i965: Use SIMD16 instead of SIMD8 on Gen4 when possible.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_vec4.h"
43 #include "brw_fs.h"
44 #include "main/uniforms.h"
45 #include "glsl/glsl_types.h"
46 #include "glsl/ir_optimization.h"
47 #include "program/sampler.h"
48
49
50 fs_reg *
51 fs_visitor::emit_vs_system_value(int location)
52 {
53 fs_reg *reg = new(this->mem_ctx)
54 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
55 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
56
57 switch (location) {
58 case SYSTEM_VALUE_BASE_VERTEX:
59 reg->reg_offset = 0;
60 vs_prog_data->uses_vertexid = true;
61 break;
62 case SYSTEM_VALUE_VERTEX_ID:
63 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
64 reg->reg_offset = 2;
65 vs_prog_data->uses_vertexid = true;
66 break;
67 case SYSTEM_VALUE_INSTANCE_ID:
68 reg->reg_offset = 3;
69 vs_prog_data->uses_instanceid = true;
70 break;
71 default:
72 unreachable("not reached");
73 }
74
75 return reg;
76 }
77
78 void
79 fs_visitor::visit(ir_variable *ir)
80 {
81 fs_reg *reg = NULL;
82
83 if (variable_storage(ir))
84 return;
85
86 if (ir->data.mode == ir_var_shader_in) {
87 assert(ir->data.location != -1);
88 if (stage == MESA_SHADER_VERTEX) {
89 reg = new(this->mem_ctx)
90 fs_reg(ATTR, ir->data.location,
91 brw_type_for_base_type(ir->type->get_scalar_type()));
92 } else if (ir->data.location == VARYING_SLOT_POS) {
93 reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer,
94 ir->data.origin_upper_left);
95 } else if (ir->data.location == VARYING_SLOT_FACE) {
96 reg = emit_frontfacing_interpolation();
97 } else {
98 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
99 emit_general_interpolation(*reg, ir->name, ir->type,
100 (glsl_interp_qualifier) ir->data.interpolation,
101 ir->data.location, ir->data.centroid,
102 ir->data.sample);
103 }
104 assert(reg);
105 hash_table_insert(this->variable_ht, reg, ir);
106 return;
107 } else if (ir->data.mode == ir_var_shader_out) {
108 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
109
110 if (stage == MESA_SHADER_VERTEX) {
111 int vector_elements =
112 ir->type->is_array() ? ir->type->fields.array->vector_elements
113 : ir->type->vector_elements;
114
115 for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) {
116 int output = ir->data.location + i;
117 this->outputs[output] = *reg;
118 this->outputs[output].reg_offset = i * 4;
119 this->output_components[output] = vector_elements;
120 }
121
122 } else if (ir->data.index > 0) {
123 assert(ir->data.location == FRAG_RESULT_DATA0);
124 assert(ir->data.index == 1);
125 this->dual_src_output = *reg;
126 this->do_dual_src = true;
127 } else if (ir->data.location == FRAG_RESULT_COLOR) {
128 /* Writing gl_FragColor outputs to all color regions. */
129 assert(stage == MESA_SHADER_FRAGMENT);
130 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
131 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
132 this->outputs[i] = *reg;
133 this->output_components[i] = 4;
134 }
135 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
136 this->frag_depth = *reg;
137 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
138 this->sample_mask = *reg;
139 } else {
140 /* gl_FragData or a user-defined FS output */
141 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
142 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
143
144 int vector_elements =
145 ir->type->is_array() ? ir->type->fields.array->vector_elements
146 : ir->type->vector_elements;
147
148 /* General color output. */
149 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
150 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
151 this->outputs[output] = offset(*reg, vector_elements * i);
152 this->output_components[output] = vector_elements;
153 }
154 }
155 } else if (ir->data.mode == ir_var_uniform) {
156 int param_index = uniforms;
157
158 /* Thanks to the lower_ubo_reference pass, we will see only
159 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
160 * variables, so no need for them to be in variable_ht.
