i965: Fix BRW_VARYING_SLOT_PAD handling in the scalar VS backend.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_fs.h"
45 #include "main/uniforms.h"
46 #include "glsl/glsl_types.h"
47 #include "glsl/ir_optimization.h"
48 #include "program/sampler.h"
49
50 using namespace brw;
51
52 fs_reg *
53 fs_visitor::emit_vs_system_value(int location)
54 {
55 fs_reg *reg = new(this->mem_ctx)
56 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
57 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
58
59 switch (location) {
60 case SYSTEM_VALUE_BASE_VERTEX:
61 reg->reg_offset = 0;
62 vs_prog_data->uses_vertexid = true;
63 break;
64 case SYSTEM_VALUE_VERTEX_ID:
65 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
66 reg->reg_offset = 2;
67 vs_prog_data->uses_vertexid = true;
68 break;
69 case SYSTEM_VALUE_INSTANCE_ID:
70 reg->reg_offset = 3;
71 vs_prog_data->uses_instanceid = true;
72 break;
73 default:
74 unreachable("not reached");
75 }
76
77 return reg;
78 }
79
80 fs_reg
81 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
82 bool is_rect, uint32_t sampler, int texunit)
83 {
84 bool needs_gl_clamp = true;
85 fs_reg scale_x, scale_y;
86
87 /* The 965 requires the EU to do the normalization of GL rectangle
88 * texture coordinates. We use the program parameter state
89 * tracking to get the scaling factor.
90 */
91 if (is_rect &&
92 (devinfo->gen < 6 ||
93 (devinfo->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
94 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
95 struct gl_program_parameter_list *params = prog->Parameters;
96 int tokens[STATE_LENGTH] = {
97 STATE_INTERNAL,
98 STATE_TEXRECT_SCALE,
99 texunit,
100 0,
101 0
102 };
103
104 no16("rectangle scale uniform setup not supported on SIMD16\n");
105 if (dispatch_width == 16) {
106 return coordinate;
107 }
108
109 GLuint index = _mesa_add_state_reference(params,
110 (gl_state_index *)tokens);
111 /* Try to find existing copies of the texrect scale uniforms. */
112 for (unsigned i = 0; i < uniforms; i++) {
113 if (stage_prog_data->param[i] ==
114 &prog->Parameters->ParameterValues[index][0]) {
115 scale_x = fs_reg(UNIFORM, i);
116 scale_y = fs_reg(UNIFORM, i + 1);
117 break;
118 }
119 }
120
121 /* If we didn't already set them up, do so now. */
122 if (scale_x.file == BAD_FILE) {
123 scale_x = fs_reg(UNIFORM, uniforms);
124 scale_y = fs_reg(UNIFORM, uniforms + 1);
125
126 stage_prog_data->param[uniforms++] =
127 &prog->Parameters->ParameterValues[index][0];
128 stage_prog_data->param[uniforms++] =
129 &prog->Parameters->ParameterValues[index][1];
130 }
131 }
132
133 /* The 965 requires the EU to do the normalization of GL rectangle
134 * texture coordinates. We use the program parameter state
135 * tracking to get the scaling factor.
136 */
137 if (devinfo->gen < 6 && is_rect) {
138 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
139 fs_reg src = coordinate;
140 coordinate = dst;
141
142 bld.MUL(dst, src, scale_x);
143 dst = offset(dst, bld, 1);
144 src = offset(src, bld, 1);
145 bld.MUL(dst, src, scale_y);
146 } else if (is_rect) {
147 /* On gen6+, the sampler handles the rectangle coordinates
148 * natively, without needing rescaling. But that means we have
149 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
150 * not [0, 1] like the default case below.
151 */
152 needs_gl_clamp = false;
153
154 for (int i = 0; i < 2; i++) {
155 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
156 fs_reg chan = coordinate;
157 chan = offset(chan, bld, i);
158
159 set_condmod(BRW_CONDITIONAL_GE,
160 bld.emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f)));
161
162 /* Our parameter comes in as 1.0/width or 1.0/height,
163 * because that's what people normally want for doing
164 * texture rectangle handling. We need width or height
165 * for clamping, but we don't care enough to make a new
166 * parameter type, so just invert back.
