i965/fs: Implement ir_u2f opcode.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_optimization.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (strcmp(ir->name, "gl_FragColor") == 0) {
62 this->frag_color = ir;
63 } else if (strcmp(ir->name, "gl_FragData") == 0) {
64 this->frag_data = ir;
65 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66 this->frag_depth = ir;
67 }
68
69 if (ir->mode == ir_var_in) {
70 if (!strcmp(ir->name, "gl_FragCoord")) {
71 reg = emit_fragcoord_interpolation(ir);
72 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73 reg = emit_frontfacing_interpolation(ir);
74 } else {
75 reg = emit_general_interpolation(ir);
76 }
77 assert(reg);
78 hash_table_insert(this->variable_ht, reg, ir);
79 return;
80 }
81
82 if (ir->mode == ir_var_uniform) {
83 int param_index = c->prog_data.nr_params;
84
85 if (c->dispatch_width == 16) {
86 if (!variable_storage(ir)) {
87 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88 }
89 return;
90 }
91
92 if (!strncmp(ir->name, "gl_", 3)) {
93 setup_builtin_uniform_values(ir);
94 } else {
95 setup_uniform_values(ir->location, ir->type);
96 }
97
98 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99 reg->type = brw_type_for_base_type(ir->type);
100 }
101
102 if (!reg)
103 reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105 hash_table_insert(this->variable_ht, reg, ir);
106 }
107
108 void
109 fs_visitor::visit(ir_dereference_variable *ir)
110 {
111 fs_reg *reg = variable_storage(ir->var);
112 this->result = *reg;
113 }
114
115 void
116 fs_visitor::visit(ir_dereference_record *ir)
117 {
118 const glsl_type *struct_type = ir->record->type;
119
120 ir->record->accept(this);
121
122 unsigned int offset = 0;
123 for (unsigned int i = 0; i < struct_type->length; i++) {
124 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125 break;
126 offset += type_size(struct_type->fields.structure[i].type);
127 }
128 this->result.reg_offset += offset;
129 this->result.type = brw_type_for_base_type(ir->type);
130 }
131
132 void
133 fs_visitor::visit(ir_dereference_array *ir)
134 {
135 ir_constant *index;
136 int element_size;
137
138 ir->array->accept(this);
139 index = ir->array_index->as_constant();
140
141 element_size = type_size(ir->type);
142 this->result.type = brw_type_for_base_type(ir->type);
143
144 if (index) {
145 assert(this->result.file == UNIFORM || this->result.file == GRF);
146 this->result.reg_offset += index->value.i[0] * element_size;
147 } else {
148 assert(!"FINISHME: non-constant array element");
149 }
150 }
151
152 /* Instruction selection: Produce a MOV.sat instead of
153 * MIN(MAX(val, 0), 1) when possible.
154 */
155 bool
156 fs_visitor::try_emit_saturate(ir_expression *ir)
157 {
158 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
159
160 if (!sat_val)
161 return false;
162
163 sat_val->accept(this);
164 fs_reg src = this->result;
165
166 this->result = fs_reg(this, ir->type);
167 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
168 inst->saturate = true;
169
170 return true;
171 }
172
173 void
174 fs_visitor::visit(ir_expression *ir)
175 {
176 unsigned int operand;
177 fs_reg op[2], temp;
178 fs_inst *inst;
179
180 assert(ir->get_num_operands() <= 2);
181
182 if (try_emit_saturate(ir))
183 return;
184
185 for (operand = 0; operand < ir->get_num_operands(); operand++) {
186 ir->operands[operand]->accept(this);
187 if (this->result.file == BAD_FILE) {
188 ir_print_visitor v;
189 fail("Failed to get tree for expression operand:\n");
190 ir->operands[operand]->accept(&v);
191 }
192 op[operand] = this->result;
193
194 /* Matrix expression operands should have been broken down to vector
195 * operations already.
196 */
197 assert(!ir->operands[operand]->type->is_matrix());
198 /* And then those vector operands should have been broken down to scalar.
199 */
200 assert(!ir->operands[operand]->type->is_vector());
201 }
202
203 /* Storage for our result. If our result goes into an assignment, it will
204 * just get copy-propagated out, so no worries.
205 */
206 this->result = fs_reg(this, ir->type);
207
208 switch (ir->operation) {
209 case ir_unop_logic_not:
210 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
211 * ones complement of the whole register, not just bit 0.
212 */
213 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
214 break;
215 case ir_unop_neg:
216 op[0].negate = !op[0].negate;
217 this->result = op[0];
218 break;
219 case ir_unop_abs:
220 op[0].abs = true;
221 op[0].negate = false;
222 this->result = op[0];
223 break;
224 case ir_unop_sign:
225 temp = fs_reg(this, ir->type);
226
227 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
228
229 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
230 inst->conditional_mod = BRW_CONDITIONAL_G;
231 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
232 inst->predicated = true;
233
234 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
235 inst->conditional_mod = BRW_CONDITIONAL_L;
236 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
237 inst->predicated = true;
238
239 break;
240 case ir_unop_rcp:
241 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
242 break;
243
244 case ir_unop_exp2:
245 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
246 break;
247 case ir_unop_log2:
248 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
249 break;
250 case ir_unop_exp:
251 case ir_unop_log:
252 assert(!"not reached: should be handled by ir_explog_to_explog2");
253 break;
254 case ir_unop_sin:
255 case ir_unop_sin_reduced:
256 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
257 break;
258 case ir_unop_cos:
259 case ir_unop_cos_reduced:
260 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
261 break;
262
263 case ir_unop_dFdx:
264 emit(FS_OPCODE_DDX, this->result, op[0]);
265 break;
266 case ir_unop_dFdy:
267 emit(FS_OPCODE_DDY, this->result, op[0]);
268 break;
269
270 case ir_binop_add:
271 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
272 break;
273 case ir_binop_sub:
274 assert(!"not reached: should be handled by ir_sub_to_add_neg");
275 break;
276
277 case ir_binop_mul:
278 if (ir->type->is_integer()) {
279 /* For integer multiplication, the MUL uses the low 16 bits
280 * of one of the operands (src0 on gen6, src1 on gen7). The
281 * MACH accumulates in the contribution of the upper 16 bits
282 * of that operand.
283 *
284 * FINISHME: Emit just the MUL if we know an operand is small
285 * enough.
