i965/fs: Allocate the param_size array dynamically.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "program/prog_parameter.h"
37 #include "program/prog_print.h"
38 #include "program/prog_optimize.h"
39 #include "program/register_allocate.h"
40 #include "program/sampler.h"
41 #include "program/hash_table.h"
42 #include "brw_context.h"
43 #include "brw_eu.h"
44 #include "brw_wm.h"
45 }
46 #include "brw_fs.h"
47 #include "main/uniforms.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50
51 void
52 fs_visitor::visit(ir_variable *ir)
53 {
54 fs_reg *reg = NULL;
55
56 if (variable_storage(ir))
57 return;
58
59 if (ir->data.mode == ir_var_shader_in) {
60 if (!strcmp(ir->name, "gl_FragCoord")) {
61 reg = emit_fragcoord_interpolation(ir);
62 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
63 reg = emit_frontfacing_interpolation(ir);
64 } else {
65 reg = emit_general_interpolation(ir);
66 }
67 assert(reg);
68 hash_table_insert(this->variable_ht, reg, ir);
69 return;
70 } else if (ir->data.mode == ir_var_shader_out) {
71 reg = new(this->mem_ctx) fs_reg(this, ir->type);
72
73 if (ir->data.index > 0) {
74 assert(ir->data.location == FRAG_RESULT_DATA0);
75 assert(ir->data.index == 1);
76 this->dual_src_output = *reg;
77 } else if (ir->data.location == FRAG_RESULT_COLOR) {
78 /* Writing gl_FragColor outputs to all color regions. */
79 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
80 this->outputs[i] = *reg;
81 this->output_components[i] = 4;
82 }
83 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
84 this->frag_depth = *reg;
85 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
86 this->sample_mask = *reg;
87 } else {
88 /* gl_FragData or a user-defined FS output */
89 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
90 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92 int vector_elements =
93 ir->type->is_array() ? ir->type->fields.array->vector_elements
94 : ir->type->vector_elements;
95
96 /* General color output. */
97 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
99 this->outputs[output] = *reg;
100 this->outputs[output].reg_offset += vector_elements * i;
101 this->output_components[output] = vector_elements;
102 }
103 }
104 } else if (ir->data.mode == ir_var_uniform) {
105 int param_index = uniforms;
106
107 /* Thanks to the lower_ubo_reference pass, we will see only
108 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
109 * variables, so no need for them to be in variable_ht.
110 *
111 * Atomic counters take no uniform storage, no need to do
112 * anything here.
113 */
114 if (ir->is_in_uniform_block() || ir->type->contains_atomic())
115 return;
116
117 if (dispatch_width == 16) {
118 if (!variable_storage(ir)) {
119 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
120 }
121 return;
122 }
123
124 param_size[param_index] = type_size(ir->type);
125 if (!strncmp(ir->name, "gl_", 3)) {
126 setup_builtin_uniform_values(ir);
127 } else {
128 setup_uniform_values(ir);
129 }
130
131 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
132 reg->type = brw_type_for_base_type(ir->type);
133
134 } else if (ir->data.mode == ir_var_system_value) {
135 if (ir->data.location == SYSTEM_VALUE_SAMPLE_POS) {
136 reg = emit_samplepos_setup(ir);
137 } else if (ir->data.location == SYSTEM_VALUE_SAMPLE_ID) {
138 reg = emit_sampleid_setup(ir);
139 } else if (ir->data.location == SYSTEM_VALUE_SAMPLE_MASK_IN) {
140 reg = emit_samplemaskin_setup(ir);
141 }
142 }
143
144 if (!reg)
145 reg = new(this->mem_ctx) fs_reg(this, ir->type);
146
147 hash_table_insert(this->variable_ht, reg, ir);
148 }
149
150 void
151 fs_visitor::visit(ir_dereference_variable *ir)
152 {
153 fs_reg *reg = variable_storage(ir->var);
154 this->result = *reg;
155 }
156
157 void
158 fs_visitor::visit(ir_dereference_record *ir)
159 {
160 const glsl_type *struct_type = ir->record->type;
161
162 ir->record->accept(this);
163
164 unsigned int offset = 0;
165 for (unsigned int i = 0; i < struct_type->length; i++) {
166 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
167 break;
168 offset += type_size(struct_type->fields.structure[i].type);
169 }
170 this->result.reg_offset += offset;
171 this->result.type = brw_type_for_base_type(ir->type);
172 }
173
174 void
175 fs_visitor::visit(ir_dereference_array *ir)
176 {
177 ir_constant *constant_index;
178 fs_reg src;
179 int element_size = type_size(ir->type);
180
181 constant_index = ir->array_index->as_constant();
182
183 ir->array->accept(this);
184 src = this->result;
185 src.type = brw_type_for_base_type(ir->type);
186
187 if (constant_index) {
188 assert(src.file == UNIFORM || src.file == GRF);
189 src.reg_offset += constant_index->value.i[0] * element_size;
190 } else {
191 /* Variable index array dereference. We attach the variable index
192 * component to the reg as a pointer to a register containing the
193 * offset. Currently only uniform arrays are supported in this patch,
194 * and that reladdr pointer is resolved by
195 * move_uniform_array_access_to_pull_constants(). All other array types
196 * are lowered by lower_variable_index_to_cond_assign().
197 */
198 ir->array_index->accept(this);
199
200 fs_reg index_reg;
201 index_reg = fs_reg(this, glsl_type::int_type);
202 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
203
204 if (src.reladdr) {
205 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
206 }
207
208 src.reladdr = ralloc(mem_ctx, fs_reg);
209 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
210 }
211 this->result = src;
212 }
213
214 void
215 fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
216 {
217 if (brw->gen < 6 ||
218 !x.is_valid_3src() ||
219 !y.is_valid_3src() ||
220 !a.is_valid_3src()) {
221 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
222 fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
223 fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
224 fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
225
226 emit(MUL(y_times_a, y, a));
227
228 a.negate = !a.negate;
229 emit(ADD(one_minus_a, a, fs_reg(1.0f)));
230 emit(MUL(x_times_one_minus_a, x, one_minus_a));
231
232 emit(ADD(dst, x_times_one_minus_a, y_times_a));
233 } else {
234 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
235 * we need to reorder the operands.
236 */
237 emit(LRP(dst, a, y, x));
238 }
239 }
240
241 void
242 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
243 fs_reg src0, fs_reg src1)
244 {
245 fs_inst *inst;
246
247 if (brw->gen >= 6) {
248 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
249 inst->conditional_mod = conditionalmod;
250 } else {
251 emit(CMP(reg_null_d, src0, src1, conditionalmod));
252
253 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
254 inst->predicate = BRW_PREDICATE_NORMAL;
255 }
256 }
257
258 /* Instruction selection: Produce a MOV.sat instead of
259 * MIN(MAX(val, 0), 1) when possible.
260 */
261 bool
262 fs_visitor::try_emit_saturate(ir_expression *ir)
263 {
264 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
265
266 if (!sat_val)
267 return false;
268
269 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
270
271 sat_val->accept(this);
272 fs_reg src = this->result;
273
274 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
275
276 /* If the last instruction from our accept() didn't generate our
277 * src, generate a saturated MOV
278 */
279 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
280 if (!modify || modify->regs_written != 1) {
281 this->result = fs_reg(this, ir->type);
282 fs_inst *inst = emit(MOV(this->result, src));
283 inst->saturate = true;
284 } else {
285 modify->saturate = true;
286 this->result = src;
287 }
288
289
290 return true;
291 }
292
293 bool
294 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
295 {
296 /* 3-src instructions were introduced in gen6. */
297 if (brw->gen < 6)
298 return false;
299
300 /* MAD can only handle floating-point data. */
301 if (ir->type != glsl_type::float_type)
302 return false;
303
304 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
305 ir_expression *mul = ir->operands[mul_arg]->as_expression();
306
307 if (!mul || mul->operation != ir_binop_mul)
308 return false;
309
310 if (nonmul->as_constant() ||
311 mul->operands[0]->as_constant() ||
312 mul->operands[1]->as_constant())
313 return false;
314
315 nonmul->accept(this);
316 fs_reg src0 = this->result;
317
318 mul->operands[0]->accept(this);
319 fs_reg src1 = this->result;
320
321 mul->operands[1]->accept(this);
322 fs_reg src2 = this->result;
323
324 this->result = fs_reg(this, ir->type);
325 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
326
327 return true;
328 }
329
330 void
331 fs_visitor::visit(ir_expression *ir)
332 {
333 unsigned int operand;
334 fs_reg op[3], temp;
335 fs_inst *inst;
336
337 assert(ir->get_num_operands() <= 3);
338
339 if (try_emit_saturate(ir))
340 return;
341 if (ir->operation == ir_binop_add) {
342 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
343 return;
344 }
345
346 for (operand = 0; operand < ir->get_num_operands(); operand++) {
347 ir->operands[operand]->accept(this);
348 if (this->result.file == BAD_FILE) {
349 fail("Failed to get tree for expression operand:\n");
350 ir->operands[operand]->print();
351 printf("\n");
352 }
353 assert(this->result.is_valid_3src());
354 op[operand] = this->result;
355
356 /* Matrix expression operands should have been broken down to vector
357 * operations already.
358 */
359 assert(!ir->operands[operand]->type->is_matrix());
360 /* And then those vector operands should have been broken down to scalar.
361 */
362 assert(!ir->operands[operand]->type->is_vector());
363 }
364
365 /* Storage for our result. If our result goes into an assignment, it will
366 * just get copy-propagated out, so no worries.
367 */
368 this->result = fs_reg(this, ir->type);
369
370 switch (ir->operation) {
371 case ir_unop_logic_not:
372 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
373 * ones complement of the whole register, not just bit 0.
374 */
375 emit(XOR(this->result, op[0], fs_reg(1)));
376 break;
377 case ir_unop_neg:
378 op[0].negate = !op[0].negate;
379 emit(MOV(this->result, op[0]));
380 break;
381 case ir_unop_abs:
382 op[0].abs = true;
383 op[0].negate = false;
384 emit(MOV(this->result, op[0]));
385 break;
386 case ir_unop_sign:
387 if (ir->type->is_float()) {
388 /* AND(val, 0x80000000) gives the sign bit.
389 *
390 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
391 * zero.
392 */
393 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
394
395 op[0].type = BRW_REGISTER_TYPE_UD;
396 this->result.type = BRW_REGISTER_TYPE_UD;
397 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
398
399 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
400 inst->predicate = BRW_PREDICATE_NORMAL;
401
402 this->result.type = BRW_REGISTER_TYPE_F;
403 } else {
404 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
405 * -> non-negative val generates 0x00000000.
406 * Predicated OR sets 1 if val is positive.