167 */
168 fs_reg limit = vgrf(glsl_type::float_type);
169 bld.MOV(limit, i == 0 ? scale_x : scale_y);
170 bld.emit(SHADER_OPCODE_RCP, limit, limit);
171
172 set_condmod(BRW_CONDITIONAL_L,
173 bld.emit(BRW_OPCODE_SEL, chan, chan, limit));
174 }
175 }
176 }
177
178 if (coord_components > 0 && needs_gl_clamp) {
179 for (int i = 0; i < MIN2(coord_components, 3); i++) {
180 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
181 fs_reg chan = coordinate;
182 chan = offset(chan, bld, i);
183 set_saturate(true, bld.MOV(chan, chan));
184 }
185 }
186 }
187 return coordinate;
188 }
189
190 /* Sample from the MCS surface attached to this multisample texture. */
191 fs_reg
192 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
193 const fs_reg &sampler)
194 {
195 const fs_reg dest = vgrf(glsl_type::uvec4_type);
196 const fs_reg srcs[] = {
197 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
198 sampler, fs_reg(), fs_reg(components), fs_reg(0)
199 };
200 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
201 ARRAY_SIZE(srcs));
202
203 /* We only care about one reg of response, but the sampler always writes
204 * 4/8.
205 */
206 inst->regs_written = 4 * dispatch_width / 8;
207
208 return dest;
209 }
210
211 void
212 fs_visitor::emit_texture(ir_texture_opcode op,
213 const glsl_type *dest_type,
214 fs_reg coordinate, int coord_components,
215 fs_reg shadow_c,
216 fs_reg lod, fs_reg lod2, int grad_components,
217 fs_reg sample_index,
218 fs_reg offset_value,
219 fs_reg mcs,
220 int gather_component,
221 bool is_cube_array,
222 bool is_rect,
223 uint32_t sampler,
224 fs_reg sampler_reg, int texunit)
225 {
226 fs_inst *inst = NULL;
227
228 if (op == ir_tg4) {
229 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
230 * emitting anything other than setting up the constant result.
231 */
232 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
233 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
234
235 fs_reg res = vgrf(glsl_type::vec4_type);
236 this->result = res;
237
238 for (int i=0; i<4; i++) {
239 bld.MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f));
240 res = offset(res, bld, 1);
241 }
242 return;
243 }
244 }
245
246 if (op == ir_query_levels) {
247 /* textureQueryLevels() is implemented in terms of TXS so we need to
248 * pass a valid LOD argument.
249 */
250 assert(lod.file == BAD_FILE);
251 lod = fs_reg(0u);
252 }
253
254 if (coordinate.file != BAD_FILE) {
255 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
256 * samplers. This should only be a problem with GL_CLAMP on Gen7.
257 */
258 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
259 sampler, texunit);
260 }
261
262 /* Writemasking doesn't eliminate channels on SIMD8 texture
263 * samples, so don't worry about them.
264 */
265 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
266 const fs_reg srcs[] = {
267 coordinate, shadow_c, lod, lod2,
268 sample_index, mcs, sampler_reg, offset_value,
269 fs_reg(coord_components), fs_reg(grad_components)
270 };
271 enum opcode opcode;
272
273 switch (op) {
274 case ir_tex:
275 opcode = SHADER_OPCODE_TEX_LOGICAL;
276 break;
277 case ir_txb:
278 opcode = FS_OPCODE_TXB_LOGICAL;
279 break;
280 case ir_txl:
281 opcode = SHADER_OPCODE_TXL_LOGICAL;
282 break;
283 case ir_txd:
284 opcode = SHADER_OPCODE_TXD_LOGICAL;
285 break;
286 case ir_txf:
287 opcode = SHADER_OPCODE_TXF_LOGICAL;
288 break;
289 case ir_txf_ms:
290 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
291 break;
292 case ir_txs:
293 case ir_query_levels:
294 opcode = SHADER_OPCODE_TXS_LOGICAL;
295 break;
296 case ir_lod:
297 opcode = SHADER_OPCODE_LOD_LOGICAL;
298 break;
299 case ir_tg4:
300 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
301 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
302 break;
303 default:
304 unreachable("Invalid texture opcode.");
305 }
306
307 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
308 inst->regs_written = 4 * dispatch_width / 8;
309
310 if (shadow_c.file != BAD_FILE)
311 inst->shadow_compare = true;
312
313 if (offset_value.file == IMM)
314 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
315
316 if (op == ir_tg4) {
317 inst->offset |=
318 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
