i965/fs: Store a pointer to brw_sampler_prog_key_data in the visitor.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_vec4.h"
43 #include "brw_fs.h"
44 #include "main/uniforms.h"
45 #include "glsl/glsl_types.h"
46 #include "glsl/ir_optimization.h"
47 #include "program/sampler.h"
48
49
50 fs_reg *
51 fs_visitor::emit_vs_system_value(int location)
52 {
53 fs_reg *reg = new(this->mem_ctx)
54 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
55 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
56
57 switch (location) {
58 case SYSTEM_VALUE_BASE_VERTEX:
59 reg->reg_offset = 0;
60 vs_prog_data->uses_vertexid = true;
61 break;
62 case SYSTEM_VALUE_VERTEX_ID:
63 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
64 reg->reg_offset = 2;
65 vs_prog_data->uses_vertexid = true;
66 break;
67 case SYSTEM_VALUE_INSTANCE_ID:
68 reg->reg_offset = 3;
69 vs_prog_data->uses_instanceid = true;
70 break;
71 default:
72 unreachable("not reached");
73 }
74
75 return reg;
76 }
77
78 void
79 fs_visitor::visit(ir_variable *ir)
80 {
81 fs_reg *reg = NULL;
82
83 if (variable_storage(ir))
84 return;
85
86 if (ir->data.mode == ir_var_shader_in) {
87 assert(ir->data.location != -1);
88 if (stage == MESA_SHADER_VERTEX) {
89 reg = new(this->mem_ctx)
90 fs_reg(ATTR, ir->data.location,
91 brw_type_for_base_type(ir->type->get_scalar_type()));
92 } else if (ir->data.location == VARYING_SLOT_POS) {
93 reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer,
94 ir->data.origin_upper_left);
95 } else if (ir->data.location == VARYING_SLOT_FACE) {
96 reg = emit_frontfacing_interpolation();
97 } else {
98 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
99 emit_general_interpolation(*reg, ir->name, ir->type,
100 (glsl_interp_qualifier) ir->data.interpolation,
101 ir->data.location, ir->data.centroid,
102 ir->data.sample);
103 }
104 assert(reg);
105 hash_table_insert(this->variable_ht, reg, ir);
106 return;
107 } else if (ir->data.mode == ir_var_shader_out) {
108 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
109
110 if (stage == MESA_SHADER_VERTEX) {
111 int vector_elements =
112 ir->type->is_array() ? ir->type->fields.array->vector_elements
113 : ir->type->vector_elements;
114
115 for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) {
116 int output = ir->data.location + i;
117 this->outputs[output] = *reg;
118 this->outputs[output].reg_offset = i * 4;
119 this->output_components[output] = vector_elements;
120 }
121
122 } else if (ir->data.index > 0) {
123 assert(ir->data.location == FRAG_RESULT_DATA0);
124 assert(ir->data.index == 1);
125 this->dual_src_output = *reg;
126 this->do_dual_src = true;
127 } else if (ir->data.location == FRAG_RESULT_COLOR) {
128 /* Writing gl_FragColor outputs to all color regions. */
129 assert(stage == MESA_SHADER_FRAGMENT);
130 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
131 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
132 this->outputs[i] = *reg;
133 this->output_components[i] = 4;
134 }
135 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
136 this->frag_depth = *reg;
137 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
138 this->sample_mask = *reg;
139 } else {
140 /* gl_FragData or a user-defined FS output */
141 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
142 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
143
144 int vector_elements =
145 ir->type->is_array() ? ir->type->fields.array->vector_elements
146 : ir->type->vector_elements;
147
148 /* General color output. */
149 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
150 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
151 this->outputs[output] = offset(*reg, vector_elements * i);
152 this->output_components[output] = vector_elements;
153 }
154 }
155 } else if (ir->data.mode == ir_var_uniform) {
156 int param_index = uniforms;
157
158 /* Thanks to the lower_ubo_reference pass, we will see only
159 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
160 * variables, so no need for them to be in variable_ht.
161 *
162 * Some uniforms, such as samplers and atomic counters, have no actual
163 * storage, so we should ignore them.
164 */
165 if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
166 return;
167
168 if (dispatch_width == 16) {
169 if (!variable_storage(ir)) {
170 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
171 }
172 return;
173 }
174
175 param_size[param_index] = type_size(ir->type);
176 if (!strncmp(ir->name, "gl_", 3)) {
177 setup_builtin_uniform_values(ir);
178 } else {
179 setup_uniform_values(ir);
180 }
181
182 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
183 reg->type = brw_type_for_base_type(ir->type);
184
185 } else if (ir->data.mode == ir_var_system_value) {
186 switch (ir->data.location) {
187 case SYSTEM_VALUE_BASE_VERTEX:
188 case SYSTEM_VALUE_VERTEX_ID:
189 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
190 case SYSTEM_VALUE_INSTANCE_ID:
191 reg = emit_vs_system_value(ir->data.location);
192 break;
193 case SYSTEM_VALUE_SAMPLE_POS:
194 reg = emit_samplepos_setup();
195 break;
196 case SYSTEM_VALUE_SAMPLE_ID:
197 reg = emit_sampleid_setup();
198 break;
199 case SYSTEM_VALUE_SAMPLE_MASK_IN:
200 assert(brw->gen >= 7);
201 reg = new(mem_ctx)
202 fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
203 BRW_REGISTER_TYPE_D));
204 break;
205 }
206 }
207
208 if (!reg)
209 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
210
211 hash_table_insert(this->variable_ht, reg, ir);
212 }
213
214 void
215 fs_visitor::visit(ir_dereference_variable *ir)
216 {
217 fs_reg *reg = variable_storage(ir->var);
218
219 if (!reg) {
220 fail("Failed to find variable storage for %s\n", ir->var->name);
221 this->result = fs_reg(reg_null_d);
222 return;
223 }
224 this->result = *reg;
225 }
226
227 void
228 fs_visitor::visit(ir_dereference_record *ir)
229 {
230 const glsl_type *struct_type = ir->record->type;
231
232 ir->record->accept(this);
233
234 unsigned int off = 0;
235 for (unsigned int i = 0; i < struct_type->length; i++) {
236 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
237 break;
238 off += type_size(struct_type->fields.structure[i].type);
239 }
240 this->result = offset(this->result, off);
241 this->result.type = brw_type_for_base_type(ir->type);
242 }
243
244 void
245 fs_visitor::visit(ir_dereference_array *ir)
246 {
247 ir_constant *constant_index;
248 fs_reg src;
249 int element_size = type_size(ir->type);
250
251 constant_index = ir->array_index->as_constant();
252
253 ir->array->accept(this);
254 src = this->result;
255 src.type = brw_type_for_base_type(ir->type);
256
257 if (constant_index) {
258 if (src.file == ATTR) {
259 /* Attribute arrays get loaded as one vec4 per element. In that case
260 * offset the source register.
261 */
262 src.reg += constant_index->value.i[0];
263 } else {
264 assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
265 src = offset(src, constant_index->value.i[0] * element_size);
266 }
267 } else {
268 /* Variable index array dereference. We attach the variable index
269 * component to the reg as a pointer to a register containing the
270 * offset. Currently only uniform arrays are supported in this patch,
271 * and that reladdr pointer is resolved by
272 * move_uniform_array_access_to_pull_constants(). All other array types
273 * are lowered by lower_variable_index_to_cond_assign().
274 */
275 ir->array_index->accept(this);
276
277 fs_reg index_reg;
278 index_reg = vgrf(glsl_type::int_type);
279 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
280
281 if (src.reladdr) {
282 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
283 }
284
285 src.reladdr = ralloc(mem_ctx, fs_reg);
286 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
287 }
288 this->result = src;
289 }
290
291 void
292 fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
293 const fs_reg &a)
294 {
295 if (brw->gen < 6) {
296 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
297 fs_reg y_times_a = vgrf(glsl_type::float_type);
298 fs_reg one_minus_a = vgrf(glsl_type::float_type);
299 fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type);
300
301 emit(MUL(y_times_a, y, a));
302
303 fs_reg negative_a = a;
304 negative_a.negate = !a.negate;
305 emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
306 emit(MUL(x_times_one_minus_a, x, one_minus_a));
307
308 emit(ADD(dst, x_times_one_minus_a, y_times_a));
309 } else {
310 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
311 * we need to reorder the operands.
312 */
313 emit(LRP(dst, a, y, x));
314 }
315 }
316
317 void
318 fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
319 const fs_reg &src0, const fs_reg &src1)
320 {
321 assert(conditionalmod == BRW_CONDITIONAL_GE ||
322 conditionalmod == BRW_CONDITIONAL_L);
323
324 fs_inst *inst;
325
326 if (brw->gen >= 6) {
327 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
328 inst->conditional_mod = conditionalmod;
329 } else {
330 emit(CMP(reg_null_d, src0, src1, conditionalmod));
331
332 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
333 inst->predicate = BRW_PREDICATE_NORMAL;
334 }
335 }
336
337 bool
338 fs_visitor::try_emit_saturate(ir_expression *ir)
339 {
340 if (ir->operation != ir_unop_saturate)
341 return false;
342
343 ir_rvalue *sat_val = ir->operands[0];
344
345 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
346
347 sat_val->accept(this);
348 fs_reg src = this->result;
349
350 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
351
352 /* If the last instruction from our accept() generated our
353 * src, just set the saturate flag instead of emmitting a separate mov.
354 */
355 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
356 if (modify && modify->regs_written == modify->dst.width / 8 &&
357 modify->can_do_saturate()) {
358 modify->saturate = true;
359 this->result = src;
360 return true;
361 }
362
363 return false;
364 }
365
366 bool
367 fs_visitor::try_emit_line(ir_expression *ir)
368 {
369 /* LINE's src0 must be of type float. */
370 if (ir->type != glsl_type::float_type)
371 return false;
372
373 ir_rvalue *nonmul = ir->operands[1];
374 ir_expression *mul = ir->operands[0]->as_expression();
375
376 if (!mul || mul->operation != ir_binop_mul) {
377 nonmul = ir->operands[0];
378 mul = ir->operands[1]->as_expression();
379
380 if (!mul || mul->operation != ir_binop_mul)
381 return false;
382 }
383
384 ir_constant *const_add = nonmul->as_constant();
385 if (!const_add)
386 return false;
387
388 int add_operand_vf = brw_float_to_vf(const_add->value.f[0]);
389 if (add_operand_vf == -1)
390 return false;
391
392 ir_rvalue *non_const_mul = mul->operands[1];
393 ir_constant *const_mul = mul->operands[0]->as_constant();
394 if (!const_mul) {
395 const_mul = mul->operands[1]->as_constant();
396
397 if (!const_mul)
398 return false;
399
400 non_const_mul = mul->operands[0];
401 }
402
403 int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]);
404 if (mul_operand_vf == -1)
405 return false;
406
407 non_const_mul->accept(this);
408 fs_reg src1 = this->result;
409
410 fs_reg src0 = vgrf(ir->type);
411 emit(BRW_OPCODE_MOV, src0,
412 fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf));
413
414 this->result = vgrf(ir->type);
415 emit(BRW_OPCODE_LINE, this->result, src0, src1);
416 return true;
417 }
418
419 bool
420 fs_visitor::try_emit_mad(ir_expression *ir)
421 {
422 /* 3-src instructions were introduced in gen6. */
423 if (brw->gen < 6)
424 return false;
425
426 /* MAD can only handle floating-point data. */
427 if (ir->type != glsl_type::float_type)
428 return false;
429
430 ir_rvalue *nonmul;
431 ir_expression *mul;
432 bool mul_negate, mul_abs;
433
434 for (int i = 0; i < 2; i++) {
435 mul_negate = false;
436 mul_abs = false;
437
438 mul = ir->operands[i]->as_expression();
439 nonmul = ir->operands[1 - i];
440
441 if (mul && mul->operation == ir_unop_abs) {
442 mul = mul->operands[0]->as_expression();
443 mul_abs = true;
444 } else if (mul && mul->operation == ir_unop_neg) {
445 mul = mul->operands[0]->as_expression();
446 mul_negate = true;
447 }
448
449 if (mul && mul->operation == ir_binop_mul)
450 break;
451 }
452
453 if (!mul || mul->operation != ir_binop_mul)
454 return false;
455
456 nonmul->accept(this);
457 fs_reg src0 = this->result;
458
459 mul->operands[0]->accept(this);
460 fs_reg src1 = this->result;
461 src1.negate ^= mul_negate;
462 src1.abs = mul_abs;
463 if (mul_abs)
464 src1.negate = false;
465
466 mul->operands[1]->accept(this);
467 fs_reg src2 = this->result;
468 src2.abs = mul_abs;
469 if (mul_abs)
470 src2.negate = false;
471
472 this->result = vgrf(ir->type);
473 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
474
475 return true;
476 }
477
478 static int
479 pack_pixel_offset(float x)
480 {
481 /* Clamp upper end of the range to +7/16. See explanation in non-constant
482 * offset case below. */
483 int n = MIN2((int)(x * 16), 7);
484 return n & 0xf;
485 }
486
487 void
488 fs_visitor::emit_interpolate_expression(ir_expression *ir)
489 {
490 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
491 * 8 channels at a time, same as the barycentric coords presented in
492 * the FS payload. this requires a bit of extra work to support.
493 */
494 no16("interpolate_at_* not yet supported in SIMD16 mode.");
495
496 assert(stage == MESA_SHADER_FRAGMENT);
497 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
498
499 ir_dereference * deref = ir->operands[0]->as_dereference();
500 ir_swizzle * swiz = NULL;
501 if (!deref) {
502 /* the api does not allow a swizzle here, but the varying packing code
503 * may have pushed one into here.
504 */
505 swiz = ir->operands[0]->as_swizzle();
506 assert(swiz);
507 deref = swiz->val->as_dereference();
508 }
509 assert(deref);
510 ir_variable * var = deref->variable_referenced();
511 assert(var);
512
513 /* 1. collect interpolation factors */
514
515 fs_reg dst_x = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1));
516 fs_reg dst_y = offset(dst_x, 1);
517
518 /* for most messages, we need one reg of ignored data; the hardware requires mlen==1
519 * even when there is no payload. in the per-slot offset case, we'll replace this with
520 * the proper source data. */
521 fs_reg src = vgrf(glsl_type::float_type);
522 int mlen = 1; /* one reg unless overriden */
523 int reg_width = dispatch_width / 8;
524 fs_inst *inst;
525
526 switch (ir->operation) {
527 case ir_unop_interpolate_at_centroid:
528 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
529 break;
530
531 case ir_binop_interpolate_at_sample: {
532 ir_constant *sample_num = ir->operands[1]->as_constant();
533 assert(sample_num || !"nonconstant sample number should have been lowered.");
534
535 unsigned msg_data = sample_num->value.i[0] << 4;
536 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src, fs_reg(msg_data));
537 break;
538 }
539
540 case ir_binop_interpolate_at_offset: {
541 ir_constant *const_offset = ir->operands[1]->as_constant();
542 if (const_offset) {
543 unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
544 (pack_pixel_offset(const_offset->value.f[1]) << 4);
545 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
546 fs_reg(msg_data));
547 } else {
548 /* pack the operands: hw wants offsets as 4 bit signed ints */
549 ir->operands[1]->accept(this);
550 src = vgrf(glsl_type::ivec2_type);
551 fs_reg src2 = src;
552 for (int i = 0; i < 2; i++) {
553 fs_reg temp = vgrf(glsl_type::float_type);
554 emit(MUL(temp, this->result, fs_reg(16.0f)));
555 emit(MOV(src2, temp)); /* float to int */
556
557 /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
558 * that we support a maximum offset of +0.5, which isn't representable
559 * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
560 * which is the opposite of what the shader author wanted.