161 *
162 * Some uniforms, such as samplers and atomic counters, have no actual
163 * storage, so we should ignore them.
164 */
165 if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
166 return;
167
168 if (dispatch_width == 16) {
169 if (!variable_storage(ir)) {
170 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
171 }
172 return;
173 }
174
175 param_size[param_index] = type_size(ir->type);
176 if (!strncmp(ir->name, "gl_", 3)) {
177 setup_builtin_uniform_values(ir);
178 } else {
179 setup_uniform_values(ir);
180 }
181
182 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
183 reg->type = brw_type_for_base_type(ir->type);
184
185 } else if (ir->data.mode == ir_var_system_value) {
186 switch (ir->data.location) {
187 case SYSTEM_VALUE_BASE_VERTEX:
188 case SYSTEM_VALUE_VERTEX_ID:
189 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
190 case SYSTEM_VALUE_INSTANCE_ID:
191 reg = emit_vs_system_value(ir->data.location);
192 break;
193 case SYSTEM_VALUE_SAMPLE_POS:
194 reg = emit_samplepos_setup();
195 break;
196 case SYSTEM_VALUE_SAMPLE_ID:
197 reg = emit_sampleid_setup();
198 break;
199 case SYSTEM_VALUE_SAMPLE_MASK_IN:
200 assert(brw->gen >= 7);
201 reg = new(mem_ctx)
202 fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
203 BRW_REGISTER_TYPE_D));
204 break;
205 }
206 }
207
208 if (!reg)
209 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
210
211 hash_table_insert(this->variable_ht, reg, ir);
212 }
213
214 void
215 fs_visitor::visit(ir_dereference_variable *ir)
216 {
217 fs_reg *reg = variable_storage(ir->var);
218
219 if (!reg) {
220 fail("Failed to find variable storage for %s\n", ir->var->name);
221 this->result = fs_reg(reg_null_d);
222 return;
223 }
224 this->result = *reg;
225 }
226
227 void
228 fs_visitor::visit(ir_dereference_record *ir)
229 {
230 const glsl_type *struct_type = ir->record->type;
231
232 ir->record->accept(this);
233
234 unsigned int off = 0;
235 for (unsigned int i = 0; i < struct_type->length; i++) {
236 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
237 break;
238 off += type_size(struct_type->fields.structure[i].type);
239 }
240 this->result = offset(this->result, off);
241 this->result.type = brw_type_for_base_type(ir->type);
242 }
243
244 void
245 fs_visitor::visit(ir_dereference_array *ir)
246 {
247 ir_constant *constant_index;
248 fs_reg src;
249 int element_size = type_size(ir->type);
250
251 constant_index = ir->array_index->as_constant();
252
253 ir->array->accept(this);
254 src = this->result;
255 src.type = brw_type_for_base_type(ir->type);
256
257 if (constant_index) {
258 if (src.file == ATTR) {
259 /* Attribute arrays get loaded as one vec4 per element. In that case
260 * offset the source register.
261 */
262 src.reg += constant_index->value.i[0];
263 } else {
264 assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
265 src = offset(src, constant_index->value.i[0] * element_size);
266 }
267 } else {
268 /* Variable index array dereference. We attach the variable index
269 * component to the reg as a pointer to a register containing the
270 * offset. Currently only uniform arrays are supported in this patch,
271 * and that reladdr pointer is resolved by
272 * move_uniform_array_access_to_pull_constants(). All other array types
273 * are lowered by lower_variable_index_to_cond_assign().