407 */
408 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
409
410 emit(ASR(this->result, op[0], fs_reg(31)));
411
412 inst = emit(OR(this->result, this->result, fs_reg(1)));
413 inst->predicate = BRW_PREDICATE_NORMAL;
414 }
415 break;
416 case ir_unop_rcp:
417 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
418 break;
419
420 case ir_unop_exp2:
421 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
422 break;
423 case ir_unop_log2:
424 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
425 break;
426 case ir_unop_exp:
427 case ir_unop_log:
428 assert(!"not reached: should be handled by ir_explog_to_explog2");
429 break;
430 case ir_unop_sin:
431 case ir_unop_sin_reduced:
432 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
433 break;
434 case ir_unop_cos:
435 case ir_unop_cos_reduced:
436 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
437 break;
438
439 case ir_unop_dFdx:
440 emit(FS_OPCODE_DDX, this->result, op[0]);
441 break;
442 case ir_unop_dFdy:
443 emit(FS_OPCODE_DDY, this->result, op[0]);
444 break;
445
446 case ir_binop_add:
447 emit(ADD(this->result, op[0], op[1]));
448 break;
449 case ir_binop_sub:
450 assert(!"not reached: should be handled by ir_sub_to_add_neg");
451 break;
452
453 case ir_binop_mul:
454 if (brw->gen < 8 && ir->type->is_integer()) {
455 /* For integer multiplication, the MUL uses the low 16 bits
456 * of one of the operands (src0 on gen6, src1 on gen7). The
457 * MACH accumulates in the contribution of the upper 16 bits
458 * of that operand.
459 *
460 * FINISHME: Emit just the MUL if we know an operand is small
461 * enough.
462 */
463 if (brw->gen >= 7 && dispatch_width == 16)
464 fail("SIMD16 explicit accumulator operands unsupported\n");
465
466 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
467
468 emit(MUL(acc, op[0], op[1]));
469 emit(MACH(reg_null_d, op[0], op[1]));
470 emit(MOV(this->result, fs_reg(acc)));
471 } else {
472 emit(MUL(this->result, op[0], op[1]));
473 }
474 break;
475 case ir_binop_imul_high: {
476 if (brw->gen >= 7 && dispatch_width == 16)
477 fail("SIMD16 explicit accumulator operands unsupported\n");
478
479 struct brw_reg acc = retype(brw_acc_reg(), this->result.type);
480
481 emit(MUL(acc, op[0], op[1]));
482 emit(MACH(this->result, op[0], op[1]));
483 break;
484 }
485 case ir_binop_div:
486 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
487 assert(ir->type->is_integer());
488 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
489 break;
490 case ir_binop_carry: {
491 if (brw->gen >= 7 && dispatch_width == 16)
492 fail("SIMD16 explicit accumulator operands unsupported\n");
493
494 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
495
496 emit(ADDC(reg_null_ud, op[0], op[1]));
497 emit(MOV(this->result, fs_reg(acc)));
498 break;
499 }
500 case ir_binop_borrow: {
501 if (brw->gen >= 7 && dispatch_width == 16)
502 fail("SIMD16 explicit accumulator operands unsupported\n");
503
504 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
505
506 emit(SUBB(reg_null_ud, op[0], op[1]));
507 emit(MOV(this->result, fs_reg(acc)));
508 break;
509 }
510 case ir_binop_mod:
511 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
512 assert(ir->type->is_integer());
513 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
514 break;
515
516 case ir_binop_less:
517 case ir_binop_greater:
518 case ir_binop_lequal:
519 case ir_binop_gequal:
520 case ir_binop_equal:
521 case ir_binop_all_equal:
522 case ir_binop_nequal:
523 case ir_binop_any_nequal:
524 resolve_bool_comparison(ir->operands[0], &op[0]);
525 resolve_bool_comparison(ir->operands[1], &op[1]);
526
527 emit(CMP(this->result, op[0], op[1],
528 brw_conditional_for_comparison(ir->operation)));
529 break;
530
531 case ir_binop_logic_xor:
532 emit(XOR(this->result, op[0], op[1]));
533 break;
534
535 case ir_binop_logic_or:
536 emit(OR(this->result, op[0], op[1]));
537 break;
538
539 case ir_binop_logic_and:
540 emit(AND(this->result, op[0], op[1]));
541 break;
542
543 case ir_binop_dot:
544 case ir_unop_any:
545 assert(!"not reached: should be handled by brw_fs_channel_expressions");
546 break;
547
548 case ir_unop_noise:
549 assert(!"not reached: should be handled by lower_noise");
550 break;
551
552 case ir_quadop_vector:
553 assert(!"not reached: should be handled by lower_quadop_vector");
554 break;
555
556 case ir_binop_vector_extract:
557 assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
558 break;
559
560 case ir_triop_vector_insert:
561 assert(!"not reached: should be handled by lower_vector_insert()");
562 break;
563
564 case ir_binop_ldexp:
565 assert(!"not reached: should be handled by ldexp_to_arith()");
566 break;
567
568 case ir_unop_sqrt:
569 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
570 break;
571
572 case ir_unop_rsq:
573 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
574 break;
575
576 case ir_unop_bitcast_i2f:
577 case ir_unop_bitcast_u2f:
578 op[0].type = BRW_REGISTER_TYPE_F;
579 this->result = op[0];
580 break;
581 case ir_unop_i2u:
582 case ir_unop_bitcast_f2u:
583 op[0].type = BRW_REGISTER_TYPE_UD;
584 this->result = op[0];
585 break;
586 case ir_unop_u2i:
587 case ir_unop_bitcast_f2i:
588 op[0].type = BRW_REGISTER_TYPE_D;
589 this->result = op[0];
590 break;
591 case ir_unop_i2f:
592 case ir_unop_u2f:
593 case ir_unop_f2i:
594 case ir_unop_f2u:
595 emit(MOV(this->result, op[0]));
596 break;
597
598 case ir_unop_b2i:
599 emit(AND(this->result, op[0], fs_reg(1)));
600 break;
601 case ir_unop_b2f:
602 temp = fs_reg(this, glsl_type::int_type);
603 emit(AND(temp, op[0], fs_reg(1)));
604 emit(MOV(this->result, temp));
605 break;
606
607 case ir_unop_f2b:
608 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
609 break;
610 case ir_unop_i2b:
611 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
612 break;
613
614 case ir_unop_trunc:
615 emit(RNDZ(this->result, op[0]));
616 break;
617 case ir_unop_ceil:
618 op[0].negate = !op[0].negate;
619 emit(RNDD(this->result, op[0]));
620 this->result.negate = true;
621 break;
622 case ir_unop_floor:
623 emit(RNDD(this->result, op[0]));
624 break;
625 case ir_unop_fract:
626 emit(FRC(this->result, op[0]));
627 break;
628 case ir_unop_round_even:
629 emit(RNDE(this->result, op[0]));
630 break;
631
632 case ir_binop_min:
633 case ir_binop_max:
634 resolve_ud_negate(&op[0]);
635 resolve_ud_negate(&op[1]);
636 emit_minmax(ir->operation == ir_binop_min ?
637 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
638 this->result, op[0], op[1]);
639 break;
640 case ir_unop_pack_snorm_2x16:
641 case ir_unop_pack_snorm_4x8:
642 case ir_unop_pack_unorm_2x16:
643 case ir_unop_pack_unorm_4x8:
644 case ir_unop_unpack_snorm_2x16:
645 case ir_unop_unpack_snorm_4x8:
646 case ir_unop_unpack_unorm_2x16:
647 case ir_unop_unpack_unorm_4x8:
648 case ir_unop_unpack_half_2x16:
649 case ir_unop_pack_half_2x16:
650 assert(!"not reached: should be handled by lower_packing_builtins");
651 break;
652 case ir_unop_unpack_half_2x16_split_x:
653 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
654 break;
655 case ir_unop_unpack_half_2x16_split_y:
656 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
657 break;
658 case ir_binop_pow:
659 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
660 break;
661
662 case ir_unop_bitfield_reverse:
663 emit(BFREV(this->result, op[0]));
664 break;
665 case ir_unop_bit_count:
666 emit(CBIT(this->result, op[0]));
667 break;
668 case ir_unop_find_msb:
669 temp = fs_reg(this, glsl_type::uint_type);
670 emit(FBH(temp, op[0]));
671
672 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
673 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
674 * subtract the result from 31 to convert the MSB count into an LSB count.
675 */
676
677 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
678 emit(MOV(this->result, temp));
679 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
680
681 temp.negate = true;
682 inst = emit(ADD(this->result, temp, fs_reg(31)));
683 inst->predicate = BRW_PREDICATE_NORMAL;
684 break;
685 case ir_unop_find_lsb:
686 emit(FBL(this->result, op[0]));
687 break;
688 case ir_triop_bitfield_extract:
689 /* Note that the instruction's argument order is reversed from GLSL
690 * and the IR.
691 */
692 emit(BFE(this->result, op[2], op[1], op[0]));
693 break;
694 case ir_binop_bfm:
695 emit(BFI1(this->result, op[0], op[1]));
696 break;
697 case ir_triop_bfi:
698 emit(BFI2(this->result, op[0], op[1], op[2]));
699 break;
700 case ir_quadop_bitfield_insert:
701 assert(!"not reached: should be handled by "
702 "lower_instructions::bitfield_insert_to_bfm_bfi");
703 break;
704
705 case ir_unop_bit_not:
706 emit(NOT(this->result, op[0]));
707 break;
708 case ir_binop_bit_and:
709 emit(AND(this->result, op[0], op[1]));
710 break;
711 case ir_binop_bit_xor:
712 emit(XOR(this->result, op[0], op[1]));
713 break;
714 case ir_binop_bit_or:
715 emit(OR(this->result, op[0], op[1]));
716 break;
717
718 case ir_binop_lshift:
719 emit(SHL(this->result, op[0], op[1]));
720 break;
721
722 case ir_binop_rshift:
723 if (ir->type->base_type == GLSL_TYPE_INT)
724 emit(ASR(this->result, op[0], op[1]));
725 else
726 emit(SHR(this->result, op[0], op[1]));
727 break;
728 case ir_binop_pack_half_2x16_split:
729 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
730 break;
731 case ir_binop_ubo_load: {
732 /* This IR node takes a constant uniform block and a constant or
733 * variable byte offset within the block and loads a vector from that.
734 */
735 ir_constant *uniform_block = ir->operands[0]->as_constant();
736 ir_constant *const_offset = ir->operands[1]->as_constant();
737 fs_reg surf_index = fs_reg(c->prog_data.base.binding_table.ubo_start +
738 uniform_block->value.u[0]);
739 if (const_offset) {
740 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
741 packed_consts.type = result.type;
742
743 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
744 emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
745 packed_consts, surf_index, const_offset_reg));
746
747 for (int i = 0; i < ir->type->vector_elements; i++) {
748 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
749
750 /* The std140 packing rules don't allow vectors to cross 16-byte
751 * boundaries, and a reg is 32 bytes.
752 */
753 assert(packed_consts.subreg_offset < 32);
754
755 /* UBO bools are any nonzero value. We consider bools to be
756 * values with the low bit set to 1. Convert them using CMP.
757 */
758 if (ir->type->base_type == GLSL_TYPE_BOOL) {
759 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
760 } else {
761 emit(MOV(result, packed_consts));
762 }
763
764 result.reg_offset++;
765 }
766 } else {
767 /* Turn the byte offset into a dword offset. */
768 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
769 emit(SHR(base_offset, op[1], fs_reg(2)));
770
771 for (int i = 0; i < ir->type->vector_elements; i++) {
772 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
773 base_offset, i));
774
775 if (ir->type->base_type == GLSL_TYPE_BOOL)
776 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
777
778 result.reg_offset++;
779 }
780 }
781
782 result.reg_offset = 0;
783 break;
784 }
785
786 case ir_triop_fma:
787 /* Note that the instruction's argument order is reversed from GLSL
788 * and the IR.
