Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_vec4_gs_visitor.h"
45 #include "brw_fs.h"
46 #include "main/uniforms.h"
47 #include "glsl/nir/glsl_types.h"
48 #include "glsl/ir_optimization.h"
49 #include "program/sampler.h"
50
51 using namespace brw;
52
53 fs_reg *
54 fs_visitor::emit_vs_system_value(int location)
55 {
56 fs_reg *reg = new(this->mem_ctx)
57 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
58 BRW_REGISTER_TYPE_D);
59 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
60
61 switch (location) {
62 case SYSTEM_VALUE_BASE_VERTEX:
63 reg->reg_offset = 0;
64 vs_prog_data->uses_vertexid = true;
65 break;
66 case SYSTEM_VALUE_VERTEX_ID:
67 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
68 reg->reg_offset = 2;
69 vs_prog_data->uses_vertexid = true;
70 break;
71 case SYSTEM_VALUE_INSTANCE_ID:
72 reg->reg_offset = 3;
73 vs_prog_data->uses_instanceid = true;
74 break;
75 default:
76 unreachable("not reached");
77 }
78
79 return reg;
80 }
81
82 /* Sample from the MCS surface attached to this multisample texture. */
83 fs_reg
84 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
85 const fs_reg &texture)
86 {
87 const fs_reg dest = vgrf(glsl_type::uvec4_type);
88 const fs_reg srcs[] = {
89 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
90 texture, texture, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
91 };
92 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
93 ARRAY_SIZE(srcs));
94
95 /* We only care about one or two regs of response, but the sampler always
96 * writes 4/8.
97 */
98 inst->regs_written = 4 * dispatch_width / 8;
99
100 return dest;
101 }
102
103 void
104 fs_visitor::emit_texture(ir_texture_opcode op,
105 const glsl_type *dest_type,
106 fs_reg coordinate, int coord_components,
107 fs_reg shadow_c,
108 fs_reg lod, fs_reg lod2, int grad_components,
109 fs_reg sample_index,
110 fs_reg offset_value,
111 fs_reg mcs,
112 int gather_component,
113 bool is_cube_array,
114 uint32_t surface,
115 fs_reg surface_reg,
116 uint32_t sampler,
117 fs_reg sampler_reg)
118 {
119 fs_inst *inst = NULL;
120
121 if (op == ir_query_levels) {
122 /* textureQueryLevels() is implemented in terms of TXS so we need to
123 * pass a valid LOD argument.
124 */
125 assert(lod.file == BAD_FILE);
126 lod = brw_imm_ud(0u);
127 }
128
129 if (op == ir_samples_identical) {
130 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
131
132 /* If mcs is an immediate value, it means there is no MCS. In that case
133 * just return false.
134 */
135 if (mcs.file == BRW_IMMEDIATE_VALUE) {
136 bld.MOV(dst, brw_imm_ud(0u));
137 } else if ((key_tex->msaa_16 & (1 << sampler))) {
138 fs_reg tmp = vgrf(glsl_type::uint_type);
139 bld.OR(tmp, mcs, offset(mcs, bld, 1));
140 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
141 } else {
142 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
143 }
144
145 this->result = dst;
146 return;
147 }
148
149 /* Writemasking doesn't eliminate channels on SIMD8 texture
150 * samples, so don't worry about them.
151 */
152 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
153 const fs_reg srcs[] = {
154 coordinate, shadow_c, lod, lod2,
155 sample_index, mcs, surface_reg, sampler_reg, offset_value,
156 brw_imm_d(coord_components), brw_imm_d(grad_components)
157 };
158 enum opcode opcode;
159
160 switch (op) {
161 case ir_tex:
162 opcode = SHADER_OPCODE_TEX_LOGICAL;
163 break;
164 case ir_txb:
165 opcode = FS_OPCODE_TXB_LOGICAL;
166 break;
167 case ir_txl:
168 opcode = SHADER_OPCODE_TXL_LOGICAL;
169 break;
170 case ir_txd:
171 opcode = SHADER_OPCODE_TXD_LOGICAL;
172 break;
173 case ir_txf:
174 opcode = SHADER_OPCODE_TXF_LOGICAL;
175 break;
176 case ir_txf_ms:
177 if ((key_tex->msaa_16 & (1 << sampler)))
178 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
179 else
180 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
181 break;
182 case ir_txs:
183 case ir_query_levels:
184 opcode = SHADER_OPCODE_TXS_LOGICAL;
185 break;
186 case ir_lod:
187 opcode = SHADER_OPCODE_LOD_LOGICAL;
188 break;
189 case ir_tg4:
190 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
191 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
192 break;
193 default:
194 unreachable("Invalid texture opcode.");
195 }
196
197 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
198 inst->regs_written = 4 * dispatch_width / 8;
199
200 if (shadow_c.file != BAD_FILE)
201 inst->shadow_compare = true;
202
203 if (offset_value.file == IMM)
204 inst->offset = offset_value.ud;
205
206 if (op == ir_tg4) {
207 if (gather_component == 1 &&
208 key_tex->gather_channel_quirk_mask & (1 << surface)) {
209 /* gather4 sampler is broken for green channel on RG32F --
210 * we must ask for blue instead.