561 *
562 * This is legal due to ARB_gpu_shader5's quantization rules:
563 *
564 * "Not all values of <offset> may be supported; x and y offsets may
565 * be rounded to fixed-point values with the number of fraction bits
566 * given by the implementation-dependent constant
567 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
568 */
569
570 fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
571 inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
572
573 src2 = offset(src2, 1);
574 this->result = offset(this->result, 1);
575 }
576
577 mlen = 2 * reg_width;
578 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
579 fs_reg(0u));
580 }
581 break;
582 }
583
584 default:
585 unreachable("not reached");
586 }
587
588 inst->mlen = mlen;
589 inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
590 inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
591 INTERP_QUALIFIER_NOPERSPECTIVE;
592
593 /* 2. emit linterp */
594
595 fs_reg res = vgrf(ir->type);
596 this->result = res;
597
598 for (int i = 0; i < ir->type->vector_elements; i++) {
599 int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
600 emit(FS_OPCODE_LINTERP, res,
601 dst_x, dst_y,
602 fs_reg(interp_reg(var->data.location, ch)));
603 res = offset(res, 1);
604 }
605 }
606
607 void
608 fs_visitor::visit(ir_expression *ir)
609 {
610 unsigned int operand;
611 fs_reg op[3], temp;
612 fs_inst *inst;
613 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
614
615 assert(ir->get_num_operands() <= 3);
616
617 if (try_emit_saturate(ir))
618 return;
619
620 /* Deal with the real oddball stuff first */
621 switch (ir->operation) {
622 case ir_binop_add:
623 if (brw->gen <= 5 && try_emit_line(ir))
624 return;
625 if (try_emit_mad(ir))
626 return;
627 break;
628
629 case ir_triop_csel:
630 ir->operands[1]->accept(this);
631 op[1] = this->result;
632 ir->operands[2]->accept(this);
633 op[2] = this->result;
634
635 emit_bool_to_cond_code(ir->operands[0]);
636
637 this->result = vgrf(ir->type);
638 inst = emit(SEL(this->result, op[1], op[2]));
639 inst->predicate = BRW_PREDICATE_NORMAL;
640 return;
641
642 case ir_unop_interpolate_at_centroid:
643 case ir_binop_interpolate_at_offset:
644 case ir_binop_interpolate_at_sample:
645 emit_interpolate_expression(ir);
646 return;
647
648 default:
649 break;
650 }
651
652 for (operand = 0; operand < ir->get_num_operands(); operand++) {
653 ir->operands[operand]->accept(this);
654 if (this->result.file == BAD_FILE) {
655 fail("Failed to get tree for expression operand:\n");
656 ir->operands[operand]->fprint(stderr);
657 fprintf(stderr, "\n");
658 }
659 assert(this->result.file == GRF ||
660 this->result.file == UNIFORM || this->result.file == ATTR);
661 op[operand] = this->result;
662
663 /* Matrix expression operands should have been broken down to vector
664 * operations already.
665 */
666 assert(!ir->operands[operand]->type->is_matrix());
667 /* And then those vector operands should have been broken down to scalar.
668 */
669 assert(!ir->operands[operand]->type->is_vector());
670 }
671
672 /* Storage for our result. If our result goes into an assignment, it will
673 * just get copy-propagated out, so no worries.
674 */
675 this->result = vgrf(ir->type);
676
677 switch (ir->operation) {
678 case ir_unop_logic_not:
679 emit(NOT(this->result, op[0]));
680 break;
681 case ir_unop_neg:
682 op[0].negate = !op[0].negate;
683 emit(MOV(this->result, op[0]));
684 break;
685 case ir_unop_abs:
686 op[0].abs = true;
687 op[0].negate = false;
688 emit(MOV(this->result, op[0]));
689 break;
690 case ir_unop_sign:
691 if (ir->type->is_float()) {
692 /* AND(val, 0x80000000) gives the sign bit.
693 *
694 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
695 * zero.
696 */
697 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
698
699 op[0].type = BRW_REGISTER_TYPE_UD;
700 this->result.type = BRW_REGISTER_TYPE_UD;
701 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
702
703 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
704 inst->predicate = BRW_PREDICATE_NORMAL;
705
706 this->result.type = BRW_REGISTER_TYPE_F;
707 } else {
708 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
709 * -> non-negative val generates 0x00000000.
710 * Predicated OR sets 1 if val is positive.
711 */
712 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
713
714 emit(ASR(this->result, op[0], fs_reg(31)));
715
716 inst = emit(OR(this->result, this->result, fs_reg(1)));
717 inst->predicate = BRW_PREDICATE_NORMAL;
718 }
719 break;
720 case ir_unop_rcp:
721 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
722 break;
723
724 case ir_unop_exp2:
725 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
726 break;
727 case ir_unop_log2:
728 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
729 break;
730 case ir_unop_exp:
731 case ir_unop_log:
732 unreachable("not reached: should be handled by ir_explog_to_explog2");
733 case ir_unop_sin:
734 case ir_unop_sin_reduced:
735 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
736 break;
737 case ir_unop_cos:
738 case ir_unop_cos_reduced:
739 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
740 break;
741
742 case ir_unop_dFdx:
743 /* Select one of the two opcodes based on the glHint value. */
744 if (fs_key->high_quality_derivatives)
745 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
746 else
747 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
748 break;
749
750 case ir_unop_dFdx_coarse:
751 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
752 break;
753
754 case ir_unop_dFdx_fine:
755 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
756 break;
757
758 case ir_unop_dFdy:
759 /* Select one of the two opcodes based on the glHint value. */
760 if (fs_key->high_quality_derivatives)
761 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
762 else
763 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
764 break;
765
766 case ir_unop_dFdy_coarse:
767 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
768 break;
769
770 case ir_unop_dFdy_fine:
771 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
772 break;
773
774 case ir_binop_add:
775 emit(ADD(this->result, op[0], op[1]));
776 break;
777 case ir_binop_sub:
778 unreachable("not reached: should be handled by ir_sub_to_add_neg");
779
780 case ir_binop_mul:
781 if (brw->gen < 8 && ir->type->is_integer()) {
782 /* For integer multiplication, the MUL uses the low 16 bits
783 * of one of the operands (src0 on gen6, src1 on gen7). The
784 * MACH accumulates in the contribution of the upper 16 bits
785 * of that operand.
786 */
787 if (ir->operands[0]->is_uint16_constant()) {
788 if (brw->gen < 7)
789 emit(MUL(this->result, op[0], op[1]));
790 else
791 emit(MUL(this->result, op[1], op[0]));
792 } else if (ir->operands[1]->is_uint16_constant()) {
793 if (brw->gen < 7)
794 emit(MUL(this->result, op[1], op[0]));
795 else
796 emit(MUL(this->result, op[0], op[1]));
797 } else {
798 if (brw->gen >= 7)
799 no16("SIMD16 explicit accumulator operands unsupported\n");
800
801 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
802 this->result.type);
803
804 emit(MUL(acc, op[0], op[1]));
805 emit(MACH(reg_null_d, op[0], op[1]));
806 emit(MOV(this->result, fs_reg(acc)));
807 }
808 } else {
809 emit(MUL(this->result, op[0], op[1]));
810 }
811 break;
812 case ir_binop_imul_high: {
813 if (brw->gen == 7)
814 no16("SIMD16 explicit accumulator operands unsupported\n");
815
816 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
817 this->result.type);
818
819 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
820 emit(MACH(this->result, op[0], op[1]));
821
822 /* Until Gen8, integer multiplies read 32-bits from one source, and
823 * 16-bits from the other, and relying on the MACH instruction to
824 * generate the high bits of the result.
825 *
826 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
827 * but in order to do a 64x64-bit multiply we have to simulate the
828 * previous behavior and then use a MACH instruction.
829 *
830 * FINISHME: Don't use source modifiers on src1.
831 */
832 if (brw->gen >= 8) {
833 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
834 mul->src[1].type == BRW_REGISTER_TYPE_UD);
835 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
836 mul->src[1].type = BRW_REGISTER_TYPE_W;
837 } else {
838 mul->src[1].type = BRW_REGISTER_TYPE_UW;
839 }
840 }
841
842 break;
843 }
844 case ir_binop_div:
845 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
846 assert(ir->type->is_integer());
847 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
848 break;
849 case ir_binop_carry: {
850 if (brw->gen == 7)
851 no16("SIMD16 explicit accumulator operands unsupported\n");
852
853 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
854 BRW_REGISTER_TYPE_UD);
855
856 emit(ADDC(reg_null_ud, op[0], op[1]));
857 emit(MOV(this->result, fs_reg(acc)));
858 break;
859 }
860 case ir_binop_borrow: {
861 if (brw->gen == 7)
862 no16("SIMD16 explicit accumulator operands unsupported\n");
863
864 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
865 BRW_REGISTER_TYPE_UD);
866
867 emit(SUBB(reg_null_ud, op[0], op[1]));
868 emit(MOV(this->result, fs_reg(acc)));
869 break;
870 }
871 case ir_binop_mod:
872 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
873 assert(ir->type->is_integer());
874 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
875 break;
876
877 case ir_binop_less:
878 case ir_binop_greater:
879 case ir_binop_lequal:
880 case ir_binop_gequal:
881 case ir_binop_equal:
882 case ir_binop_all_equal:
883 case ir_binop_nequal:
884 case ir_binop_any_nequal:
885 if (brw->gen <= 5) {
886 resolve_bool_comparison(ir->operands[0], &op[0]);
887 resolve_bool_comparison(ir->operands[1], &op[1]);
888 }
889
890 emit(CMP(this->result, op[0], op[1],
891 brw_conditional_for_comparison(ir->operation)));
892 break;
893
894 case ir_binop_logic_xor:
895 emit(XOR(this->result, op[0], op[1]));
896 break;
897
898 case ir_binop_logic_or:
899 emit(OR(this->result, op[0], op[1]));
900 break;
901
902 case ir_binop_logic_and:
903 emit(AND(this->result, op[0], op[1]));
904 break;
905
906 case ir_binop_dot:
907 case ir_unop_any:
908 unreachable("not reached: should be handled by brw_fs_channel_expressions");
909
910 case ir_unop_noise:
911 unreachable("not reached: should be handled by lower_noise");
912
913 case ir_quadop_vector:
914 unreachable("not reached: should be handled by lower_quadop_vector");
915
916 case ir_binop_vector_extract:
917 unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
918
919 case ir_triop_vector_insert:
920 unreachable("not reached: should be handled by lower_vector_insert()");
921
922 case ir_binop_ldexp:
923 unreachable("not reached: should be handled by ldexp_to_arith()");
924
925 case ir_unop_sqrt:
926 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
927 break;
928
929 case ir_unop_rsq:
930 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
931 break;
932
933 case ir_unop_bitcast_i2f:
934 case ir_unop_bitcast_u2f:
935 op[0].type = BRW_REGISTER_TYPE_F;
936 this->result = op[0];
937 break;
938 case ir_unop_i2u:
939 case ir_unop_bitcast_f2u:
940 op[0].type = BRW_REGISTER_TYPE_UD;
941 this->result = op[0];
942 break;
943 case ir_unop_u2i:
944 case ir_unop_bitcast_f2i:
945 op[0].type = BRW_REGISTER_TYPE_D;
946 this->result = op[0];
947 break;
948 case ir_unop_i2f:
949 case ir_unop_u2f:
950 case ir_unop_f2i:
951 case ir_unop_f2u:
952 emit(MOV(this->result, op[0]));
953 break;
954
955 case ir_unop_b2i:
956 emit(AND(this->result, op[0], fs_reg(1)));
957 break;
958 case ir_unop_b2f:
959 if (brw->gen <= 5) {
960 resolve_bool_comparison(ir->operands[0], &op[0]);
961 }
962 op[0].type = BRW_REGISTER_TYPE_D;
963 this->result.type = BRW_REGISTER_TYPE_D;
964 emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
965 this->result.type = BRW_REGISTER_TYPE_F;
966 break;
967
968 case ir_unop_f2b:
969 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
970 break;
971 case ir_unop_i2b:
972 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
973 break;
974
975 case ir_unop_trunc:
976 emit(RNDZ(this->result, op[0]));
977 break;
978 case ir_unop_ceil: {
979 fs_reg tmp = vgrf(ir->type);
980 op[0].negate = !op[0].negate;
981 emit(RNDD(tmp, op[0]));
982 tmp.negate = true;
983 emit(MOV(this->result, tmp));
984 }
985 break;
986 case ir_unop_floor:
987 emit(RNDD(this->result, op[0]));
988 break;
989 case ir_unop_fract:
990 emit(FRC(this->result, op[0]));
991 break;
992 case ir_unop_round_even:
993 emit(RNDE(this->result, op[0]));
994 break;
995
996 case ir_binop_min:
997 case ir_binop_max:
998 resolve_ud_negate(&op[0]);
999 resolve_ud_negate(&op[1]);
1000 emit_minmax(ir->operation == ir_binop_min ?
1001 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
1002 this->result, op[0], op[1]);
1003 break;
1004 case ir_unop_pack_snorm_2x16:
1005 case ir_unop_pack_snorm_4x8:
1006 case ir_unop_pack_unorm_2x16:
1007 case ir_unop_pack_unorm_4x8:
1008 case ir_unop_unpack_snorm_2x16:
1009 case ir_unop_unpack_snorm_4x8:
1010 case ir_unop_unpack_unorm_2x16:
1011 case ir_unop_unpack_unorm_4x8:
1012 case ir_unop_unpack_half_2x16:
1013 case ir_unop_pack_half_2x16:
1014 unreachable("not reached: should be handled by lower_packing_builtins");
1015 case ir_unop_unpack_half_2x16_split_x:
1016 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
1017 break;
1018 case ir_unop_unpack_half_2x16_split_y:
1019 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
1020 break;
1021 case ir_binop_pow:
1022 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
1023 break;
1024
1025 case ir_unop_bitfield_reverse:
1026 emit(BFREV(this->result, op[0]));
1027 break;
1028 case ir_unop_bit_count:
1029 emit(CBIT(this->result, op[0]));
1030 break;
1031 case ir_unop_find_msb:
1032 temp = vgrf(glsl_type::uint_type);
1033 emit(FBH(temp, op[0]));
1034
1035 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1036 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1037 * subtract the result from 31 to convert the MSB count into an LSB count.
1038 */
1039
1040 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1041 emit(MOV(this->result, temp));
1042 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1043
1044 temp.negate = true;
1045 inst = emit(ADD(this->result, temp, fs_reg(31)));
1046 inst->predicate = BRW_PREDICATE_NORMAL;
1047 break;
1048 case ir_unop_find_lsb:
1049 emit(FBL(this->result, op[0]));
1050 break;
1051 case ir_unop_saturate:
1052 inst = emit(MOV(this->result, op[0]));
1053 inst->saturate = true;
1054 break;
1055 case ir_triop_bitfield_extract:
1056 /* Note that the instruction's argument order is reversed from GLSL
1057 * and the IR.