789 */
790 emit(MAD(this->result, op[2], op[1], op[0]));
791 break;
792
793 case ir_triop_lrp:
794 emit_lrp(this->result, op[0], op[1], op[2]);
795 break;
796
797 case ir_triop_csel:
798 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
799 inst = emit(BRW_OPCODE_SEL, this->result, op[1], op[2]);
800 inst->predicate = BRW_PREDICATE_NORMAL;
801 break;
802 }
803 }
804
805 void
806 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
807 const glsl_type *type, bool predicated)
808 {
809 switch (type->base_type) {
810 case GLSL_TYPE_FLOAT:
811 case GLSL_TYPE_UINT:
812 case GLSL_TYPE_INT:
813 case GLSL_TYPE_BOOL:
814 for (unsigned int i = 0; i < type->components(); i++) {
815 l.type = brw_type_for_base_type(type);
816 r.type = brw_type_for_base_type(type);
817
818 if (predicated || !l.equals(r)) {
819 fs_inst *inst = emit(MOV(l, r));
820 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
821 }
822
823 l.reg_offset++;
824 r.reg_offset++;
825 }
826 break;
827 case GLSL_TYPE_ARRAY:
828 for (unsigned int i = 0; i < type->length; i++) {
829 emit_assignment_writes(l, r, type->fields.array, predicated);
830 }
831 break;
832
833 case GLSL_TYPE_STRUCT:
834 for (unsigned int i = 0; i < type->length; i++) {
835 emit_assignment_writes(l, r, type->fields.structure[i].type,
836 predicated);
837 }
838 break;
839
840 case GLSL_TYPE_SAMPLER:
841 case GLSL_TYPE_IMAGE:
842 case GLSL_TYPE_ATOMIC_UINT:
843 break;
844
845 case GLSL_TYPE_VOID:
846 case GLSL_TYPE_ERROR:
847 case GLSL_TYPE_INTERFACE:
848 assert(!"not reached");
849 break;
850 }
851 }
852
853 /* If the RHS processing resulted in an instruction generating a
854 * temporary value, and it would be easy to rewrite the instruction to
855 * generate its result right into the LHS instead, do so. This ends
856 * up reliably removing instructions where it can be tricky to do so
857 * later without real UD chain information.
858 */
859 bool
860 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
861 fs_reg dst,
862 fs_reg src,
863 fs_inst *pre_rhs_inst,
864 fs_inst *last_rhs_inst)
865 {
866 /* Only attempt if we're doing a direct assignment. */
867 if (ir->condition ||
868 !(ir->lhs->type->is_scalar() ||
869 (ir->lhs->type->is_vector() &&
870 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
871 return false;
872
873 /* Make sure the last instruction generated our source reg. */
874 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
875 last_rhs_inst,
876 src);
877 if (!modify)
878 return false;
879
880 /* If last_rhs_inst wrote a different number of components than our LHS,
881 * we can't safely rewrite it.
882 */
883 if (virtual_grf_sizes[dst.reg] != modify->regs_written)
884 return false;
885
886 /* Success! Rewrite the instruction. */
887 modify->dst = dst;
888
889 return true;
890 }
891
892 void
893 fs_visitor::visit(ir_assignment *ir)
894 {
895 fs_reg l, r;
896 fs_inst *inst;
897
898 /* FINISHME: arrays on the lhs */
899 ir->lhs->accept(this);
900 l = this->result;
901
902 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
903
904 ir->rhs->accept(this);
905 r = this->result;
906
907 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
908
909 assert(l.file != BAD_FILE);
910 assert(r.file != BAD_FILE);
911
912 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
913 return;
914
915 if (ir->condition) {
916 emit_bool_to_cond_code(ir->condition);
917 }
918
919 if (ir->lhs->type->is_scalar() ||
920 ir->lhs->type->is_vector()) {
921 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
922 if (ir->write_mask & (1 << i)) {
923 inst = emit(MOV(l, r));
924 if (ir->condition)
925 inst->predicate = BRW_PREDICATE_NORMAL;
926 r.reg_offset++;
927 }
928 l.reg_offset++;
929 }
930 } else {
931 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
932 }
933 }
934
935 fs_inst *
936 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
937 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
938 {
939 int mlen;
940 int base_mrf = 1;
941 bool simd16 = false;
942 fs_reg orig_dst;
943
944 /* g0 header. */
945 mlen = 1;
946
947 if (ir->shadow_comparitor) {
948 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
949 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
950 coordinate.reg_offset++;
951 }
952
953 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
954 * the unused slots must be zeroed.
955 */
956 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
957 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
958 }
959 mlen += 3;
960
961 if (ir->op == ir_tex) {
962 /* There's no plain shadow compare message, so we use shadow
963 * compare with a bias of 0.0.
964 */
965 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
966 mlen++;
967 } else if (ir->op == ir_txb || ir->op == ir_txl) {
968 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
969 mlen++;
970 } else {
971 assert(!"Should not get here.");
972 }
973
974 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
975 mlen++;
976 } else if (ir->op == ir_tex) {
977 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
978 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
979 coordinate.reg_offset++;
980 }
981 /* zero the others. */
982 for (int i = ir->coordinate->type->vector_elements; i<3; i++) {
983 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
984 }
985 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
986 mlen += 3;
987 } else if (ir->op == ir_txd) {
988 fs_reg &dPdx = lod;
989
990 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
991 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
992 coordinate.reg_offset++;
993 }
994 /* the slots for u and v are always present, but r is optional */
995 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
996
997 /* P = u, v, r
998 * dPdx = dudx, dvdx, drdx
999 * dPdy = dudy, dvdy, drdy
1000 *
1001 * 1-arg: Does not exist.
1002 *
1003 * 2-arg: dudx dvdx dudy dvdy
1004 * dPdx.x dPdx.y dPdy.x dPdy.y
1005 * m4 m5 m6 m7
1006 *
1007 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1008 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1009 * m5 m6 m7 m8 m9 m10
1010 */
1011 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1012 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1013 dPdx.reg_offset++;
1014 }
1015 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
1016
1017 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
1018 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1019 dPdy.reg_offset++;
1020 }
1021 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
1022 } else if (ir->op == ir_txs) {
1023 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1024 simd16 = true;
1025 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1026 mlen += 2;
1027 } else {
1028 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1029 * instructions. We'll need to do SIMD16 here.
1030 */
1031 simd16 = true;
1032 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
1033
1034 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1035 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1036 coordinate));
1037 coordinate.reg_offset++;
1038 }
1039
1040 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1041 * be necessary for TXF (ld), but seems wise to do for all messages.
1042 */
1043 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
1044 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1045 }
1046
1047 /* lod/bias appears after u/v/r. */
1048 mlen += 6;
1049
1050 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1051 mlen++;
1052
1053 /* The unused upper half. */
1054 mlen++;
1055 }
1056
1057 if (simd16) {
1058 /* Now, since we're doing simd16, the return is 2 interleaved
1059 * vec4s where the odd-indexed ones are junk. We'll need to move
1060 * this weirdness around to the expected layout.
1061 */
1062 orig_dst = dst;
1063 dst = fs_reg(GRF, virtual_grf_alloc(8),
1064 (brw->is_g4x ?
1065 brw_type_for_base_type(ir->type) :
1066 BRW_REGISTER_TYPE_F));
1067 }
1068
1069 fs_inst *inst = NULL;
1070 switch (ir->op) {
1071 case ir_tex:
1072 inst = emit(SHADER_OPCODE_TEX, dst);
1073 break;
1074 case ir_txb:
1075 inst = emit(FS_OPCODE_TXB, dst);
1076 break;
1077 case ir_txl:
1078 inst = emit(SHADER_OPCODE_TXL, dst);
1079 break;
1080 case ir_txd:
1081 inst = emit(SHADER_OPCODE_TXD, dst);
1082 break;
1083 case ir_txs:
1084 inst = emit(SHADER_OPCODE_TXS, dst);
1085 break;
1086 case ir_txf:
1087 inst = emit(SHADER_OPCODE_TXF, dst);
1088 break;
1089 default:
1090 fail("unrecognized texture opcode");
1091 }
1092 inst->base_mrf = base_mrf;
1093 inst->mlen = mlen;
1094 inst->header_present = true;
1095 inst->regs_written = simd16 ? 8 : 4;
1096
1097 if (simd16) {
1098 for (int i = 0; i < 4; i++) {
1099 emit(MOV(orig_dst, dst));
1100 orig_dst.reg_offset++;
1101 dst.reg_offset += 2;
1102 }
1103 }
1104
1105 return inst;
1106 }
1107
1108 /* gen5's sampler has slots for u, v, r, array index, then optional
1109 * parameters like shadow comparitor or LOD bias. If optional
1110 * parameters aren't present, those base slots are optional and don't
1111 * need to be included in the message.
1112 *
1113 * We don't fill in the unnecessary slots regardless, which may look
1114 * surprising in the disassembly.
1115 */
1116 fs_inst *
1117 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1118 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1119 fs_reg sample_index)
1120 {
1121 int mlen = 0;
1122 int base_mrf = 2;
1123 int reg_width = dispatch_width / 8;
1124 bool header_present = false;
1125 const int vector_elements =
1126 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
1127
1128 if (ir->offset) {
1129 /* The offsets set up by the ir_texture visitor are in the
1130 * m1 header, so we can't go headerless.
1131 */
1132 header_present = true;
1133 mlen++;
1134 base_mrf--;
1135 }
1136
1137 for (int i = 0; i < vector_elements; i++) {
1138 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
1139 coordinate));
1140 coordinate.reg_offset++;
1141 }
1142 mlen += vector_elements * reg_width;
1143
1144 if (ir->shadow_comparitor) {
1145 mlen = MAX2(mlen, header_present + 4 * reg_width);
1146
1147 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1148 mlen += reg_width;
1149 }
1150
1151 fs_inst *inst = NULL;
1152 switch (ir->op) {
1153 case ir_tex:
1154 inst = emit(SHADER_OPCODE_TEX, dst);
1155 break;
1156 case ir_txb:
1157 mlen = MAX2(mlen, header_present + 4 * reg_width);
1158 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1159 mlen += reg_width;
1160
1161 inst = emit(FS_OPCODE_TXB, dst);
1162 break;
1163 case ir_txl:
1164 mlen = MAX2(mlen, header_present + 4 * reg_width);
1165 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1166 mlen += reg_width;
1167
1168 inst = emit(SHADER_OPCODE_TXL, dst);
1169 break;
1170 case ir_txd: {
1171 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1172
1173 /**
1174 * P = u, v, r
1175 * dPdx = dudx, dvdx, drdx
1176 * dPdy = dudy, dvdy, drdy
1177 *
1178 * Load up these values:
1179 * - dudx dudy dvdx dvdy drdx drdy
1180 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1181 */
1182 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1183 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1184 lod.reg_offset++;
1185 mlen += reg_width;
1186
1187 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1188 lod2.reg_offset++;
1189 mlen += reg_width;
1190 }
1191
1192 inst = emit(SHADER_OPCODE_TXD, dst);
1193 break;
1194 }
1195 case ir_txs:
1196 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1197 mlen += reg_width;
1198 inst = emit(SHADER_OPCODE_TXS, dst);
1199 break;
1200 case ir_query_levels:
1201 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1202 mlen += reg_width;
1203 inst = emit(SHADER_OPCODE_TXS, dst);
1204 break;
1205 case ir_txf:
1206 mlen = header_present + 4 * reg_width;
1207 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
1208 inst = emit(SHADER_OPCODE_TXF, dst);
1209 break;
1210 case ir_txf_ms:
1211 mlen = header_present + 4 * reg_width;
1212
1213 /* lod */
1214 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
1215 /* sample index */
1216 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
1217 mlen += reg_width;
1218 inst = emit(SHADER_OPCODE_TXF_CMS, dst);
1219 break;
1220 case ir_lod:
1221 inst = emit(SHADER_OPCODE_LOD, dst);
1222 break;
1223 case ir_tg4:
1224 inst = emit(SHADER_OPCODE_TG4, dst);
1225 break;
1226 default:
1227 fail("unrecognized texture opcode");
1228 break;
1229 }
1230 inst->base_mrf = base_mrf;
1231 inst->mlen = mlen;
1232 inst->header_present = header_present;
1233 inst->regs_written = 4;
1234
1235 if (mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1236 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1237 " disallowed by hardware\n");
1238 }
1239
1240 return inst;
1241 }
1242
1243 fs_inst *
1244 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1245 fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1246 fs_reg sample_index, fs_reg mcs, int sampler)
1247 {
1248 int reg_width = dispatch_width / 8;
1249 bool header_present = false;
1250
1251 fs_reg payload = fs_reg(this, glsl_type::float_type);
1252 fs_reg next = payload;
1253
1254 if (ir->op == ir_tg4 || (ir->offset && ir->op != ir_txf) || sampler >= 16) {
1255 /* For general texture offsets (no txf workaround), we need a header to
1256 * put them in. Note that for SIMD16 we're making space for two actual
1257 * hardware registers here, so the emit will have to fix up for this.