319
320 if (devinfo->gen == 6)
321 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
322 }
323
324 /* fixup #layers for cube map arrays */
325 if (op == ir_txs && is_cube_array) {
326 fs_reg depth = offset(dst, bld, 2);
327 fs_reg fixed_depth = vgrf(glsl_type::int_type);
328 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
329
330 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
331 int components = inst->regs_written / (inst->exec_size / 8);
332 for (int i = 0; i < components; i++) {
333 if (i == 2) {
334 fixed_payload[i] = fixed_depth;
335 } else {
336 fixed_payload[i] = offset(dst, bld, i);
337 }
338 }
339 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
340 }
341
342 swizzle_result(op, dest_type->vector_elements, dst, sampler);
343 }
344
345 /**
346 * Apply workarounds for Gen6 gather with UINT/SINT
347 */
348 void
349 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
350 {
351 if (!wa)
352 return;
353
354 int width = (wa & WA_8BIT) ? 8 : 16;
355
356 for (int i = 0; i < 4; i++) {
357 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
358 /* Convert from UNORM to UINT */
359 bld.MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1)));
360 bld.MOV(dst, dst_f);
361
362 if (wa & WA_SIGN) {
363 /* Reinterpret the UINT value as a signed INT value by
364 * shifting the sign bit into place, then shifting back
365 * preserving sign.
366 */
367 bld.SHL(dst, dst, fs_reg(32 - width));
368 bld.ASR(dst, dst, fs_reg(32 - width));
369 }
370
371 dst = offset(dst, bld, 1);
372 }
373 }
374
375 /**
376 * Set up the gather channel based on the swizzle, for gather4.
377 */
378 uint32_t
379 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
380 {
381 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
382 switch (swiz) {
383 case SWIZZLE_X: return 0;
384 case SWIZZLE_Y:
385 /* gather4 sampler is broken for green channel on RG32F --
386 * we must ask for blue instead.
387 */
388 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
389 return 2;
390 return 1;
391 case SWIZZLE_Z: return 2;
392 case SWIZZLE_W: return 3;
393 default:
394 unreachable("Not reached"); /* zero, one swizzles handled already */
395 }
396 }
397
398 /**
399 * Swizzle the result of a texture result. This is necessary for
400 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
401 */
402 void
403 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
404 fs_reg orig_val, uint32_t sampler)
405 {
406 if (op == ir_query_levels) {
407 /* # levels is in .w */
408 this->result = offset(orig_val, bld, 3);
409 return;
410 }
411
412 this->result = orig_val;
413
414 /* txs,lod don't actually sample the texture, so swizzling the result
415 * makes no sense.
416 */
417 if (op == ir_txs || op == ir_lod || op == ir_tg4)
418 return;
419
420 if (dest_components == 1) {
421 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
422 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
423 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
424 swizzled_result.type = orig_val.type;
425
426 for (int i = 0; i < 4; i++) {
427 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
428 fs_reg l = swizzled_result;
429 l = offset(l, bld, i);
430
431 if (swiz == SWIZZLE_ZERO) {
432 bld.MOV(l, fs_reg(0.0f));
433 } else if (swiz == SWIZZLE_ONE) {
434 bld.MOV(l, fs_reg(1.0f));
435 } else {
436 bld.MOV(l, offset(orig_val, bld,
437 GET_SWZ(key_tex->swizzles[sampler], i)));
438 }
439 }
440 this->result = swizzled_result;
441 }
442 }
443
444 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
445 void
446 fs_visitor::emit_dummy_fs()
447 {
448 int reg_width = dispatch_width / 8;
449
450 /* Everyone's favorite color. */
451 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
452 for (int i = 0; i < 4; i++) {
453 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
454 fs_reg(color[i]));
455 }
456
457 fs_inst *write;
458 write = bld.emit(FS_OPCODE_FB_WRITE);
459 write->eot = true;
460 if (devinfo->gen >= 6) {
461 write->base_mrf = 2;
462 write->mlen = 4 * reg_width;
463 } else {
464 write->header_size = 2;
465 write->base_mrf = 0;
466 write->mlen = 2 + 4 * reg_width;
467 }
468
469 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
470 * varying to avoid GPU hangs, so set that.
