 case GL_GEQUAL:
481 return BRW_CONDITIONAL_GE;
482 case GL_LESS:
483 return BRW_CONDITIONAL_L;
484 case GL_LEQUAL:
485 return BRW_CONDITIONAL_LE;
486 case GL_EQUAL:
487 return BRW_CONDITIONAL_EQ;
488 case GL_NOTEQUAL:
489 return BRW_CONDITIONAL_NEQ;
490 default:
491 unreachable("Not reached");
492 }
493 }
494
495 /**
496 * Alpha test support for when we compile it into the shader instead
497 * of using the normal fixed-function alpha test.
498 */
499 void
500 fs_visitor::emit_alpha_test()
501 {
502 assert(stage == MESA_SHADER_FRAGMENT);
503 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
504 const fs_builder abld = bld.annotate("Alpha test");
505
506 fs_inst *cmp;
507 if (key->alpha_test_func == GL_ALWAYS)
508 return;
509
510 if (key->alpha_test_func == GL_NEVER) {
511 /* f0.1 = 0 */
512 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
513 BRW_REGISTER_TYPE_UW));
514 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
515 BRW_CONDITIONAL_NEQ);
516 } else {
517 /* RT0 alpha */
518 fs_reg color = offset(outputs[0], bld, 3);
519
520 /* f0.1 &= func(color, ref) */
521 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
522 cond_for_alpha_func(key->alpha_test_func));
523 }
524 cmp->predicate = BRW_PREDICATE_NORMAL;
525 cmp->flag_subreg = 1;
526 }
527
528 fs_inst *
529 fs_visitor::emit_single_fb_write(const fs_builder &bld,
530 fs_reg color0, fs_reg color1,
531 fs_reg src0_alpha, unsigned components)
532 {
533 assert(stage == MESA_SHADER_FRAGMENT);
534 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
535
536 /* Hand over gl_FragDepth or the payload depth. */
537 const fs_reg dst_depth = (payload.dest_depth_reg ?
538 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
539 fs_reg());
540 fs_reg src_depth, src_stencil;
541
542 if (source_depth_to_render_target) {
543 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
544 src_depth = frag_depth;
545 else
546 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
547 }
548
549 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
550 src_stencil = frag_stencil;
551
552 const fs_reg sources[] = {
553 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
554 sample_mask, brw_imm_ud(components)
555 };
556 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
557 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
558 sources, ARRAY_SIZE(sources));
559
560 if (prog_data->uses_kill) {
561 write->predicate = BRW_PREDICATE_NORMAL;
562 write->flag_subreg = 1;
563 }
564
565 return write;
566 }
567
568 void
569 fs_visitor::emit_fb_writes()
570 {
571 assert(stage == MESA_SHADER_FRAGMENT);
572 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
573 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
574
575 fs_inst *inst = NULL;
576
577 if (source_depth_to_render_target && devinfo->gen == 6) {
578 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
579 * would require SIMD8 moves of each half to message regs, e.g. by using
580 * the SIMD lowering pass. Unfortunately this is more difficult than it
581 * sounds because the SIMD8 single-source message lacks channel selects
582 * for the second and third subspans.
583 */
584 no16("Missing support for simd16 depth writes on gen6\n");
585 }
586
587 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
588 /* From the 'Render Target Write message' section of the docs:
589 * "Output Stencil is not supported with SIMD16 Render Target Write
590 * Messages."
591 *
592 * FINISHME: split 16 into 2 8s
593 */
594 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
595 }
596
597 if (do_dual_src) {
598 const fs_builder abld = bld.annotate("FB dual-source write");
599
600 inst = emit_single_fb_write(abld, this->outputs[0],
601 this->dual_src_output, reg_undef, 4);
602 inst->target = 0;
603
604 prog_data->dual_src_blend = true;
605 } else {
606 for (int target = 0; target < key->nr_color_regions; target++) {
607 /* Skip over outputs that weren't written. */
608 if (this->outputs[target].file == BAD_FILE)
609 continue;
610
611 const fs_builder abld = bld.annotate(
612 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
613
614 fs_reg src0_alpha;
615 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
616 src0_alpha = offset(outputs[0], bld, 3);
617
618 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
619 src0_alpha,
620 this->output_components[target]);
621 inst->target = target;
622 }
623 }
624
625 if (inst == NULL) {
626 /* Even if there's no color buffers enabled, we still need to send
627 * alpha out the pipeline to our null renderbuffer to support
628 * alpha-testing, alpha-to-coverage, and so on.
629 */
630 /* FINISHME: Factor out this frequently recurring pattern into a
631 * helper function.