1258 *
1259 * * ir4_tg4 needs to place its channel select in the header,
1260 * for interaction with ARB_texture_swizzle
1261 *
1262 * The sampler index is only 4-bits, so for larger sampler numbers we
1263 * need to offset the Sampler State Pointer in the header.
1264 */
1265 header_present = true;
1266 next.reg_offset++;
1267 }
1268
1269 if (ir->shadow_comparitor) {
1270 emit(MOV(next, shadow_c));
1271 next.reg_offset++;
1272 }
1273
1274 bool has_nonconstant_offset = ir->offset && !ir->offset->as_constant();
1275 bool coordinate_done = false;
1276
1277 /* Set up the LOD info */
1278 switch (ir->op) {
1279 case ir_tex:
1280 case ir_lod:
1281 break;
1282 case ir_txb:
1283 emit(MOV(next, lod));
1284 next.reg_offset++;
1285 break;
1286 case ir_txl:
1287 emit(MOV(next, lod));
1288 next.reg_offset++;
1289 break;
1290 case ir_txd: {
1291 if (dispatch_width == 16)
1292 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1293
1294 /* Load dPdx and the coordinate together:
1295 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1296 */
1297 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1298 emit(MOV(next, coordinate));
1299 coordinate.reg_offset++;
1300 next.reg_offset++;
1301
1302 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1303 * only derivatives for (u, v, r).
1304 */
1305 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1306 emit(MOV(next, lod));
1307 lod.reg_offset++;
1308 next.reg_offset++;
1309
1310 emit(MOV(next, lod2));
1311 lod2.reg_offset++;
1312 next.reg_offset++;
1313 }
1314 }
1315
1316 coordinate_done = true;
1317 break;
1318 }
1319 case ir_txs:
1320 emit(MOV(retype(next, BRW_REGISTER_TYPE_UD), lod));
1321 next.reg_offset++;
1322 break;
1323 case ir_query_levels:
1324 emit(MOV(retype(next, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1325 next.reg_offset++;
1326 break;
1327 case ir_txf:
1328 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1329 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), coordinate));
1330 coordinate.reg_offset++;
1331 next.reg_offset++;
1332
1333 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), lod));
1334 next.reg_offset++;
1335
1336 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1337 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), coordinate));
1338 coordinate.reg_offset++;
1339 next.reg_offset++;
1340 }
1341
1342 coordinate_done = true;
1343 break;
1344 case ir_txf_ms:
1345 emit(MOV(retype(next, BRW_REGISTER_TYPE_UD), sample_index));
1346 next.reg_offset++;
1347
1348 /* data from the multisample control surface */
1349 emit(MOV(retype(next, BRW_REGISTER_TYPE_UD), mcs));
1350 next.reg_offset++;
1351
1352 /* there is no offsetting for this message; just copy in the integer
1353 * texture coordinates
1354 */
1355 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1356 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), coordinate));
1357 coordinate.reg_offset++;
1358 next.reg_offset++;
1359 }
1360
1361 coordinate_done = true;
1362 break;
1363 case ir_tg4:
1364 if (has_nonconstant_offset) {
1365 if (ir->shadow_comparitor && dispatch_width == 16)
1366 fail("Gen7 does not support gather4_po_c in SIMD16 mode.");
1367
1368 /* More crazy intermixing */
1369 ir->offset->accept(this);
1370 fs_reg offset_value = this->result;
1371
1372 for (int i = 0; i < 2; i++) { /* u, v */
1373 emit(MOV(next, coordinate));
1374 coordinate.reg_offset++;
1375 next.reg_offset++;
1376 }
1377
1378 for (int i = 0; i < 2; i++) { /* offu, offv */
1379 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), offset_value));
1380 offset_value.reg_offset++;
1381 next.reg_offset++;
1382 }
1383
1384 if (ir->coordinate->type->vector_elements == 3) { /* r if present */
1385 emit(MOV(next, coordinate));
1386 coordinate.reg_offset++;
1387 next.reg_offset++;
1388 }
1389
1390 coordinate_done = true;
1391 }
1392 break;
1393 }
1394
1395 /* Set up the coordinate (except for cases where it was done above) */
1396 if (ir->coordinate && !coordinate_done) {
1397 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1398 emit(MOV(next, coordinate));
1399 coordinate.reg_offset++;
1400 next.reg_offset++;
1401 }
1402 }
1403
1404 /* Generate the SEND */
1405 fs_inst *inst = NULL;
1406 switch (ir->op) {
1407 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst, payload); break;
1408 case ir_txb: inst = emit(FS_OPCODE_TXB, dst, payload); break;
1409 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst, payload); break;
1410 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst, payload); break;
1411 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst, payload); break;
1412 case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_CMS, dst, payload); break;
1413 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1414 case ir_query_levels: inst = emit(SHADER_OPCODE_TXS, dst, payload); break;
1415 case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst, payload); break;
1416 case ir_tg4:
1417 if (has_nonconstant_offset)
1418 inst = emit(SHADER_OPCODE_TG4_OFFSET, dst, payload);
1419 else
1420 inst = emit(SHADER_OPCODE_TG4, dst, payload);
1421 break;
1422 }
1423 inst->base_mrf = -1;
1424 if (reg_width == 2)
1425 inst->mlen = next.reg_offset * reg_width - header_present;
1426 else
1427 inst->mlen = next.reg_offset * reg_width;
1428 inst->header_present = header_present;
1429 inst->regs_written = 4;
1430
1431 virtual_grf_sizes[payload.reg] = next.reg_offset;
1432 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1433 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1434 " disallowed by hardware\n");
1435 }
1436
1437 return inst;
1438 }
1439
1440 fs_reg
1441 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1442 bool is_rect, int sampler, int texunit)
1443 {
1444 fs_inst *inst = NULL;
1445 bool needs_gl_clamp = true;
1446 fs_reg scale_x, scale_y;
1447
1448 /* The 965 requires the EU to do the normalization of GL rectangle
1449 * texture coordinates. We use the program parameter state
1450 * tracking to get the scaling factor.
1451 */
1452 if (is_rect &&
1453 (brw->gen < 6 ||
1454 (brw->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1455 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1456 struct gl_program_parameter_list *params = prog->Parameters;
1457 int tokens[STATE_LENGTH] = {
1458 STATE_INTERNAL,
1459 STATE_TEXRECT_SCALE,
1460 texunit,
1461 0,
1462 0
1463 };
1464
1465 if (dispatch_width == 16) {
1466 fail("rectangle scale uniform setup not supported on SIMD16\n");
1467 return coordinate;
1468 }
1469
1470 scale_x = fs_reg(UNIFORM, uniforms);
1471 scale_y = fs_reg(UNIFORM, uniforms + 1);
1472
1473 GLuint index = _mesa_add_state_reference(params,
1474 (gl_state_index *)tokens);
1475 stage_prog_data->param[uniforms++] =
1476 &prog->Parameters->ParameterValues[index][0].f;
1477 stage_prog_data->param[uniforms++] =
1478 &prog->Parameters->ParameterValues[index][1].f;
1479 }
1480
1481 /* The 965 requires the EU to do the normalization of GL rectangle
1482 * texture coordinates. We use the program parameter state
1483 * tracking to get the scaling factor.
1484 */
1485 if (brw->gen < 6 && is_rect) {
1486 fs_reg dst = fs_reg(this, ir->coordinate->type);
1487 fs_reg src = coordinate;
1488 coordinate = dst;
1489
1490 emit(MUL(dst, src, scale_x));
1491 dst.reg_offset++;
1492 src.reg_offset++;
1493 emit(MUL(dst, src, scale_y));
1494 } else if (is_rect) {
1495 /* On gen6+, the sampler handles the rectangle coordinates
1496 * natively, without needing rescaling. But that means we have
1497 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1498 * not [0, 1] like the default case below.
1499 */
1500 needs_gl_clamp = false;
1501
1502 for (int i = 0; i < 2; i++) {
1503 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1504 fs_reg chan = coordinate;
1505 chan.reg_offset += i;
1506
1507 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1508 inst->conditional_mod = BRW_CONDITIONAL_G;
1509
1510 /* Our parameter comes in as 1.0/width or 1.0/height,
1511 * because that's what people normally want for doing
1512 * texture rectangle handling. We need width or height
1513 * for clamping, but we don't care enough to make a new
1514 * parameter type, so just invert back.
1515 */
1516 fs_reg limit = fs_reg(this, glsl_type::float_type);
1517 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1518 emit(SHADER_OPCODE_RCP, limit, limit);
1519
1520 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1521 inst->conditional_mod = BRW_CONDITIONAL_L;
1522 }
1523 }
1524 }
1525
1526 if (ir->coordinate && needs_gl_clamp) {
1527 for (unsigned int i = 0;
1528 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1529 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1530 fs_reg chan = coordinate;
1531 chan.reg_offset += i;
1532
1533 fs_inst *inst = emit(MOV(chan, chan));
1534 inst->saturate = true;
1535 }
1536 }
1537 }
1538 return coordinate;
1539 }
1540
1541 /* Sample from the MCS surface attached to this multisample texture. */
1542 fs_reg
1543 fs_visitor::emit_mcs_fetch(ir_texture *ir, fs_reg coordinate, int sampler)
1544 {
1545 int reg_width = dispatch_width / 8;
1546 fs_reg payload = fs_reg(this, glsl_type::float_type);
1547 fs_reg dest = fs_reg(this, glsl_type::uvec4_type);
1548 fs_reg next = payload;
1549
1550 /* parameters are: u, v, r, lod; missing parameters are treated as zero */
1551 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1552 emit(MOV(retype(next, BRW_REGISTER_TYPE_D), coordinate));
1553 coordinate.reg_offset++;
1554 next.reg_offset++;
1555 }
1556
1557 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload);
1558 virtual_grf_sizes[payload.reg] = next.reg_offset;
1559 inst->base_mrf = -1;
1560 inst->mlen = next.reg_offset * reg_width;
1561 inst->header_present = false;
1562 inst->regs_written = 4 * reg_width; /* we only care about one reg of response,
1563 * but the sampler always writes 4/8
1564 */
1565 inst->sampler = sampler;
1566
1567 return dest;
1568 }
1569
1570 void
1571 fs_visitor::visit(ir_texture *ir)
1572 {
1573 fs_inst *inst = NULL;
1574
1575 int sampler =
1576 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
1577 /* FINISHME: We're failing to recompile our programs when the sampler is
1578 * updated. This only matters for the texture rectangle scale parameters
1579 * (pre-gen6, or gen6+ with GL_CLAMP).