471 */
472 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
473 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
474 memset(wm_prog_data->urb_setup, -1,
475 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
476
477 /* We don't have any uniforms. */
478 stage_prog_data->nr_params = 0;
479 stage_prog_data->nr_pull_params = 0;
480 stage_prog_data->curb_read_length = 0;
481 stage_prog_data->dispatch_grf_start_reg = 2;
482 wm_prog_data->dispatch_grf_start_reg_16 = 2;
483 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
484
485 calculate_cfg();
486 }
487
488 /* The register location here is relative to the start of the URB
489 * data. It will get adjusted to be a real location before
490 * generate_code() time.
491 */
492 struct brw_reg
493 fs_visitor::interp_reg(int location, int channel)
494 {
495 assert(stage == MESA_SHADER_FRAGMENT);
496 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
497 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
498 int stride = (channel & 1) * 4;
499
500 assert(prog_data->urb_setup[location] != -1);
501
502 return brw_vec1_grf(regnr, stride);
503 }
504
505 /** Emits the interpolation for the varying inputs. */
506 void
507 fs_visitor::emit_interpolation_setup_gen4()
508 {
509 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
510
511 fs_builder abld = bld.annotate("compute pixel centers");
512 this->pixel_x = vgrf(glsl_type::uint_type);
513 this->pixel_y = vgrf(glsl_type::uint_type);
514 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
515 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
516 abld.ADD(this->pixel_x,
517 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
518 fs_reg(brw_imm_v(0x10101010)));
519 abld.ADD(this->pixel_y,
520 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
521 fs_reg(brw_imm_v(0x11001100)));
522
523 abld = bld.annotate("compute pixel deltas from v0");
524
525 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
526 vgrf(glsl_type::vec2_type);
527 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
528 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
529 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
530
531 if (devinfo->has_pln && dispatch_width == 16) {
532 for (unsigned i = 0; i < 2; i++) {
533 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
534 half(this->pixel_x, i), xstart);
535 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
536 half(this->pixel_y, i), ystart);
537 }
538 } else {
539 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
540 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
541 }
542
543 abld = bld.annotate("compute pos.w and 1/pos.w");
544 /* Compute wpos.w. It's always in our setup, since it's needed to
545 * interpolate the other attributes.
546 */
547 this->wpos_w = vgrf(glsl_type::float_type);
548 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
549 interp_reg(VARYING_SLOT_POS, 3));
550 /* Compute the pixel 1/W value from wpos.w. */
551 this->pixel_w = vgrf(glsl_type::float_type);
552 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
553 }
554
555 /** Emits the interpolation for the varying inputs. */
556 void
557 fs_visitor::emit_interpolation_setup_gen6()
558 {
559 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
560
561 fs_builder abld = bld.annotate("compute pixel centers");
562 if (devinfo->gen >= 8 || dispatch_width == 8) {
563 /* The "Register Region Restrictions" page says for BDW (and newer,
564 * presumably):
565 *
566 * "When destination spans two registers, the source may be one or
567 * two registers. The destination elements must be evenly split
568 * between the two registers."
569 *
570 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
571 * compute our pixel centers.
572 */
573 fs_reg int_pixel_xy(GRF, alloc.allocate(dispatch_width / 8),
574 BRW_REGISTER_TYPE_UW);
575
576 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
577 dbld.ADD(int_pixel_xy,
578 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
579 fs_reg(brw_imm_v(0x11001010)));
580
581 this->pixel_x = vgrf(glsl_type::float_type);
582 this->pixel_y = vgrf(glsl_type::float_type);
583 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
584 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
585 } else {
586 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
587 *
588 * "When destination spans two registers, the source MUST span two
589 * registers."
590 *
591 * Since the GRF source of the ADD will only read a single register, we
592 * must do two separate ADDs in SIMD16.