211 */
212 inst->offset |= 2 << 16;
213 } else {
214 inst->offset |= gather_component << 16;
215 }
216
217 if (devinfo->gen == 6)
218 emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], dst);
219 }
220
221 /* fixup #layers for cube map arrays */
222 if (op == ir_txs && is_cube_array) {
223 fs_reg depth = offset(dst, bld, 2);
224 fs_reg fixed_depth = vgrf(glsl_type::int_type);
225 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
226
227 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
228 int components = inst->regs_written / (inst->exec_size / 8);
229 for (int i = 0; i < components; i++) {
230 if (i == 2) {
231 fixed_payload[i] = fixed_depth;
232 } else {
233 fixed_payload[i] = offset(dst, bld, i);
234 }
235 }
236 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
237 }
238
239 if (op == ir_query_levels) {
240 /* # levels is in .w */
241 dst = offset(dst, bld, 3);
242 }
243
244 this->result = dst;
245 }
246
247 /**
248 * Apply workarounds for Gen6 gather with UINT/SINT
249 */
250 void
251 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
252 {
253 if (!wa)
254 return;
255
256 int width = (wa & WA_8BIT) ? 8 : 16;
257
258 for (int i = 0; i < 4; i++) {
259 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
260 /* Convert from UNORM to UINT */
261 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
262 bld.MOV(dst, dst_f);
263
264 if (wa & WA_SIGN) {
265 /* Reinterpret the UINT value as a signed INT value by
266 * shifting the sign bit into place, then shifting back
267 * preserving sign.
268 */
269 bld.SHL(dst, dst, brw_imm_d(32 - width));
270 bld.ASR(dst, dst, brw_imm_d(32 - width));
271 }
272
273 dst = offset(dst, bld, 1);
274 }
275 }
276
277 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
278 void
279 fs_visitor::emit_dummy_fs()
280 {
281 int reg_width = dispatch_width / 8;
282
283 /* Everyone's favorite color. */
284 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
285 for (int i = 0; i < 4; i++) {
286 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
287 brw_imm_f(color[i]));
288 }
289
290 fs_inst *write;
291 write = bld.emit(FS_OPCODE_FB_WRITE);
292 write->eot = true;
293 if (devinfo->gen >= 6) {
294 write->base_mrf = 2;
295 write->mlen = 4 * reg_width;
296 } else {
297 write->header_size = 2;
298 write->base_mrf = 0;
299 write->mlen = 2 + 4 * reg_width;
300 }
301
302 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
303 * varying to avoid GPU hangs, so set that.
304 */
305 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
306 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
307 memset(wm_prog_data->urb_setup, -1,
308 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
309
310 /* We don't have any uniforms. */
311 stage_prog_data->nr_params = 0;
312 stage_prog_data->nr_pull_params = 0;
313 stage_prog_data->curb_read_length = 0;
314 stage_prog_data->dispatch_grf_start_reg = 2;
315 wm_prog_data->dispatch_grf_start_reg_16 = 2;
316 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
317
318 calculate_cfg();
319 }
320
321 /* The register location here is relative to the start of the URB
322 * data. It will get adjusted to be a real location before
323 * generate_code() time.