1580 */
1581 int texunit = prog->SamplerUnits[sampler];
1582
1583 if (ir->op == ir_tg4) {
1584 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
1585 * emitting anything other than setting up the constant result.
1586 */
1587 ir_constant *chan = ir->lod_info.component->as_constant();
1588 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1589 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
1590
1591 fs_reg res = fs_reg(this, glsl_type::vec4_type);
1592 this->result = res;
1593
1594 for (int i=0; i<4; i++) {
1595 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
1596 res.reg_offset++;
1597 }
1598 return;
1599 }
1600 }
1601
1602 /* Should be lowered by do_lower_texture_projection */
1603 assert(!ir->projector);
1604
1605 /* Should be lowered */
1606 assert(!ir->offset || !ir->offset->type->is_array());
1607
1608 /* Generate code to compute all the subexpression trees. This has to be
1609 * done before loading any values into MRFs for the sampler message since
1610 * generating these values may involve SEND messages that need the MRFs.
1611 */
1612 fs_reg coordinate;
1613 if (ir->coordinate) {
1614 ir->coordinate->accept(this);
1615
1616 coordinate = rescale_texcoord(ir, this->result,
1617 ir->sampler->type->sampler_dimensionality ==
1618 GLSL_SAMPLER_DIM_RECT,
1619 sampler, texunit);
1620 }
1621
1622 fs_reg shadow_comparitor;
1623 if (ir->shadow_comparitor) {
1624 ir->shadow_comparitor->accept(this);
1625 shadow_comparitor = this->result;
1626 }
1627
1628 fs_reg lod, lod2, sample_index, mcs;
1629 switch (ir->op) {
1630 case ir_tex:
1631 case ir_lod:
1632 case ir_tg4:
1633 case ir_query_levels:
1634 break;
1635 case ir_txb:
1636 ir->lod_info.bias->accept(this);
1637 lod = this->result;
1638 break;
1639 case ir_txd:
1640 ir->lod_info.grad.dPdx->accept(this);
1641 lod = this->result;
1642
1643 ir->lod_info.grad.dPdy->accept(this);
1644 lod2 = this->result;
1645 break;
1646 case ir_txf:
1647 case ir_txl:
1648 case ir_txs:
1649 ir->lod_info.lod->accept(this);
1650 lod = this->result;
1651 break;
1652 case ir_txf_ms:
1653 ir->lod_info.sample_index->accept(this);
1654 sample_index = this->result;
1655
1656 if (brw->gen >= 7 && c->key.tex.compressed_multisample_layout_mask & (1<<sampler))
1657 mcs = emit_mcs_fetch(ir, coordinate, sampler);
1658 else
1659 mcs = fs_reg(0u);
1660 break;
1661 default:
1662 assert(!"Unrecognized texture opcode");
1663 };
1664
1665 /* Writemasking doesn't eliminate channels on SIMD8 texture
1666 * samples, so don't worry about them.
1667 */
1668 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1669
1670 if (brw->gen >= 7) {
1671 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1672 lod, lod2, sample_index, mcs, sampler);
1673 } else if (brw->gen >= 5) {
1674 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1675 lod, lod2, sample_index);
1676 } else {
1677 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1678 lod, lod2);
1679 }
1680
1681 if (ir->offset != NULL && ir->op != ir_txf)
1682 inst->texture_offset = brw_texture_offset(ctx, ir->offset->as_constant());
1683
1684 if (ir->op == ir_tg4)
1685 inst->texture_offset |= gather_channel(ir, sampler) << 16; // M0.2:16-17
1686
1687 inst->sampler = sampler;
1688
1689 if (ir->shadow_comparitor)
1690 inst->shadow_compare = true;
1691
1692 /* fixup #layers for cube map arrays */
1693 if (ir->op == ir_txs) {
1694 glsl_type const *type = ir->sampler->type;
1695 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1696 type->sampler_array) {
1697 fs_reg depth = dst;
1698 depth.reg_offset = 2;
1699 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1700 }
1701 }
1702
1703 if (brw->gen == 6 && ir->op == ir_tg4) {
1704 emit_gen6_gather_wa(c->key.tex.gen6_gather_wa[sampler], dst);
1705 }
1706
1707 swizzle_result(ir, dst, sampler);
1708 }
1709
1710 /**
1711 * Apply workarounds for Gen6 gather with UINT/SINT
1712 */
1713 void
1714 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
1715 {
1716 if (!wa)
1717 return;
1718
1719 int width = (wa & WA_8BIT) ? 8 : 16;
1720
1721 for (int i = 0; i < 4; i++) {
1722 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
1723 /* Convert from UNORM to UINT */
1724 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
1725 emit(MOV(dst, dst_f));
1726
1727 if (wa & WA_SIGN) {
1728 /* Reinterpret the UINT value as a signed INT value by
1729 * shifting the sign bit into place, then shifting back
1730 * preserving sign.
1731 */
1732 emit(SHL(dst, dst, fs_reg(32 - width)));
1733 emit(ASR(dst, dst, fs_reg(32 - width)));
1734 }
1735
1736 dst.reg_offset++;
1737 }
1738 }
1739
1740 /**
1741 * Set up the gather channel based on the swizzle, for gather4.
1742 */
1743 uint32_t
1744 fs_visitor::gather_channel(ir_texture *ir, int sampler)
1745 {
1746 ir_constant *chan = ir->lod_info.component->as_constant();
1747 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], chan->value.i[0]);
1748 switch (swiz) {
1749 case SWIZZLE_X: return 0;
1750 case SWIZZLE_Y:
1751 /* gather4 sampler is broken for green channel on RG32F --
1752 * we must ask for blue instead.
1753 */
1754 if (c->key.tex.gather_channel_quirk_mask & (1<<sampler))
1755 return 2;
1756 return 1;
1757 case SWIZZLE_Z: return 2;
1758 case SWIZZLE_W: return 3;
1759 default:
1760 assert(!"Not reached"); /* zero, one swizzles handled already */
1761 return 0;
1762 }
1763 }
1764
1765 /**
1766 * Swizzle the result of a texture result. This is necessary for
1767 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1768 */
1769 void
1770 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1771 {
1772 if (ir->op == ir_query_levels) {
1773 /* # levels is in .w */
1774 orig_val.reg_offset += 3;
1775 this->result = orig_val;
1776 return;
1777 }
1778
1779 this->result = orig_val;
1780
1781 /* txs,lod don't actually sample the texture, so swizzling the result
1782 * makes no sense.
1783 */
1784 if (ir->op == ir_txs || ir->op == ir_lod || ir->op == ir_tg4)
1785 return;
1786
1787 if (ir->type == glsl_type::float_type) {
1788 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1789 assert(ir->sampler->type->sampler_shadow);
1790 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1791 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1792
1793 for (int i = 0; i < 4; i++) {
1794 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1795 fs_reg l = swizzled_result;
1796 l.reg_offset += i;
1797
1798 if (swiz == SWIZZLE_ZERO) {
1799 emit(MOV(l, fs_reg(0.0f)));
1800 } else if (swiz == SWIZZLE_ONE) {
1801 emit(MOV(l, fs_reg(1.0f)));
1802 } else {
1803 fs_reg r = orig_val;
1804 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1805 emit(MOV(l, r));
1806 }
1807 }
1808 this->result = swizzled_result;
1809 }
1810 }
1811
1812 void
1813 fs_visitor::visit(ir_swizzle *ir)
1814 {
1815 ir->val->accept(this);
1816 fs_reg val = this->result;
1817
1818 if (ir->type->vector_elements == 1) {
1819 this->result.reg_offset += ir->mask.x;
1820 return;
1821 }
1822
1823 fs_reg result = fs_reg(this, ir->type);
1824 this->result = result;
1825
1826 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1827 fs_reg channel = val;
1828 int swiz = 0;
1829
1830 switch (i) {
1831 case 0:
1832 swiz = ir->mask.x;
1833 break;
1834 case 1:
1835 swiz = ir->mask.y;
1836 break;
1837 case 2:
1838 swiz = ir->mask.z;
1839 break;
1840 case 3:
1841 swiz = ir->mask.w;
1842 break;
1843 }
1844
1845 channel.reg_offset += swiz;
1846 emit(MOV(result, channel));
1847 result.reg_offset++;
1848 }
1849 }
1850
1851 void
1852 fs_visitor::visit(ir_discard *ir)
1853 {
1854 assert(ir->condition == NULL); /* FINISHME */
1855
1856 /* We track our discarded pixels in f0.1. By predicating on it, we can
1857 * update just the flag bits that aren't yet discarded. By emitting a
1858 * CMP of g0 != g0, all our currently executing channels will get turned
1859 * off.
1860 */
1861 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1862 BRW_REGISTER_TYPE_UW));
1863 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1864 BRW_CONDITIONAL_NZ));
1865 cmp->predicate = BRW_PREDICATE_NORMAL;
1866 cmp->flag_subreg = 1;
1867
1868 if (brw->gen >= 6) {
1869 /* For performance, after a discard, jump to the end of the shader.
1870 * However, many people will do foliage by discarding based on a
1871 * texture's alpha mask, and then continue on to texture with the
1872 * remaining pixels. To avoid trashing the derivatives for those
1873 * texture samples, we'll only jump if all of the pixels in the subspan
1874 * have been discarded.
1875 */
1876 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1877 discard_jump->flag_subreg = 1;
1878 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1879 discard_jump->predicate_inverse = true;
1880 }
1881 }
1882
1883 void
1884 fs_visitor::visit(ir_constant *ir)
1885 {
1886 /* Set this->result to reg at the bottom of the function because some code
1887 * paths will cause this visitor to be applied to other fields. This will
1888 * cause the value stored in this->result to be modified.