593 */
594 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
595 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
596 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
597 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
598 abld.ADD(int_pixel_x,
599 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
600 fs_reg(brw_imm_v(0x10101010)));
601 abld.ADD(int_pixel_y,
602 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
603 fs_reg(brw_imm_v(0x11001100)));
604
605 /* As of gen6, we can no longer mix float and int sources. We have
606 * to turn the integer pixel centers into floats for their actual
607 * use.
608 */
609 this->pixel_x = vgrf(glsl_type::float_type);
610 this->pixel_y = vgrf(glsl_type::float_type);
611 abld.MOV(this->pixel_x, int_pixel_x);
612 abld.MOV(this->pixel_y, int_pixel_y);
613 }
614
615 abld = bld.annotate("compute pos.w");
616 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
617 this->wpos_w = vgrf(glsl_type::float_type);
618 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
619
620 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
621 uint8_t reg = payload.barycentric_coord_reg[i];
622 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
623 }
624 }
625
626 static enum brw_conditional_mod
627 cond_for_alpha_func(GLenum func)
628 {
629 switch(func) {
630 case GL_GREATER:
631 return BRW_CONDITIONAL_G;
632 case GL_GEQUAL:
633 return BRW_CONDITIONAL_GE;
634 case GL_LESS:
635 return BRW_CONDITIONAL_L;
636 case GL_LEQUAL:
637 return BRW_CONDITIONAL_LE;
638 case GL_EQUAL:
639 return BRW_CONDITIONAL_EQ;
640 case GL_NOTEQUAL:
641 return BRW_CONDITIONAL_NEQ;
642 default:
643 unreachable("Not reached");
644 }
645 }
646
647 /**
648 * Alpha test support for when we compile it into the shader instead
649 * of using the normal fixed-function alpha test.
650 */
651 void
652 fs_visitor::emit_alpha_test()
653 {
654 assert(stage == MESA_SHADER_FRAGMENT);
655 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
656 const fs_builder abld = bld.annotate("Alpha test");
657
658 fs_inst *cmp;
659 if (key->alpha_test_func == GL_ALWAYS)
660 return;
661
662 if (key->alpha_test_func == GL_NEVER) {
663 /* f0.1 = 0 */
664 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
665 BRW_REGISTER_TYPE_UW));
666 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
667 BRW_CONDITIONAL_NEQ);
668 } else {
669 /* RT0 alpha */
670 fs_reg color = offset(outputs[0], bld, 3);
671
672 /* f0.1 &= func(color, ref) */
673 cmp = abld.CMP(bld.null_reg_f(), color, fs_reg(key->alpha_test_ref),
674 cond_for_alpha_func(key->alpha_test_func));
675 }
676 cmp->predicate = BRW_PREDICATE_NORMAL;
677 cmp->flag_subreg = 1;
678 }
679
680 fs_inst *
681 fs_visitor::emit_single_fb_write(const fs_builder &bld,
682 fs_reg color0, fs_reg color1,
683 fs_reg src0_alpha, unsigned components)
684 {
685 assert(stage == MESA_SHADER_FRAGMENT);
686 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
687
688 /* Hand over gl_FragDepth or the payload depth. */
689 const fs_reg dst_depth = (payload.dest_depth_reg ?
690 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
691 fs_reg());
692 fs_reg src_depth;
693
694 if (source_depth_to_render_target) {
695 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
696 src_depth = frag_depth;
697 else
698 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
699 }
700
701 const fs_reg sources[] = {
702 color0, color1, src0_alpha, src_depth, dst_depth, sample_mask,
703 fs_reg(components)
704 };
705 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
706 sources, ARRAY_SIZE(sources));
707
708 if (prog_data->uses_kill) {
709 write->predicate = BRW_PREDICATE_NORMAL;
710 write->flag_subreg = 1;
711 }
712
713 return write;
714 }
715
716 void
717 fs_visitor::emit_fb_writes()
718 {
719 assert(stage == MESA_SHADER_FRAGMENT);
720 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
721 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
722
723 fs_inst *inst = NULL;
724
725 if (source_depth_to_render_target && devinfo->gen == 6) {
726 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
727 * would require SIMD8 moves of each half to message regs, e.g. by using
728 * the SIMD lowering pass. Unfortunately this is more difficult than it
729 * sounds because the SIMD8 single-source message lacks channel selects
730 * for the second and third subspans.