324 */
325 struct brw_reg
326 fs_visitor::interp_reg(int location, int channel)
327 {
328 assert(stage == MESA_SHADER_FRAGMENT);
329 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
330 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
331 int stride = (channel & 1) * 4;
332
333 assert(prog_data->urb_setup[location] != -1);
334
335 return brw_vec1_grf(regnr, stride);
336 }
337
338 /** Emits the interpolation for the varying inputs. */
339 void
340 fs_visitor::emit_interpolation_setup_gen4()
341 {
342 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
343
344 fs_builder abld = bld.annotate("compute pixel centers");
345 this->pixel_x = vgrf(glsl_type::uint_type);
346 this->pixel_y = vgrf(glsl_type::uint_type);
347 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
348 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
349 abld.ADD(this->pixel_x,
350 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
351 fs_reg(brw_imm_v(0x10101010)));
352 abld.ADD(this->pixel_y,
353 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
354 fs_reg(brw_imm_v(0x11001100)));
355
356 abld = bld.annotate("compute pixel deltas from v0");
357
358 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
359 vgrf(glsl_type::vec2_type);
360 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
361 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
362 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
363
364 if (devinfo->has_pln && dispatch_width == 16) {
365 for (unsigned i = 0; i < 2; i++) {
366 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
367 half(this->pixel_x, i), xstart);
368 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
369 half(this->pixel_y, i), ystart);
370 }
371 } else {
372 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
373 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
374 }
375
376 abld = bld.annotate("compute pos.w and 1/pos.w");
377 /* Compute wpos.w. It's always in our setup, since it's needed to
378 * interpolate the other attributes.
379 */
380 this->wpos_w = vgrf(glsl_type::float_type);
381 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
382 interp_reg(VARYING_SLOT_POS, 3));
383 /* Compute the pixel 1/W value from wpos.w. */
384 this->pixel_w = vgrf(glsl_type::float_type);
385 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
386 }
387
388 /** Emits the interpolation for the varying inputs. */
389 void
390 fs_visitor::emit_interpolation_setup_gen6()
391 {
392 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
393
394 fs_builder abld = bld.annotate("compute pixel centers");
395 if (devinfo->gen >= 8 || dispatch_width == 8) {
396 /* The "Register Region Restrictions" page says for BDW (and newer,
397 * presumably):
398 *
399 * "When destination spans two registers, the source may be one or
400 * two registers. The destination elements must be evenly split
401 * between the two registers."
402 *
403 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
404 * compute our pixel centers.
405 */
406 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
407 BRW_REGISTER_TYPE_UW);
408
409 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
410 dbld.ADD(int_pixel_xy,
411 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
412 fs_reg(brw_imm_v(0x11001010)));
413
414 this->pixel_x = vgrf(glsl_type::float_type);
415 this->pixel_y = vgrf(glsl_type::float_type);
416 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
417 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
418 } else {
419 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
420 *
421 * "When destination spans two registers, the source MUST span two
422 * registers."
423 *
424 * Since the GRF source of the ADD will only read a single register, we
425 * must do two separate ADDs in SIMD16.
426 */
427 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
428 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
429 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
430 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
431 abld.ADD(int_pixel_x,
432 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
433 fs_reg(brw_imm_v(0x10101010)));
434 abld.ADD(int_pixel_y,
435 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
436 fs_reg(brw_imm_v(0x11001100)));
437
438 /* As of gen6, we can no longer mix float and int sources. We have
439 * to turn the integer pixel centers into floats for their actual
440 * use.
441 */
442 this->pixel_x = vgrf(glsl_type::float_type);
443 this->pixel_y = vgrf(glsl_type::float_type);
444 abld.MOV(this->pixel_x, int_pixel_x);
445 abld.MOV(this->pixel_y, int_pixel_y);
446 }
447
448 abld = bld.annotate("compute pos.w");
449 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
450 this->wpos_w = vgrf(glsl_type::float_type);
451 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
452
453 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
454 uint8_t reg = payload.barycentric_coord_reg[i];
455 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
456 }
457 }
458
459 static enum brw_conditional_mod
460 cond_for_alpha_func(GLenum func)
461 {
462 switch(func) {
463 case GL_GREATER:
464 return BRW_CONDITIONAL_G;
465 case GL_GEQUAL:
466 return BRW_CONDITIONAL_GE;
467 case GL_LESS:
468 return BRW_CONDITIONAL_L;
469 case GL_LEQUAL:
470 return BRW_CONDITIONAL_LE;
471 case GL_EQUAL:
472 return BRW_CONDITIONAL_EQ;
473 case GL_NOTEQUAL:
474 return BRW_CONDITIONAL_NEQ;
475 default:
476 unreachable("Not reached");
477 }
478 }
479
480 /**
481 * Alpha test support for when we compile it into the shader instead
482 * of using the normal fixed-function alpha test.