1058 */
1059 emit(BFE(this->result, op[2], op[1], op[0]));
1060 break;
1061 case ir_binop_bfm:
1062 emit(BFI1(this->result, op[0], op[1]));
1063 break;
1064 case ir_triop_bfi:
1065 emit(BFI2(this->result, op[0], op[1], op[2]));
1066 break;
1067 case ir_quadop_bitfield_insert:
1068 unreachable("not reached: should be handled by "
1069 "lower_instructions::bitfield_insert_to_bfm_bfi");
1070
1071 case ir_unop_bit_not:
1072 emit(NOT(this->result, op[0]));
1073 break;
1074 case ir_binop_bit_and:
1075 emit(AND(this->result, op[0], op[1]));
1076 break;
1077 case ir_binop_bit_xor:
1078 emit(XOR(this->result, op[0], op[1]));
1079 break;
1080 case ir_binop_bit_or:
1081 emit(OR(this->result, op[0], op[1]));
1082 break;
1083
1084 case ir_binop_lshift:
1085 emit(SHL(this->result, op[0], op[1]));
1086 break;
1087
1088 case ir_binop_rshift:
1089 if (ir->type->base_type == GLSL_TYPE_INT)
1090 emit(ASR(this->result, op[0], op[1]));
1091 else
1092 emit(SHR(this->result, op[0], op[1]));
1093 break;
1094 case ir_binop_pack_half_2x16_split:
1095 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
1096 break;
1097 case ir_binop_ubo_load: {
1098 /* This IR node takes a constant uniform block and a constant or
1099 * variable byte offset within the block and loads a vector from that.
1100 */
1101 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1102 ir_constant *const_offset = ir->operands[1]->as_constant();
1103 fs_reg surf_index;
1104
1105 if (const_uniform_block) {
1106 /* The block index is a constant, so just emit the binding table entry
1107 * as an immediate.
1108 */
1109 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1110 const_uniform_block->value.u[0]);
1111 } else {
1112 /* The block index is not a constant. Evaluate the index expression
1113 * per-channel and add the base UBO index; the generator will select
1114 * a value from any live channel.
1115 */
1116 surf_index = vgrf(glsl_type::uint_type);
1117 emit(ADD(surf_index, op[0],
1118 fs_reg(stage_prog_data->binding_table.ubo_start)))
1119 ->force_writemask_all = true;
1120
1121 /* Assume this may touch any UBO. It would be nice to provide
1122 * a tighter bound, but the array information is already lowered away.
1123 */
1124 brw_mark_surface_used(prog_data,
1125 stage_prog_data->binding_table.ubo_start +
1126 shader_prog->NumUniformBlocks - 1);
1127 }
1128
1129 if (const_offset) {
1130 fs_reg packed_consts = vgrf(glsl_type::float_type);
1131 packed_consts.type = result.type;
1132
1133 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
1134 emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
1135 packed_consts, surf_index, const_offset_reg));
1136
1137 for (int i = 0; i < ir->type->vector_elements; i++) {
1138 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
1139
1140 /* The std140 packing rules don't allow vectors to cross 16-byte
1141 * boundaries, and a reg is 32 bytes.
1142 */
1143 assert(packed_consts.subreg_offset < 32);
1144
1145 /* UBO bools are any nonzero value. We consider bools to be
1146 * values with the low bit set to 1. Convert them using CMP.
1147 */
1148 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1149 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
1150 } else {
1151 emit(MOV(result, packed_consts));
1152 }
1153
1154 result = offset(result, 1);
1155 }
1156 } else {
1157 /* Turn the byte offset into a dword offset. */
1158 fs_reg base_offset = vgrf(glsl_type::int_type);
1159 emit(SHR(base_offset, op[1], fs_reg(2)));
1160
1161 for (int i = 0; i < ir->type->vector_elements; i++) {
1162 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
1163 base_offset, i));
1164
1165 if (ir->type->base_type == GLSL_TYPE_BOOL)
1166 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
1167
1168 result = offset(result, 1);
1169 }
1170 }
1171
1172 result.reg_offset = 0;
1173 break;
1174 }
1175
1176 case ir_triop_fma:
1177 /* Note that the instruction's argument order is reversed from GLSL
1178 * and the IR.
1179 */
1180 emit(MAD(this->result, op[2], op[1], op[0]));
1181 break;
1182
1183 case ir_triop_lrp:
1184 emit_lrp(this->result, op[0], op[1], op[2]);
1185 break;
1186
1187 case ir_triop_csel:
1188 case ir_unop_interpolate_at_centroid:
1189 case ir_binop_interpolate_at_offset:
1190 case ir_binop_interpolate_at_sample:
1191 unreachable("already handled above");
1192 break;
1193
1194 case ir_unop_d2f:
1195 case ir_unop_f2d:
1196 case ir_unop_d2i:
1197 case ir_unop_i2d:
1198 case ir_unop_d2u:
1199 case ir_unop_u2d:
1200 case ir_unop_d2b:
1201 case ir_unop_pack_double_2x32:
1202 case ir_unop_unpack_double_2x32:
1203 case ir_unop_frexp_sig:
1204 case ir_unop_frexp_exp:
1205 unreachable("fp64 todo");
1206 break;
1207 }
1208 }
1209
1210 void
1211 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1212 const glsl_type *type, bool predicated)
1213 {
1214 switch (type->base_type) {
1215 case GLSL_TYPE_FLOAT:
1216 case GLSL_TYPE_UINT:
1217 case GLSL_TYPE_INT:
1218 case GLSL_TYPE_BOOL:
1219 for (unsigned int i = 0; i < type->components(); i++) {
1220 l.type = brw_type_for_base_type(type);
1221 r.type = brw_type_for_base_type(type);
1222
1223 if (predicated || !l.equals(r)) {
1224 fs_inst *inst = emit(MOV(l, r));
1225 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
1226 }
1227
1228 l = offset(l, 1);
1229 r = offset(r, 1);
1230 }
1231 break;
1232 case GLSL_TYPE_ARRAY:
1233 for (unsigned int i = 0; i < type->length; i++) {
1234 emit_assignment_writes(l, r, type->fields.array, predicated);
1235 }
1236 break;
1237
1238 case GLSL_TYPE_STRUCT:
1239 for (unsigned int i = 0; i < type->length; i++) {
1240 emit_assignment_writes(l, r, type->fields.structure[i].type,
1241 predicated);
1242 }
1243 break;
1244
1245 case GLSL_TYPE_SAMPLER:
1246 case GLSL_TYPE_IMAGE:
1247 case GLSL_TYPE_ATOMIC_UINT:
1248 break;
1249
1250 case GLSL_TYPE_DOUBLE:
1251 case GLSL_TYPE_VOID:
1252 case GLSL_TYPE_ERROR:
1253 case GLSL_TYPE_INTERFACE:
1254 unreachable("not reached");
1255 }
1256 }
1257
1258 /* If the RHS processing resulted in an instruction generating a
1259 * temporary value, and it would be easy to rewrite the instruction to
1260 * generate its result right into the LHS instead, do so. This ends
1261 * up reliably removing instructions where it can be tricky to do so
1262 * later without real UD chain information.
1263 */
1264 bool
1265 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1266 fs_reg dst,
1267 fs_reg src,
1268 fs_inst *pre_rhs_inst,
1269 fs_inst *last_rhs_inst)
1270 {
1271 /* Only attempt if we're doing a direct assignment. */
1272 if (ir->condition ||
1273 !(ir->lhs->type->is_scalar() ||
1274 (ir->lhs->type->is_vector() &&
1275 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
1276 return false;
1277
1278 /* Make sure the last instruction generated our source reg. */
1279 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
1280 last_rhs_inst,
1281 src);
1282 if (!modify)
1283 return false;
1284
1285 /* If last_rhs_inst wrote a different number of components than our LHS,
1286 * we can't safely rewrite it.
1287 */
1288 if (alloc.sizes[dst.reg] != modify->regs_written)
1289 return false;
1290
1291 /* Success! Rewrite the instruction. */
1292 modify->dst = dst;
1293
1294 return true;
1295 }
1296
1297 void
1298 fs_visitor::visit(ir_assignment *ir)
1299 {
1300 fs_reg l, r;
1301 fs_inst *inst;
1302
1303 /* FINISHME: arrays on the lhs */
1304 ir->lhs->accept(this);
1305 l = this->result;
1306
1307 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
1308
1309 ir->rhs->accept(this);
1310 r = this->result;
1311
1312 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
1313
1314 assert(l.file != BAD_FILE);
1315 assert(r.file != BAD_FILE);
1316
1317 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
1318 return;
1319
1320 if (ir->condition) {
1321 emit_bool_to_cond_code(ir->condition);
1322 }
1323
1324 if (ir->lhs->type->is_scalar() ||
1325 ir->lhs->type->is_vector()) {
1326 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1327 if (ir->write_mask & (1 << i)) {
1328 inst = emit(MOV(l, r));
1329 if (ir->condition)
1330 inst->predicate = BRW_PREDICATE_NORMAL;
1331 r = offset(r, 1);
1332 }
1333 l = offset(l, 1);
1334 }
1335 } else {
1336 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1337 }
1338 }
1339
1340 fs_inst *
1341 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
1342 fs_reg coordinate, int coord_components,
1343 fs_reg shadow_c,
1344 fs_reg lod, fs_reg dPdy, int grad_components,
1345 uint32_t sampler)
1346 {
1347 int mlen;
1348 int base_mrf = 1;
1349 bool simd16 = false;
1350 fs_reg orig_dst;
1351
1352 /* g0 header. */
1353 mlen = 1;
1354
1355 if (shadow_c.file != BAD_FILE) {
1356 for (int i = 0; i < coord_components; i++) {
1357 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1358 coordinate = offset(coordinate, 1);
1359 }
1360
1361 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
1362 * the unused slots must be zeroed.
1363 */
1364 for (int i = coord_components; i < 3; i++) {
1365 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1366 }
1367 mlen += 3;
1368
1369 if (op == ir_tex) {
1370 /* There's no plain shadow compare message, so we use shadow
1371 * compare with a bias of 0.0.
1372 */
1373 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
1374 mlen++;
1375 } else if (op == ir_txb || op == ir_txl) {
1376 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1377 mlen++;
1378 } else {
1379 unreachable("Should not get here.");
1380 }
1381
1382 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1383 mlen++;
1384 } else if (op == ir_tex) {
1385 for (int i = 0; i < coord_components; i++) {
1386 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1387 coordinate = offset(coordinate, 1);
1388 }
1389 /* zero the others. */
1390 for (int i = coord_components; i<3; i++) {
1391 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1392 }
1393 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1394 mlen += 3;
1395 } else if (op == ir_txd) {
1396 fs_reg &dPdx = lod;
1397
1398 for (int i = 0; i < coord_components; i++) {
1399 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1400 coordinate = offset(coordinate, 1);
1401 }
1402 /* the slots for u and v are always present, but r is optional */
1403 mlen += MAX2(coord_components, 2);
1404
1405 /* P = u, v, r
1406 * dPdx = dudx, dvdx, drdx
1407 * dPdy = dudy, dvdy, drdy
1408 *
1409 * 1-arg: Does not exist.
1410 *
1411 * 2-arg: dudx dvdx dudy dvdy
1412 * dPdx.x dPdx.y dPdy.x dPdy.y
1413 * m4 m5 m6 m7
1414 *
1415 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1416 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1417 * m5 m6 m7 m8 m9 m10
1418 */
1419 for (int i = 0; i < grad_components; i++) {
1420 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1421 dPdx = offset(dPdx, 1);
1422 }
1423 mlen += MAX2(grad_components, 2);
1424
1425 for (int i = 0; i < grad_components; i++) {
1426 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1427 dPdy = offset(dPdy, 1);
1428 }
1429 mlen += MAX2(grad_components, 2);
1430 } else if (op == ir_txs) {
1431 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1432 simd16 = true;
1433 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1434 mlen += 2;
1435 } else {
1436 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1437 * instructions. We'll need to do SIMD16 here.
1438 */
1439 simd16 = true;
1440 assert(op == ir_txb || op == ir_txl || op == ir_txf);
1441
1442 for (int i = 0; i < coord_components; i++) {
1443 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1444 coordinate));
1445 coordinate = offset(coordinate, 1);
1446 }
1447
1448 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1449 * be necessary for TXF (ld), but seems wise to do for all messages.
1450 */
1451 for (int i = coord_components; i < 3; i++) {
1452 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1453 }
1454
1455 /* lod/bias appears after u/v/r. */
1456 mlen += 6;
1457
1458 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1459 mlen++;
1460
1461 /* The unused upper half. */
1462 mlen++;
1463 }
1464
1465 if (simd16) {
1466 /* Now, since we're doing simd16, the return is 2 interleaved
1467 * vec4s where the odd-indexed ones are junk. We'll need to move
1468 * this weirdness around to the expected layout.
1469 */
1470 orig_dst = dst;
1471 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
1472 }
1473
1474 enum opcode opcode;
1475 switch (op) {
1476 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1477 case ir_txb: opcode = FS_OPCODE_TXB; break;
1478 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1479 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1480 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1481 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1482 default:
1483 unreachable("not reached");
1484 }
1485
1486 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1487 inst->base_mrf = base_mrf;
1488 inst->mlen = mlen;
1489 inst->header_present = true;
1490 inst->regs_written = simd16 ? 8 : 4;
1491
1492 if (simd16) {
1493 for (int i = 0; i < 4; i++) {
1494 emit(MOV(orig_dst, dst));
1495 orig_dst = offset(orig_dst, 1);
1496 dst = offset(dst, 2);
1497 }
1498 }
1499
1500 return inst;
1501 }
1502
1503 /* gen5's sampler has slots for u, v, r, array index, then optional
1504 * parameters like shadow comparitor or LOD bias. If optional
1505 * parameters aren't present, those base slots are optional and don't
1506 * need to be included in the message.
1507 *
1508 * We don't fill in the unnecessary slots regardless, which may look
1509 * surprising in the disassembly.
1510 */
1511 fs_inst *
1512 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
1513 fs_reg coordinate, int vector_elements,
1514 fs_reg shadow_c,
1515 fs_reg lod, fs_reg lod2, int grad_components,
1516 fs_reg sample_index, uint32_t sampler,
1517 bool has_offset)
1518 {
1519 int reg_width = dispatch_width / 8;
1520 bool header_present = false;
1521
1522 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1523 fs_reg msg_coords = message;
1524
1525 if (has_offset) {
1526 /* The offsets set up by the ir_texture visitor are in the
1527 * m1 header, so we can't go headerless.