731 */
732 no16("Missing support for simd16 depth writes on gen6\n");
733 }
734
735 if (do_dual_src) {
736 const fs_builder abld = bld.annotate("FB dual-source write");
737
738 inst = emit_single_fb_write(abld, this->outputs[0],
739 this->dual_src_output, reg_undef, 4);
740 inst->target = 0;
741
742 prog_data->dual_src_blend = true;
743 } else {
744 for (int target = 0; target < key->nr_color_regions; target++) {
745 /* Skip over outputs that weren't written. */
746 if (this->outputs[target].file == BAD_FILE)
747 continue;
748
749 const fs_builder abld = bld.annotate(
750 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
751
752 fs_reg src0_alpha;
753 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
754 src0_alpha = offset(outputs[0], bld, 3);
755
756 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
757 src0_alpha,
758 this->output_components[target]);
759 inst->target = target;
760 }
761 }
762
763 if (inst == NULL) {
764 /* Even if there's no color buffers enabled, we still need to send
765 * alpha out the pipeline to our null renderbuffer to support
766 * alpha-testing, alpha-to-coverage, and so on.
767 */
768 /* FINISHME: Factor out this frequently recurring pattern into a
769 * helper function.
770 */
771 const fs_reg srcs[] = { reg_undef, reg_undef,
772 reg_undef, offset(this->outputs[0], bld, 3) };
773 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
774 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
775
776 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
777 inst->target = 0;
778 }
779
780 inst->eot = true;
781 }
782
783 void
784 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
785 {
786 const struct brw_vs_prog_key *key =
787 (const struct brw_vs_prog_key *) this->key;
788
789 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
790 this->userplane[i] = fs_reg(UNIFORM, uniforms);
791 for (int j = 0; j < 4; ++j) {
792 stage_prog_data->param[uniforms + j] =
793 (gl_constant_value *) &clip_planes[i][j];
794 }
795 uniforms += 4;
796 }
797 }
798
799 /**
800 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
801 *
802 * This does nothing if the shader uses gl_ClipDistance or user clipping is
803 * disabled altogether.
804 */
805 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
806 {
807 struct brw_vue_prog_data *vue_prog_data =
808 (struct brw_vue_prog_data *) prog_data;
809 const struct brw_vs_prog_key *key =
810 (const struct brw_vs_prog_key *) this->key;
811
812 /* Bail unless some sort of legacy clipping is enabled */
813 if (key->nr_userclip_plane_consts == 0)
814 return;
815
816 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
817 *
818 * "If a linked set of shaders forming the vertex stage contains no
819 * static write to gl_ClipVertex or gl_ClipDistance, but the
820 * application has requested clipping against user clip planes through
821 * the API, then the coordinate written to gl_Position is used for
822 * comparison against the user clip planes."
823 *
824 * This function is only called if the shader didn't write to
825 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
826 * if the user wrote to it; otherwise we use gl_Position.
827 */
828
829 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
830 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
831 clip_vertex = VARYING_SLOT_POS;
832
833 /* If the clip vertex isn't written, skip this. Typically this means
834 * the GS will set up clipping. */
835 if (outputs[clip_vertex].file == BAD_FILE)
836 return;
837
838 setup_uniform_clipplane_values(clip_planes);
839
840 const fs_builder abld = bld.annotate("user clip distances");
841
842 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
843 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
844 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
845 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
846
847 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
848 fs_reg u = userplane[i];
849 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
850 output.reg_offset = i & 3;
851
852 abld.MUL(output, outputs[clip_vertex], u);
853 for (int j = 1; j < 4; j++) {
854 u.reg = userplane[i].reg + j;
855 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
856 }
857 }
858 }
859
860 void
861 fs_visitor::emit_urb_writes()
862 {
863 int slot, urb_offset, length;
864 struct brw_vs_prog_data *vs_prog_data =
865 (struct brw_vs_prog_data *) prog_data;
866 const struct brw_vs_prog_key *key =
867 (const struct brw_vs_prog_key *) this->key;
868 const GLbitfield64 psiz_mask =
869 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
870 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
871 bool flush;
872 fs_reg sources[8];
873
874 /* If we don't have any valid slots to write, just do a minimal urb write
875 * send to terminate the shader. This includes 1 slot of undefined data,
876 * because it's invalid to write 0 data:
877 *
878 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
879 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
880 * Write Data Payload:
881 *
882 * "The write data payload can be between 1 and 8 message phases long."