483 */
484 void
485 fs_visitor::emit_alpha_test()
486 {
487 assert(stage == MESA_SHADER_FRAGMENT);
488 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
489 const fs_builder abld = bld.annotate("Alpha test");
490
491 fs_inst *cmp;
492 if (key->alpha_test_func == GL_ALWAYS)
493 return;
494
495 if (key->alpha_test_func == GL_NEVER) {
496 /* f0.1 = 0 */
497 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
498 BRW_REGISTER_TYPE_UW));
499 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
500 BRW_CONDITIONAL_NEQ);
501 } else {
502 /* RT0 alpha */
503 fs_reg color = offset(outputs[0], bld, 3);
504
505 /* f0.1 &= func(color, ref) */
506 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
507 cond_for_alpha_func(key->alpha_test_func));
508 }
509 cmp->predicate = BRW_PREDICATE_NORMAL;
510 cmp->flag_subreg = 1;
511 }
512
513 fs_inst *
514 fs_visitor::emit_single_fb_write(const fs_builder &bld,
515 fs_reg color0, fs_reg color1,
516 fs_reg src0_alpha, unsigned components)
517 {
518 assert(stage == MESA_SHADER_FRAGMENT);
519 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
520
521 /* Hand over gl_FragDepth or the payload depth. */
522 const fs_reg dst_depth = (payload.dest_depth_reg ?
523 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
524 fs_reg());
525 fs_reg src_depth, src_stencil;
526
527 if (source_depth_to_render_target) {
528 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
529 src_depth = frag_depth;
530 else
531 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
532 }
533
534 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
535 src_stencil = frag_stencil;
536
537 const fs_reg sources[] = {
538 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
539 sample_mask, brw_imm_ud(components)
540 };
541 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
542 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
543 sources, ARRAY_SIZE(sources));
544
545 if (prog_data->uses_kill) {
546 write->predicate = BRW_PREDICATE_NORMAL;
547 write->flag_subreg = 1;
548 }
549
550 return write;
551 }
552
553 void
554 fs_visitor::emit_fb_writes()
555 {
556 assert(stage == MESA_SHADER_FRAGMENT);
557 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
558 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
559
560 fs_inst *inst = NULL;
561
562 if (source_depth_to_render_target && devinfo->gen == 6) {
563 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
564 * would require SIMD8 moves of each half to message regs, e.g. by using
565 * the SIMD lowering pass. Unfortunately this is more difficult than it
566 * sounds because the SIMD8 single-source message lacks channel selects
567 * for the second and third subspans.
568 */
569 no16("Missing support for simd16 depth writes on gen6\n");
570 }
571
572 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
573 /* From the 'Render Target Write message' section of the docs:
574 * "Output Stencil is not supported with SIMD16 Render Target Write
575 * Messages."
576 *
577 * FINISHME: split 16 into 2 8s
578 */
579 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
580 }
581
582 if (do_dual_src) {
583 const fs_builder abld = bld.annotate("FB dual-source write");
584
585 inst = emit_single_fb_write(abld, this->outputs[0],
586 this->dual_src_output, reg_undef, 4);
587 inst->target = 0;
588
589 prog_data->dual_src_blend = true;
590 } else {
591 for (int target = 0; target < key->nr_color_regions; target++) {
592 /* Skip over outputs that weren't written. */
593 if (this->outputs[target].file == BAD_FILE)
594 continue;
595
596 const fs_builder abld = bld.annotate(
597 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
598
599 fs_reg src0_alpha;
600 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
601 src0_alpha = offset(outputs[0], bld, 3);
602
603 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
604 src0_alpha,
605 this->output_components[target]);
606 inst->target = target;
607 }
608 }
609
610 if (inst == NULL) {
611 /* Even if there's no color buffers enabled, we still need to send
612 * alpha out the pipeline to our null renderbuffer to support
613 * alpha-testing, alpha-to-coverage, and so on.
614 */
615 /* FINISHME: Factor out this frequently recurring pattern into a
616 * helper function.