632 */
633 const fs_reg srcs[] = { reg_undef, reg_undef,
634 reg_undef, offset(this->outputs[0], bld, 3) };
635 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
636 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
637
638 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
639 inst->target = 0;
640 }
641
642 inst->eot = true;
643 }
644
645 void
646 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
647 {
648 const struct brw_vs_prog_key *key =
649 (const struct brw_vs_prog_key *) this->key;
650
651 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
652 this->userplane[i] = fs_reg(UNIFORM, uniforms);
653 for (int j = 0; j < 4; ++j) {
654 stage_prog_data->param[uniforms + j] =
655 (gl_constant_value *) &clip_planes[i][j];
656 }
657 uniforms += 4;
658 }
659 }
660
661 /**
662 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
663 *
664 * This does nothing if the shader uses gl_ClipDistance or user clipping is
665 * disabled altogether.
666 */
667 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
668 {
669 struct brw_vue_prog_data *vue_prog_data =
670 (struct brw_vue_prog_data *) prog_data;
671 const struct brw_vs_prog_key *key =
672 (const struct brw_vs_prog_key *) this->key;
673
674 /* Bail unless some sort of legacy clipping is enabled */
675 if (key->nr_userclip_plane_consts == 0)
676 return;
677
678 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
679 *
680 * "If a linked set of shaders forming the vertex stage contains no
681 * static write to gl_ClipVertex or gl_ClipDistance, but the
682 * application has requested clipping against user clip planes through
683 * the API, then the coordinate written to gl_Position is used for
684 * comparison against the user clip planes."
685 *
686 * This function is only called if the shader didn't write to
687 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
688 * if the user wrote to it; otherwise we use gl_Position.
689 */
690
691 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
692 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
693 clip_vertex = VARYING_SLOT_POS;
694
695 /* If the clip vertex isn't written, skip this. Typically this means
696 * the GS will set up clipping. */
697 if (outputs[clip_vertex].file == BAD_FILE)
698 return;
699
700 setup_uniform_clipplane_values(clip_planes);
701
702 const fs_builder abld = bld.annotate("user clip distances");
703
704 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
705 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
706 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
707 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
708
709 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
710 fs_reg u = userplane[i];
711 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
712 output.reg_offset = i & 3;
713
714 abld.MUL(output, outputs[clip_vertex], u);
715 for (int j = 1; j < 4; j++) {
716 u.nr = userplane[i].nr + j;
717 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
718 }
719 }
720 }
721
722 void
723 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
724 {
725 int slot, urb_offset, length;
726 int starting_urb_offset = 0;
727 const struct brw_vue_prog_data *vue_prog_data =
728 (const struct brw_vue_prog_data *) this->prog_data;
729 const struct brw_vs_prog_key *vs_key =
730 (const struct brw_vs_prog_key *) this->key;
731 const GLbitfield64 psiz_mask =
732 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
733 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
734 bool flush;
735 fs_reg sources[8];
736 fs_reg urb_handle;
737
738 if (stage == MESA_SHADER_TESS_EVAL)
739 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
740 else
741 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
742
743 /* If we don't have any valid slots to write, just do a minimal urb write
744 * send to terminate the shader. This includes 1 slot of undefined data,
745 * because it's invalid to write 0 data:
746 *
747 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
748 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
749 * Write Data Payload:
750 *
751 * "The write data payload can be between 1 and 8 message phases long."
752 */
753 if (vue_map->slots_valid == 0) {
754 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
755 bld.exec_all().MOV(payload, urb_handle);
756
757 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
758 inst->eot = true;
759 inst->mlen = 2;
760 inst->offset = 1;
761 return;
762 }
763
764 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
765 int header_size = 1;
766 fs_reg per_slot_offsets;
767
768 if (stage == MESA_SHADER_GEOMETRY) {
769 const struct brw_gs_prog_data *gs_prog_data =
770 (const struct brw_gs_prog_data *) this->prog_data;
771
772 /* We need to increment the Global Offset to skip over the control data
773 * header and the extra "Vertex Count" field (1 HWord) at the beginning
774 * of the VUE. We're counting in OWords, so the units are doubled.
775 */
776 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
777 if (gs_prog_data->static_vertex_count == -1)
778 starting_urb_offset += 2;
779
780 /* We also need to use per-slot offsets. The per-slot offset is the
781 * Vertex Count. SIMD8 mode processes 8 different primitives at a
782 * time; each may output a different number of vertices.