274 */
275 ir->array_index->accept(this);
276
277 fs_reg index_reg;
278 index_reg = vgrf(glsl_type::int_type);
279 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
280
281 if (src.reladdr) {
282 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
283 }
284
285 src.reladdr = ralloc(mem_ctx, fs_reg);
286 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
287 }
288 this->result = src;
289 }
290
291 fs_inst *
292 fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
293 const fs_reg &a)
294 {
295 if (brw->gen < 6) {
296 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
297 fs_reg y_times_a = vgrf(glsl_type::float_type);
298 fs_reg one_minus_a = vgrf(glsl_type::float_type);
299 fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type);
300
301 emit(MUL(y_times_a, y, a));
302
303 fs_reg negative_a = a;
304 negative_a.negate = !a.negate;
305 emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
306 emit(MUL(x_times_one_minus_a, x, one_minus_a));
307
308 return emit(ADD(dst, x_times_one_minus_a, y_times_a));
309 } else {
310 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
311 * we need to reorder the operands.
312 */
313 return emit(LRP(dst, a, y, x));
314 }
315 }
316
317 void
318 fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
319 const fs_reg &src0, const fs_reg &src1)
320 {
321 assert(conditionalmod == BRW_CONDITIONAL_GE ||
322 conditionalmod == BRW_CONDITIONAL_L);
323
324 fs_inst *inst;
325
326 if (brw->gen >= 6) {
327 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
328 inst->conditional_mod = conditionalmod;
329 } else {
330 emit(CMP(reg_null_d, src0, src1, conditionalmod));
331
332 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
333 inst->predicate = BRW_PREDICATE_NORMAL;
334 }
335 }
336
337 bool
338 fs_visitor::try_emit_saturate(ir_expression *ir)
339 {
340 if (ir->operation != ir_unop_saturate)
341 return false;
342
343 ir_rvalue *sat_val = ir->operands[0];
344
345 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
346
347 sat_val->accept(this);
348 fs_reg src = this->result;
349
350 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
351
352 /* If the last instruction from our accept() generated our
353 * src, just set the saturate flag instead of emmitting a separate mov.
354 */
355 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
356 if (modify && modify->regs_written == modify->dst.width / 8 &&
357 modify->can_do_saturate()) {
358 modify->saturate = true;
359 this->result = src;
360 return true;
361 }
362
363 return false;
364 }
365
366 bool
367 fs_visitor::try_emit_line(ir_expression *ir)
368 {
369 /* LINE's src0 must be of type float. */
370 if (ir->type != glsl_type::float_type)
371 return false;
372
373 ir_rvalue *nonmul = ir->operands[1];
374 ir_expression *mul = ir->operands[0]->as_expression();
375
376 if (!mul || mul->operation != ir_binop_mul) {
377 nonmul = ir->operands[0];
378 mul = ir->operands[1]->as_expression();
379
380 if (!mul || mul->operation != ir_binop_mul)
381 return false;
382 }
383
384 ir_constant *const_add = nonmul->as_constant();
385 if (!const_add)
386 return false;
387
388 int add_operand_vf = brw_float_to_vf(const_add->value.f[0]);
389 if (add_operand_vf == -1)
390 return false;
391
392 ir_rvalue *non_const_mul = mul->operands[1];
393 ir_constant *const_mul = mul->operands[0]->as_constant();
394 if (!const_mul) {
395 const_mul = mul->operands[1]->as_constant();
396
397 if (!const_mul)
398 return false;
399
400 non_const_mul = mul->operands[0];
401 }
402
403 int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]);
404 if (mul_operand_vf == -1)
405 return false;
406
407 non_const_mul->accept(this);