1528 */
1529 header_present = true;
1530 message.reg--;
1531 }
1532
1533 for (int i = 0; i < vector_elements; i++) {
1534 emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
1535 coordinate = offset(coordinate, 1);
1536 }
1537 fs_reg msg_end = offset(msg_coords, vector_elements);
1538 fs_reg msg_lod = offset(msg_coords, 4);
1539
1540 if (shadow_c.file != BAD_FILE) {
1541 fs_reg msg_shadow = msg_lod;
1542 emit(MOV(msg_shadow, shadow_c));
1543 msg_lod = offset(msg_shadow, 1);
1544 msg_end = msg_lod;
1545 }
1546
1547 enum opcode opcode;
1548 switch (op) {
1549 case ir_tex:
1550 opcode = SHADER_OPCODE_TEX;
1551 break;
1552 case ir_txb:
1553 emit(MOV(msg_lod, lod));
1554 msg_end = offset(msg_lod, 1);
1555
1556 opcode = FS_OPCODE_TXB;
1557 break;
1558 case ir_txl:
1559 emit(MOV(msg_lod, lod));
1560 msg_end = offset(msg_lod, 1);
1561
1562 opcode = SHADER_OPCODE_TXL;
1563 break;
1564 case ir_txd: {
1565 /**
1566 * P = u, v, r
1567 * dPdx = dudx, dvdx, drdx
1568 * dPdy = dudy, dvdy, drdy
1569 *
1570 * Load up these values:
1571 * - dudx dudy dvdx dvdy drdx drdy
1572 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1573 */
1574 msg_end = msg_lod;
1575 for (int i = 0; i < grad_components; i++) {
1576 emit(MOV(msg_end, lod));
1577 lod = offset(lod, 1);
1578 msg_end = offset(msg_end, 1);
1579
1580 emit(MOV(msg_end, lod2));
1581 lod2 = offset(lod2, 1);
1582 msg_end = offset(msg_end, 1);
1583 }
1584
1585 opcode = SHADER_OPCODE_TXD;
1586 break;
1587 }
1588 case ir_txs:
1589 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
1590 emit(MOV(msg_lod, lod));
1591 msg_end = offset(msg_lod, 1);
1592
1593 opcode = SHADER_OPCODE_TXS;
1594 break;
1595 case ir_query_levels:
1596 msg_lod = msg_end;
1597 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1598 msg_end = offset(msg_lod, 1);
1599
1600 opcode = SHADER_OPCODE_TXS;
1601 break;
1602 case ir_txf:
1603 msg_lod = offset(msg_coords, 3);
1604 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
1605 msg_end = offset(msg_lod, 1);
1606
1607 opcode = SHADER_OPCODE_TXF;
1608 break;
1609 case ir_txf_ms:
1610 msg_lod = offset(msg_coords, 3);
1611 /* lod */
1612 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1613 /* sample index */
1614 emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
1615 msg_end = offset(msg_lod, 2);
1616
1617 opcode = SHADER_OPCODE_TXF_CMS;
1618 break;
1619 case ir_lod:
1620 opcode = SHADER_OPCODE_LOD;
1621 break;
1622 case ir_tg4:
1623 opcode = SHADER_OPCODE_TG4;
1624 break;
1625 default:
1626 unreachable("not reached");
1627 }
1628
1629 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1630 inst->base_mrf = message.reg;
1631 inst->mlen = msg_end.reg - message.reg;
1632 inst->header_present = header_present;
1633 inst->regs_written = 4 * reg_width;
1634
1635 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1636 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1637 " disallowed by hardware\n");
1638 }
1639
1640 return inst;
1641 }
1642
1643 static bool
1644 is_high_sampler(struct brw_context *brw, fs_reg sampler)
1645 {
1646 if (brw->gen < 8 && !brw->is_haswell)
1647 return false;
1648
1649 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
1650 }
1651
1652 fs_inst *
1653 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
1654 fs_reg coordinate, int coord_components,
1655 fs_reg shadow_c,
1656 fs_reg lod, fs_reg lod2, int grad_components,
1657 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
1658 fs_reg offset_value)
1659 {
1660 int reg_width = dispatch_width / 8;
1661 bool header_present = false;
1662
1663 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
1664 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
1665 sources[i] = vgrf(glsl_type::float_type);
1666 }
1667 int length = 0;
1668
1669 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
1670 is_high_sampler(brw, sampler)) {
1671 /* For general texture offsets (no txf workaround), we need a header to
1672 * put them in. Note that for SIMD16 we're making space for two actual
1673 * hardware registers here, so the emit will have to fix up for this.
1674 *
1675 * * ir4_tg4 needs to place its channel select in the header,
1676 * for interaction with ARB_texture_swizzle
1677 *
1678 * The sampler index is only 4-bits, so for larger sampler numbers we
1679 * need to offset the Sampler State Pointer in the header.
1680 */
1681 header_present = true;
1682 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1683 length++;
1684 }
1685
1686 if (shadow_c.file != BAD_FILE) {
1687 emit(MOV(sources[length], shadow_c));
1688 length++;
1689 }
1690
1691 bool has_nonconstant_offset =
1692 offset_value.file != BAD_FILE && offset_value.file != IMM;
1693 bool coordinate_done = false;
1694
1695 /* Set up the LOD info */
1696 switch (op) {
1697 case ir_tex:
1698 case ir_lod:
1699 break;
1700 case ir_txb:
1701 emit(MOV(sources[length], lod));
1702 length++;
1703 break;
1704 case ir_txl:
1705 emit(MOV(sources[length], lod));
1706 length++;
1707 break;
1708 case ir_txd: {
1709 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1710
1711 /* Load dPdx and the coordinate together:
1712 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1713 */
1714 for (int i = 0; i < coord_components; i++) {
1715 emit(MOV(sources[length], coordinate));
1716 coordinate = offset(coordinate, 1);
1717 length++;
1718
1719 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1720 * only derivatives for (u, v, r).
1721 */
1722 if (i < grad_components) {
1723 emit(MOV(sources[length], lod));
1724 lod = offset(lod, 1);
1725 length++;
1726
1727 emit(MOV(sources[length], lod2));
1728 lod2 = offset(lod2, 1);
1729 length++;
1730 }
1731 }
1732
1733 coordinate_done = true;
1734 break;
1735 }
1736 case ir_txs:
1737 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
1738 length++;
1739 break;
1740 case ir_query_levels:
1741 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1742 length++;
1743 break;
1744 case ir_txf:
1745 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1746 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1747 coordinate = offset(coordinate, 1);
1748 length++;
1749
1750 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
1751 length++;
1752
1753 for (int i = 1; i < coord_components; i++) {
1754 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1755 coordinate = offset(coordinate, 1);
1756 length++;
1757 }
1758
1759 coordinate_done = true;
1760 break;
1761 case ir_txf_ms:
1762 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
1763 length++;
1764
1765 /* data from the multisample control surface */
1766 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
1767 length++;
1768
1769 /* there is no offsetting for this message; just copy in the integer
1770 * texture coordinates
1771 */
1772 for (int i = 0; i < coord_components; i++) {
1773 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1774 coordinate = offset(coordinate, 1);
1775 length++;
1776 }
1777
1778 coordinate_done = true;
1779 break;
1780 case ir_tg4:
1781 if (has_nonconstant_offset) {
1782 if (shadow_c.file != BAD_FILE)
1783 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
1784
1785 /* More crazy intermixing */
1786 for (int i = 0; i < 2; i++) { /* u, v */
1787 emit(MOV(sources[length], coordinate));
1788 coordinate = offset(coordinate, 1);
1789 length++;
1790 }
1791
1792 for (int i = 0; i < 2; i++) { /* offu, offv */
1793 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
1794 offset_value = offset(offset_value, 1);
1795 length++;
1796 }
1797
1798 if (coord_components == 3) { /* r if present */
1799 emit(MOV(sources[length], coordinate));
1800 coordinate = offset(coordinate, 1);
1801 length++;
1802 }
1803
1804 coordinate_done = true;
1805 }
1806 break;
1807 }
1808
1809 /* Set up the coordinate (except for cases where it was done above) */
1810 if (!coordinate_done) {
1811 for (int i = 0; i < coord_components; i++) {
1812 emit(MOV(sources[length], coordinate));
1813 coordinate = offset(coordinate, 1);
1814 length++;
1815 }
1816 }
1817
1818 int mlen;
1819 if (reg_width == 2)
1820 mlen = length * reg_width - header_present;
1821 else
1822 mlen = length * reg_width;
1823
1824 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1825 BRW_REGISTER_TYPE_F);
1826 emit(LOAD_PAYLOAD(src_payload, sources, length));
1827
1828 /* Generate the SEND */
1829 enum opcode opcode;
1830 switch (op) {
1831 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1832 case ir_txb: opcode = FS_OPCODE_TXB; break;
1833 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1834 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1835 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1836 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
1837 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1838 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
1839 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
1840 case ir_tg4:
1841 if (has_nonconstant_offset)
1842 opcode = SHADER_OPCODE_TG4_OFFSET;
1843 else
1844 opcode = SHADER_OPCODE_TG4;
1845 break;
1846 default:
1847 unreachable("not reached");
1848 }
1849 fs_inst *inst = emit(opcode, dst, src_payload, sampler);
1850 inst->base_mrf = -1;
1851 inst->mlen = mlen;
1852 inst->header_present = header_present;
1853 inst->regs_written = 4 * reg_width;
1854
1855 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1856 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1857 " disallowed by hardware\n");
1858 }
1859
1860 return inst;
1861 }
1862
1863 fs_reg
1864 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
1865 bool is_rect, uint32_t sampler, int texunit)
1866 {
1867 fs_inst *inst = NULL;
1868 bool needs_gl_clamp = true;
1869 fs_reg scale_x, scale_y;
1870
1871 /* The 965 requires the EU to do the normalization of GL rectangle
1872 * texture coordinates. We use the program parameter state
1873 * tracking to get the scaling factor.
1874 */
1875 if (is_rect &&
1876 (brw->gen < 6 ||
1877 (brw->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
1878 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
1879 struct gl_program_parameter_list *params = prog->Parameters;
1880 int tokens[STATE_LENGTH] = {
1881 STATE_INTERNAL,
1882 STATE_TEXRECT_SCALE,
1883 texunit,
1884 0,
1885 0
1886 };
1887
1888 no16("rectangle scale uniform setup not supported on SIMD16\n");
1889 if (dispatch_width == 16) {
1890 return coordinate;
1891 }
1892
1893 GLuint index = _mesa_add_state_reference(params,
1894 (gl_state_index *)tokens);
1895 /* Try to find existing copies of the texrect scale uniforms. */
1896 for (unsigned i = 0; i < uniforms; i++) {
1897 if (stage_prog_data->param[i] ==
1898 &prog->Parameters->ParameterValues[index][0]) {
1899 scale_x = fs_reg(UNIFORM, i);
1900 scale_y = fs_reg(UNIFORM, i + 1);
1901 break;
1902 }
1903 }
1904
1905 /* If we didn't already set them up, do so now. */
1906 if (scale_x.file == BAD_FILE) {
1907 scale_x = fs_reg(UNIFORM, uniforms);
1908 scale_y = fs_reg(UNIFORM, uniforms + 1);
1909
1910 stage_prog_data->param[uniforms++] =
1911 &prog->Parameters->ParameterValues[index][0];
1912 stage_prog_data->param[uniforms++] =
1913 &prog->Parameters->ParameterValues[index][1];
1914 }
1915 }
1916
1917 /* The 965 requires the EU to do the normalization of GL rectangle
1918 * texture coordinates. We use the program parameter state
1919 * tracking to get the scaling factor.
1920 */
1921 if (brw->gen < 6 && is_rect) {
1922 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
1923 fs_reg src = coordinate;
1924 coordinate = dst;
1925
1926 emit(MUL(dst, src, scale_x));
1927 dst = offset(dst, 1);
1928 src = offset(src, 1);
1929 emit(MUL(dst, src, scale_y));
1930 } else if (is_rect) {
1931 /* On gen6+, the sampler handles the rectangle coordinates
1932 * natively, without needing rescaling. But that means we have
1933 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1934 * not [0, 1] like the default case below.
1935 */
1936 needs_gl_clamp = false;
1937
1938 for (int i = 0; i < 2; i++) {
1939 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
1940 fs_reg chan = coordinate;
1941 chan = offset(chan, i);
1942
1943 inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
1944 inst->conditional_mod = BRW_CONDITIONAL_GE;
1945
1946 /* Our parameter comes in as 1.0/width or 1.0/height,
1947 * because that's what people normally want for doing
1948 * texture rectangle handling. We need width or height
1949 * for clamping, but we don't care enough to make a new
1950 * parameter type, so just invert back.
1951 */
1952 fs_reg limit = vgrf(glsl_type::float_type);
1953 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1954 emit(SHADER_OPCODE_RCP, limit, limit);
1955
1956 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1957 inst->conditional_mod = BRW_CONDITIONAL_L;
1958 }
1959 }
1960 }
1961
1962 if (coord_components > 0 && needs_gl_clamp) {
1963 for (int i = 0; i < MIN2(coord_components, 3); i++) {
1964 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
1965 fs_reg chan = coordinate;
1966 chan = offset(chan, i);
1967
1968 fs_inst *inst = emit(MOV(chan, chan));
1969 inst->saturate = true;
1970 }
1971 }
1972 }
1973 return coordinate;
1974 }
1975
1976 /* Sample from the MCS surface attached to this multisample texture. */
1977 fs_reg
1978 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
1979 {
1980 int reg_width = dispatch_width / 8;
1981 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
1982 BRW_REGISTER_TYPE_F);
1983 fs_reg dest = vgrf(glsl_type::uvec4_type);
1984 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
1985
1986 /* parameters are: u, v, r; missing parameters are treated as zero */
1987 for (int i = 0; i < components; i++) {
1988 sources[i] = vgrf(glsl_type::float_type);
1989 emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
1990 coordinate = offset(coordinate, 1);
1991 }
1992
1993 emit(LOAD_PAYLOAD(payload, sources, components));
1994
1995 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
1996 inst->base_mrf = -1;
1997 inst->mlen = components * reg_width;
1998 inst->header_present = false;
1999 inst->regs_written = 4 * reg_width; /* we only care about one reg of
2000 * response, but the sampler always
2001 * writes 4/8
2002 */
2003
2004 return dest;
2005 }
2006
2007 void
2008 fs_visitor::emit_texture(ir_texture_opcode op,
2009 const glsl_type *dest_type,
2010 fs_reg coordinate, int coord_components,
2011 fs_reg shadow_c,
2012 fs_reg lod, fs_reg lod2, int grad_components,
2013 fs_reg sample_index,
2014 fs_reg offset_value,
2015 fs_reg mcs,
2016 int gather_component,
2017 bool is_cube_array,
2018 bool is_rect,
2019 uint32_t sampler,
2020 fs_reg sampler_reg, int texunit)
2021 {
2022 fs_inst *inst = NULL;
2023
2024 if (op == ir_tg4) {
2025 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2026 * emitting anything other than setting up the constant result.
2027 */
2028 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
2029 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2030
2031 fs_reg res = vgrf(glsl_type::vec4_type);
2032 this->result = res;
2033
2034 for (int i=0; i<4; i++) {
2035 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
2036 res = offset(res, 1);
2037 }
2038 return;
2039 }
2040 }
2041
2042 if (coordinate.file != BAD_FILE) {
2043 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
2044 * samplers. This should only be a problem with GL_CLAMP on Gen7.
2045 */
2046 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
2047 sampler, texunit);
2048 }
2049
2050 /* Writemasking doesn't eliminate channels on SIMD8 texture
2051 * samples, so don't worry about them.
2052 */
2053 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
2054
2055 if (brw->gen >= 7) {
2056 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
2057 shadow_c, lod, lod2, grad_components,
2058 sample_index, mcs, sampler_reg,
2059 offset_value);
2060 } else if (brw->gen >= 5) {
2061 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
2062 shadow_c, lod, lod2, grad_components,
2063 sample_index, sampler,
2064 offset_value.file != BAD_FILE);
2065 } else {
2066 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
2067 shadow_c, lod, lod2, grad_components,
2068 sampler);
2069 }
2070
2071 if (shadow_c.file != BAD_FILE)
2072 inst->shadow_compare = true;
2073
2074 if (offset_value.file == IMM)
2075 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
2076
2077 if (op == ir_tg4) {
2078 inst->offset |=
2079 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
2080
2081 if (brw->gen == 6)
2082 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
2083 }
2084
2085 /* fixup #layers for cube map arrays */
2086 if (op == ir_txs && is_cube_array) {
2087 fs_reg depth = offset(dst, 2);
2088 fs_reg fixed_depth = vgrf(glsl_type::int_type);
2089 emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
2090
2091 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
2092 int components = inst->regs_written / (dst.width / 8);
2093 for (int i = 0; i < components; i++) {
2094 if (i == 2) {
2095 fixed_payload[i] = fixed_depth;
2096 } else {
2097 fixed_payload[i] = offset(dst, i);
2098 }
2099 }
2100 emit(LOAD_PAYLOAD(dst, fixed_payload, components));
2101 }
2102
2103 swizzle_result(op, dest_type->vector_elements, dst, sampler);
2104 }
2105
2106 void
2107 fs_visitor::visit(ir_texture *ir)
2108 {
2109 uint32_t sampler =
2110 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2111
2112 ir_rvalue *nonconst_sampler_index =
2113 _mesa_get_sampler_array_nonconst_index(ir->sampler);
2114
2115 /* Handle non-constant sampler array indexing */
2116 fs_reg sampler_reg;
2117 if (nonconst_sampler_index) {
2118 /* The highest sampler which may be used by this operation is
2119 * the last element of the array. Mark it here, because the generator
2120 * doesn't have enough information to determine the bound.