286 */
287 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
288
289 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
290 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
291 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
292 } else {
293 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
294 }
295 break;
296 case ir_binop_div:
297 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
298 break;
299 case ir_binop_mod:
300 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
301 break;
302
303 case ir_binop_less:
304 case ir_binop_greater:
305 case ir_binop_lequal:
306 case ir_binop_gequal:
307 case ir_binop_equal:
308 case ir_binop_all_equal:
309 case ir_binop_nequal:
310 case ir_binop_any_nequal:
311 temp = this->result;
312 /* original gen4 does implicit conversion before comparison. */
313 if (intel->gen < 5)
314 temp.type = op[0].type;
315
316 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
317 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
318 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
319 break;
320
321 case ir_binop_logic_xor:
322 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
323 break;
324
325 case ir_binop_logic_or:
326 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
327 break;
328
329 case ir_binop_logic_and:
330 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
331 break;
332
333 case ir_binop_dot:
334 case ir_unop_any:
335 assert(!"not reached: should be handled by brw_fs_channel_expressions");
336 break;
337
338 case ir_unop_noise:
339 assert(!"not reached: should be handled by lower_noise");
340 break;
341
342 case ir_quadop_vector:
343 assert(!"not reached: should be handled by lower_quadop_vector");
344 break;
345
346 case ir_unop_sqrt:
347 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
348 break;
349
350 case ir_unop_rsq:
351 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
352 break;
353
354 case ir_unop_i2u:
355 op[0].type = BRW_REGISTER_TYPE_UD;
356 this->result = op[0];
357 break;
358 case ir_unop_u2i:
359 op[0].type = BRW_REGISTER_TYPE_D;
360 this->result = op[0];
361 break;
362 case ir_unop_i2f:
363 case ir_unop_u2f:
364 case ir_unop_b2f:
365 case ir_unop_b2i:
366 case ir_unop_f2i:
367 emit(BRW_OPCODE_MOV, this->result, op[0]);
368 break;
369 case ir_unop_f2b:
370 case ir_unop_i2b:
371 temp = this->result;
372 /* original gen4 does implicit conversion before comparison. */
373 if (intel->gen < 5)
374 temp.type = op[0].type;
375
376 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
377 inst->conditional_mod = BRW_CONDITIONAL_NZ;
378 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
379 break;
380
381 case ir_unop_trunc:
382 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
383 break;
384 case ir_unop_ceil:
385 op[0].negate = !op[0].negate;
386 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
387 this->result.negate = true;
388 break;
389 case ir_unop_floor:
390 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
391 break;
392 case ir_unop_fract:
393 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
394 break;
395 case ir_unop_round_even:
396 emit(BRW_OPCODE_RNDE, this->result, op[0]);
397 break;
398
399 case ir_binop_min:
400 if (intel->gen >= 6) {
401 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
402 inst->conditional_mod = BRW_CONDITIONAL_L;
403 } else {
404 /* Unalias the destination */
405 this->result = fs_reg(this, ir->type);
406
407 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
408 inst->conditional_mod = BRW_CONDITIONAL_L;
409
410 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
411 inst->predicated = true;
412 }
413 break;
414 case ir_binop_max:
415 if (intel->gen >= 6) {
416 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
417 inst->conditional_mod = BRW_CONDITIONAL_GE;
418 } else {
419 /* Unalias the destination */
420 this->result = fs_reg(this, ir->type);
421
422 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
423 inst->conditional_mod = BRW_CONDITIONAL_G;
424
425 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
426 inst->predicated = true;
427 }
428 break;
429
430 case ir_binop_pow:
431 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
432 break;
433
434 case ir_unop_bit_not:
435 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
436 break;
437 case ir_binop_bit_and:
438 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
439 break;
440 case ir_binop_bit_xor:
441 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
442 break;
443 case ir_binop_bit_or:
444 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
445 break;
446
447 case ir_binop_lshift:
448 case ir_binop_rshift:
449 assert(!"GLSL 1.30 features unsupported");
450 break;
451 }
452 }
453
454 void
455 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
456 const glsl_type *type, bool predicated)
457 {
458 switch (type->base_type) {
459 case GLSL_TYPE_FLOAT:
460 case GLSL_TYPE_UINT:
461 case GLSL_TYPE_INT:
462 case GLSL_TYPE_BOOL:
463 for (unsigned int i = 0; i < type->components(); i++) {
464 l.type = brw_type_for_base_type(type);
465 r.type = brw_type_for_base_type(type);
466
467 if (predicated || !l.equals(&r)) {
468 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
469 inst->predicated = predicated;
470 }
471
472 l.reg_offset++;
473 r.reg_offset++;
474 }
475 break;
476 case GLSL_TYPE_ARRAY:
477 for (unsigned int i = 0; i < type->length; i++) {
478 emit_assignment_writes(l, r, type->fields.array, predicated);
479 }
480 break;
481
482 case GLSL_TYPE_STRUCT:
483 for (unsigned int i = 0; i < type->length; i++) {
484 emit_assignment_writes(l, r, type->fields.structure[i].type,
485 predicated);
486 }
487 break;
488
489 case GLSL_TYPE_SAMPLER:
490 break;
491
492 default:
493 assert(!"not reached");
494 break;
495 }
496 }
497
498 /* If the RHS processing resulted in an instruction generating a
499 * temporary value, and it would be easy to rewrite the instruction to
500 * generate its result right into the LHS instead, do so. This ends
501 * up reliably removing instructions where it can be tricky to do so
502 * later without real UD chain information.