617 */
618 const fs_reg srcs[] = { reg_undef, reg_undef,
619 reg_undef, offset(this->outputs[0], bld, 3) };
620 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
621 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
622
623 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
624 inst->target = 0;
625 }
626
627 inst->eot = true;
628 }
629
630 void
631 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
632 {
633 const struct brw_vs_prog_key *key =
634 (const struct brw_vs_prog_key *) this->key;
635
636 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
637 this->userplane[i] = fs_reg(UNIFORM, uniforms);
638 for (int j = 0; j < 4; ++j) {
639 stage_prog_data->param[uniforms + j] =
640 (gl_constant_value *) &clip_planes[i][j];
641 }
642 uniforms += 4;
643 }
644 }
645
646 /**
647 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
648 *
649 * This does nothing if the shader uses gl_ClipDistance or user clipping is
650 * disabled altogether.
651 */
652 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
653 {
654 struct brw_vue_prog_data *vue_prog_data =
655 (struct brw_vue_prog_data *) prog_data;
656 const struct brw_vs_prog_key *key =
657 (const struct brw_vs_prog_key *) this->key;
658
659 /* Bail unless some sort of legacy clipping is enabled */
660 if (key->nr_userclip_plane_consts == 0)
661 return;
662
663 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
664 *
665 * "If a linked set of shaders forming the vertex stage contains no
666 * static write to gl_ClipVertex or gl_ClipDistance, but the
667 * application has requested clipping against user clip planes through
668 * the API, then the coordinate written to gl_Position is used for
669 * comparison against the user clip planes."
670 *
671 * This function is only called if the shader didn't write to
672 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
673 * if the user wrote to it; otherwise we use gl_Position.
674 */
675
676 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
677 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
678 clip_vertex = VARYING_SLOT_POS;
679
680 /* If the clip vertex isn't written, skip this. Typically this means
681 * the GS will set up clipping. */
682 if (outputs[clip_vertex].file == BAD_FILE)
683 return;
684
685 setup_uniform_clipplane_values(clip_planes);
686
687 const fs_builder abld = bld.annotate("user clip distances");
688
689 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
690 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
691 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
692 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
693
694 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
695 fs_reg u = userplane[i];
696 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
697 output.reg_offset = i & 3;
698
699 abld.MUL(output, outputs[clip_vertex], u);
700 for (int j = 1; j < 4; j++) {
701 u.nr = userplane[i].nr + j;
702 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
703 }
704 }
705 }
706
707 void
708 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
709 {
710 int slot, urb_offset, length;
711 int starting_urb_offset = 0;
712 const struct brw_vue_prog_data *vue_prog_data =
713 (const struct brw_vue_prog_data *) this->prog_data;
714 const struct brw_vs_prog_key *vs_key =
715 (const struct brw_vs_prog_key *) this->key;
716 const GLbitfield64 psiz_mask =
717 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
718 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
719 bool flush;
720 fs_reg sources[8];
721
722 /* If we don't have any valid slots to write, just do a minimal urb write
723 * send to terminate the shader. This includes 1 slot of undefined data,
724 * because it's invalid to write 0 data:
725 *
726 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
727 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
728 * Write Data Payload:
729 *
730 * "The write data payload can be between 1 and 8 message phases long."
731 */
732 if (vue_map->slots_valid == 0) {
733 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
734 bld.exec_all().MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
735 BRW_REGISTER_TYPE_UD)));
736
737 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
738 inst->eot = true;
739 inst->mlen = 2;
740 inst->offset = 1;
741 return;
742 }
743
744 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
745 int header_size = 1;
746 fs_reg per_slot_offsets;
747
748 if (stage == MESA_SHADER_GEOMETRY) {
749 const struct brw_gs_prog_data *gs_prog_data =
750 (const struct brw_gs_prog_data *) this->prog_data;
751
752 /* We need to increment the Global Offset to skip over the control data
753 * header and the extra "Vertex Count" field (1 HWord) at the beginning
754 * of the VUE. We're counting in OWords, so the units are doubled.
755 */
756 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
757 if (gs_prog_data->static_vertex_count == -1)
758 starting_urb_offset += 2;
759
760 /* We also need to use per-slot offsets. The per-slot offset is the
761 * Vertex Count. SIMD8 mode processes 8 different primitives at a
762 * time; each may output a different number of vertices.