2121 */
2122 uint32_t array_size = ir->sampler->as_dereference_array()
2123 ->array->type->array_size();
2124
2125 uint32_t max_used = sampler + array_size - 1;
2126 if (ir->op == ir_tg4 && brw->gen < 8) {
2127 max_used += stage_prog_data->binding_table.gather_texture_start;
2128 } else {
2129 max_used += stage_prog_data->binding_table.texture_start;
2130 }
2131
2132 brw_mark_surface_used(prog_data, max_used);
2133
2134 /* Emit code to evaluate the actual indexing expression */
2135 nonconst_sampler_index->accept(this);
2136 fs_reg temp = vgrf(glsl_type::uint_type);
2137 emit(ADD(temp, this->result, fs_reg(sampler)))
2138 ->force_writemask_all = true;
2139 sampler_reg = temp;
2140 } else {
2141 /* Single sampler, or constant array index; the indexing expression
2142 * is just an immediate.
2143 */
2144 sampler_reg = fs_reg(sampler);
2145 }
2146
2147 /* FINISHME: We're failing to recompile our programs when the sampler is
2148 * updated. This only matters for the texture rectangle scale parameters
2149 * (pre-gen6, or gen6+ with GL_CLAMP).
2150 */
2151 int texunit = prog->SamplerUnits[sampler];
2152
2153 /* Should be lowered by do_lower_texture_projection */
2154 assert(!ir->projector);
2155
2156 /* Should be lowered */
2157 assert(!ir->offset || !ir->offset->type->is_array());
2158
2159 /* Generate code to compute all the subexpression trees. This has to be
2160 * done before loading any values into MRFs for the sampler message since
2161 * generating these values may involve SEND messages that need the MRFs.
2162 */
2163 fs_reg coordinate;
2164 int coord_components = 0;
2165 if (ir->coordinate) {
2166 coord_components = ir->coordinate->type->vector_elements;
2167 ir->coordinate->accept(this);
2168 coordinate = this->result;
2169 }
2170
2171 fs_reg shadow_comparitor;
2172 if (ir->shadow_comparitor) {
2173 ir->shadow_comparitor->accept(this);
2174 shadow_comparitor = this->result;
2175 }
2176
2177 fs_reg offset_value;
2178 if (ir->offset) {
2179 ir_constant *const_offset = ir->offset->as_constant();
2180 if (const_offset) {
2181 /* Store the header bitfield in an IMM register. This allows us to
2182 * use offset_value.file to distinguish between no offset, a constant
2183 * offset, and a non-constant offset.
2184 */
2185 offset_value =
2186 fs_reg(brw_texture_offset(ctx, const_offset->value.i,
2187 const_offset->type->vector_elements));
2188 } else {
2189 ir->offset->accept(this);
2190 offset_value = this->result;
2191 }
2192 }
2193
2194 fs_reg lod, lod2, sample_index, mcs;
2195 int grad_components = 0;
2196 switch (ir->op) {
2197 case ir_tex:
2198 case ir_lod:
2199 case ir_tg4:
2200 case ir_query_levels:
2201 break;
2202 case ir_txb:
2203 ir->lod_info.bias->accept(this);
2204 lod = this->result;
2205 break;
2206 case ir_txd:
2207 ir->lod_info.grad.dPdx->accept(this);
2208 lod = this->result;
2209
2210 ir->lod_info.grad.dPdy->accept(this);
2211 lod2 = this->result;
2212
2213 grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
2214 break;
2215 case ir_txf:
2216 case ir_txl:
2217 case ir_txs:
2218 ir->lod_info.lod->accept(this);
2219 lod = this->result;
2220 break;
2221 case ir_txf_ms:
2222 ir->lod_info.sample_index->accept(this);
2223 sample_index = this->result;
2224
2225 if (brw->gen >= 7 &&
2226 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2227 mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
2228 sampler_reg);
2229 } else {
2230 mcs = fs_reg(0u);
2231 }
2232 break;
2233 default:
2234 unreachable("Unrecognized texture opcode");
2235 };
2236
2237 int gather_component = 0;
2238 if (ir->op == ir_tg4)
2239 gather_component = ir->lod_info.component->as_constant()->value.i[0];
2240
2241 bool is_rect =
2242 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
2243
2244 bool is_cube_array =
2245 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2246 ir->sampler->type->sampler_array;
2247
2248 emit_texture(ir->op, ir->type, coordinate, coord_components,
2249 shadow_comparitor, lod, lod2, grad_components,
2250 sample_index, offset_value, mcs,
2251 gather_component, is_cube_array, is_rect, sampler,
2252 sampler_reg, texunit);
2253 }
2254
2255 /**
2256 * Apply workarounds for Gen6 gather with UINT/SINT
2257 */
2258 void
2259 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
2260 {
2261 if (!wa)
2262 return;
2263
2264 int width = (wa & WA_8BIT) ? 8 : 16;
2265
2266 for (int i = 0; i < 4; i++) {
2267 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
2268 /* Convert from UNORM to UINT */
2269 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
2270 emit(MOV(dst, dst_f));
2271
2272 if (wa & WA_SIGN) {
2273 /* Reinterpret the UINT value as a signed INT value by
2274 * shifting the sign bit into place, then shifting back
2275 * preserving sign.
2276 */
2277 emit(SHL(dst, dst, fs_reg(32 - width)));
2278 emit(ASR(dst, dst, fs_reg(32 - width)));
2279 }
2280
2281 dst = offset(dst, 1);
2282 }
2283 }
2284
2285 /**
2286 * Set up the gather channel based on the swizzle, for gather4.
2287 */
2288 uint32_t
2289 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
2290 {
2291 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
2292 switch (swiz) {
2293 case SWIZZLE_X: return 0;
2294 case SWIZZLE_Y:
2295 /* gather4 sampler is broken for green channel on RG32F --
2296 * we must ask for blue instead.
2297 */
2298 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
2299 return 2;
2300 return 1;
2301 case SWIZZLE_Z: return 2;
2302 case SWIZZLE_W: return 3;
2303 default:
2304 unreachable("Not reached"); /* zero, one swizzles handled already */
2305 }
2306 }
2307
2308 /**
2309 * Swizzle the result of a texture result. This is necessary for
2310 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
2311 */
2312 void
2313 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
2314 fs_reg orig_val, uint32_t sampler)
2315 {
2316 if (op == ir_query_levels) {
2317 /* # levels is in .w */
2318 this->result = offset(orig_val, 3);
2319 return;
2320 }
2321
2322 this->result = orig_val;
2323
2324 /* txs,lod don't actually sample the texture, so swizzling the result
2325 * makes no sense.
2326 */
2327 if (op == ir_txs || op == ir_lod || op == ir_tg4)
2328 return;
2329
2330 if (dest_components == 1) {
2331 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
2332 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
2333 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
2334 swizzled_result.type = orig_val.type;
2335
2336 for (int i = 0; i < 4; i++) {
2337 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
2338 fs_reg l = swizzled_result;
2339 l = offset(l, i);
2340
2341 if (swiz == SWIZZLE_ZERO) {
2342 emit(MOV(l, fs_reg(0.0f)));
2343 } else if (swiz == SWIZZLE_ONE) {
2344 emit(MOV(l, fs_reg(1.0f)));
2345 } else {
2346 emit(MOV(l, offset(orig_val,
2347 GET_SWZ(key_tex->swizzles[sampler], i))));
2348 }
2349 }
2350 this->result = swizzled_result;
2351 }
2352 }
2353
2354 void
2355 fs_visitor::visit(ir_swizzle *ir)
2356 {
2357 ir->val->accept(this);
2358 fs_reg val = this->result;
2359
2360 if (ir->type->vector_elements == 1) {
2361 this->result = offset(this->result, ir->mask.x);
2362 return;
2363 }
2364
2365 fs_reg result = vgrf(ir->type);
2366 this->result = result;
2367
2368 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
2369 fs_reg channel = val;
2370 int swiz = 0;
2371
2372 switch (i) {
2373 case 0:
2374 swiz = ir->mask.x;
2375 break;
2376 case 1:
2377 swiz = ir->mask.y;
2378 break;
2379 case 2:
2380 swiz = ir->mask.z;
2381 break;
2382 case 3:
2383 swiz = ir->mask.w;
2384 break;
2385 }
2386
2387 emit(MOV(result, offset(channel, swiz)));
2388 result = offset(result, 1);
2389 }
2390 }
2391
2392 void
2393 fs_visitor::visit(ir_discard *ir)
2394 {
2395 /* We track our discarded pixels in f0.1. By predicating on it, we can
2396 * update just the flag bits that aren't yet discarded. If there's no
2397 * condition, we emit a CMP of g0 != g0, so all currently executing
2398 * channels will get turned off.
2399 */
2400 fs_inst *cmp;
2401 if (ir->condition) {
2402 emit_bool_to_cond_code(ir->condition);
2403 cmp = (fs_inst *) this->instructions.get_tail();
2404 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
2405 } else {
2406 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2407 BRW_REGISTER_TYPE_UW));
2408 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
2409 }
2410 cmp->predicate = BRW_PREDICATE_NORMAL;
2411 cmp->flag_subreg = 1;
2412
2413 if (brw->gen >= 6) {
2414 /* For performance, after a discard, jump to the end of the shader.
2415 * Only jump if all relevant channels have been discarded.
2416 */
2417 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
2418 discard_jump->flag_subreg = 1;
2419
2420 discard_jump->predicate = (dispatch_width == 8)
2421 ? BRW_PREDICATE_ALIGN1_ANY8H
2422 : BRW_PREDICATE_ALIGN1_ANY16H;
2423 discard_jump->predicate_inverse = true;
2424 }
2425 }
2426
2427 void
2428 fs_visitor::visit(ir_constant *ir)
2429 {
2430 /* Set this->result to reg at the bottom of the function because some code
2431 * paths will cause this visitor to be applied to other fields. This will
2432 * cause the value stored in this->result to be modified.
2433 *
2434 * Make reg constant so that it doesn't get accidentally modified along the
2435 * way. Yes, I actually had this problem. :(
2436 */
2437 const fs_reg reg = vgrf(ir->type);
2438 fs_reg dst_reg = reg;
2439
2440 if (ir->type->is_array()) {
2441 const unsigned size = type_size(ir->type->fields.array);
2442
2443 for (unsigned i = 0; i < ir->type->length; i++) {
2444 ir->array_elements[i]->accept(this);
2445 fs_reg src_reg = this->result;
2446
2447 dst_reg.type = src_reg.type;
2448 for (unsigned j = 0; j < size; j++) {
2449 emit(MOV(dst_reg, src_reg));
2450 src_reg = offset(src_reg, 1);
2451 dst_reg = offset(dst_reg, 1);
2452 }
2453 }
2454 } else if (ir->type->is_record()) {
2455 foreach_in_list(ir_constant, field, &ir->components) {
2456 const unsigned size = type_size(field->type);
2457
2458 field->accept(this);
2459 fs_reg src_reg = this->result;
2460
2461 dst_reg.type = src_reg.type;
2462 for (unsigned j = 0; j < size; j++) {
2463 emit(MOV(dst_reg, src_reg));
2464 src_reg = offset(src_reg, 1);
2465 dst_reg = offset(dst_reg, 1);
2466 }
2467 }
2468 } else {
2469 const unsigned size = type_size(ir->type);
2470
2471 for (unsigned i = 0; i < size; i++) {
2472 switch (ir->type->base_type) {
2473 case GLSL_TYPE_FLOAT:
2474 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
2475 break;
2476 case GLSL_TYPE_UINT:
2477 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
2478 break;
2479 case GLSL_TYPE_INT:
2480 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
2481 break;
2482 case GLSL_TYPE_BOOL:
2483 emit(MOV(dst_reg,
2484 fs_reg(ir->value.b[i] != 0 ? (int)ctx->Const.UniformBooleanTrue
2485 : 0)));
2486 break;
2487 default:
2488 unreachable("Non-float/uint/int/bool constant");
2489 }
2490 dst_reg = offset(dst_reg, 1);
2491 }
2492 }
2493
2494 this->result = reg;
2495 }
2496
2497 void
2498 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
2499 {
2500 ir_expression *expr = ir->as_expression();
2501
2502 if (!expr || expr->operation == ir_binop_ubo_load) {
2503 ir->accept(this);
2504
2505 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2506 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2507 return;
2508 }
2509
2510 fs_reg op[3];
2511 fs_inst *inst;
2512
2513 assert(expr->get_num_operands() <= 3);
2514 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2515 assert(expr->operands[i]->type->is_scalar());
2516
2517 expr->operands[i]->accept(this);
2518 op[i] = this->result;
2519
2520 resolve_ud_negate(&op[i]);
2521 }
2522
2523 switch (expr->operation) {
2524 case ir_unop_logic_not:
2525 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
2526 inst->conditional_mod = BRW_CONDITIONAL_Z;
2527 break;
2528
2529 case ir_binop_logic_xor:
2530 if (brw->gen <= 5) {
2531 fs_reg temp = vgrf(ir->type);
2532 emit(XOR(temp, op[0], op[1]));
2533 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2534 } else {
2535 inst = emit(XOR(reg_null_d, op[0], op[1]));
2536 }
2537 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2538 break;
2539
2540 case ir_binop_logic_or:
2541 if (brw->gen <= 5) {
2542 fs_reg temp = vgrf(ir->type);
2543 emit(OR(temp, op[0], op[1]));
2544 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2545 } else {
2546 inst = emit(OR(reg_null_d, op[0], op[1]));
2547 }
2548 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2549 break;
2550
2551 case ir_binop_logic_and:
2552 if (brw->gen <= 5) {
2553 fs_reg temp = vgrf(ir->type);
2554 emit(AND(temp, op[0], op[1]));
2555 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2556 } else {
2557 inst = emit(AND(reg_null_d, op[0], op[1]));
2558 }
2559 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2560 break;
2561
2562 case ir_unop_f2b:
2563 if (brw->gen >= 6) {
2564 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
2565 } else {
2566 inst = emit(MOV(reg_null_f, op[0]));
2567 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2568 }
2569 break;
2570
2571 case ir_unop_i2b:
2572 if (brw->gen >= 6) {
2573 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2574 } else {
2575 inst = emit(MOV(reg_null_d, op[0]));
2576 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2577 }
2578 break;
2579
2580 case ir_binop_greater:
2581 case ir_binop_gequal:
2582 case ir_binop_less:
2583 case ir_binop_lequal:
2584 case ir_binop_equal:
2585 case ir_binop_all_equal:
2586 case ir_binop_nequal:
2587 case ir_binop_any_nequal:
2588 if (brw->gen <= 5) {
2589 resolve_bool_comparison(expr->operands[0], &op[0]);
2590 resolve_bool_comparison(expr->operands[1], &op[1]);
2591 }
2592
2593 emit(CMP(reg_null_d, op[0], op[1],
2594 brw_conditional_for_comparison(expr->operation)));
2595 break;
2596
2597 case ir_triop_csel: {
2598 /* Expand the boolean condition into the flag register. */
2599 inst = emit(MOV(reg_null_d, op[0]));
2600 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2601
2602 /* Select which boolean to return. */
2603 fs_reg temp = vgrf(expr->operands[1]->type);
2604 inst = emit(SEL(temp, op[1], op[2]));
2605 inst->predicate = BRW_PREDICATE_NORMAL;
2606
2607 /* Expand the result to a condition code. */
2608 inst = emit(MOV(reg_null_d, temp));
2609 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2610 break;
2611 }
2612
2613 default:
2614 unreachable("not reached");
2615 }
2616 }
2617
2618 /**
2619 * Emit a gen6 IF statement with the comparison folded into the IF
2620 * instruction.