1889 *
1890 * Make reg constant so that it doesn't get accidentally modified along the
1891 * way. Yes, I actually had this problem. :(
1892 */
1893 const fs_reg reg(this, ir->type);
1894 fs_reg dst_reg = reg;
1895
1896 if (ir->type->is_array()) {
1897 const unsigned size = type_size(ir->type->fields.array);
1898
1899 for (unsigned i = 0; i < ir->type->length; i++) {
1900 ir->array_elements[i]->accept(this);
1901 fs_reg src_reg = this->result;
1902
1903 dst_reg.type = src_reg.type;
1904 for (unsigned j = 0; j < size; j++) {
1905 emit(MOV(dst_reg, src_reg));
1906 src_reg.reg_offset++;
1907 dst_reg.reg_offset++;
1908 }
1909 }
1910 } else if (ir->type->is_record()) {
1911 foreach_list(node, &ir->components) {
1912 ir_constant *const field = (ir_constant *) node;
1913 const unsigned size = type_size(field->type);
1914
1915 field->accept(this);
1916 fs_reg src_reg = this->result;
1917
1918 dst_reg.type = src_reg.type;
1919 for (unsigned j = 0; j < size; j++) {
1920 emit(MOV(dst_reg, src_reg));
1921 src_reg.reg_offset++;
1922 dst_reg.reg_offset++;
1923 }
1924 }
1925 } else {
1926 const unsigned size = type_size(ir->type);
1927
1928 for (unsigned i = 0; i < size; i++) {
1929 switch (ir->type->base_type) {
1930 case GLSL_TYPE_FLOAT:
1931 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1932 break;
1933 case GLSL_TYPE_UINT:
1934 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1935 break;
1936 case GLSL_TYPE_INT:
1937 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1938 break;
1939 case GLSL_TYPE_BOOL:
1940 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1941 break;
1942 default:
1943 assert(!"Non-float/uint/int/bool constant");
1944 }
1945 dst_reg.reg_offset++;
1946 }
1947 }
1948
1949 this->result = reg;
1950 }
1951
1952 void
1953 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1954 {
1955 ir_expression *expr = ir->as_expression();
1956
1957 if (expr &&
1958 expr->operation != ir_binop_logic_and &&
1959 expr->operation != ir_binop_logic_or &&
1960 expr->operation != ir_binop_logic_xor) {
1961 fs_reg op[2];
1962 fs_inst *inst;
1963
1964 assert(expr->get_num_operands() <= 2);
1965 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1966 assert(expr->operands[i]->type->is_scalar());
1967
1968 expr->operands[i]->accept(this);
1969 op[i] = this->result;
1970
1971 resolve_ud_negate(&op[i]);
1972 }
1973
1974 switch (expr->operation) {
1975 case ir_unop_logic_not:
1976 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1977 inst->conditional_mod = BRW_CONDITIONAL_Z;
1978 break;
1979
1980 case ir_unop_f2b:
1981 if (brw->gen >= 6) {
1982 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1983 } else {
1984 inst = emit(MOV(reg_null_f, op[0]));
1985 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1986 }
1987 break;
1988
1989 case ir_unop_i2b:
1990 if (brw->gen >= 6) {
1991 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1992 } else {
1993 inst = emit(MOV(reg_null_d, op[0]));
1994 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1995 }
1996 break;
1997
1998 case ir_binop_greater:
1999 case ir_binop_gequal:
2000 case ir_binop_less:
2001 case ir_binop_lequal:
2002 case ir_binop_equal:
2003 case ir_binop_all_equal:
2004 case ir_binop_nequal:
2005 case ir_binop_any_nequal:
2006 resolve_bool_comparison(expr->operands[0], &op[0]);
2007 resolve_bool_comparison(expr->operands[1], &op[1]);
2008
2009 emit(CMP(reg_null_d, op[0], op[1],
2010 brw_conditional_for_comparison(expr->operation)));
2011 break;
2012
2013 default:
2014 assert(!"not reached");
2015 fail("bad cond code\n");
2016 break;
2017 }
2018 return;
2019 }
2020
2021 ir->accept(this);
2022
2023 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2024 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2025 }
2026
2027 /**
2028 * Emit a gen6 IF statement with the comparison folded into the IF
2029 * instruction.
2030 */
2031 void
2032 fs_visitor::emit_if_gen6(ir_if *ir)
2033 {
2034 ir_expression *expr = ir->condition->as_expression();
2035
2036 if (expr) {
2037 fs_reg op[2];
2038 fs_inst *inst;
2039 fs_reg temp;
2040
2041 assert(expr->get_num_operands() <= 2);
2042 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2043 assert(expr->operands[i]->type->is_scalar());
2044
2045 expr->operands[i]->accept(this);
2046 op[i] = this->result;
2047 }
2048
2049 switch (expr->operation) {
2050 case ir_unop_logic_not:
2051 case ir_binop_logic_xor:
2052 case ir_binop_logic_or:
2053 case ir_binop_logic_and:
2054 /* For operations on bool arguments, only the low bit of the bool is
2055 * valid, and the others are undefined. Fall back to the condition
2056 * code path.
2057 */
2058 break;
2059
2060 case ir_unop_f2b:
2061 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2062 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2063 return;
2064
2065 case ir_unop_i2b:
2066 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2067 return;
2068
2069 case ir_binop_greater:
2070 case ir_binop_gequal:
2071 case ir_binop_less:
2072 case ir_binop_lequal:
2073 case ir_binop_equal:
2074 case ir_binop_all_equal:
2075 case ir_binop_nequal:
2076 case ir_binop_any_nequal:
2077 resolve_bool_comparison(expr->operands[0], &op[0]);
2078 resolve_bool_comparison(expr->operands[1], &op[1]);
2079
2080 emit(IF(op[0], op[1],
2081 brw_conditional_for_comparison(expr->operation)));
2082 return;
2083 default:
2084 assert(!"not reached");
2085 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2086 fail("bad condition\n");
2087 return;
2088 }
2089 }
2090
2091 emit_bool_to_cond_code(ir->condition);
2092 fs_inst *inst = emit(BRW_OPCODE_IF);
2093 inst->predicate = BRW_PREDICATE_NORMAL;
2094 }
2095
2096 /**
2097 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2098 *
2099 * Many GLSL shaders contain the following pattern:
2100 *
2101 * x = condition ? foo : bar
2102 *
2103 * The compiler emits an ir_if tree for this, since each subexpression might be
2104 * a complex tree that could have side-effects or short-circuit logic.
2105 *
2106 * However, the common case is to simply select one of two constants or
2107 * variable values---which is exactly what SEL is for. In this case, the
2108 * assembly looks like:
2109 *
2110 * (+f0) IF
2111 * MOV dst src0
2112 * ELSE
2113 * MOV dst src1
2114 * ENDIF
2115 *
2116 * which can be easily translated into:
2117 *
2118 * (+f0) SEL dst src0 src1
2119 *
2120 * If src0 is an immediate value, we promote it to a temporary GRF.
2121 */
2122 void
2123 fs_visitor::try_replace_with_sel()
2124 {
2125 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2126 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2127
2128 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2129 int opcodes[] = {
2130 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2131 };
2132
2133 fs_inst *match = (fs_inst *) endif_inst->prev;
2134 for (int i = 0; i < 4; i++) {
2135 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2136 return;
2137 match = (fs_inst *) match->prev;
2138 }
2139
2140 /* The opcodes match; it looks like the right sequence of instructions. */
2141 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2142 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2143 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2144
2145 /* Check that the MOVs are the right form. */
2146 if (then_mov->dst.equals(else_mov->dst) &&
2147 !then_mov->is_partial_write() &&
2148 !else_mov->is_partial_write()) {
2149
2150 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2151 while (!if_inst->next->is_tail_sentinel())
2152 if_inst->next->remove();
2153 if_inst->remove();
2154
2155 /* Only the last source register can be a constant, so if the MOV in
2156 * the "then" clause uses a constant, we need to put it in a temporary.
2157 */
2158 fs_reg src0(then_mov->src[0]);
2159 if (src0.file == IMM) {
2160 src0 = fs_reg(this, glsl_type::float_type);
2161 src0.type = then_mov->src[0].type;
2162 emit(MOV(src0, then_mov->src[0]));
2163 }
2164
2165 fs_inst *sel;
2166 if (if_inst->conditional_mod) {
2167 /* Sandybridge-specific IF with embedded comparison */
2168 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2169 if_inst->conditional_mod));
2170 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2171 sel->predicate = BRW_PREDICATE_NORMAL;
2172 } else {
2173 /* Separate CMP and IF instructions */
2174 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2175 sel->predicate = if_inst->predicate;
2176 sel->predicate_inverse = if_inst->predicate_inverse;
2177 }
2178 }
2179 }
2180
2181 void
2182 fs_visitor::visit(ir_if *ir)
2183 {
2184 if (brw->gen < 6 && dispatch_width == 16) {
2185 fail("Can't support (non-uniform) control flow on SIMD16\n");
2186 }
2187
2188 /* Don't point the annotation at the if statement, because then it plus
2189 * the then and else blocks get printed.
2190 */
2191 this->base_ir = ir->condition;
2192
2193 if (brw->gen == 6) {
2194 emit_if_gen6(ir);
2195 } else {
2196 emit_bool_to_cond_code(ir->condition);
2197
2198 emit(IF(BRW_PREDICATE_NORMAL));
2199 }
2200
2201 foreach_list(node, &ir->then_instructions) {
2202 ir_instruction *ir = (ir_instruction *)node;
2203 this->base_ir = ir;
2204
2205 ir->accept(this);
2206 }
2207
2208 if (!ir->else_instructions.is_empty()) {
2209 emit(BRW_OPCODE_ELSE);
2210
2211 foreach_list(node, &ir->else_instructions) {
2212 ir_instruction *ir = (ir_instruction *)node;
2213 this->base_ir = ir;
2214
2215 ir->accept(this);
2216 }
2217 }
2218
2219 emit(BRW_OPCODE_ENDIF);
2220
2221 try_replace_with_sel();
2222 }
2223
2224 void
2225 fs_visitor::visit(ir_loop *ir)
2226 {
2227 if (brw->gen < 6 && dispatch_width == 16) {
2228 fail("Can't support (non-uniform) control flow on SIMD16\n");
2229 }
2230
2231 this->base_ir = NULL;
2232 emit(BRW_OPCODE_DO);
2233
2234 foreach_list(node, &ir->body_instructions) {
2235 ir_instruction *ir = (ir_instruction *)node;
2236
2237 this->base_ir = ir;
2238 ir->accept(this);
2239 }
2240
2241 this->base_ir = NULL;
2242 emit(BRW_OPCODE_WHILE);
2243 }
2244
2245 void
2246 fs_visitor::visit(ir_loop_jump *ir)
2247 {
2248 switch (ir->mode) {
2249 case ir_loop_jump::jump_break:
2250 emit(BRW_OPCODE_BREAK);
2251 break;
2252 case ir_loop_jump::jump_continue:
2253 emit(BRW_OPCODE_CONTINUE);
2254 break;
2255 }
2256 }
2257
2258 void
2259 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
2260 {
2261 ir_dereference *deref = static_cast<ir_dereference *>(
2262 ir->actual_parameters.get_head());
2263 ir_variable *location = deref->variable_referenced();
2264 unsigned surf_index = (c->prog_data.base.binding_table.abo_start +
2265 location->data.atomic.buffer_index);
2266
2267 /* Calculate the surface offset */
2268 fs_reg offset(this, glsl_type::uint_type);
2269 ir_dereference_array *deref_array = deref->as_dereference_array();
2270
2271 if (deref_array) {
2272 deref_array->array_index->accept(this);
2273
2274 fs_reg tmp(this, glsl_type::uint_type);
2275 emit(MUL(tmp, this->result, ATOMIC_COUNTER_SIZE));
2276 emit(ADD(offset, tmp, location->data.atomic.offset));
2277 } else {
2278 offset = location->data.atomic.offset;
2279 }
2280
2281 /* Emit the appropriate machine instruction */
2282 const char *callee = ir->callee->function_name();
2283 ir->return_deref->accept(this);
2284 fs_reg dst = this->result;
2285
2286 if (!strcmp("__intrinsic_atomic_read", callee)) {
2287 emit_untyped_surface_read(surf_index, dst, offset);
2288
2289 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
2290 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
2291 fs_reg(), fs_reg());
2292
2293 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
2294 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
2295 fs_reg(), fs_reg());
2296 }
2297 }
2298
2299 void
2300 fs_visitor::visit(ir_call *ir)
2301 {
2302 const char *callee = ir->callee->function_name();
2303
2304 if (!strcmp("__intrinsic_atomic_read", callee) ||
2305 !strcmp("__intrinsic_atomic_increment", callee) ||
2306 !strcmp("__intrinsic_atomic_predecrement", callee)) {
2307 visit_atomic_counter_intrinsic(ir);
2308 } else {
2309 assert(!"Unsupported intrinsic.");
2310 }
2311 }
2312
2313 void
2314 fs_visitor::visit(ir_return *ir)
2315 {
2316 assert(!"FINISHME");
2317 }
2318
2319 void
2320 fs_visitor::visit(ir_function *ir)
2321 {
2322 /* Ignore function bodies other than main() -- we shouldn't see calls to
2323 * them since they should all be inlined before we get to ir_to_mesa.