883 */
884 if (vue_map->slots_valid == 0) {
885 fs_reg payload = fs_reg(GRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
886 bld.exec_all().MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
887 BRW_REGISTER_TYPE_UD)));
888
889 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
890 inst->eot = true;
891 inst->mlen = 2;
892 inst->offset = 1;
893 return;
894 }
895
896 length = 0;
897 urb_offset = 0;
898 flush = false;
899 for (slot = 0; slot < vue_map->num_slots; slot++) {
900 fs_reg reg, src, zero;
901
902 int varying = vue_map->slot_to_varying[slot];
903 switch (varying) {
904 case VARYING_SLOT_PSIZ:
905
906 /* The point size varying slot is the vue header and is always in the
907 * vue map. But often none of the special varyings that live there
908 * are written and in that case we can skip writing to the vue
909 * header, provided the corresponding state properly clamps the
910 * values further down the pipeline. */
911 if ((vue_map->slots_valid & psiz_mask) == 0) {
912 assert(length == 0);
913 urb_offset++;
914 break;
915 }
916
917 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
918 bld.MOV(zero, fs_reg(0u));
919
920 sources[length++] = zero;
921 if (vue_map->slots_valid & VARYING_BIT_LAYER)
922 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
923 else
924 sources[length++] = zero;
925
926 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
927 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
928 else
929 sources[length++] = zero;
930
931 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
932 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
933 else
934 sources[length++] = zero;
935 break;
936
937 case BRW_VARYING_SLOT_NDC:
938 case VARYING_SLOT_EDGE:
939 unreachable("unexpected scalar vs output");
940 break;
941
942 default:
943 /* gl_Position is always in the vue map, but isn't always written by
944 * the shader. Other varyings (clip distances) get added to the vue
945 * map but don't always get written. In those cases, the
946 * corresponding this->output[] slot will be invalid we and can skip
947 * the urb write for the varying. If we've already queued up a vue
948 * slot for writing we flush a mlen 5 urb write, otherwise we just
949 * advance the urb_offset.
950 */
951 if (varying == BRW_VARYING_SLOT_PAD ||
952 this->outputs[varying].file == BAD_FILE) {
953 if (length > 0)
954 flush = true;
955 else
956 urb_offset++;
957 break;
958 }
959
960 if ((varying == VARYING_SLOT_COL0 ||
961 varying == VARYING_SLOT_COL1 ||
962 varying == VARYING_SLOT_BFC0 ||
963 varying == VARYING_SLOT_BFC1) &&
964 key->clamp_vertex_color) {
965 /* We need to clamp these guys, so do a saturating MOV into a
966 * temp register and use that for the payload.
967 */
968 for (int i = 0; i < 4; i++) {
969 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
970 src = offset(this->outputs[varying], bld, i);
971 set_saturate(true, bld.MOV(reg, src));
972 sources[length++] = reg;
973 }
974 } else {
975 for (unsigned i = 0; i < output_components[varying]; i++)
976 sources[length++] = offset(this->outputs[varying], bld, i);
977 for (unsigned i = output_components[varying]; i < 4; i++)
978 sources[length++] = fs_reg(0);
979 }
980 break;
981 }
982
983 const fs_builder abld = bld.annotate("URB write");
984
985 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
986 * the last slot or if we need to flush (see BAD_FILE varying case
987 * above), emit a URB write send now to flush out the data.