408 fs_reg src1 = this->result;
409
410 fs_reg src0 = vgrf(ir->type);
411 emit(BRW_OPCODE_MOV, src0,
412 fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf));
413
414 this->result = vgrf(ir->type);
415 emit(BRW_OPCODE_LINE, this->result, src0, src1);
416 return true;
417 }
418
419 bool
420 fs_visitor::try_emit_mad(ir_expression *ir)
421 {
422 /* 3-src instructions were introduced in gen6. */
423 if (brw->gen < 6)
424 return false;
425
426 /* MAD can only handle floating-point data. */
427 if (ir->type != glsl_type::float_type)
428 return false;
429
430 ir_rvalue *nonmul;
431 ir_expression *mul;
432 bool mul_negate, mul_abs;
433
434 for (int i = 0; i < 2; i++) {
435 mul_negate = false;
436 mul_abs = false;
437
438 mul = ir->operands[i]->as_expression();
439 nonmul = ir->operands[1 - i];
440
441 if (mul && mul->operation == ir_unop_abs) {
442 mul = mul->operands[0]->as_expression();
443 mul_abs = true;
444 } else if (mul && mul->operation == ir_unop_neg) {
445 mul = mul->operands[0]->as_expression();
446 mul_negate = true;
447 }
448
449 if (mul && mul->operation == ir_binop_mul)
450 break;
451 }
452
453 if (!mul || mul->operation != ir_binop_mul)
454 return false;
455
456 nonmul->accept(this);
457 fs_reg src0 = this->result;
458
459 mul->operands[0]->accept(this);
460 fs_reg src1 = this->result;
461 src1.negate ^= mul_negate;
462 src1.abs = mul_abs;
463 if (mul_abs)
464 src1.negate = false;
465
466 mul->operands[1]->accept(this);
467 fs_reg src2 = this->result;
468 src2.abs = mul_abs;
469 if (mul_abs)
470 src2.negate = false;
471
472 this->result = vgrf(ir->type);
473 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
474
475 return true;
476 }
477
478 bool
479 fs_visitor::try_emit_b2f_of_comparison(ir_expression *ir)
480 {
481 /* On platforms that do not natively generate 0u and ~0u for Boolean
482 * results, b2f expressions that look like
483 *
484 * f = b2f(expr cmp 0)
485 *
486 * will generate better code by pretending the expression is
487 *
488 * f = ir_triop_csel(0.0, 1.0, expr cmp 0)
489 *
490 * This is because the last instruction of "expr" can generate the
491 * condition code for the "cmp 0". This avoids having to do the "-(b & 1)"
492 * trick to generate 0u or ~0u for the Boolean result. This means code like
493 *
494 * mov(16) g16<1>F 1F
495 * mul.ge.f0(16) null g6<8,8,1>F g14<8,8,1>F
496 * (+f0) sel(16) m6<1>F g16<8,8,1>F 0F
497 *
498 * will be generated instead of
499 *
500 * mul(16) g2<1>F g12<8,8,1>F g4<8,8,1>F
501 * cmp.ge.f0(16) g2<1>D g4<8,8,1>F 0F
502 * and(16) g4<1>D g2<8,8,1>D 1D
503 * and(16) m6<1>D -g4<8,8,1>D 0x3f800000UD
504 *
505 * When the comparison is either == 0.0 or != 0.0 using the knowledge that
506 * the true (or false) case already results in zero would allow better code
507 * generation by possibly avoiding a load-immediate instruction.
508 */
509 ir_expression *cmp = ir->operands[0]->as_expression();
510 if (cmp == NULL)
511 return false;
512
513 if (cmp->operation == ir_binop_equal || cmp->operation == ir_binop_nequal) {
514 for (unsigned i = 0; i < 2; i++) {
515 ir_constant *c = cmp->operands[i]->as_constant();
516 if (c == NULL || !c->is_zero())
517 continue;
518
519 ir_expression *expr = cmp->operands[i ^ 1]->as_expression();
520 if (expr != NULL) {
521 fs_reg op[2];
522
523 for (unsigned j = 0; j < 2; j++) {
524 cmp->operands[j]->accept(this);
525 op[j] = this->result;
526
527 resolve_ud_negate(&op[j]);
528 }
529
530 emit_bool_to_cond_code_of_reg(cmp, op);
531
532 /* In this case we know when the condition is true, op[i ^ 1]
533 * contains zero. Invert the predicate, use op[i ^ 1] as src0,
534 * and immediate 1.0f as src1.