503 */
504 bool
505 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
506 fs_reg dst,
507 fs_reg src,
508 fs_inst *pre_rhs_inst,
509 fs_inst *last_rhs_inst)
510 {
511 if (pre_rhs_inst == last_rhs_inst)
512 return false; /* No instructions generated to work with. */
513
514 /* Only attempt if we're doing a direct assignment. */
515 if (ir->condition ||
516 !(ir->lhs->type->is_scalar() ||
517 (ir->lhs->type->is_vector() &&
518 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
519 return false;
520
521 /* Make sure the last instruction generated our source reg. */
522 if (last_rhs_inst->predicated ||
523 last_rhs_inst->force_uncompressed ||
524 last_rhs_inst->force_sechalf ||
525 !src.equals(&last_rhs_inst->dst))
526 return false;
527
528 /* Success! Rewrite the instruction. */
529 last_rhs_inst->dst = dst;
530
531 return true;
532 }
533
534 void
535 fs_visitor::visit(ir_assignment *ir)
536 {
537 fs_reg l, r;
538 fs_inst *inst;
539
540 /* FINISHME: arrays on the lhs */
541 ir->lhs->accept(this);
542 l = this->result;
543
544 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
545
546 ir->rhs->accept(this);
547 r = this->result;
548
549 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
550
551 assert(l.file != BAD_FILE);
552 assert(r.file != BAD_FILE);
553
554 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
555 return;
556
557 if (ir->condition) {
558 emit_bool_to_cond_code(ir->condition);
559 }
560
561 if (ir->lhs->type->is_scalar() ||
562 ir->lhs->type->is_vector()) {
563 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
564 if (ir->write_mask & (1 << i)) {
565 inst = emit(BRW_OPCODE_MOV, l, r);
566 if (ir->condition)
567 inst->predicated = true;
568 r.reg_offset++;
569 }
570 l.reg_offset++;
571 }
572 } else {
573 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
574 }
575 }
576
577 fs_inst *
578 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
579 int sampler)
580 {
581 int mlen;
582 int base_mrf = 1;
583 bool simd16 = false;
584 fs_reg orig_dst;
585
586 /* g0 header. */
587 mlen = 1;
588
589 if (ir->shadow_comparitor && ir->op != ir_txd) {
590 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
591 fs_inst *inst = emit(BRW_OPCODE_MOV,
592 fs_reg(MRF, base_mrf + mlen + i), coordinate);
593 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
594 inst->saturate = true;
595
596 coordinate.reg_offset++;
597 }
598 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
599 mlen += 3;
600
601 if (ir->op == ir_tex) {
602 /* There's no plain shadow compare message, so we use shadow
603 * compare with a bias of 0.0.
604 */
605 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
606 mlen++;
607 } else if (ir->op == ir_txb) {
608 ir->lod_info.bias->accept(this);
609 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
610 mlen++;
611 } else {
612 assert(ir->op == ir_txl);
613 ir->lod_info.lod->accept(this);
614 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
615 mlen++;
616 }
617
618 ir->shadow_comparitor->accept(this);
619 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
620 mlen++;
621 } else if (ir->op == ir_tex) {
622 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
623 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
624 coordinate);
625 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
626 inst->saturate = true;
627 coordinate.reg_offset++;
628 }
629 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
630 mlen += 3;
631 } else if (ir->op == ir_txd) {
632 ir->lod_info.grad.dPdx->accept(this);
633 fs_reg dPdx = this->result;
634
635 ir->lod_info.grad.dPdy->accept(this);
636 fs_reg dPdy = this->result;
637
638 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
639 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
640 coordinate.reg_offset++;
641 }
642 /* the slots for u and v are always present, but r is optional */
643 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
644
645 /* P = u, v, r
646 * dPdx = dudx, dvdx, drdx
647 * dPdy = dudy, dvdy, drdy
648 *
649 * 1-arg: Does not exist.
650 *
651 * 2-arg: dudx dvdx dudy dvdy
652 * dPdx.x dPdx.y dPdy.x dPdy.y
653 * m4 m5 m6 m7
654 *
655 * 3-arg: dudx dvdx drdx dudy dvdy drdy
656 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
657 * m5 m6 m7 m8 m9 m10
658 */
659 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
660 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
661 dPdx.reg_offset++;
662 }
663 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
664
665 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
666 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
667 dPdy.reg_offset++;
668 }
669 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
670 } else if (ir->op == ir_txs) {
671 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
672 simd16 = true;
673 ir->lod_info.lod->accept(this);
674 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
675 mlen += 2;
676 } else {
677 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
678 * instructions. We'll need to do SIMD16 here.
679 */
680 simd16 = true;
681 assert(ir->op == ir_txb || ir->op == ir_txl);
682
683 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
684 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
685 base_mrf + mlen + i * 2),
686 coordinate);
687 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
688 inst->saturate = true;
689 coordinate.reg_offset++;
690 }
691
692 /* lod/bias appears after u/v/r. */
693 mlen += 6;
694
695 if (ir->op == ir_txb) {
696 ir->lod_info.bias->accept(this);
697 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
698 mlen++;
699 } else {
700 ir->lod_info.lod->accept(this);
701 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
702 mlen++;
703 }
704
705 /* The unused upper half. */
706 mlen++;
707 }
708
709 if (simd16) {
710 /* Now, since we're doing simd16, the return is 2 interleaved
711 * vec4s where the odd-indexed ones are junk. We'll need to move
712 * this weirdness around to the expected layout.
713 */
714 orig_dst = dst;
715 const glsl_type *vec_type =
716 glsl_type::get_instance(ir->type->base_type, 4, 1);
717 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
718 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
719 : BRW_REGISTER_TYPE_F;
720 }
721
722 fs_inst *inst = NULL;
723 switch (ir->op) {
724 case ir_tex:
725 inst = emit(FS_OPCODE_TEX, dst);
726 break;
727 case ir_txb:
728 inst = emit(FS_OPCODE_TXB, dst);
729 break;
730 case ir_txl:
731 inst = emit(FS_OPCODE_TXL, dst);
732 break;
733 case ir_txd:
734 inst = emit(FS_OPCODE_TXD, dst);
735 break;
736 case ir_txs:
737 inst = emit(FS_OPCODE_TXS, dst);
738 break;
739 case ir_txf:
740 assert(!"GLSL 1.30 features unsupported");
741 break;
742 }
743 inst->base_mrf = base_mrf;
744 inst->mlen = mlen;
745 inst->header_present = true;
746
747 if (simd16) {
748 for (int i = 0; i < 4; i++) {
749 emit(BRW_OPCODE_MOV, orig_dst, dst);
750 orig_dst.reg_offset++;
751 dst.reg_offset += 2;
752 }
753 }
754
755 return inst;
756 }
757
758 /* gen5's sampler has slots for u, v, r, array index, then optional
759 * parameters like shadow comparitor or LOD bias. If optional
760 * parameters aren't present, those base slots are optional and don't
761 * need to be included in the message.
762 *
763 * We don't fill in the unnecessary slots regardless, which may look
764 * surprising in the disassembly.
765 */
766 fs_inst *
767 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
768 int sampler)
769 {
770 int mlen = 0;
771 int base_mrf = 2;
772 int reg_width = c->dispatch_width / 8;
773 bool header_present = false;
774 const int vector_elements =
775 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
776
777 if (ir->offset) {
778 /* The offsets set up by the ir_texture visitor are in the
779 * m1 header, so we can't go headerless.