988 */
989 int last = slot == vue_map->num_slots - 1;
990 if (length == 8 || last)
991 flush = true;
992 if (flush) {
993 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
994 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
995 BRW_REGISTER_TYPE_F);
996 payload_sources[0] =
997 fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
998
999 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
1000 abld.LOAD_PAYLOAD(payload, payload_sources, length + 1, 1);
1001
1002 fs_inst *inst =
1003 abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1004 inst->eot = last;
1005 inst->mlen = length + 1;
1006 inst->offset = urb_offset;
1007 urb_offset = slot + 1;
1008 length = 0;
1009 flush = false;
1010 }
1011 }
1012 }
1013
1014 void
1015 fs_visitor::emit_cs_terminate()
1016 {
1017 assert(devinfo->gen >= 7);
1018
1019 /* We are getting the thread ID from the compute shader header */
1020 assert(stage == MESA_SHADER_COMPUTE);
1021
1022 /* We can't directly send from g0, since sends with EOT have to use
1023 * g112-127. So, copy it to a virtual register, The register allocator will
1024 * make sure it uses the appropriate register range.
1025 */
1026 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
1027 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1028 bld.group(8, 0).exec_all().MOV(payload, g0);
1029
1030 /* Send a message to the thread spawner to terminate the thread. */
1031 fs_inst *inst = bld.exec_all()
1032 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
1033 inst->eot = true;
1034 }
1035
1036 void
1037 fs_visitor::emit_barrier()
1038 {
1039 assert(devinfo->gen >= 7);
1040
1041 /* We are getting the barrier ID from the compute shader header */
1042 assert(stage == MESA_SHADER_COMPUTE);
1043
1044 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1045
1046 const fs_builder pbld = bld.exec_all().group(8, 0);
1047
1048 /* Clear the message payload */
1049 pbld.MOV(payload, fs_reg(0u));
1050
1051 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
1052 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
1053 pbld.AND(component(payload, 2), r0_2, fs_reg(0x0f000000u));
1054
1055 /* Emit a gateway "barrier" message using the payload we set up, followed
1056 * by a wait instruction.
1057 */
1058 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
1059 }
1060
1061 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1062 void *mem_ctx,
1063 gl_shader_stage stage,
1064 const void *key,
1065 struct brw_stage_prog_data *prog_data,
1066 struct gl_shader_program *shader_prog,
1067 struct gl_program *prog,
1068 unsigned dispatch_width,
1069 int shader_time_index)
1070 : backend_shader(compiler, log_data, mem_ctx,
1071 shader_prog, prog, prog_data, stage),
1072 key(key), prog_data(prog_data),
1073 dispatch_width(dispatch_width),
1074 shader_time_index(shader_time_index),
1075 promoted_constants(0),
1076 bld(fs_builder(this, dispatch_width).at_end())
1077 {
1078 switch (stage) {
1079 case MESA_SHADER_FRAGMENT:
1080 key_tex = &((const brw_wm_prog_key *) key)->tex;
1081 break;
1082 case MESA_SHADER_VERTEX:
1083 key_tex = &((const brw_vs_prog_key *) key)->tex;
1084 break;
1085 case MESA_SHADER_GEOMETRY:
1086 key_tex = &((const brw_gs_prog_key *) key)->tex;
1087 break;
1088 case MESA_SHADER_COMPUTE:
1089 key_tex = &((const brw_cs_prog_key*) key)->tex;
1090 break;
1091 default:
1092 unreachable("unhandled shader stage");
1093 }
1094
1095 this->failed = false;
1096 this->simd16_unsupported = false;
1097 this->no16_msg = NULL;
1098
1099 this->nir_locals = NULL;
1100 this->nir_ssa_values = NULL;
1101
1102 memset(&this->payload, 0, sizeof(this->payload));
1103 memset(this->outputs, 0, sizeof(this->outputs));
1104 memset(this->output_components, 0, sizeof(this->output_components));
1105 this->source_depth_to_render_target = false;
1106 this->runtime_check_aads_emit = false;
1107 this->first_non_payload_grf = 0;
1108 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1109
1110 this->virtual_grf_start = NULL;
1111 this->virtual_grf_end = NULL;
1112 this->live_intervals = NULL;
1113 this->regs_live_at_ip = NULL;
1114
1115 this->uniforms = 0;
1116 this->last_scratch = 0;
1117 this->pull_constant_loc = NULL;
1118 this->push_constant_loc = NULL;
1119
1120 this->spilled_any_registers = false;
1121 this->do_dual_src = false;
1122
1123 if (dispatch_width == 8)
1124 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1125 }
1126
1127 fs_visitor::~fs_visitor()
1128 {
1129 }