763 */
764 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
765 header_size++;
766
767 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
768 const int output_vertex_size_owords =
769 gs_prog_data->output_vertex_size_hwords * 2;
770
771 fs_reg offset;
772 if (gs_vertex_count.file == IMM) {
773 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
774 gs_vertex_count.ud);
775 } else {
776 per_slot_offsets = vgrf(glsl_type::int_type);
777 bld.MUL(per_slot_offsets, gs_vertex_count,
778 brw_imm_ud(output_vertex_size_owords));
779 }
780 }
781
782 length = 0;
783 urb_offset = starting_urb_offset;
784 flush = false;
785 for (slot = 0; slot < vue_map->num_slots; slot++) {
786 int varying = vue_map->slot_to_varying[slot];
787 switch (varying) {
788 case VARYING_SLOT_PSIZ: {
789 /* The point size varying slot is the vue header and is always in the
790 * vue map. But often none of the special varyings that live there
791 * are written and in that case we can skip writing to the vue
792 * header, provided the corresponding state properly clamps the
793 * values further down the pipeline. */
794 if ((vue_map->slots_valid & psiz_mask) == 0) {
795 assert(length == 0);
796 urb_offset++;
797 break;
798 }
799
800 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
801 bld.MOV(zero, brw_imm_ud(0u));
802
803 sources[length++] = zero;
804 if (vue_map->slots_valid & VARYING_BIT_LAYER)
805 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
806 else
807 sources[length++] = zero;
808
809 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
810 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
811 else
812 sources[length++] = zero;
813
814 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
815 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
816 else
817 sources[length++] = zero;
818 break;
819 }
820 case BRW_VARYING_SLOT_NDC:
821 case VARYING_SLOT_EDGE:
822 unreachable("unexpected scalar vs output");
823 break;
824
825 default:
826 /* gl_Position is always in the vue map, but isn't always written by
827 * the shader. Other varyings (clip distances) get added to the vue
828 * map but don't always get written. In those cases, the
829 * corresponding this->output[] slot will be invalid we and can skip
830 * the urb write for the varying. If we've already queued up a vue
831 * slot for writing we flush a mlen 5 urb write, otherwise we just
832 * advance the urb_offset.
833 */
834 if (varying == BRW_VARYING_SLOT_PAD ||
835 this->outputs[varying].file == BAD_FILE) {
836 if (length > 0)
837 flush = true;
838 else
839 urb_offset++;
840 break;
841 }
842
843 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
844 (varying == VARYING_SLOT_COL0 ||
845 varying == VARYING_SLOT_COL1 ||
846 varying == VARYING_SLOT_BFC0 ||
847 varying == VARYING_SLOT_BFC1)) {
848 /* We need to clamp these guys, so do a saturating MOV into a
849 * temp register and use that for the payload.
850 */
851 for (int i = 0; i < 4; i++) {
852 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
853 fs_reg src = offset(this->outputs[varying], bld, i);
854 set_saturate(true, bld.MOV(reg, src));
855 sources[length++] = reg;
856 }
857 } else {
858 for (unsigned i = 0; i < output_components[varying]; i++)
859 sources[length++] = offset(this->outputs[varying], bld, i);
860 for (unsigned i = output_components[varying]; i < 4; i++)
861 sources[length++] = brw_imm_d(0);
862 }
863 break;
864 }
865
866 const fs_builder abld = bld.annotate("URB write");
867
868 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
869 * the last slot or if we need to flush (see BAD_FILE varying case
870 * above), emit a URB write send now to flush out the data.
871 */
872 int last = slot == vue_map->num_slots - 1;
873 if (length == 8 || last)
874 flush = true;
875 if (flush) {
876 fs_reg *payload_sources =
877 ralloc_array(mem_ctx, fs_reg, length + header_size);
878 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
879 BRW_REGISTER_TYPE_F);
880 payload_sources[0] =
881 fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
882
883 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
884 payload_sources[1] = per_slot_offsets;
885
886 memcpy(&payload_sources[header_size], sources,
887 length * sizeof sources[0]);
888
889 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
890 header_size);
891
892 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
893 inst->eot = last && stage == MESA_SHADER_VERTEX;
894 inst->mlen = length + header_size;
895 inst->offset = urb_offset;
896 urb_offset = starting_urb_offset + slot + 1;
897 length = 0;
898 flush = false;
899 }
900 }
901 }
902
903 void
904 fs_visitor::emit_cs_terminate()
905 {
906 assert(devinfo->gen >= 7);
907
908 /* We are getting the thread ID from the compute shader header */
909 assert(stage == MESA_SHADER_COMPUTE);
910
911 /* We can't directly send from g0, since sends with EOT have to use
912 * g112-127. So, copy it to a virtual register, The register allocator will
913 * make sure it uses the appropriate register range.