2324 */
2325 if (strcmp(ir->name, "main") == 0) {
2326 const ir_function_signature *sig;
2327 exec_list empty;
2328
2329 sig = ir->matching_signature(NULL, &empty);
2330
2331 assert(sig);
2332
2333 foreach_list(node, &sig->body) {
2334 ir_instruction *ir = (ir_instruction *)node;
2335 this->base_ir = ir;
2336
2337 ir->accept(this);
2338 }
2339 }
2340 }
2341
2342 void
2343 fs_visitor::visit(ir_function_signature *ir)
2344 {
2345 assert(!"not reached");
2346 (void)ir;
2347 }
2348
2349 void
2350 fs_visitor::visit(ir_emit_vertex *)
2351 {
2352 assert(!"not reached");
2353 }
2354
2355 void
2356 fs_visitor::visit(ir_end_primitive *)
2357 {
2358 assert(!"not reached");
2359 }
2360
2361 void
2362 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
2363 fs_reg dst, fs_reg offset, fs_reg src0,
2364 fs_reg src1)
2365 {
2366 const unsigned operand_len = dispatch_width / 8;
2367 unsigned mlen = 0;
2368
2369 /* Initialize the sample mask in the message header. */
2370 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2371 ->force_writemask_all = true;
2372
2373 if (fp->UsesKill) {
2374 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2375 ->force_writemask_all = true;
2376 } else {
2377 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2378 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2379 ->force_writemask_all = true;
2380 }
2381
2382 mlen++;
2383
2384 /* Set the atomic operation offset. */
2385 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2386 mlen += operand_len;
2387
2388 /* Set the atomic operation arguments. */
2389 if (src0.file != BAD_FILE) {
2390 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src0));
2391 mlen += operand_len;
2392 }
2393
2394 if (src1.file != BAD_FILE) {
2395 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), src1));
2396 mlen += operand_len;
2397 }
2398
2399 /* Emit the instruction. */
2400 fs_inst inst(SHADER_OPCODE_UNTYPED_ATOMIC, dst, atomic_op, surf_index);
2401 inst.base_mrf = 0;
2402 inst.mlen = mlen;
2403 emit(inst);
2404 }
2405
2406 void
2407 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
2408 fs_reg offset)
2409 {
2410 const unsigned operand_len = dispatch_width / 8;
2411 unsigned mlen = 0;
2412
2413 /* Initialize the sample mask in the message header. */
2414 emit(MOV(brw_uvec_mrf(8, mlen, 0), brw_imm_ud(0)))
2415 ->force_writemask_all = true;
2416
2417 if (fp->UsesKill) {
2418 emit(MOV(brw_uvec_mrf(1, mlen, 7), brw_flag_reg(0, 1)))
2419 ->force_writemask_all = true;
2420 } else {
2421 emit(MOV(brw_uvec_mrf(1, mlen, 7),
2422 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
2423 ->force_writemask_all = true;
2424 }
2425
2426 mlen++;
2427
2428 /* Set the surface read offset. */
2429 emit(MOV(brw_uvec_mrf(dispatch_width, mlen, 0), offset));
2430 mlen += operand_len;
2431
2432 /* Emit the instruction. */
2433 fs_inst inst(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, surf_index);
2434 inst.base_mrf = 0;
2435 inst.mlen = mlen;
2436 emit(inst);
2437 }
2438
2439 fs_inst *
2440 fs_visitor::emit(fs_inst inst)
2441 {
2442 fs_inst *list_inst = new(mem_ctx) fs_inst;
2443 *list_inst = inst;
2444 emit(list_inst);
2445 return list_inst;
2446 }
2447
2448 fs_inst *
2449 fs_visitor::emit(fs_inst *inst)
2450 {
2451 if (force_uncompressed_stack > 0)
2452 inst->force_uncompressed = true;
2453
2454 inst->annotation = this->current_annotation;
2455 inst->ir = this->base_ir;
2456
2457 this->instructions.push_tail(inst);
2458
2459 return inst;
2460 }
2461
2462 void
2463 fs_visitor::emit(exec_list list)
2464 {
2465 foreach_list_safe(node, &list) {
2466 fs_inst *inst = (fs_inst *)node;
2467 inst->remove();
2468 emit(inst);
2469 }
2470 }
2471
2472 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
2473 void
2474 fs_visitor::emit_dummy_fs()
2475 {
2476 int reg_width = dispatch_width / 8;
2477
2478 /* Everyone's favorite color. */
2479 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
2480 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
2481 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
2482 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
2483
2484 fs_inst *write;
2485 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
2486 write->base_mrf = 2;
2487 write->mlen = 4 * reg_width;
2488 write->eot = true;
2489 }
2490
2491 /* The register location here is relative to the start of the URB
2492 * data. It will get adjusted to be a real location before
2493 * generate_code() time.
2494 */
2495 struct brw_reg
2496 fs_visitor::interp_reg(int location, int channel)
2497 {
2498 int regnr = c->prog_data.urb_setup[location] * 2 + channel / 2;
2499 int stride = (channel & 1) * 4;
2500
2501 assert(c->prog_data.urb_setup[location] != -1);
2502
2503 return brw_vec1_grf(regnr, stride);
2504 }
2505
2506 /** Emits the interpolation for the varying inputs. */
2507 void
2508 fs_visitor::emit_interpolation_setup_gen4()
2509 {
2510 this->current_annotation = "compute pixel centers";
2511 this->pixel_x = fs_reg(this, glsl_type::uint_type);
2512 this->pixel_y = fs_reg(this, glsl_type::uint_type);
2513 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
2514 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
2515
2516 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
2517 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
2518
2519 this->current_annotation = "compute pixel deltas from v0";
2520 if (brw->has_pln) {
2521 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2522 fs_reg(this, glsl_type::vec2_type);
2523 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2524 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
2525 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
2526 } else {
2527 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2528 fs_reg(this, glsl_type::float_type);
2529 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
2530 fs_reg(this, glsl_type::float_type);
2531 }
2532 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2533 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
2534 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2535 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
2536
2537 this->current_annotation = "compute pos.w and 1/pos.w";
2538 /* Compute wpos.w. It's always in our setup, since it's needed to
2539 * interpolate the other attributes.
2540 */
2541 this->wpos_w = fs_reg(this, glsl_type::float_type);
2542 emit(FS_OPCODE_LINTERP, wpos_w,
2543 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2544 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
2545 interp_reg(VARYING_SLOT_POS, 3));
2546 /* Compute the pixel 1/W value from wpos.w. */
2547 this->pixel_w = fs_reg(this, glsl_type::float_type);
2548 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
2549 this->current_annotation = NULL;
2550 }
2551
2552 /** Emits the interpolation for the varying inputs. */
2553 void
2554 fs_visitor::emit_interpolation_setup_gen6()
2555 {
2556 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
2557
2558 /* If the pixel centers end up used, the setup is the same as for gen4. */
2559 this->current_annotation = "compute pixel centers";
2560 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
2561 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
2562 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
2563 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
2564 emit(ADD(int_pixel_x,
2565 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
2566 fs_reg(brw_imm_v(0x10101010))));
2567 emit(ADD(int_pixel_y,
2568 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
2569 fs_reg(brw_imm_v(0x11001100))));
2570
2571 /* As of gen6, we can no longer mix float and int sources. We have
2572 * to turn the integer pixel centers into floats for their actual
2573 * use.
2574 */
2575 this->pixel_x = fs_reg(this, glsl_type::float_type);
2576 this->pixel_y = fs_reg(this, glsl_type::float_type);
2577 emit(MOV(this->pixel_x, int_pixel_x));
2578 emit(MOV(this->pixel_y, int_pixel_y));
2579
2580 this->current_annotation = "compute pos.w";
2581 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2582 this->wpos_w = fs_reg(this, glsl_type::float_type);
2583 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2584
2585 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2586 uint8_t reg = c->barycentric_coord_reg[i];
2587 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2588 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2589 }
2590
2591 this->current_annotation = NULL;
2592 }
2593
2594 void
2595 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2596 {
2597 int reg_width = dispatch_width / 8;
2598 fs_inst *inst;
2599 fs_reg color = outputs[target];
2600 fs_reg mrf;
2601
2602 /* If there's no color data to be written, skip it. */
2603 if (color.file == BAD_FILE)
2604 return;
2605
2606 color.reg_offset += index;
2607
2608 if (dispatch_width == 8 || brw->gen >= 6) {
2609 /* SIMD8 write looks like:
2610 * m + 0: r0
2611 * m + 1: r1
2612 * m + 2: g0
2613 * m + 3: g1
2614 *
2615 * gen6 SIMD16 DP write looks like:
2616 * m + 0: r0
2617 * m + 1: r1
2618 * m + 2: g0
2619 * m + 3: g1
2620 * m + 4: b0
2621 * m + 5: b1
2622 * m + 6: a0
2623 * m + 7: a1
2624 */
2625 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2626 color.type),
2627 color));
2628 inst->saturate = c->key.clamp_fragment_color;
2629 } else {
2630 /* pre-gen6 SIMD16 single source DP write looks like:
2631 * m + 0: r0
2632 * m + 1: g0
2633 * m + 2: b0
2634 * m + 3: a0
2635 * m + 4: r1
2636 * m + 5: g1
2637 * m + 6: b1
2638 * m + 7: a1
2639 */
2640 if (brw->has_compr4) {
2641 /* By setting the high bit of the MRF register number, we
2642 * indicate that we want COMPR4 mode - instead of doing the
2643 * usual destination + 1 for the second half we get
2644 * destination + 4.