535 */
536 this->result = vgrf(ir->type);
537 op[i ^ 1].type = BRW_REGISTER_TYPE_F;
538
539 fs_inst *inst = emit(SEL(this->result, op[i ^ 1], fs_reg(1.0f)));
540 inst->predicate = BRW_PREDICATE_NORMAL;
541 inst->predicate_inverse = cmp->operation == ir_binop_equal;
542 return true;
543 }
544 }
545 }
546
547 emit_bool_to_cond_code(cmp);
548
549 fs_reg temp = vgrf(ir->type);
550 emit(MOV(temp, fs_reg(1.0f)));
551
552 this->result = vgrf(ir->type);
553 fs_inst *inst = emit(SEL(this->result, temp, fs_reg(0.0f)));
554 inst->predicate = BRW_PREDICATE_NORMAL;
555
556 return true;
557 }
558
559 static int
560 pack_pixel_offset(float x)
561 {
562 /* Clamp upper end of the range to +7/16. See explanation in non-constant
563 * offset case below. */
564 int n = MIN2((int)(x * 16), 7);
565 return n & 0xf;
566 }
567
568 void
569 fs_visitor::emit_interpolate_expression(ir_expression *ir)
570 {
571 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
572 * 8 channels at a time, same as the barycentric coords presented in
573 * the FS payload. this requires a bit of extra work to support.
574 */
575 no16("interpolate_at_* not yet supported in SIMD16 mode.");
576
577 assert(stage == MESA_SHADER_FRAGMENT);
578 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
579
580 ir_dereference * deref = ir->operands[0]->as_dereference();
581 ir_swizzle * swiz = NULL;
582 if (!deref) {
583 /* the api does not allow a swizzle here, but the varying packing code
584 * may have pushed one into here.
585 */
586 swiz = ir->operands[0]->as_swizzle();
587 assert(swiz);
588 deref = swiz->val->as_dereference();
589 }
590 assert(deref);
591 ir_variable * var = deref->variable_referenced();
592 assert(var);
593
594 /* 1. collect interpolation factors */
595
596 fs_reg dst_x = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1));
597 fs_reg dst_y = offset(dst_x, 1);
598
599 /* for most messages, we need one reg of ignored data; the hardware requires mlen==1
600 * even when there is no payload. in the per-slot offset case, we'll replace this with
601 * the proper source data. */
602 fs_reg src = vgrf(glsl_type::float_type);
603 int mlen = 1; /* one reg unless overriden */
604 int reg_width = dispatch_width / 8;
605 fs_inst *inst;
606
607 switch (ir->operation) {
608 case ir_unop_interpolate_at_centroid:
609 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
610 break;
611
612 case ir_binop_interpolate_at_sample: {
613 ir_constant *sample_num = ir->operands[1]->as_constant();
614 assert(sample_num || !"nonconstant sample number should have been lowered.");
615
616 unsigned msg_data = sample_num->value.i[0] << 4;
617 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src, fs_reg(msg_data));
618 break;
619 }
620
621 case ir_binop_interpolate_at_offset: {
622 ir_constant *const_offset = ir->operands[1]->as_constant();
623 if (const_offset) {
624 unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
625 (pack_pixel_offset(const_offset->value.f[1]) << 4);
626 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
627 fs_reg(msg_data));
628 } else {
629 /* pack the operands: hw wants offsets as 4 bit signed ints */
630 ir->operands[1]->accept(this);
631 src = vgrf(glsl_type::ivec2_type);
632 fs_reg src2 = src;
633 for (int i = 0; i < 2; i++) {
634 fs_reg temp = vgrf(glsl_type::float_type);
635 emit(MUL(temp, this->result, fs_reg(16.0f)));
636 emit(MOV(src2, temp)); /* float to int */
637
638 /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
639 * that we support a maximum offset of +0.5, which isn't representable
640 * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
641 * which is the opposite of what the shader author wanted.