914 */
915 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
916 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
917 bld.group(8, 0).exec_all().MOV(payload, g0);
918
919 /* Send a message to the thread spawner to terminate the thread. */
920 fs_inst *inst = bld.exec_all()
921 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
922 inst->eot = true;
923 }
924
925 void
926 fs_visitor::emit_barrier()
927 {
928 assert(devinfo->gen >= 7);
929
930 /* We are getting the barrier ID from the compute shader header */
931 assert(stage == MESA_SHADER_COMPUTE);
932
933 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
934
935 const fs_builder pbld = bld.exec_all().group(8, 0);
936
937 /* Clear the message payload */
938 pbld.MOV(payload, brw_imm_ud(0u));
939
940 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
941 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
942 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(0x0f000000u));
943
944 /* Emit a gateway "barrier" message using the payload we set up, followed
945 * by a wait instruction.
946 */
947 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
948 }
949
950 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
951 void *mem_ctx,
952 const void *key,
953 struct brw_stage_prog_data *prog_data,
954 struct gl_program *prog,
955 const nir_shader *shader,
956 unsigned dispatch_width,
957 int shader_time_index)
958 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
959 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
960 dispatch_width(dispatch_width),
961 shader_time_index(shader_time_index),
962 bld(fs_builder(this, dispatch_width).at_end())
963 {
964 init();
965 }
966
967 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
968 void *mem_ctx,
969 struct brw_gs_compile *c,
970 struct brw_gs_prog_data *prog_data,
971 const nir_shader *shader,
972 int shader_time_index)
973 : backend_shader(compiler, log_data, mem_ctx, shader,
974 &prog_data->base.base),
975 key(&c->key), gs_compile(c),
976 prog_data(&prog_data->base.base), prog(NULL),
977 dispatch_width(8),
978 shader_time_index(shader_time_index),
979 bld(fs_builder(this, dispatch_width).at_end())
980 {
981 init();
982 }
983
984
985 void
986 fs_visitor::init()
987 {
988 switch (stage) {
989 case MESA_SHADER_FRAGMENT:
990 key_tex = &((const brw_wm_prog_key *) key)->tex;
991 break;
992 case MESA_SHADER_VERTEX:
993 key_tex = &((const brw_vs_prog_key *) key)->tex;
994 break;
995 case MESA_SHADER_GEOMETRY:
996 key_tex = &((const brw_gs_prog_key *) key)->tex;
997 break;
998 case MESA_SHADER_COMPUTE:
999 key_tex = &((const brw_cs_prog_key*) key)->tex;
1000 break;
1001 default:
1002 unreachable("unhandled shader stage");
1003 }
1004
1005 this->prog_data = this->stage_prog_data;
1006
1007 this->failed = false;
1008 this->simd16_unsupported = false;
1009 this->no16_msg = NULL;
1010
1011 this->nir_locals = NULL;
1012 this->nir_ssa_values = NULL;
1013
1014 memset(&this->payload, 0, sizeof(this->payload));
1015 memset(this->output_components, 0, sizeof(this->output_components));
1016 this->source_depth_to_render_target = false;
1017 this->runtime_check_aads_emit = false;
1018 this->first_non_payload_grf = 0;
1019 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1020
1021 this->virtual_grf_start = NULL;
1022 this->virtual_grf_end = NULL;
1023 this->live_intervals = NULL;
1024 this->regs_live_at_ip = NULL;
1025
1026 this->uniforms = 0;
1027 this->last_scratch = 0;
1028 this->pull_constant_loc = NULL;
1029 this->push_constant_loc = NULL;
1030
1031 this->promoted_constants = 0,
1032
1033 this->spilled_any_registers = false;
1034 this->do_dual_src = false;
1035
1036 if (dispatch_width == 8)
1037 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1038 }
1039
1040 fs_visitor::~fs_visitor()
1041 {
1042 }