783 */
784 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
785 header_size++;
786
787 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
788 const int output_vertex_size_owords =
789 gs_prog_data->output_vertex_size_hwords * 2;
790
791 if (gs_vertex_count.file == IMM) {
792 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
793 gs_vertex_count.ud);
794 } else {
795 per_slot_offsets = vgrf(glsl_type::int_type);
796 bld.MUL(per_slot_offsets, gs_vertex_count,
797 brw_imm_ud(output_vertex_size_owords));
798 }
799 }
800
801 length = 0;
802 urb_offset = starting_urb_offset;
803 flush = false;
804 for (slot = 0; slot < vue_map->num_slots; slot++) {
805 int varying = vue_map->slot_to_varying[slot];
806 switch (varying) {
807 case VARYING_SLOT_PSIZ: {
808 /* The point size varying slot is the vue header and is always in the
809 * vue map. But often none of the special varyings that live there
810 * are written and in that case we can skip writing to the vue
811 * header, provided the corresponding state properly clamps the
812 * values further down the pipeline. */
813 if ((vue_map->slots_valid & psiz_mask) == 0) {
814 assert(length == 0);
815 urb_offset++;
816 break;
817 }
818
819 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
820 bld.MOV(zero, brw_imm_ud(0u));
821
822 sources[length++] = zero;
823 if (vue_map->slots_valid & VARYING_BIT_LAYER)
824 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
825 else
826 sources[length++] = zero;
827
828 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
829 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
830 else
831 sources[length++] = zero;
832
833 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
834 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
835 else
836 sources[length++] = zero;
837 break;
838 }
839 case BRW_VARYING_SLOT_NDC:
840 case VARYING_SLOT_EDGE:
841 unreachable("unexpected scalar vs output");
842 break;
843
844 default:
845 /* gl_Position is always in the vue map, but isn't always written by
846 * the shader. Other varyings (clip distances) get added to the vue
847 * map but don't always get written. In those cases, the
848 * corresponding this->output[] slot will be invalid we and can skip
849 * the urb write for the varying. If we've already queued up a vue
850 * slot for writing we flush a mlen 5 urb write, otherwise we just
851 * advance the urb_offset.
852 */
853 if (varying == BRW_VARYING_SLOT_PAD ||
854 this->outputs[varying].file == BAD_FILE) {
855 if (length > 0)
856 flush = true;
857 else
858 urb_offset++;
859 break;
860 }
861
862 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
863 (varying == VARYING_SLOT_COL0 ||
864 varying == VARYING_SLOT_COL1 ||
865 varying == VARYING_SLOT_BFC0 ||
866 varying == VARYING_SLOT_BFC1)) {
867 /* We need to clamp these guys, so do a saturating MOV into a
868 * temp register and use that for the payload.
869 */
870 for (int i = 0; i < 4; i++) {
871 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
872 fs_reg src = offset(this->outputs[varying], bld, i);
873 set_saturate(true, bld.MOV(reg, src));
874 sources[length++] = reg;
875 }
876 } else {
877 for (unsigned i = 0; i < output_components[varying]; i++)
878 sources[length++] = offset(this->outputs[varying], bld, i);
879 for (unsigned i = output_components[varying]; i < 4; i++)
880 sources[length++] = brw_imm_d(0);
881 }
882 break;
883 }
884
885 const fs_builder abld = bld.annotate("URB write");
886
887 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
888 * the last slot or if we need to flush (see BAD_FILE varying case
889 * above), emit a URB write send now to flush out the data.
890 */
891 int last = slot == vue_map->num_slots - 1;
892 if (length == 8 || last)
893 flush = true;
894 if (flush) {
895 fs_reg *payload_sources =
896 ralloc_array(mem_ctx, fs_reg, length + header_size);
897 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
898 BRW_REGISTER_TYPE_F);
899 payload_sources[0] = urb_handle;
900
901 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
902 payload_sources[1] = per_slot_offsets;
903
904 memcpy(&payload_sources[header_size], sources,
905 length * sizeof sources[0]);
906
907 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
908 header_size);
909
910 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
911 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
912 inst->mlen = length + header_size;
913 inst->offset = urb_offset;
914 urb_offset = starting_urb_offset + slot + 1;
915 length = 0;
916 flush = false;
917 }
918 }
919 }
920
921 void
922 fs_visitor::emit_cs_terminate()
923 {
924 assert(devinfo->gen >= 7);
925
926 /* We are getting the thread ID from the compute shader header */
927 assert(stage == MESA_SHADER_COMPUTE);
928
929 /* We can't directly send from g0, since sends with EOT have to use
930 * g112-127. So, copy it to a virtual register, The register allocator will
931 * make sure it uses the appropriate register range.