780 */
781 header_present = true;
782 mlen++;
783 base_mrf--;
784 }
785
786 for (int i = 0; i < vector_elements; i++) {
787 fs_inst *inst = emit(BRW_OPCODE_MOV,
788 fs_reg(MRF, base_mrf + mlen + i * reg_width),
789 coordinate);
790 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
791 inst->saturate = true;
792 coordinate.reg_offset++;
793 }
794 mlen += vector_elements * reg_width;
795
796 if (ir->shadow_comparitor && ir->op != ir_txd) {
797 mlen = MAX2(mlen, header_present + 4 * reg_width);
798
799 ir->shadow_comparitor->accept(this);
800 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
801 mlen += reg_width;
802 }
803
804 fs_inst *inst = NULL;
805 switch (ir->op) {
806 case ir_tex:
807 inst = emit(FS_OPCODE_TEX, dst);
808 break;
809 case ir_txb:
810 ir->lod_info.bias->accept(this);
811 mlen = MAX2(mlen, header_present + 4 * reg_width);
812 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
813 mlen += reg_width;
814
815 inst = emit(FS_OPCODE_TXB, dst);
816
817 break;
818 case ir_txl:
819 ir->lod_info.lod->accept(this);
820 mlen = MAX2(mlen, header_present + 4 * reg_width);
821 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
822 mlen += reg_width;
823
824 inst = emit(FS_OPCODE_TXL, dst);
825 break;
826 case ir_txd: {
827 ir->lod_info.grad.dPdx->accept(this);
828 fs_reg dPdx = this->result;
829
830 ir->lod_info.grad.dPdy->accept(this);
831 fs_reg dPdy = this->result;
832
833 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
834
835 /**
836 * P = u, v, r
837 * dPdx = dudx, dvdx, drdx
838 * dPdy = dudy, dvdy, drdy
839 *
840 * Load up these values:
841 * - dudx dudy dvdx dvdy drdx drdy
842 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
843 */
844 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
845 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
846 dPdx.reg_offset++;
847 mlen += reg_width;
848
849 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
850 dPdy.reg_offset++;
851 mlen += reg_width;
852 }
853
854 inst = emit(FS_OPCODE_TXD, dst);
855 break;
856 }
857 case ir_txs:
858 ir->lod_info.lod->accept(this);
859 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
860 mlen += reg_width;
861 inst = emit(FS_OPCODE_TXS, dst);
862 break;
863 case ir_txf:
864 assert(!"GLSL 1.30 features unsupported");
865 break;
866 }
867 inst->base_mrf = base_mrf;
868 inst->mlen = mlen;
869 inst->header_present = header_present;
870
871 if (mlen > 11) {
872 fail("Message length >11 disallowed by hardware\n");
873 }
874
875 return inst;
876 }
877
878 fs_inst *
879 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
880 int sampler)
881 {
882 int mlen = 0;
883 int base_mrf = 2;
884 int reg_width = c->dispatch_width / 8;
885 bool header_present = false;
886
887 if (ir->offset) {
888 /* The offsets set up by the ir_texture visitor are in the
889 * m1 header, so we can't go headerless.
890 */
891 header_present = true;
892 mlen++;
893 base_mrf--;
894 }
895
896 if (ir->shadow_comparitor && ir->op != ir_txd) {
897 ir->shadow_comparitor->accept(this);
898 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
899 mlen += reg_width;
900 }
901
902 /* Set up the LOD info */
903 switch (ir->op) {
904 case ir_tex:
905 break;
906 case ir_txb:
907 ir->lod_info.bias->accept(this);
908 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
909 mlen += reg_width;
910 break;
911 case ir_txl:
912 ir->lod_info.lod->accept(this);
913 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
914 mlen += reg_width;
915 break;
916 case ir_txd: {
917 if (c->dispatch_width == 16)
918 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
919
920 ir->lod_info.grad.dPdx->accept(this);
921 fs_reg dPdx = this->result;
922
923 ir->lod_info.grad.dPdy->accept(this);
924 fs_reg dPdy = this->result;
925
926 /* Load dPdx and the coordinate together:
927 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
928 */
929 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
930 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
931 coordinate);
932 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
933 inst->saturate = true;
934 coordinate.reg_offset++;
935 mlen += reg_width;
936
937 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
938 dPdx.reg_offset++;
939 mlen += reg_width;
940
941 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
942 dPdy.reg_offset++;
943 mlen += reg_width;
944 }
945 break;
946 }
947 case ir_txs:
948 ir->lod_info.lod->accept(this);
949 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
950 mlen += reg_width;
951 break;
952 case ir_txf:
953 assert(!"GLSL 1.30 features unsupported");
954 break;
955 }
956
957 /* Set up the coordinate (except for TXD where it was done earlier) */
958 if (ir->op != ir_txd && ir->op != ir_txs) {
959 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
960 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
961 coordinate);
962 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
963 inst->saturate = true;
964 coordinate.reg_offset++;
965 mlen += reg_width;
966 }
967 }
968
969 /* Generate the SEND */
970 fs_inst *inst = NULL;
971 switch (ir->op) {
972 case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
973 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
974 case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
975 case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
976 case ir_txf: assert(!"TXF unsupported."); break;
977 case ir_txs: inst = emit(FS_OPCODE_TXS, dst); break;
978 }
979 inst->base_mrf = base_mrf;
980 inst->mlen = mlen;
981 inst->header_present = header_present;
982
983 if (mlen > 11) {
984 fail("Message length >11 disallowed by hardware\n");
985 }
986
987 return inst;
988 }
989
990 void
991 fs_visitor::visit(ir_texture *ir)
992 {
993 fs_inst *inst = NULL;
994
995 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
996 sampler = fp->Base.SamplerUnits[sampler];
997
998 /* Our hardware doesn't have a sample_d_c message, so shadow compares
999 * for textureGrad/TXD need to be emulated with instructions.
1000 */
1001 bool hw_compare_supported = ir->op != ir_txd;
1002 if (ir->shadow_comparitor && !hw_compare_supported) {
1003 assert(c->key.compare_funcs[sampler] != GL_NONE);
1004 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1005 if (c->key.compare_funcs[sampler] == GL_ALWAYS)
1006 return swizzle_result(ir, fs_reg(1.0f), sampler);
1007 else if (c->key.compare_funcs[sampler] == GL_NEVER)
1008 return swizzle_result(ir, fs_reg(0.0f), sampler);
1009 }
1010
1011 if (ir->coordinate)
1012 ir->coordinate->accept(this);
1013 fs_reg coordinate = this->result;
1014
1015 if (ir->offset != NULL) {
1016 ir_constant *offset = ir->offset->as_constant();
1017 assert(offset != NULL);
1018
1019 signed char offsets[3];
1020 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
1021 offsets[i] = (signed char) offset->value.i[i];
1022
1023 /* Combine all three offsets into a single unsigned dword:
1024 *
1025 * bits 11:8 - U Offset (X component)
1026 * bits 7:4 - V Offset (Y component)
1027 * bits 3:0 - R Offset (Z component)
1028 */
1029 unsigned offset_bits = 0;
1030 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1031 const unsigned shift = 4 * (2 - i);
1032 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1033 }
1034
1035 /* Explicitly set up the message header by copying g0 to msg reg m1. */
1036 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1037 fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
1038
1039 /* Then set the offset bits in DWord 2 of the message header. */
1040 emit(BRW_OPCODE_MOV,
1041 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1042 BRW_REGISTER_TYPE_UD)),
1043 fs_reg(brw_imm_uw(offset_bits)));
1044 }
1045
1046 /* Should be lowered by do_lower_texture_projection */
1047 assert(!ir->projector);
1048
1049 /* The 965 requires the EU to do the normalization of GL rectangle
1050 * texture coordinates. We use the program parameter state
1051 * tracking to get the scaling factor.