2621 */
2622 void
2623 fs_visitor::emit_if_gen6(ir_if *ir)
2624 {
2625 ir_expression *expr = ir->condition->as_expression();
2626
2627 if (expr && expr->operation != ir_binop_ubo_load) {
2628 fs_reg op[3];
2629 fs_inst *inst;
2630 fs_reg temp;
2631
2632 assert(expr->get_num_operands() <= 3);
2633 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2634 assert(expr->operands[i]->type->is_scalar());
2635
2636 expr->operands[i]->accept(this);
2637 op[i] = this->result;
2638 }
2639
2640 switch (expr->operation) {
2641 case ir_unop_logic_not:
2642 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
2643 return;
2644
2645 case ir_binop_logic_xor:
2646 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
2647 return;
2648
2649 case ir_binop_logic_or:
2650 temp = vgrf(glsl_type::bool_type);
2651 emit(OR(temp, op[0], op[1]));
2652 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2653 return;
2654
2655 case ir_binop_logic_and:
2656 temp = vgrf(glsl_type::bool_type);
2657 emit(AND(temp, op[0], op[1]));
2658 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2659 return;
2660
2661 case ir_unop_f2b:
2662 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2663 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2664 return;
2665
2666 case ir_unop_i2b:
2667 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2668 return;
2669
2670 case ir_binop_greater:
2671 case ir_binop_gequal:
2672 case ir_binop_less:
2673 case ir_binop_lequal:
2674 case ir_binop_equal:
2675 case ir_binop_all_equal:
2676 case ir_binop_nequal:
2677 case ir_binop_any_nequal:
2678 if (brw->gen <= 5) {
2679 resolve_bool_comparison(expr->operands[0], &op[0]);
2680 resolve_bool_comparison(expr->operands[1], &op[1]);
2681 }
2682
2683 emit(IF(op[0], op[1],
2684 brw_conditional_for_comparison(expr->operation)));
2685 return;
2686
2687 case ir_triop_csel: {
2688 /* Expand the boolean condition into the flag register. */
2689 fs_inst *inst = emit(MOV(reg_null_d, op[0]));
2690 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2691
2692 /* Select which boolean to use as the result. */
2693 fs_reg temp = vgrf(expr->operands[1]->type);
2694 inst = emit(SEL(temp, op[1], op[2]));
2695 inst->predicate = BRW_PREDICATE_NORMAL;
2696
2697 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2698 return;
2699 }
2700
2701 default:
2702 unreachable("not reached");
2703 }
2704 }
2705
2706 ir->condition->accept(this);
2707 emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
2708 }
2709
2710 bool
2711 fs_visitor::try_opt_frontfacing_ternary(ir_if *ir)
2712 {
2713 ir_dereference_variable *deref = ir->condition->as_dereference_variable();
2714 if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0)
2715 return false;
2716
2717 if (ir->then_instructions.length() != 1 ||
2718 ir->else_instructions.length() != 1)
2719 return false;
2720
2721 ir_assignment *then_assign =
2722 ((ir_instruction *)ir->then_instructions.head)->as_assignment();
2723 ir_assignment *else_assign =
2724 ((ir_instruction *)ir->else_instructions.head)->as_assignment();
2725
2726 if (!then_assign || then_assign->condition ||
2727 !else_assign || else_assign->condition ||
2728 then_assign->write_mask != else_assign->write_mask ||
2729 !then_assign->lhs->equals(else_assign->lhs))
2730 return false;
2731
2732 ir_constant *then_rhs = then_assign->rhs->as_constant();
2733 ir_constant *else_rhs = else_assign->rhs->as_constant();
2734
2735 if (!then_rhs || !else_rhs)
2736 return false;
2737
2738 if ((then_rhs->is_one() || then_rhs->is_negative_one()) &&
2739 (else_rhs->is_one() || else_rhs->is_negative_one())) {
2740 assert(then_rhs->is_one() == else_rhs->is_negative_one());
2741 assert(else_rhs->is_one() == then_rhs->is_negative_one());
2742
2743 then_assign->lhs->accept(this);
2744 fs_reg dst = this->result;
2745 dst.type = BRW_REGISTER_TYPE_D;
2746 fs_reg tmp = vgrf(glsl_type::int_type);
2747
2748 if (brw->gen >= 6) {
2749 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
2750 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
2751
2752 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2753 *
2754 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
2755 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2756 *
2757 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
2758 */
2759
2760 if (then_rhs->is_negative_one()) {
2761 assert(else_rhs->is_one());
2762 g0.negate = true;
2763 }
2764
2765 tmp.type = BRW_REGISTER_TYPE_W;
2766 tmp.subreg_offset = 2;
2767 tmp.stride = 2;
2768
2769 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
2770 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
2771
2772 tmp.type = BRW_REGISTER_TYPE_D;
2773 tmp.subreg_offset = 0;
2774 tmp.stride = 1;
2775 } else {
2776 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
2777 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
2778
2779 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2780 *
2781 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
2782 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2783 *
2784 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
2785 */
2786
2787 if (then_rhs->is_negative_one()) {
2788 assert(else_rhs->is_one());
2789 g1_6.negate = true;
2790 }
2791
2792 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
2793 }
2794 emit(AND(dst, tmp, fs_reg(0xbf800000)));
2795 return true;
2796 }
2797
2798 return false;
2799 }
2800
2801 /**
2802 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2803 *
2804 * Many GLSL shaders contain the following pattern:
2805 *
2806 * x = condition ? foo : bar
2807 *
2808 * The compiler emits an ir_if tree for this, since each subexpression might be
2809 * a complex tree that could have side-effects or short-circuit logic.
2810 *
2811 * However, the common case is to simply select one of two constants or
2812 * variable values---which is exactly what SEL is for. In this case, the
2813 * assembly looks like:
2814 *
2815 * (+f0) IF
2816 * MOV dst src0
2817 * ELSE
2818 * MOV dst src1
2819 * ENDIF
2820 *
2821 * which can be easily translated into:
2822 *
2823 * (+f0) SEL dst src0 src1
2824 *
2825 * If src0 is an immediate value, we promote it to a temporary GRF.
2826 */
2827 bool
2828 fs_visitor::try_replace_with_sel()
2829 {
2830 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2831 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2832
2833 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2834 int opcodes[] = {
2835 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2836 };
2837
2838 fs_inst *match = (fs_inst *) endif_inst->prev;
2839 for (int i = 0; i < 4; i++) {
2840 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2841 return false;
2842 match = (fs_inst *) match->prev;
2843 }
2844
2845 /* The opcodes match; it looks like the right sequence of instructions. */
2846 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2847 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2848 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2849
2850 /* Check that the MOVs are the right form. */
2851 if (then_mov->dst.equals(else_mov->dst) &&
2852 !then_mov->is_partial_write() &&
2853 !else_mov->is_partial_write()) {
2854
2855 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2856 while (!if_inst->next->is_tail_sentinel())
2857 if_inst->next->exec_node::remove();
2858 if_inst->exec_node::remove();
2859
2860 /* Only the last source register can be a constant, so if the MOV in
2861 * the "then" clause uses a constant, we need to put it in a temporary.
2862 */
2863 fs_reg src0(then_mov->src[0]);
2864 if (src0.file == IMM) {
2865 src0 = vgrf(glsl_type::float_type);
2866 src0.type = then_mov->src[0].type;
2867 emit(MOV(src0, then_mov->src[0]));
2868 }
2869
2870 fs_inst *sel;
2871 if (if_inst->conditional_mod) {
2872 /* Sandybridge-specific IF with embedded comparison */
2873 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2874 if_inst->conditional_mod));
2875 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2876 sel->predicate = BRW_PREDICATE_NORMAL;
2877 } else {
2878 /* Separate CMP and IF instructions */
2879 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2880 sel->predicate = if_inst->predicate;
2881 sel->predicate_inverse = if_inst->predicate_inverse;
2882 }
2883
2884 return true;
2885 }
2886
2887 return false;
2888 }
2889
2890 void
2891 fs_visitor::visit(ir_if *ir)
2892 {
2893 if (try_opt_frontfacing_ternary(ir))
2894 return;
2895
2896 /* Don't point the annotation at the if statement, because then it plus
2897 * the then and else blocks get printed.
2898 */
2899 this->base_ir = ir->condition;
2900
2901 if (brw->gen == 6) {
2902 emit_if_gen6(ir);
2903 } else {
2904 emit_bool_to_cond_code(ir->condition);
2905
2906 emit(IF(BRW_PREDICATE_NORMAL));
2907 }
2908
2909 foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
2910 this->base_ir = ir_;
2911 ir_->accept(this);
2912 }
2913
2914 if (!ir->else_instructions.is_empty()) {
2915 emit(BRW_OPCODE_ELSE);
2916
2917 foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
2918 this->base_ir = ir_;
2919 ir_->accept(this);
2920 }
2921 }
2922
2923 emit(BRW_OPCODE_ENDIF);
2924
2925 if (!try_replace_with_sel() && brw->gen < 6) {
2926 no16("Can't support (non-uniform) control flow on SIMD16\n");
2927 }
2928 }
2929
2930 void
2931 fs_visitor::visit(ir_loop *ir)
2932 {
2933 if (brw->gen < 6) {
2934 no16("Can't support (non-uniform) control flow on SIMD16\n");
2935 }
2936
2937 this->base_ir = NULL;
2938 emit(BRW_OPCODE_DO);
2939
2940 foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
2941 this->base_ir = ir_;
2942 ir_->accept(this);
2943 }
2944
2945 this->base_ir = NULL;
2946 emit(BRW_OPCODE_WHILE);
2947 }
2948
2949 void
2950 fs_visitor::visit(ir_loop_jump *ir)
2951 {
2952 switch (ir->mode) {
2953 case ir_loop_jump::jump_break:
2954 emit(BRW_OPCODE_BREAK);
2955 break;
2956 case ir_loop_jump::jump_continue:
2957 emit(BRW_OPCODE_CONTINUE);
2958 break;
2959 }
2960 }
2961
2962 void
2963 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
2964 {
2965 ir_dereference *deref = static_cast<ir_dereference *>(
2966 ir->actual_parameters.get_head());
2967 ir_variable *location = deref->variable_referenced();
2968 unsigned surf_index = (stage_prog_data->binding_table.abo_start +
2969 location->data.binding);
2970
2971 /* Calculate the surface offset */
2972 fs_reg offset = vgrf(glsl_type::uint_type);
2973 ir_dereference_array *deref_array = deref->as_dereference_array();
2974
2975 if (deref_array) {
2976 deref_array->array_index->accept(this);
2977
2978 fs_reg tmp = vgrf(glsl_type::uint_type);
2979 emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
2980 emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
2981 } else {
2982 offset = fs_reg(location->data.atomic.offset);
2983 }
2984
2985 /* Emit the appropriate machine instruction */
2986 const char *callee = ir->callee->function_name();
2987 ir->return_deref->accept(this);
2988 fs_reg dst = this->result;
2989
2990 if (!strcmp("__intrinsic_atomic_read", callee)) {
2991 emit_untyped_surface_read(surf_index, dst, offset);
2992
2993 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
2994 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
2995 fs_reg(), fs_reg());
2996
2997 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
2998 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
2999 fs_reg(), fs_reg());
3000 }
3001 }
3002
3003 void
3004 fs_visitor::visit(ir_call *ir)
3005 {
3006 const char *callee = ir->callee->function_name();
3007
3008 if (!strcmp("__intrinsic_atomic_read", callee) ||
3009 !strcmp("__intrinsic_atomic_increment", callee) ||
3010 !strcmp("__intrinsic_atomic_predecrement", callee)) {
3011 visit_atomic_counter_intrinsic(ir);
3012 } else {
3013 unreachable("Unsupported intrinsic.");
3014 }
3015 }
3016
3017 void
3018 fs_visitor::visit(ir_return *)
3019 {
3020 unreachable("FINISHME");
3021 }
3022
3023 void
3024 fs_visitor::visit(ir_function *ir)
3025 {
3026 /* Ignore function bodies other than main() -- we shouldn't see calls to
3027 * them since they should all be inlined before we get to ir_to_mesa.
3028 */
3029 if (strcmp(ir->name, "main") == 0) {
3030 const ir_function_signature *sig;
3031 exec_list empty;
3032
3033 sig = ir->matching_signature(NULL, &empty, false);
3034
3035 assert(sig);
3036
3037 foreach_in_list(ir_instruction, ir_, &sig->body) {
3038 this->base_ir = ir_;
3039 ir_->accept(this);
3040 }
3041 }
3042 }
3043
3044 void
3045 fs_visitor::visit(ir_function_signature *)
3046 {
3047 unreachable("not reached");
3048 }
3049
3050 void
3051 fs_visitor::visit(ir_emit_vertex *)
3052 {
3053 unreachable("not reached");
3054 }
3055
3056 void
3057 fs_visitor::visit(ir_end_primitive *)
3058 {
3059 unreachable("not reached");
3060 }
3061
3062 void
3063 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
3064 fs_reg dst, fs_reg offset, fs_reg src0,
3065 fs_reg src1)
3066 {
3067 int reg_width = dispatch_width / 8;
3068 int length = 0;
3069
3070 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
3071
3072 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3073 /* Initialize the sample mask in the message header. */
3074 emit(MOV(sources[0], fs_reg(0u)))
3075 ->force_writemask_all = true;
3076
3077 if (stage == MESA_SHADER_FRAGMENT) {
3078 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3079 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3080 ->force_writemask_all = true;
3081 } else {
3082 emit(MOV(component(sources[0], 7),
3083 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3084 ->force_writemask_all = true;
3085 }
3086 } else {
3087 /* The execution mask is part of the side-band information sent together with
3088 * the message payload to the data port. It's implicitly ANDed with the sample
3089 * mask sent in the header to compute the actual set of channels that execute
3090 * the atomic operation.