642 *
643 * This is legal due to ARB_gpu_shader5's quantization rules:
644 *
645 * "Not all values of <offset> may be supported; x and y offsets may
646 * be rounded to fixed-point values with the number of fraction bits
647 * given by the implementation-dependent constant
648 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
649 */
650
651 fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
652 inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
653
654 src2 = offset(src2, 1);
655 this->result = offset(this->result, 1);
656 }
657
658 mlen = 2 * reg_width;
659 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
660 fs_reg(0u));
661 }
662 break;
663 }
664
665 default:
666 unreachable("not reached");
667 }
668
669 inst->mlen = mlen;
670 inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
671 inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
672 INTERP_QUALIFIER_NOPERSPECTIVE;
673
674 /* 2. emit linterp */
675
676 fs_reg res = vgrf(ir->type);
677 this->result = res;
678
679 for (int i = 0; i < ir->type->vector_elements; i++) {
680 int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
681 emit(FS_OPCODE_LINTERP, res,
682 dst_x, dst_y,
683 fs_reg(interp_reg(var->data.location, ch)));
684 res = offset(res, 1);
685 }
686 }
687
688 void
689 fs_visitor::visit(ir_expression *ir)
690 {
691 unsigned int operand;
692 fs_reg op[3], temp;
693 fs_inst *inst;
694 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
695
696 assert(ir->get_num_operands() <= 3);
697
698 if (try_emit_saturate(ir))
699 return;
700
701 /* Deal with the real oddball stuff first */
702 switch (ir->operation) {
703 case ir_binop_add:
704 if (brw->gen <= 5 && try_emit_line(ir))
705 return;
706 if (try_emit_mad(ir))
707 return;
708 break;
709
710 case ir_triop_csel:
711 ir->operands[1]->accept(this);
712 op[1] = this->result;
713 ir->operands[2]->accept(this);
714 op[2] = this->result;
715
716 emit_bool_to_cond_code(ir->operands[0]);
717
718 this->result = vgrf(ir->type);
719 inst = emit(SEL(this->result, op[1], op[2]));
720 inst->predicate = BRW_PREDICATE_NORMAL;
721 return;
722
723 case ir_unop_b2f:
724 if (brw->gen <= 5 && try_emit_b2f_of_comparison(ir))
725 return;
726 break;
727
728 case ir_unop_interpolate_at_centroid:
729 case ir_binop_interpolate_at_offset:
730 case ir_binop_interpolate_at_sample:
731 emit_interpolate_expression(ir);
732 return;
733
734 default:
735 break;
736 }
737
738 for (operand = 0; operand < ir->get_num_operands(); operand++) {
739 ir->operands[operand]->accept(this);
740 if (this->result.file == BAD_FILE) {
741 fail("Failed to get tree for expression operand:\n");
742 ir->operands[operand]->fprint(stderr);
743 fprintf(stderr, "\n");
744 }
745 assert(this->result.file == GRF ||
746 this->result.file == UNIFORM || this->result.file == ATTR);
747 op[operand] = this->result;
748
749 /* Matrix expression operands should have been broken down to vector
750 * operations already.
751 */
752 assert(!ir->operands[operand]->type->is_matrix());
753 /* And then those vector operands should have been broken down to scalar.
754 */
755 assert(!ir->operands[operand]->type->is_vector());
756 }
757
758 /* Storage for our result. If our result goes into an assignment, it will
759 * just get copy-propagated out, so no worries.
760 */
761 this->result = vgrf(ir->type);
762
763 switch (ir->operation) {
764 case ir_unop_logic_not:
765 emit(NOT(this->result, op[0]));
766 break;
767 case ir_unop_neg:
768 op[0].negate = !op[0].negate;
769 emit(MOV(this->result, op[0]));
770 break;
771 case ir_unop_abs:
772 op[0].abs = true;
773 op[0].negate = false;
774 emit(MOV(this->result, op[0]));
775 break;
776 case ir_unop_sign:
777 if (ir->type->is_float()) {
778 /* AND(val, 0x80000000) gives the sign bit.
779 *
780 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
781 * zero.
782 */
783 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
784
785 op[0].type = BRW_REGISTER_TYPE_UD;
786 this->result.type = BRW_REGISTER_TYPE_UD;
787 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
788
789 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
790 inst->predicate = BRW_PREDICATE_NORMAL;
791
792 this->result.type = BRW_REGISTER_TYPE_F;
793 } else {
794 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
795 * -> non-negative val generates 0x00000000.