1052 */
1053 if (intel->gen < 6 &&
1054 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1055 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1056 int tokens[STATE_LENGTH] = {
1057 STATE_INTERNAL,
1058 STATE_TEXRECT_SCALE,
1059 sampler,
1060 0,
1061 0
1062 };
1063
1064 if (c->dispatch_width == 16) {
1065 fail("rectangle scale uniform setup not supported on 16-wide\n");
1066 this->result = fs_reg(this, ir->type);
1067 return;
1068 }
1069
1070 c->prog_data.param_convert[c->prog_data.nr_params] =
1071 PARAM_NO_CONVERT;
1072 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1073 PARAM_NO_CONVERT;
1074
1075 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1076 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1077 GLuint index = _mesa_add_state_reference(params,
1078 (gl_state_index *)tokens);
1079
1080 this->param_index[c->prog_data.nr_params] = index;
1081 this->param_offset[c->prog_data.nr_params] = 0;
1082 c->prog_data.nr_params++;
1083 this->param_index[c->prog_data.nr_params] = index;
1084 this->param_offset[c->prog_data.nr_params] = 1;
1085 c->prog_data.nr_params++;
1086
1087 fs_reg dst = fs_reg(this, ir->coordinate->type);
1088 fs_reg src = coordinate;
1089 coordinate = dst;
1090
1091 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1092 dst.reg_offset++;
1093 src.reg_offset++;
1094 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1095 }
1096
1097 /* Writemasking doesn't eliminate channels on SIMD8 texture
1098 * samples, so don't worry about them.
1099 */
1100 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1101
1102 if (intel->gen >= 7) {
1103 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1104 } else if (intel->gen >= 5) {
1105 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1106 } else {
1107 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1108 }
1109
1110 /* If there's an offset, we already set up m1. To avoid the implied move,
1111 * use the null register. Otherwise, we want an implied move from g0.
1112 */
1113 if (ir->offset != NULL || !inst->header_present)
1114 inst->src[0] = reg_undef;
1115 else
1116 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1117
1118 inst->sampler = sampler;
1119
1120 if (ir->shadow_comparitor) {
1121 if (hw_compare_supported) {
1122 inst->shadow_compare = true;
1123 } else {
1124 ir->shadow_comparitor->accept(this);
1125 fs_reg ref = this->result;
1126
1127 fs_reg value = dst;
1128 dst = fs_reg(this, glsl_type::vec4_type);
1129
1130 /* FINISHME: This needs to be done pre-filtering. */
1131
1132 uint32_t conditional = 0;
1133 switch (c->key.compare_funcs[sampler]) {
1134 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1135 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1136 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1137 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1138 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1139 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1140 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1141 default: assert(!"Should not get here: bad shadow compare function");
1142 }
1143
1144 /* Use conditional moves to load 0 or 1 as the result */
1145 this->current_annotation = "manual shadow comparison";
1146 for (int i = 0; i < 4; i++) {
1147 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1148
1149 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1150 inst->conditional_mod = conditional;
1151
1152 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1153 inst->predicated = true;
1154
1155 dst.reg_offset++;
1156 value.reg_offset++;
1157 }
1158 dst.reg_offset = 0;
1159 }
1160 }
1161
1162 swizzle_result(ir, dst, sampler);
1163 }
1164
1165 /**
1166 * Swizzle the result of a texture result. This is necessary for
1167 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1168 */
1169 void
1170 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1171 {
1172 this->result = orig_val;
1173
1174 if (ir->type == glsl_type::float_type) {
1175 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1176 assert(ir->sampler->type->sampler_shadow);
1177 } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1178 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1179
1180 for (int i = 0; i < 4; i++) {
1181 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1182 fs_reg l = swizzled_result;
1183 l.reg_offset += i;
1184
1185 if (swiz == SWIZZLE_ZERO) {
1186 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1187 } else if (swiz == SWIZZLE_ONE) {
1188 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1189 } else {
1190 fs_reg r = orig_val;
1191 r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1192 emit(BRW_OPCODE_MOV, l, r);
1193 }
1194 }
1195 this->result = swizzled_result;
1196 }
1197 }
1198
1199 void
1200 fs_visitor::visit(ir_swizzle *ir)
1201 {
1202 ir->val->accept(this);
1203 fs_reg val = this->result;
1204
1205 if (ir->type->vector_elements == 1) {
1206 this->result.reg_offset += ir->mask.x;
1207 return;
1208 }
1209
1210 fs_reg result = fs_reg(this, ir->type);
1211 this->result = result;
1212
1213 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1214 fs_reg channel = val;
1215 int swiz = 0;
1216
1217 switch (i) {
1218 case 0:
1219 swiz = ir->mask.x;
1220 break;
1221 case 1:
1222 swiz = ir->mask.y;
1223 break;
1224 case 2:
1225 swiz = ir->mask.z;
1226 break;
1227 case 3:
1228 swiz = ir->mask.w;
1229 break;
1230 }
1231
1232 channel.reg_offset += swiz;
1233 emit(BRW_OPCODE_MOV, result, channel);
1234 result.reg_offset++;
1235 }
1236 }
1237
1238 void
1239 fs_visitor::visit(ir_discard *ir)
1240 {
1241 assert(ir->condition == NULL); /* FINISHME */
1242
1243 emit(FS_OPCODE_DISCARD);
1244 kill_emitted = true;
1245 }
1246
1247 void
1248 fs_visitor::visit(ir_constant *ir)
1249 {
1250 /* Set this->result to reg at the bottom of the function because some code
1251 * paths will cause this visitor to be applied to other fields. This will
1252 * cause the value stored in this->result to be modified.