3091 */
3092 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3093 emit(MOV(component(sources[0], 7),
3094 fs_reg(0xffffu)))->force_writemask_all = true;
3095 }
3096 length++;
3097
3098 /* Set the atomic operation offset. */
3099 sources[1] = vgrf(glsl_type::uint_type);
3100 emit(MOV(sources[1], offset));
3101 length++;
3102
3103 /* Set the atomic operation arguments. */
3104 if (src0.file != BAD_FILE) {
3105 sources[length] = vgrf(glsl_type::uint_type);
3106 emit(MOV(sources[length], src0));
3107 length++;
3108 }
3109
3110 if (src1.file != BAD_FILE) {
3111 sources[length] = vgrf(glsl_type::uint_type);
3112 emit(MOV(sources[length], src1));
3113 length++;
3114 }
3115
3116 int mlen = 1 + (length - 1) * reg_width;
3117 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3118 BRW_REGISTER_TYPE_UD);
3119 emit(LOAD_PAYLOAD(src_payload, sources, length));
3120
3121 /* Emit the instruction. */
3122 fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
3123 fs_reg(atomic_op), fs_reg(surf_index));
3124 inst->mlen = mlen;
3125 }
3126
3127 void
3128 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
3129 fs_reg offset)
3130 {
3131 int reg_width = dispatch_width / 8;
3132
3133 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
3134
3135 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3136 /* Initialize the sample mask in the message header. */
3137 emit(MOV(sources[0], fs_reg(0u)))
3138 ->force_writemask_all = true;
3139
3140 if (stage == MESA_SHADER_FRAGMENT) {
3141 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3142 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3143 ->force_writemask_all = true;
3144 } else {
3145 emit(MOV(component(sources[0], 7),
3146 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3147 ->force_writemask_all = true;
3148 }
3149 } else {
3150 /* The execution mask is part of the side-band information sent together with
3151 * the message payload to the data port. It's implicitly ANDed with the sample
3152 * mask sent in the header to compute the actual set of channels that execute
3153 * the atomic operation.
3154 */
3155 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3156 emit(MOV(component(sources[0], 7),
3157 fs_reg(0xffffu)))->force_writemask_all = true;
3158 }
3159
3160 /* Set the surface read offset. */
3161 sources[1] = vgrf(glsl_type::uint_type);
3162 emit(MOV(sources[1], offset));
3163
3164 int mlen = 1 + reg_width;
3165 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3166 BRW_REGISTER_TYPE_UD);
3167 fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
3168
3169 /* Emit the instruction. */
3170 inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
3171 fs_reg(surf_index));
3172 inst->mlen = mlen;
3173 }
3174
3175 fs_inst *
3176 fs_visitor::emit(fs_inst *inst)
3177 {
3178 if (dispatch_width == 16 && inst->exec_size == 8)
3179 inst->force_uncompressed = true;
3180
3181 inst->annotation = this->current_annotation;
3182 inst->ir = this->base_ir;
3183
3184 this->instructions.push_tail(inst);
3185
3186 return inst;
3187 }
3188
3189 void
3190 fs_visitor::emit(exec_list list)
3191 {
3192 foreach_in_list_safe(fs_inst, inst, &list) {
3193 inst->exec_node::remove();
3194 emit(inst);
3195 }
3196 }
3197
3198 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
3199 void
3200 fs_visitor::emit_dummy_fs()
3201 {
3202 int reg_width = dispatch_width / 8;
3203
3204 /* Everyone's favorite color. */
3205 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
3206 for (int i = 0; i < 4; i++) {
3207 emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F,
3208 dispatch_width), fs_reg(color[i])));
3209 }
3210
3211 fs_inst *write;
3212 write = emit(FS_OPCODE_FB_WRITE);
3213 write->eot = true;
3214 if (brw->gen >= 6) {
3215 write->base_mrf = 2;
3216 write->mlen = 4 * reg_width;
3217 } else {
3218 write->header_present = true;
3219 write->base_mrf = 0;
3220 write->mlen = 2 + 4 * reg_width;
3221 }
3222
3223 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
3224 * varying to avoid GPU hangs, so set that.
3225 */
3226 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3227 wm_prog_data->num_varying_inputs = brw->gen < 6 ? 1 : 0;
3228 memset(wm_prog_data->urb_setup, -1,
3229 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
3230
3231 /* We don't have any uniforms. */
3232 stage_prog_data->nr_params = 0;
3233 stage_prog_data->nr_pull_params = 0;
3234 stage_prog_data->curb_read_length = 0;
3235 stage_prog_data->dispatch_grf_start_reg = 2;
3236 wm_prog_data->dispatch_grf_start_reg_16 = 2;
3237 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
3238
3239 calculate_cfg();
3240 }
3241
3242 /* The register location here is relative to the start of the URB
3243 * data. It will get adjusted to be a real location before
3244 * generate_code() time.
3245 */
3246 struct brw_reg
3247 fs_visitor::interp_reg(int location, int channel)
3248 {
3249 assert(stage == MESA_SHADER_FRAGMENT);
3250 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3251 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
3252 int stride = (channel & 1) * 4;
3253
3254 assert(prog_data->urb_setup[location] != -1);
3255
3256 return brw_vec1_grf(regnr, stride);
3257 }
3258
3259 /** Emits the interpolation for the varying inputs. */
3260 void
3261 fs_visitor::emit_interpolation_setup_gen4()
3262 {
3263 this->current_annotation = "compute pixel centers";
3264 this->pixel_x = vgrf(glsl_type::uint_type);
3265 this->pixel_y = vgrf(glsl_type::uint_type);
3266 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
3267 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
3268
3269 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
3270 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
3271
3272 this->current_annotation = "compute pixel deltas from v0";
3273 if (brw->has_pln) {
3274 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3275 vgrf(glsl_type::vec2_type);
3276 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3277 offset(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 1);
3278 } else {
3279 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3280 vgrf(glsl_type::float_type);
3281 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3282 vgrf(glsl_type::float_type);
3283 }
3284 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3285 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
3286 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3287 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
3288
3289 this->current_annotation = "compute pos.w and 1/pos.w";
3290 /* Compute wpos.w. It's always in our setup, since it's needed to
3291 * interpolate the other attributes.
3292 */
3293 this->wpos_w = vgrf(glsl_type::float_type);
3294 emit(FS_OPCODE_LINTERP, wpos_w,
3295 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3296 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3297 interp_reg(VARYING_SLOT_POS, 3));
3298 /* Compute the pixel 1/W value from wpos.w. */
3299 this->pixel_w = vgrf(glsl_type::float_type);
3300 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
3301 this->current_annotation = NULL;
3302 }
3303
3304 /** Emits the interpolation for the varying inputs. */
3305 void
3306 fs_visitor::emit_interpolation_setup_gen6()
3307 {
3308 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3309
3310 /* If the pixel centers end up used, the setup is the same as for gen4. */
3311 this->current_annotation = "compute pixel centers";
3312 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
3313 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
3314 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
3315 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
3316 emit(ADD(int_pixel_x,
3317 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3318 fs_reg(brw_imm_v(0x10101010))));
3319 emit(ADD(int_pixel_y,
3320 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3321 fs_reg(brw_imm_v(0x11001100))));
3322
3323 /* As of gen6, we can no longer mix float and int sources. We have
3324 * to turn the integer pixel centers into floats for their actual
3325 * use.
3326 */
3327 this->pixel_x = vgrf(glsl_type::float_type);
3328 this->pixel_y = vgrf(glsl_type::float_type);
3329 emit(MOV(this->pixel_x, int_pixel_x));
3330 emit(MOV(this->pixel_y, int_pixel_y));
3331
3332 this->current_annotation = "compute pos.w";
3333 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
3334 this->wpos_w = vgrf(glsl_type::float_type);
3335 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
3336
3337 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3338 uint8_t reg = payload.barycentric_coord_reg[i];
3339 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
3340 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
3341 }
3342
3343 this->current_annotation = NULL;
3344 }
3345
3346 int
3347 fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components,
3348 bool use_2nd_half)
3349 {
3350 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3351 fs_inst *inst;
3352
3353 if (color.file == BAD_FILE) {
3354 return 4 * (dispatch_width / 8);
3355 }
3356
3357 uint8_t colors_enabled;
3358 if (components == 0) {
3359 /* We want to write one component to the alpha channel */
3360 colors_enabled = 0x8;
3361 } else {
3362 /* Enable the first components-many channels */
3363 colors_enabled = (1 << components) - 1;
3364 }
3365
3366 if (dispatch_width == 8 || (brw->gen >= 6 && !do_dual_src)) {
3367 /* SIMD8 write looks like:
3368 * m + 0: r0
3369 * m + 1: r1
3370 * m + 2: g0
3371 * m + 3: g1
3372 *
3373 * gen6 SIMD16 DP write looks like:
3374 * m + 0: r0
3375 * m + 1: r1
3376 * m + 2: g0
3377 * m + 3: g1
3378 * m + 4: b0
3379 * m + 5: b1
3380 * m + 6: a0
3381 * m + 7: a1
3382 */
3383 int len = 0;
3384 for (unsigned i = 0; i < 4; ++i) {
3385 if (colors_enabled & (1 << i)) {
3386 dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8),
3387 color.type, color.width);
3388 inst = emit(MOV(dst[len], offset(color, i)));
3389 inst->saturate = key->clamp_fragment_color;
3390 } else if (color.width == 16) {
3391 /* We need two BAD_FILE slots for a 16-wide color */
3392 len++;
3393 }
3394 len++;
3395 }
3396 return len;
3397 } else if (brw->gen >= 6 && do_dual_src) {
3398 /* SIMD16 dual source blending for gen6+.
3399 *
3400 * From the SNB PRM, volume 4, part 1, page 193:
3401 *
3402 * "The dual source render target messages only have SIMD8 forms due to
3403 * maximum message length limitations. SIMD16 pixel shaders must send two
3404 * of these messages to cover all of the pixels. Each message contains
3405 * two colors (4 channels each) for each pixel in the message payload."
3406 *
3407 * So in SIMD16 dual source blending we will send 2 SIMD8 messages,
3408 * each one will call this function twice (one for each color involved),
3409 * so in each pass we only write 4 registers. Notice that the second
3410 * SIMD8 message needs to read color data from the 2nd half of the color
3411 * registers, so it needs to call this with use_2nd_half = true.
3412 */
3413 for (unsigned i = 0; i < 4; ++i) {
3414 if (colors_enabled & (1 << i)) {
3415 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3416 inst = emit(MOV(dst[i], half(offset(color, i),
3417 use_2nd_half ? 1 : 0)));
3418 inst->saturate = key->clamp_fragment_color;
3419 if (use_2nd_half)
3420 inst->force_sechalf = true;
3421 }
3422 }
3423 return 4;
3424 } else {
3425 /* pre-gen6 SIMD16 single source DP write looks like:
3426 * m + 0: r0
3427 * m + 1: g0
3428 * m + 2: b0
3429 * m + 3: a0
3430 * m + 4: r1
3431 * m + 5: g1
3432 * m + 6: b1
3433 * m + 7: a1
3434 */
3435 for (unsigned i = 0; i < 4; ++i) {
3436 if (colors_enabled & (1 << i)) {
3437 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3438 inst = emit(MOV(dst[i], half(offset(color, i), 0)));
3439 inst->saturate = key->clamp_fragment_color;
3440
3441 dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type);
3442 inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
3443 inst->saturate = key->clamp_fragment_color;
3444 inst->force_sechalf = true;
3445 }
3446 }
3447 return 8;
3448 }
3449 }
3450
3451 static enum brw_conditional_mod
3452 cond_for_alpha_func(GLenum func)
3453 {
3454 switch(func) {
3455 case GL_GREATER:
3456 return BRW_CONDITIONAL_G;
3457 case GL_GEQUAL:
3458 return BRW_CONDITIONAL_GE;
3459 case GL_LESS:
3460 return BRW_CONDITIONAL_L;
3461 case GL_LEQUAL:
3462 return BRW_CONDITIONAL_LE;
3463 case GL_EQUAL:
3464 return BRW_CONDITIONAL_EQ;
3465 case GL_NOTEQUAL:
3466 return BRW_CONDITIONAL_NEQ;
3467 default:
3468 unreachable("Not reached");
3469 }
3470 }
3471
3472 /**
3473 * Alpha test support for when we compile it into the shader instead
3474 * of using the normal fixed-function alpha test.
3475 */
3476 void
3477 fs_visitor::emit_alpha_test()
3478 {
3479 assert(stage == MESA_SHADER_FRAGMENT);
3480 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3481 this->current_annotation = "Alpha test";
3482
3483 fs_inst *cmp;
3484 if (key->alpha_test_func == GL_ALWAYS)
3485 return;
3486
3487 if (key->alpha_test_func == GL_NEVER) {
3488 /* f0.1 = 0 */
3489 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3490 BRW_REGISTER_TYPE_UW));
3491 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
3492 BRW_CONDITIONAL_NEQ));
3493 } else {
3494 /* RT0 alpha */
3495 fs_reg color = offset(outputs[0], 3);
3496
3497 /* f0.1 &= func(color, ref) */
3498 cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
3499 cond_for_alpha_func(key->alpha_test_func)));
3500 }
3501 cmp->predicate = BRW_PREDICATE_NORMAL;
3502 cmp->flag_subreg = 1;
3503 }
3504
3505 fs_inst *
3506 fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
3507 fs_reg src0_alpha, unsigned components,
3508 bool use_2nd_half)
3509 {
3510 assert(stage == MESA_SHADER_FRAGMENT);
3511 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3512 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3513
3514 this->current_annotation = "FB write header";
3515 bool header_present = true;
3516 int reg_size = dispatch_width / 8;
3517
3518 /* We can potentially have a message length of up to 15, so we have to set
3519 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3520 */
3521 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
3522 int length = 0;
3523
3524 /* From the Sandy Bridge PRM, volume 4, page 198:
3525 *
3526 * "Dispatched Pixel Enables. One bit per pixel indicating
3527 * which pixels were originally enabled when the thread was
3528 * dispatched. This field is only required for the end-of-
3529 * thread message and on all dual-source messages."
3530 */
3531 if (brw->gen >= 6 &&
3532 (brw->is_haswell || brw->gen >= 8 || !prog_data->uses_kill) &&
3533 color1.file == BAD_FILE &&
3534 key->nr_color_regions == 1) {
3535 header_present = false;
3536 }
3537
3538 if (header_present)
3539 /* Allocate 2 registers for a header */
3540 length += 2;
3541
3542 if (payload.aa_dest_stencil_reg) {
3543 sources[length] = fs_reg(GRF, alloc.allocate(1));
3544 emit(MOV(sources[length],
3545 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
3546 length++;
3547 }
3548
3549 prog_data->uses_omask =
3550 prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
3551 if (prog_data->uses_omask) {
3552 this->current_annotation = "FB write oMask";
3553 assert(this->sample_mask.file != BAD_FILE);
3554 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
3555 * it's unsinged single words, one vgrf is always 16-wide.
3556 */
3557 sources[length] = fs_reg(GRF, alloc.allocate(1),
3558 BRW_REGISTER_TYPE_UW, 16);
3559 emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
3560 length++;
3561 }
3562
3563 if (color0.file == BAD_FILE) {
3564 /* Even if there's no color buffers enabled, we still need to send
3565 * alpha out the pipeline to our null renderbuffer to support
3566 * alpha-testing, alpha-to-coverage, and so on.
3567 */
3568 length += setup_color_payload(sources + length, this->outputs[0], 0,
3569 false);
3570 } else if (color1.file == BAD_FILE) {
3571 if (src0_alpha.file != BAD_FILE) {
3572 sources[length] = fs_reg(GRF, alloc.allocate(reg_size),
3573 src0_alpha.type, src0_alpha.width);
3574 fs_inst *inst = emit(MOV(sources[length], src0_alpha));
3575 inst->saturate = key->clamp_fragment_color;
3576 length++;
3577 }
3578
3579 length += setup_color_payload(sources + length, color0, components,
3580 false);
3581 } else {
3582 length += setup_color_payload(sources + length, color0, components,
3583 use_2nd_half);
3584 length += setup_color_payload(sources + length, color1, components,
3585 use_2nd_half);
3586 }
3587
3588 if (source_depth_to_render_target) {
3589 if (brw->gen == 6) {
3590 /* For outputting oDepth on gen6, SIMD8 writes have to be
3591 * used. This would require SIMD8 moves of each half to
3592 * message regs, kind of like pre-gen5 SIMD16 FB writes.