796 * Predicated OR sets 1 if val is positive.
797 */
798 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
799
800 emit(ASR(this->result, op[0], fs_reg(31)));
801
802 inst = emit(OR(this->result, this->result, fs_reg(1)));
803 inst->predicate = BRW_PREDICATE_NORMAL;
804 }
805 break;
806 case ir_unop_rcp:
807 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
808 break;
809
810 case ir_unop_exp2:
811 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
812 break;
813 case ir_unop_log2:
814 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
815 break;
816 case ir_unop_exp:
817 case ir_unop_log:
818 unreachable("not reached: should be handled by ir_explog_to_explog2");
819 case ir_unop_sin:
820 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
821 break;
822 case ir_unop_cos:
823 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
824 break;
825
826 case ir_unop_dFdx:
827 /* Select one of the two opcodes based on the glHint value. */
828 if (fs_key->high_quality_derivatives)
829 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
830 else
831 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
832 break;
833
834 case ir_unop_dFdx_coarse:
835 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
836 break;
837
838 case ir_unop_dFdx_fine:
839 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
840 break;
841
842 case ir_unop_dFdy:
843 /* Select one of the two opcodes based on the glHint value. */
844 if (fs_key->high_quality_derivatives)
845 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
846 else
847 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
848 break;
849
850 case ir_unop_dFdy_coarse:
851 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
852 break;
853
854 case ir_unop_dFdy_fine:
855 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
856 break;
857
858 case ir_binop_add:
859 emit(ADD(this->result, op[0], op[1]));
860 break;
861 case ir_binop_sub:
862 unreachable("not reached: should be handled by ir_sub_to_add_neg");
863
864 case ir_binop_mul:
865 if (brw->gen < 8 && ir->type->is_integer()) {
866 /* For integer multiplication, the MUL uses the low 16 bits
867 * of one of the operands (src0 on gen6, src1 on gen7). The
868 * MACH accumulates in the contribution of the upper 16 bits
869 * of that operand.
870 */
871 if (ir->operands[0]->is_uint16_constant()) {
872 if (brw->gen < 7)
873 emit(MUL(this->result, op[0], op[1]));
874 else
875 emit(MUL(this->result, op[1], op[0]));
876 } else if (ir->operands[1]->is_uint16_constant()) {
877 if (brw->gen < 7)
878 emit(MUL(this->result, op[1], op[0]));
879 else
880 emit(MUL(this->result, op[0], op[1]));
881 } else {
882 if (brw->gen >= 7)
883 no16("SIMD16 explicit accumulator operands unsupported\n");
884
885 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
886 this->result.type);
887
888 emit(MUL(acc, op[0], op[1]));
889 emit(MACH(reg_null_d, op[0], op[1]));
890 emit(MOV(this->result, fs_reg(acc)));
891 }
892 } else {
893 emit(MUL(this->result, op[0], op[1]));
894 }
895 break;
896 case ir_binop_imul_high: {
897 if (brw->gen == 7)
898 no16("SIMD16 explicit accumulator operands unsupported\n");
899
900 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
901 this->result.type);
902
903 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
904 emit(MACH(this->result, op[0], op[1]));
905
906 /* Until Gen8, integer multiplies read 32-bits from one source, and
907 * 16-bits from the other, and relying on the MACH instruction to
908 * generate the high bits of the result.
909 *
910 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
911 * but in order to do a 64x64-bit multiply we have to simulate the
912 * previous behavior and then use a MACH instruction.
913 *
914 * FINISHME: Don't use source modifiers on src1.