1253 *
1254 * Make reg constant so that it doesn't get accidentally modified along the
1255 * way. Yes, I actually had this problem. :(
1256 */
1257 const fs_reg reg(this, ir->type);
1258 fs_reg dst_reg = reg;
1259
1260 if (ir->type->is_array()) {
1261 const unsigned size = type_size(ir->type->fields.array);
1262
1263 for (unsigned i = 0; i < ir->type->length; i++) {
1264 ir->array_elements[i]->accept(this);
1265 fs_reg src_reg = this->result;
1266
1267 dst_reg.type = src_reg.type;
1268 for (unsigned j = 0; j < size; j++) {
1269 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1270 src_reg.reg_offset++;
1271 dst_reg.reg_offset++;
1272 }
1273 }
1274 } else if (ir->type->is_record()) {
1275 foreach_list(node, &ir->components) {
1276 ir_instruction *const field = (ir_instruction *) node;
1277 const unsigned size = type_size(field->type);
1278
1279 field->accept(this);
1280 fs_reg src_reg = this->result;
1281
1282 dst_reg.type = src_reg.type;
1283 for (unsigned j = 0; j < size; j++) {
1284 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1285 src_reg.reg_offset++;
1286 dst_reg.reg_offset++;
1287 }
1288 }
1289 } else {
1290 const unsigned size = type_size(ir->type);
1291
1292 for (unsigned i = 0; i < size; i++) {
1293 switch (ir->type->base_type) {
1294 case GLSL_TYPE_FLOAT:
1295 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1296 break;
1297 case GLSL_TYPE_UINT:
1298 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1299 break;
1300 case GLSL_TYPE_INT:
1301 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1302 break;
1303 case GLSL_TYPE_BOOL:
1304 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1305 break;
1306 default:
1307 assert(!"Non-float/uint/int/bool constant");
1308 }
1309 dst_reg.reg_offset++;
1310 }
1311 }
1312
1313 this->result = reg;
1314 }
1315
1316 void
1317 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1318 {
1319 ir_expression *expr = ir->as_expression();
1320
1321 if (expr) {
1322 fs_reg op[2];
1323 fs_inst *inst;
1324
1325 assert(expr->get_num_operands() <= 2);
1326 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1327 assert(expr->operands[i]->type->is_scalar());
1328
1329 expr->operands[i]->accept(this);
1330 op[i] = this->result;
1331 }
1332
1333 switch (expr->operation) {
1334 case ir_unop_logic_not:
1335 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1336 inst->conditional_mod = BRW_CONDITIONAL_Z;
1337 break;
1338
1339 case ir_binop_logic_xor:
1340 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1341 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1342 break;
1343
1344 case ir_binop_logic_or:
1345 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1346 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1347 break;
1348
1349 case ir_binop_logic_and:
1350 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1351 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1352 break;
1353
1354 case ir_unop_f2b:
1355 if (intel->gen >= 6) {
1356 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1357 } else {
1358 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1359 }
1360 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1361 break;
1362
1363 case ir_unop_i2b:
1364 if (intel->gen >= 6) {
1365 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1366 } else {
1367 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1368 }
1369 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1370 break;
1371
1372 case ir_binop_greater:
1373 case ir_binop_gequal:
1374 case ir_binop_less:
1375 case ir_binop_lequal:
1376 case ir_binop_equal:
1377 case ir_binop_all_equal:
1378 case ir_binop_nequal:
1379 case ir_binop_any_nequal:
1380 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1381 inst->conditional_mod =
1382 brw_conditional_for_comparison(expr->operation);
1383 break;
1384
1385 default:
1386 assert(!"not reached");
1387 fail("bad cond code\n");
1388 break;
1389 }
1390 return;
1391 }
1392
1393 ir->accept(this);
1394
1395 if (intel->gen >= 6) {
1396 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1398 } else {
1399 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1400 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1401 }
1402 }
1403
1404 /**
1405 * Emit a gen6 IF statement with the comparison folded into the IF
1406 * instruction.
1407 */
1408 void
1409 fs_visitor::emit_if_gen6(ir_if *ir)
1410 {
1411 ir_expression *expr = ir->condition->as_expression();
1412
1413 if (expr) {
1414 fs_reg op[2];
1415 fs_inst *inst;
1416 fs_reg temp;
1417
1418 assert(expr->get_num_operands() <= 2);
1419 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1420 assert(expr->operands[i]->type->is_scalar());
1421
1422 expr->operands[i]->accept(this);
1423 op[i] = this->result;
1424 }
1425
1426 switch (expr->operation) {
1427 case ir_unop_logic_not:
1428 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1429 inst->conditional_mod = BRW_CONDITIONAL_Z;
1430 return;
1431
1432 case ir_binop_logic_xor:
1433 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1434 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1435 return;
1436
1437 case ir_binop_logic_or:
1438 temp = fs_reg(this, glsl_type::bool_type);
1439 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1440 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1441 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1442 return;
1443
1444 case ir_binop_logic_and:
1445 temp = fs_reg(this, glsl_type::bool_type);
1446 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1447 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1448 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1449 return;
1450
1451 case ir_unop_f2b:
1452 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1453 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1454 return;
1455
1456 case ir_unop_i2b:
1457 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1458 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1459 return;
1460
1461 case ir_binop_greater:
1462 case ir_binop_gequal:
1463 case ir_binop_less:
1464 case ir_binop_lequal:
1465 case ir_binop_equal:
1466 case ir_binop_all_equal:
1467 case ir_binop_nequal:
1468 case ir_binop_any_nequal:
1469 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1470 inst->conditional_mod =
1471 brw_conditional_for_comparison(expr->operation);
1472 return;
1473 default:
1474 assert(!"not reached");
1475 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1476 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1477 fail("bad condition\n");
1478 return;
1479 }
1480 return;
1481 }
1482
1483 ir->condition->accept(this);
1484
1485 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1486 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1487 }
1488
1489 void
1490 fs_visitor::visit(ir_if *ir)
1491 {
1492 fs_inst *inst;
1493
1494 if (intel->gen != 6 && c->dispatch_width == 16) {
1495 fail("Can't support (non-uniform) control flow on 16-wide\n");
1496 }
1497
1498 /* Don't point the annotation at the if statement, because then it plus
1499 * the then and else blocks get printed.