3593 * Just bail on doing so for now.
3594 */
3595 no16("Missing support for simd16 depth writes on gen6\n");
3596 }
3597
3598 sources[length] = vgrf(glsl_type::float_type);
3599 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3600 /* Hand over gl_FragDepth. */
3601 assert(this->frag_depth.file != BAD_FILE);
3602 emit(MOV(sources[length], this->frag_depth));
3603 } else {
3604 /* Pass through the payload depth. */
3605 emit(MOV(sources[length],
3606 fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
3607 }
3608 length++;
3609 }
3610
3611 if (payload.dest_depth_reg) {
3612 sources[length] = vgrf(glsl_type::float_type);
3613 emit(MOV(sources[length],
3614 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
3615 length++;
3616 }
3617
3618 fs_inst *load;
3619 fs_inst *write;
3620 if (brw->gen >= 7) {
3621 /* Send from the GRF */
3622 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3623 load = emit(LOAD_PAYLOAD(payload, sources, length));
3624 payload.reg = alloc.allocate(load->regs_written);
3625 payload.width = dispatch_width;
3626 load->dst = payload;
3627 write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
3628 write->base_mrf = -1;
3629 } else {
3630 /* Send from the MRF */
3631 load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3632 sources, length));
3633 write = emit(FS_OPCODE_FB_WRITE);
3634 write->exec_size = dispatch_width;
3635 write->base_mrf = 1;
3636 }
3637
3638 write->mlen = load->regs_written;
3639 write->header_present = header_present;
3640 if (prog_data->uses_kill) {
3641 write->predicate = BRW_PREDICATE_NORMAL;
3642 write->flag_subreg = 1;
3643 }
3644 return write;
3645 }
3646
3647 void
3648 fs_visitor::emit_fb_writes()
3649 {
3650 assert(stage == MESA_SHADER_FRAGMENT);
3651 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3652 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3653
3654 fs_inst *inst = NULL;
3655 if (do_dual_src) {
3656 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3657 "FB dual-source write");
3658 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3659 reg_undef, 4);
3660 inst->target = 0;
3661
3662 /* SIMD16 dual source blending requires to send two SIMD8 dual source
3663 * messages, where each message contains color data for 8 pixels. Color
3664 * data for the first group of pixels is stored in the "lower" half of
3665 * the color registers, so in SIMD16, the previous message did:
3666 * m + 0: r0
3667 * m + 1: g0
3668 * m + 2: b0
3669 * m + 3: a0
3670 *
3671 * Here goes the second message, which packs color data for the
3672 * remaining 8 pixels. Color data for these pixels is stored in the
3673 * "upper" half of the color registers, so we need to do:
3674 * m + 0: r1
3675 * m + 1: g1
3676 * m + 2: b1
3677 * m + 3: a1
3678 */
3679 if (dispatch_width == 16) {
3680 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3681 reg_undef, 4, true);
3682 inst->target = 0;
3683 }
3684
3685 prog_data->dual_src_blend = true;
3686 } else {
3687 for (int target = 0; target < key->nr_color_regions; target++) {
3688 /* Skip over outputs that weren't written. */
3689 if (this->outputs[target].file == BAD_FILE)
3690 continue;
3691
3692 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3693 "FB write target %d",
3694 target);
3695 fs_reg src0_alpha;
3696 if (brw->gen >= 6 && key->replicate_alpha && target != 0)
3697 src0_alpha = offset(outputs[0], 3);
3698
3699 inst = emit_single_fb_write(this->outputs[target], reg_undef,
3700 src0_alpha,
3701 this->output_components[target]);
3702 inst->target = target;
3703 }
3704 }
3705
3706 if (inst == NULL) {
3707 /* Even if there's no color buffers enabled, we still need to send
3708 * alpha out the pipeline to our null renderbuffer to support
3709 * alpha-testing, alpha-to-coverage, and so on.
3710 */
3711 inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
3712 inst->target = 0;
3713 }
3714
3715 inst->eot = true;
3716 this->current_annotation = NULL;
3717 }
3718
3719 void
3720 fs_visitor::setup_uniform_clipplane_values()
3721 {
3722 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
3723 const struct brw_vue_prog_key *key =
3724 (const struct brw_vue_prog_key *) this->key;
3725
3726 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3727 this->userplane[i] = fs_reg(UNIFORM, uniforms);
3728 for (int j = 0; j < 4; ++j) {
3729 stage_prog_data->param[uniforms + j] =
3730 (gl_constant_value *) &clip_planes[i][j];
3731 }
3732 uniforms += 4;
3733 }
3734 }
3735
3736 void fs_visitor::compute_clip_distance()
3737 {
3738 struct brw_vue_prog_data *vue_prog_data =
3739 (struct brw_vue_prog_data *) prog_data;
3740 const struct brw_vue_prog_key *key =
3741 (const struct brw_vue_prog_key *) this->key;
3742
3743 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
3744 *
3745 * "If a linked set of shaders forming the vertex stage contains no
3746 * static write to gl_ClipVertex or gl_ClipDistance, but the
3747 * application has requested clipping against user clip planes through
3748 * the API, then the coordinate written to gl_Position is used for
3749 * comparison against the user clip planes."
3750 *
3751 * This function is only called if the shader didn't write to
3752 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
3753 * if the user wrote to it; otherwise we use gl_Position.
3754 */
3755
3756 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
3757 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
3758 clip_vertex = VARYING_SLOT_POS;
3759
3760 /* If the clip vertex isn't written, skip this. Typically this means
3761 * the GS will set up clipping. */
3762 if (outputs[clip_vertex].file == BAD_FILE)
3763 return;
3764
3765 setup_uniform_clipplane_values();
3766
3767 current_annotation = "user clip distances";
3768
3769 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
3770 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
3771
3772 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3773 fs_reg u = userplane[i];
3774 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
3775 output.reg_offset = i & 3;
3776
3777 emit(MUL(output, outputs[clip_vertex], u));
3778 for (int j = 1; j < 4; j++) {
3779 u.reg = userplane[i].reg + j;
3780 emit(MAD(output, output, offset(outputs[clip_vertex], j), u));
3781 }
3782 }
3783 }
3784
3785 void
3786 fs_visitor::emit_urb_writes()
3787 {
3788 int slot, urb_offset, length;
3789 struct brw_vs_prog_data *vs_prog_data =
3790 (struct brw_vs_prog_data *) prog_data;
3791 const struct brw_vs_prog_key *key =
3792 (const struct brw_vs_prog_key *) this->key;
3793 const GLbitfield64 psiz_mask =
3794 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
3795 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
3796 bool flush;
3797 fs_reg sources[8];
3798
3799 /* Lower legacy ff and ClipVertex clipping to clip distances */
3800 if (key->base.userclip_active && !prog->UsesClipDistanceOut)
3801 compute_clip_distance();
3802
3803 /* If we don't have any valid slots to write, just do a minimal urb write
3804 * send to terminate the shader. */
3805 if (vue_map->slots_valid == 0) {
3806
3807 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3808 fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
3809 BRW_REGISTER_TYPE_UD))));
3810 inst->force_writemask_all = true;
3811
3812 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
3813 inst->eot = true;
3814 inst->mlen = 1;
3815 inst->offset = 1;
3816 return;
3817 }
3818
3819 length = 0;
3820 urb_offset = 0;
3821 flush = false;
3822 for (slot = 0; slot < vue_map->num_slots; slot++) {
3823 fs_reg reg, src, zero;
3824
3825 int varying = vue_map->slot_to_varying[slot];
3826 switch (varying) {
3827 case VARYING_SLOT_PSIZ:
3828
3829 /* The point size varying slot is the vue header and is always in the
3830 * vue map. But often none of the special varyings that live there
3831 * are written and in that case we can skip writing to the vue
3832 * header, provided the corresponding state properly clamps the
3833 * values further down the pipeline. */
3834 if ((vue_map->slots_valid & psiz_mask) == 0) {
3835 assert(length == 0);
3836 urb_offset++;
3837 break;
3838 }
3839
3840 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3841 emit(MOV(zero, fs_reg(0u)));
3842
3843 sources[length++] = zero;
3844 if (vue_map->slots_valid & VARYING_BIT_LAYER)
3845 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
3846 else
3847 sources[length++] = zero;
3848
3849 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
3850 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
3851 else
3852 sources[length++] = zero;
3853
3854 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
3855 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
3856 else
3857 sources[length++] = zero;
3858 break;
3859
3860 case BRW_VARYING_SLOT_NDC:
3861 case VARYING_SLOT_EDGE:
3862 unreachable("unexpected scalar vs output");
3863 break;
3864
3865 case BRW_VARYING_SLOT_PAD:
3866 break;
3867
3868 default:
3869 /* gl_Position is always in the vue map, but isn't always written by
3870 * the shader. Other varyings (clip distances) get added to the vue
3871 * map but don't always get written. In those cases, the
3872 * corresponding this->output[] slot will be invalid we and can skip
3873 * the urb write for the varying. If we've already queued up a vue
3874 * slot for writing we flush a mlen 5 urb write, otherwise we just
3875 * advance the urb_offset.
3876 */
3877 if (this->outputs[varying].file == BAD_FILE) {
3878 if (length > 0)
3879 flush = true;
3880 else
3881 urb_offset++;
3882 break;
3883 }
3884
3885 if ((varying == VARYING_SLOT_COL0 ||
3886 varying == VARYING_SLOT_COL1 ||
3887 varying == VARYING_SLOT_BFC0 ||
3888 varying == VARYING_SLOT_BFC1) &&
3889 key->clamp_vertex_color) {
3890 /* We need to clamp these guys, so do a saturating MOV into a
3891 * temp register and use that for the payload.
3892 */
3893 for (int i = 0; i < 4; i++) {
3894 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
3895 src = offset(this->outputs[varying], i);
3896 fs_inst *inst = emit(MOV(reg, src));
3897 inst->saturate = true;
3898 sources[length++] = reg;
3899 }
3900 } else {
3901 for (int i = 0; i < 4; i++)
3902 sources[length++] = offset(this->outputs[varying], i);
3903 }
3904 break;
3905 }
3906
3907 current_annotation = "URB write";
3908
3909 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
3910 * the last slot or if we need to flush (see BAD_FILE varying case
3911 * above), emit a URB write send now to flush out the data.
3912 */
3913 int last = slot == vue_map->num_slots - 1;
3914 if (length == 8 || last)
3915 flush = true;
3916 if (flush) {
3917 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
3918 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
3919 BRW_REGISTER_TYPE_F);
3920
3921 /* We need WE_all on the MOV for the message header (the URB handles)
3922 * so do a MOV to a dummy register and set force_writemask_all on the
3923 * MOV. LOAD_PAYLOAD will preserve that.
3924 */
3925 fs_reg dummy = fs_reg(GRF, alloc.allocate(1),
3926 BRW_REGISTER_TYPE_UD);
3927 fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0),
3928 BRW_REGISTER_TYPE_UD))));
3929 inst->force_writemask_all = true;
3930 payload_sources[0] = dummy;
3931
3932 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
3933 emit(LOAD_PAYLOAD(payload, payload_sources, length + 1));
3934
3935 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
3936 inst->eot = last;
3937 inst->mlen = length + 1;
3938 inst->offset = urb_offset;
3939 urb_offset = slot + 1;
3940 length = 0;
3941 flush = false;
3942 }
3943 }
3944 }
3945
3946 void
3947 fs_visitor::resolve_ud_negate(fs_reg *reg)
3948 {
3949 if (reg->type != BRW_REGISTER_TYPE_UD ||
3950 !reg->negate)
3951 return;
3952
3953 fs_reg temp = vgrf(glsl_type::uint_type);
3954 emit(MOV(temp, *reg));
3955 *reg = temp;
3956 }
3957
3958 /**
3959 * Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
3960 *
3961 * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
3962 * If we need a proper boolean value, we have to fix it up to be 0 or ~0.
3963 */
3964 void
3965 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
3966 {
3967 assert(brw->gen <= 5);
3968
3969 if (rvalue->type != glsl_type::bool_type)
3970 return;
3971
3972 fs_reg and_result = vgrf(glsl_type::bool_type);
3973 fs_reg neg_result = vgrf(glsl_type::bool_type);
3974 emit(AND(and_result, *reg, fs_reg(1)));
3975 emit(MOV(neg_result, negate(and_result)));
3976 *reg = neg_result;
3977 }
3978
3979 fs_visitor::fs_visitor(struct brw_context *brw,
3980 void *mem_ctx,
3981 const struct brw_wm_prog_key *key,
3982 struct brw_wm_prog_data *prog_data,
3983 struct gl_shader_program *shader_prog,
3984 struct gl_fragment_program *fp,
3985 unsigned dispatch_width)
3986 : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
3987 MESA_SHADER_FRAGMENT),
3988 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
3989 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
3990 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
3991 key(key), prog_data(&prog_data->base),
3992 dispatch_width(dispatch_width)
3993 {
3994 this->mem_ctx = mem_ctx;
3995 init();
3996 }
3997
3998 fs_visitor::fs_visitor(struct brw_context *brw,
3999 void *mem_ctx,
4000 const struct brw_vs_prog_key *key,
4001 struct brw_vs_prog_data *prog_data,
4002 struct gl_shader_program *shader_prog,
4003 struct gl_vertex_program *cp,
4004 unsigned dispatch_width)
4005 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base,
4006 MESA_SHADER_VERTEX),
4007 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4008 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4009 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4010 key(key), prog_data(&prog_data->base.base),
4011 dispatch_width(dispatch_width)
4012 {
4013 this->mem_ctx = mem_ctx;
4014 init();
4015 }
4016
4017 void
4018 fs_visitor::init()
4019 {
4020 switch (stage) {
4021 case MESA_SHADER_FRAGMENT:
4022 key_tex = &((const brw_wm_prog_key *) key)->tex;
4023 break;
4024 case MESA_SHADER_VERTEX:
4025 case MESA_SHADER_GEOMETRY:
4026 key_tex = &((const brw_vue_prog_key *) key)->tex;
4027 break;
4028 default:
4029 unreachable("unhandled shader stage");
4030 }
4031
4032 this->failed = false;
4033 this->simd16_unsupported = false;
4034 this->no16_msg = NULL;
4035 this->variable_ht = hash_table_ctor(0,
4036 hash_table_pointer_hash,
4037 hash_table_pointer_compare);
4038
4039 this->nir_locals = NULL;
4040 this->nir_globals = NULL;
4041
4042 memset(&this->payload, 0, sizeof(this->payload));
4043 memset(this->outputs, 0, sizeof(this->outputs));
4044 memset(this->output_components, 0, sizeof(this->output_components));
4045 this->source_depth_to_render_target = false;
4046 this->runtime_check_aads_emit = false;
4047 this->first_non_payload_grf = 0;
4048 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
4049
4050 this->current_annotation = NULL;
4051 this->base_ir = NULL;
4052
4053 this->virtual_grf_start = NULL;
4054 this->virtual_grf_end = NULL;
4055 this->live_intervals = NULL;
4056 this->regs_live_at_ip = NULL;
4057
4058 this->uniforms = 0;
4059 this->last_scratch = 0;
4060 this->pull_constant_loc = NULL;
4061 this->push_constant_loc = NULL;
4062
4063 this->spilled_any_registers = false;
4064 this->do_dual_src = false;
4065
4066 if (dispatch_width == 8)
4067 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
4068 }
4069
4070 fs_visitor::~fs_visitor()
4071 {
4072 hash_table_dtor(this->variable_ht);
4073 }