2645 */
2646 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2647 color.type),
2648 color));
2649 inst->saturate = c->key.clamp_fragment_color;
2650 } else {
2651 push_force_uncompressed();
2652 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2653 color));
2654 inst->saturate = c->key.clamp_fragment_color;
2655 pop_force_uncompressed();
2656
2657 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2658 half(color, 1)));
2659 inst->force_sechalf = true;
2660 inst->saturate = c->key.clamp_fragment_color;
2661 }
2662 }
2663 }
2664
2665 static int
2666 cond_for_alpha_func(GLenum func)
2667 {
2668 switch(func) {
2669 case GL_GREATER:
2670 return BRW_CONDITIONAL_G;
2671 case GL_GEQUAL:
2672 return BRW_CONDITIONAL_GE;
2673 case GL_LESS:
2674 return BRW_CONDITIONAL_L;
2675 case GL_LEQUAL:
2676 return BRW_CONDITIONAL_LE;
2677 case GL_EQUAL:
2678 return BRW_CONDITIONAL_EQ;
2679 case GL_NOTEQUAL:
2680 return BRW_CONDITIONAL_NEQ;
2681 default:
2682 assert(!"Not reached");
2683 return 0;
2684 }
2685 }
2686
2687 /**
2688 * Alpha test support for when we compile it into the shader instead
2689 * of using the normal fixed-function alpha test.
2690 */
2691 void
2692 fs_visitor::emit_alpha_test()
2693 {
2694 this->current_annotation = "Alpha test";
2695
2696 fs_inst *cmp;
2697 if (c->key.alpha_test_func == GL_ALWAYS)
2698 return;
2699
2700 if (c->key.alpha_test_func == GL_NEVER) {
2701 /* f0.1 = 0 */
2702 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2703 BRW_REGISTER_TYPE_UW));
2704 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
2705 BRW_CONDITIONAL_NEQ));
2706 } else {
2707 /* RT0 alpha */
2708 fs_reg color = outputs[0];
2709 color.reg_offset += 3;
2710
2711 /* f0.1 &= func(color, ref) */
2712 cmp = emit(CMP(reg_null_f, color, fs_reg(c->key.alpha_test_ref),
2713 cond_for_alpha_func(c->key.alpha_test_func)));
2714 }
2715 cmp->predicate = BRW_PREDICATE_NORMAL;
2716 cmp->flag_subreg = 1;
2717 }
2718
2719 void
2720 fs_visitor::emit_fb_writes()
2721 {
2722 this->current_annotation = "FB write header";
2723 bool header_present = true;
2724 /* We can potentially have a message length of up to 15, so we have to set
2725 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2726 */
2727 int base_mrf = 1;
2728 int nr = base_mrf;
2729 int reg_width = dispatch_width / 8;
2730 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2731 bool src0_alpha_to_render_target = false;
2732
2733 if (dispatch_width == 16 && do_dual_src) {
2734 fail("GL_ARB_blend_func_extended not yet supported in SIMD16.");
2735 do_dual_src = false;
2736 }
2737
2738 /* From the Sandy Bridge PRM, volume 4, page 198:
2739 *
2740 * "Dispatched Pixel Enables. One bit per pixel indicating
2741 * which pixels were originally enabled when the thread was
2742 * dispatched. This field is only required for the end-of-
2743 * thread message and on all dual-source messages."
2744 */
2745 if (brw->gen >= 6 &&
2746 (brw->is_haswell || brw->gen >= 8 || !this->fp->UsesKill) &&
2747 !do_dual_src &&
2748 c->key.nr_color_regions == 1) {
2749 header_present = false;
2750 }
2751
2752 if (header_present) {
2753 src0_alpha_to_render_target = brw->gen >= 6 &&
2754 !do_dual_src &&
2755 c->key.replicate_alpha;
2756 /* m2, m3 header */
2757 nr += 2;
2758 }
2759
2760 if (c->aa_dest_stencil_reg) {
2761 push_force_uncompressed();
2762 emit(MOV(fs_reg(MRF, nr++),
2763 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2764 pop_force_uncompressed();
2765 }
2766
2767 c->prog_data.uses_omask =
2768 fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
2769 if(c->prog_data.uses_omask) {
2770 this->current_annotation = "FB write oMask";
2771 assert(this->sample_mask.file != BAD_FILE);
2772 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. */
2773 emit(FS_OPCODE_SET_OMASK, fs_reg(MRF, nr, BRW_REGISTER_TYPE_UW), this->sample_mask);
2774 nr += 1;
2775 }
2776
2777 /* Reserve space for color. It'll be filled in per MRT below. */
2778 int color_mrf = nr;
2779 nr += 4 * reg_width;
2780 if (do_dual_src)
2781 nr += 4;
2782 if (src0_alpha_to_render_target)
2783 nr += reg_width;
2784
2785 if (c->source_depth_to_render_target) {
2786 if (brw->gen == 6 && dispatch_width == 16) {
2787 /* For outputting oDepth on gen6, SIMD8 writes have to be
2788 * used. This would require SIMD8 moves of each half to
2789 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2790 * Just bail on doing so for now.
2791 */
2792 fail("Missing support for simd16 depth writes on gen6\n");
2793 }
2794
2795 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2796 /* Hand over gl_FragDepth. */
2797 assert(this->frag_depth.file != BAD_FILE);
2798 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2799 } else {
2800 /* Pass through the payload depth. */
2801 emit(MOV(fs_reg(MRF, nr),
2802 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2803 }
2804 nr += reg_width;
2805 }
2806
2807 if (c->dest_depth_reg) {
2808 emit(MOV(fs_reg(MRF, nr),
2809 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2810 nr += reg_width;
2811 }
2812
2813 if (do_dual_src) {
2814 fs_reg src0 = this->outputs[0];
2815 fs_reg src1 = this->dual_src_output;
2816
2817 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2818 "FB write src0");
2819 for (int i = 0; i < 4; i++) {
2820 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2821 src0.reg_offset++;
2822 inst->saturate = c->key.clamp_fragment_color;
2823 }
2824
2825 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2826 "FB write src1");
2827 for (int i = 0; i < 4; i++) {
2828 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2829 src1));
2830 src1.reg_offset++;
2831 inst->saturate = c->key.clamp_fragment_color;
2832 }
2833
2834 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2835 emit_shader_time_end();
2836
2837 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2838 inst->target = 0;
2839 inst->base_mrf = base_mrf;
2840 inst->mlen = nr - base_mrf;
2841 inst->eot = true;
2842 inst->header_present = header_present;
2843 if ((brw->gen >= 8 || brw->is_haswell) && fp->UsesKill) {
2844 inst->predicate = BRW_PREDICATE_NORMAL;
2845 inst->flag_subreg = 1;
2846 }
2847
2848 c->prog_data.dual_src_blend = true;
2849 this->current_annotation = NULL;
2850 return;
2851 }
2852
2853 for (int target = 0; target < c->key.nr_color_regions; target++) {
2854 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2855 "FB write target %d",
2856 target);
2857 /* If src0_alpha_to_render_target is true, include source zero alpha
2858 * data in RenderTargetWrite message for targets > 0.
2859 */
2860 int write_color_mrf = color_mrf;
2861 if (src0_alpha_to_render_target && target != 0) {
2862 fs_inst *inst;
2863 fs_reg color = outputs[0];
2864 color.reg_offset += 3;
2865
2866 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2867 color));
2868 inst->saturate = c->key.clamp_fragment_color;
2869 write_color_mrf = color_mrf + reg_width;
2870 }
2871
2872 for (unsigned i = 0; i < this->output_components[target]; i++)
2873 emit_color_write(target, i, write_color_mrf);
2874
2875 bool eot = false;
2876 if (target == c->key.nr_color_regions - 1) {
2877 eot = true;
2878
2879 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2880 emit_shader_time_end();
2881 }
2882
2883 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2884 inst->target = target;
2885 inst->base_mrf = base_mrf;
2886 if (src0_alpha_to_render_target && target == 0)
2887 inst->mlen = nr - base_mrf - reg_width;
2888 else
2889 inst->mlen = nr - base_mrf;
2890 inst->eot = eot;
2891 inst->header_present = header_present;
2892 if ((brw->gen >= 8 || brw->is_haswell) && fp->UsesKill) {
2893 inst->predicate = BRW_PREDICATE_NORMAL;
2894 inst->flag_subreg = 1;
2895 }
2896 }
2897
2898 if (c->key.nr_color_regions == 0) {
2899 /* Even if there's no color buffers enabled, we still need to send
2900 * alpha out the pipeline to our null renderbuffer to support
2901 * alpha-testing, alpha-to-coverage, and so on.
2902 */
2903 emit_color_write(0, 3, color_mrf);
2904
2905 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2906 emit_shader_time_end();
2907
2908 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2909 inst->base_mrf = base_mrf;
2910 inst->mlen = nr - base_mrf;
2911 inst->eot = true;
2912 inst->header_present = header_present;
2913 if ((brw->gen >= 8 || brw->is_haswell) && fp->UsesKill) {
2914 inst->predicate = BRW_PREDICATE_NORMAL;
2915 inst->flag_subreg = 1;
2916 }
2917 }
2918
2919 this->current_annotation = NULL;
2920 }
2921
2922 void
2923 fs_visitor::resolve_ud_negate(fs_reg *reg)
2924 {
2925 if (reg->type != BRW_REGISTER_TYPE_UD ||
2926 !reg->negate)
2927 return;
2928
2929 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2930 emit(MOV(temp, *reg));
2931 *reg = temp;
2932 }
2933
2934 void
2935 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2936 {
2937 if (rvalue->type != glsl_type::bool_type)
2938 return;
2939
2940 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2941 emit(AND(temp, *reg, fs_reg(1)));
2942 *reg = temp;
2943 }
2944
2945 fs_visitor::fs_visitor(struct brw_context *brw,
2946 struct brw_wm_compile *c,
2947 struct gl_shader_program *shader_prog,
2948 struct gl_fragment_program *fp,
2949 unsigned dispatch_width)
2950 : dispatch_width(dispatch_width)
2951 {
2952 this->c = c;
2953 this->brw = brw;
2954 this->fp = fp;
2955 this->prog = &fp->Base;
2956 this->shader_prog = shader_prog;
2957 this->prog = &fp->Base;
2958 this->stage_prog_data = &c->prog_data.base;
2959 this->ctx = &brw->ctx;
2960 this->mem_ctx = ralloc_context(NULL);
2961 if (shader_prog)
2962 shader = (struct brw_shader *)
2963 shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2964 else
2965 shader = NULL;
2966 this->failed = false;
2967 this->variable_ht = hash_table_ctor(0,
2968 hash_table_pointer_hash,
2969 hash_table_pointer_compare);
2970
2971 memset(this->outputs, 0, sizeof(this->outputs));
2972 memset(this->output_components, 0, sizeof(this->output_components));
2973 this->first_non_payload_grf = 0;
2974 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2975
2976 this->current_annotation = NULL;
2977 this->base_ir = NULL;
2978
2979 this->virtual_grf_sizes = NULL;
2980 this->virtual_grf_count = 0;
2981 this->virtual_grf_array_size = 0;
2982 this->virtual_grf_start = NULL;
2983 this->virtual_grf_end = NULL;
2984 this->live_intervals = NULL;
2985 this->regs_live_at_ip = NULL;
2986
2987 this->uniforms = 0;
2988 this->params_remap = NULL;
2989 this->nr_params_remap = 0;
2990
2991 this->force_uncompressed_stack = 0;
2992
2993 this->spilled_any_registers = false;
2994
2995 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
2996 }
2997
2998 fs_visitor::~fs_visitor()
2999 {
3000 ralloc_free(this->mem_ctx);
3001 hash_table_dtor(this->variable_ht);
3002 }