1500 */
1501 this->base_ir = ir->condition;
1502
1503 if (intel->gen == 6) {
1504 emit_if_gen6(ir);
1505 } else {
1506 emit_bool_to_cond_code(ir->condition);
1507
1508 inst = emit(BRW_OPCODE_IF);
1509 inst->predicated = true;
1510 }
1511
1512 foreach_list(node, &ir->then_instructions) {
1513 ir_instruction *ir = (ir_instruction *)node;
1514 this->base_ir = ir;
1515
1516 ir->accept(this);
1517 }
1518
1519 if (!ir->else_instructions.is_empty()) {
1520 emit(BRW_OPCODE_ELSE);
1521
1522 foreach_list(node, &ir->else_instructions) {
1523 ir_instruction *ir = (ir_instruction *)node;
1524 this->base_ir = ir;
1525
1526 ir->accept(this);
1527 }
1528 }
1529
1530 emit(BRW_OPCODE_ENDIF);
1531 }
1532
1533 void
1534 fs_visitor::visit(ir_loop *ir)
1535 {
1536 fs_reg counter = reg_undef;
1537
1538 if (c->dispatch_width == 16) {
1539 fail("Can't support (non-uniform) control flow on 16-wide\n");
1540 }
1541
1542 if (ir->counter) {
1543 this->base_ir = ir->counter;
1544 ir->counter->accept(this);
1545 counter = *(variable_storage(ir->counter));
1546
1547 if (ir->from) {
1548 this->base_ir = ir->from;
1549 ir->from->accept(this);
1550
1551 emit(BRW_OPCODE_MOV, counter, this->result);
1552 }
1553 }
1554
1555 emit(BRW_OPCODE_DO);
1556
1557 if (ir->to) {
1558 this->base_ir = ir->to;
1559 ir->to->accept(this);
1560
1561 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1562 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1563
1564 inst = emit(BRW_OPCODE_BREAK);
1565 inst->predicated = true;
1566 }
1567
1568 foreach_list(node, &ir->body_instructions) {
1569 ir_instruction *ir = (ir_instruction *)node;
1570
1571 this->base_ir = ir;
1572 ir->accept(this);
1573 }
1574
1575 if (ir->increment) {
1576 this->base_ir = ir->increment;
1577 ir->increment->accept(this);
1578 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1579 }
1580
1581 emit(BRW_OPCODE_WHILE);
1582 }
1583
1584 void
1585 fs_visitor::visit(ir_loop_jump *ir)
1586 {
1587 switch (ir->mode) {
1588 case ir_loop_jump::jump_break:
1589 emit(BRW_OPCODE_BREAK);
1590 break;
1591 case ir_loop_jump::jump_continue:
1592 emit(BRW_OPCODE_CONTINUE);
1593 break;
1594 }
1595 }
1596
1597 void
1598 fs_visitor::visit(ir_call *ir)
1599 {
1600 assert(!"FINISHME");
1601 }
1602
1603 void
1604 fs_visitor::visit(ir_return *ir)
1605 {
1606 assert(!"FINISHME");
1607 }
1608
1609 void
1610 fs_visitor::visit(ir_function *ir)
1611 {
1612 /* Ignore function bodies other than main() -- we shouldn't see calls to
1613 * them since they should all be inlined before we get to ir_to_mesa.
1614 */
1615 if (strcmp(ir->name, "main") == 0) {
1616 const ir_function_signature *sig;
1617 exec_list empty;
1618
1619 sig = ir->matching_signature(&empty);
1620
1621 assert(sig);
1622
1623 foreach_list(node, &sig->body) {
1624 ir_instruction *ir = (ir_instruction *)node;
1625 this->base_ir = ir;
1626
1627 ir->accept(this);
1628 }
1629 }
1630 }
1631
1632 void
1633 fs_visitor::visit(ir_function_signature *ir)
1634 {
1635 assert(!"not reached");
1636 (void)ir;
1637 }
1638
1639 fs_inst *
1640 fs_visitor::emit(fs_inst inst)
1641 {
1642 fs_inst *list_inst = new(mem_ctx) fs_inst;
1643 *list_inst = inst;
1644
1645 if (force_uncompressed_stack > 0)
1646 list_inst->force_uncompressed = true;
1647 else if (force_sechalf_stack > 0)
1648 list_inst->force_sechalf = true;
1649
1650 list_inst->annotation = this->current_annotation;
1651 list_inst->ir = this->base_ir;
1652
1653 this->instructions.push_tail(list_inst);
1654
1655 return list_inst;
1656 }
1657
1658 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1659 void
1660 fs_visitor::emit_dummy_fs()
1661 {
1662 /* Everyone's favorite color. */
1663 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1664 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1665 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1666 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1667
1668 fs_inst *write;
1669 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1670 write->base_mrf = 2;
1671 }
1672
1673 /* The register location here is relative to the start of the URB
1674 * data. It will get adjusted to be a real location before
1675 * generate_code() time.
1676 */
1677 struct brw_reg
1678 fs_visitor::interp_reg(int location, int channel)
1679 {
1680 int regnr = urb_setup[location] * 2 + channel / 2;
1681 int stride = (channel & 1) * 4;
1682
1683 assert(urb_setup[location] != -1);
1684
1685 return brw_vec1_grf(regnr, stride);
1686 }
1687
1688 /** Emits the interpolation for the varying inputs. */
1689 void
1690 fs_visitor::emit_interpolation_setup_gen4()
1691 {
1692 this->current_annotation = "compute pixel centers";
1693 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1694 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1695 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1696 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1697
1698 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1699 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1700
1701 this->current_annotation = "compute pixel deltas from v0";
1702 if (brw->has_pln) {
1703 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1704 this->delta_y = this->delta_x;
1705 this->delta_y.reg_offset++;
1706 } else {
1707 this->delta_x = fs_reg(this, glsl_type::float_type);
1708 this->delta_y = fs_reg(this, glsl_type::float_type);
1709 }
1710 emit(BRW_OPCODE_ADD, this->delta_x,
1711 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1712 emit(BRW_OPCODE_ADD, this->delta_y,
1713 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1714
1715 this->current_annotation = "compute pos.w and 1/pos.w";
1716 /* Compute wpos.w. It's always in our setup, since it's needed to
1717 * interpolate the other attributes.
1718 */
1719 this->wpos_w = fs_reg(this, glsl_type::float_type);
1720 emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1721 interp_reg(FRAG_ATTRIB_WPOS, 3));
1722 /* Compute the pixel 1/W value from wpos.w. */
1723 this->pixel_w = fs_reg(this, glsl_type::float_type);
1724 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1725 this->current_annotation = NULL;
1726 }
1727
1728 /** Emits the interpolation for the varying inputs. */
1729 void
1730 fs_visitor::emit_interpolation_setup_gen6()
1731 {
1732 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1733
1734 /* If the pixel centers end up used, the setup is the same as for gen4. */
1735 this->current_annotation = "compute pixel centers";
1736 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1737 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1738 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1739 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1740 emit(BRW_OPCODE_ADD,
1741 int_pixel_x,
1742 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1743 fs_reg(brw_imm_v(0x10101010)));
1744 emit(BRW_OPCODE_ADD,
1745 int_pixel_y,
1746 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1747 fs_reg(brw_imm_v(0x11001100)));
1748
1749 /* As of gen6, we can no longer mix float and int sources. We have
1750 * to turn the integer pixel centers into floats for their actual
1751 * use.