932 */
933 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
934 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
935 bld.group(8, 0).exec_all().MOV(payload, g0);
936
937 /* Send a message to the thread spawner to terminate the thread. */
938 fs_inst *inst = bld.exec_all()
939 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
940 inst->eot = true;
941 }
942
943 void
944 fs_visitor::emit_barrier()
945 {
946 assert(devinfo->gen >= 7);
947 const uint32_t barrier_id_mask =
948 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
949
950 /* We are getting the barrier ID from the compute shader header */
951 assert(stage == MESA_SHADER_COMPUTE);
952
953 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
954
955 const fs_builder pbld = bld.exec_all().group(8, 0);
956
957 /* Clear the message payload */
958 pbld.MOV(payload, brw_imm_ud(0u));
959
960 /* Copy the barrier id from r0.2 to the message payload reg.2 */
961 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
962 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
963
964 /* Emit a gateway "barrier" message using the payload we set up, followed
965 * by a wait instruction.
966 */
967 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
968 }
969
970 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
971 void *mem_ctx,
972 const void *key,
973 struct brw_stage_prog_data *prog_data,
974 struct gl_program *prog,
975 const nir_shader *shader,
976 unsigned dispatch_width,
977 int shader_time_index,
978 const struct brw_vue_map *input_vue_map)
979 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
980 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
981 input_vue_map(input_vue_map),
982 dispatch_width(dispatch_width),
983 shader_time_index(shader_time_index),
984 bld(fs_builder(this, dispatch_width).at_end())
985 {
986 init();
987 }
988
989 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
990 void *mem_ctx,
991 struct brw_gs_compile *c,
992 struct brw_gs_prog_data *prog_data,
993 const nir_shader *shader,
994 int shader_time_index)
995 : backend_shader(compiler, log_data, mem_ctx, shader,
996 &prog_data->base.base),
997 key(&c->key), gs_compile(c),
998 prog_data(&prog_data->base.base), prog(NULL),
999 dispatch_width(8),
1000 shader_time_index(shader_time_index),
1001 bld(fs_builder(this, dispatch_width).at_end())
1002 {
1003 init();
1004 }
1005
1006
1007 void
1008 fs_visitor::init()
1009 {
1010 switch (stage) {
1011 case MESA_SHADER_FRAGMENT:
1012 key_tex = &((const brw_wm_prog_key *) key)->tex;
1013 break;
1014 case MESA_SHADER_VERTEX:
1015 key_tex = &((const brw_vs_prog_key *) key)->tex;
1016 break;
1017 case MESA_SHADER_TESS_EVAL:
1018 key_tex = &((const brw_tes_prog_key *) key)->tex;
1019 break;
1020 case MESA_SHADER_GEOMETRY:
1021 key_tex = &((const brw_gs_prog_key *) key)->tex;
1022 break;
1023 case MESA_SHADER_COMPUTE:
1024 key_tex = &((const brw_cs_prog_key*) key)->tex;
1025 break;
1026 default:
1027 unreachable("unhandled shader stage");
1028 }
1029
1030 if (stage == MESA_SHADER_COMPUTE) {
1031 const brw_cs_prog_data *cs_prog_data =
1032 (const brw_cs_prog_data *) prog_data;
1033 unsigned size = cs_prog_data->local_size[0] *
1034 cs_prog_data->local_size[1] *
1035 cs_prog_data->local_size[2];
1036 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
1037 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
1038 } else {
1039 min_dispatch_width = 8;
1040 }
1041
1042 this->prog_data = this->stage_prog_data;
1043
1044 this->failed = false;
1045 this->simd16_unsupported = false;
1046 this->no16_msg = NULL;
1047
1048 this->nir_locals = NULL;
1049 this->nir_ssa_values = NULL;
1050
1051 memset(&this->payload, 0, sizeof(this->payload));
1052 memset(this->output_components, 0, sizeof(this->output_components));
1053 this->source_depth_to_render_target = false;
1054 this->runtime_check_aads_emit = false;
1055 this->first_non_payload_grf = 0;
1056 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1057
1058 this->virtual_grf_start = NULL;
1059 this->virtual_grf_end = NULL;
1060 this->live_intervals = NULL;
1061 this->regs_live_at_ip = NULL;
1062
1063 this->uniforms = 0;
1064 this->last_scratch = 0;
1065 this->pull_constant_loc = NULL;
1066 this->push_constant_loc = NULL;
1067
1068 this->promoted_constants = 0,
1069
1070 this->spilled_any_registers = false;
1071 this->do_dual_src = false;
1072 }
1073
1074 fs_visitor::~fs_visitor()
1075 {
1076 }