1752 */
1753 this->pixel_x = fs_reg(this, glsl_type::float_type);
1754 this->pixel_y = fs_reg(this, glsl_type::float_type);
1755 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1756 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1757
1758 this->current_annotation = "compute pos.w";
1759 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1760 this->wpos_w = fs_reg(this, glsl_type::float_type);
1761 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1762
1763 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1764 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1765
1766 this->current_annotation = NULL;
1767 }
1768
1769 void
1770 fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1771 {
1772 int reg_width = c->dispatch_width / 8;
1773 fs_inst *inst;
1774
1775 if (c->dispatch_width == 8 || intel->gen == 6) {
1776 /* SIMD8 write looks like:
1777 * m + 0: r0
1778 * m + 1: r1
1779 * m + 2: g0
1780 * m + 3: g1
1781 *
1782 * gen6 SIMD16 DP write looks like:
1783 * m + 0: r0
1784 * m + 1: r1
1785 * m + 2: g0
1786 * m + 3: g1
1787 * m + 4: b0
1788 * m + 5: b1
1789 * m + 6: a0
1790 * m + 7: a1
1791 */
1792 inst = emit(BRW_OPCODE_MOV,
1793 fs_reg(MRF, first_color_mrf + index * reg_width),
1794 color);
1795 inst->saturate = c->key.clamp_fragment_color;
1796 } else {
1797 /* pre-gen6 SIMD16 single source DP write looks like:
1798 * m + 0: r0
1799 * m + 1: g0
1800 * m + 2: b0
1801 * m + 3: a0
1802 * m + 4: r1
1803 * m + 5: g1
1804 * m + 6: b1
1805 * m + 7: a1
1806 */
1807 if (brw->has_compr4) {
1808 /* By setting the high bit of the MRF register number, we
1809 * indicate that we want COMPR4 mode - instead of doing the
1810 * usual destination + 1 for the second half we get
1811 * destination + 4.
1812 */
1813 inst = emit(BRW_OPCODE_MOV,
1814 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1815 color);
1816 inst->saturate = c->key.clamp_fragment_color;
1817 } else {
1818 push_force_uncompressed();
1819 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1820 color);
1821 inst->saturate = c->key.clamp_fragment_color;
1822 pop_force_uncompressed();
1823
1824 push_force_sechalf();
1825 color.sechalf = true;
1826 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1827 color);
1828 inst->saturate = c->key.clamp_fragment_color;
1829 pop_force_sechalf();
1830 color.sechalf = false;
1831 }
1832 }
1833 }
1834
1835 void
1836 fs_visitor::emit_fb_writes()
1837 {
1838 this->current_annotation = "FB write header";
1839 GLboolean header_present = GL_TRUE;
1840 int base_mrf = 2;
1841 int nr = base_mrf;
1842 int reg_width = c->dispatch_width / 8;
1843
1844 if (intel->gen >= 6 &&
1845 !this->kill_emitted &&
1846 c->key.nr_color_regions == 1) {
1847 header_present = false;
1848 }
1849
1850 if (header_present) {
1851 /* m2, m3 header */
1852 nr += 2;
1853 }
1854
1855 if (c->aa_dest_stencil_reg) {
1856 push_force_uncompressed();
1857 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1858 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1859 pop_force_uncompressed();
1860 }
1861
1862 /* Reserve space for color. It'll be filled in per MRT below. */
1863 int color_mrf = nr;
1864 nr += 4 * reg_width;
1865
1866 if (c->source_depth_to_render_target) {
1867 if (intel->gen == 6 && c->dispatch_width == 16) {
1868 /* For outputting oDepth on gen6, SIMD8 writes have to be
1869 * used. This would require 8-wide moves of each half to
1870 * message regs, kind of like pre-gen5 SIMD16 FB writes.
1871 * Just bail on doing so for now.
1872 */
1873 fail("Missing support for simd16 depth writes on gen6\n");
1874 }
1875
1876 if (c->computes_depth) {
1877 /* Hand over gl_FragDepth. */
1878 assert(this->frag_depth);
1879 fs_reg depth = *(variable_storage(this->frag_depth));
1880
1881 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1882 } else {
1883 /* Pass through the payload depth. */
1884 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1885 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1886 }
1887 nr += reg_width;
1888 }
1889
1890 if (c->dest_depth_reg) {
1891 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1892 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1893 nr += reg_width;
1894 }
1895
1896 fs_reg color = reg_undef;
1897 if (this->frag_color)
1898 color = *(variable_storage(this->frag_color));
1899 else if (this->frag_data) {
1900 color = *(variable_storage(this->frag_data));
1901 color.type = BRW_REGISTER_TYPE_F;
1902 }
1903
1904 for (int target = 0; target < c->key.nr_color_regions; target++) {
1905 this->current_annotation = ralloc_asprintf(this->mem_ctx,
1906 "FB write target %d",
1907 target);
1908 if (this->frag_color || this->frag_data) {
1909 for (int i = 0; i < 4; i++) {
1910 emit_color_write(i, color_mrf, color);
1911 color.reg_offset++;
1912 }
1913 }
1914
1915 if (this->frag_color)
1916 color.reg_offset -= 4;
1917
1918 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1919 inst->target = target;
1920 inst->base_mrf = base_mrf;
1921 inst->mlen = nr - base_mrf;
1922 if (target == c->key.nr_color_regions - 1)
1923 inst->eot = true;
1924 inst->header_present = header_present;
1925 }
1926
1927 if (c->key.nr_color_regions == 0) {
1928 if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1929 /* If the alpha test is enabled but there's no color buffer,
1930 * we still need to send alpha out the pipeline to our null
1931 * renderbuffer.
1932 */
1933 color.reg_offset += 3;
1934 emit_color_write(3, color_mrf, color);
1935 }
1936
1937 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1938 inst->base_mrf = base_mrf;
1939 inst->mlen = nr - base_mrf;
1940 inst->eot = true;
1941 inst->header_present = header_present;
1942 }
1943
1944 this->current_annotation = NULL;
1945 }