915 */
916 if (brw->gen >= 8) {
917 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
918 mul->src[1].type == BRW_REGISTER_TYPE_UD);
919 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
920 mul->src[1].type = BRW_REGISTER_TYPE_W;
921 } else {
922 mul->src[1].type = BRW_REGISTER_TYPE_UW;
923 }
924 }
925
926 break;
927 }
928 case ir_binop_div:
929 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
930 assert(ir->type->is_integer());
931 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
932 break;
933 case ir_binop_carry: {
934 if (brw->gen == 7)
935 no16("SIMD16 explicit accumulator operands unsupported\n");
936
937 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
938 BRW_REGISTER_TYPE_UD);
939
940 emit(ADDC(reg_null_ud, op[0], op[1]));
941 emit(MOV(this->result, fs_reg(acc)));
942 break;
943 }
944 case ir_binop_borrow: {
945 if (brw->gen == 7)
946 no16("SIMD16 explicit accumulator operands unsupported\n");
947
948 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
949 BRW_REGISTER_TYPE_UD);
950
951 emit(SUBB(reg_null_ud, op[0], op[1]));
952 emit(MOV(this->result, fs_reg(acc)));
953 break;
954 }
955 case ir_binop_mod:
956 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
957 assert(ir->type->is_integer());
958 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
959 break;
960
961 case ir_binop_less:
962 case ir_binop_greater:
963 case ir_binop_lequal:
964 case ir_binop_gequal:
965 case ir_binop_equal:
966 case ir_binop_all_equal:
967 case ir_binop_nequal:
968 case ir_binop_any_nequal:
969 if (brw->gen <= 5) {
970 resolve_bool_comparison(ir->operands[0], &op[0]);
971 resolve_bool_comparison(ir->operands[1], &op[1]);
972 }
973
974 emit(CMP(this->result, op[0], op[1],
975 brw_conditional_for_comparison(ir->operation)));
976 break;
977
978 case ir_binop_logic_xor:
979 emit(XOR(this->result, op[0], op[1]));
980 break;
981
982 case ir_binop_logic_or:
983 emit(OR(this->result, op[0], op[1]));
984 break;
985
986 case ir_binop_logic_and:
987 emit(AND(this->result, op[0], op[1]));
988 break;
989
990 case ir_binop_dot:
991 case ir_unop_any:
992 unreachable("not reached: should be handled by brw_fs_channel_expressions");
993
994 case ir_unop_noise:
995 unreachable("not reached: should be handled by lower_noise");
996
997 case ir_quadop_vector:
998 unreachable("not reached: should be handled by lower_quadop_vector");
999
1000 case ir_binop_vector_extract:
1001 unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
1002
1003 case ir_triop_vector_insert:
1004 unreachable("not reached: should be handled by lower_vector_insert()");
1005
1006 case ir_binop_ldexp:
1007 unreachable("not reached: should be handled by ldexp_to_arith()");
1008
1009 case ir_unop_sqrt:
1010 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
1011 break;
1012
1013 case ir_unop_rsq:
1014 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
1015 break;
1016
1017 case ir_unop_bitcast_i2f:
1018 case ir_unop_bitcast_u2f:
1019 op[0].type = BRW_REGISTER_TYPE_F;
1020 this->result = op[0];
1021 break;
1022 case ir_unop_i2u:
1023 case ir_unop_bitcast_f2u:
1024 op[0].type = BRW_REGISTER_TYPE_UD;
1025 this->result = op[0];
1026 break;
1027 case ir_unop_u2i:
1028 case ir_unop_bitcast_f2i:
1029 op[0].type = BRW_REGISTER_TYPE_D;
1030 this->result = op[0];
1031 break;
1032 case ir_unop_i2f:
1033 case ir_unop_u2f:
1034 case ir_unop_f2i:
1035 case ir_unop_f2u:
1036 emit(MOV(this->result, op[0]));
1037 break;
1038
1039 case ir_unop_b2i:
1040 emit(AND(this->result, op[0], fs_reg(1)));
1041 break;
1042 case ir_unop_b2f:
1043 if (brw->gen <= 5) {
1044 resolve_bool_comparison(ir->operands[0], &op[0]);
1045 }
1046 op[0].type = BRW_REGISTER_TYPE_D;
1047 this->result.type = BRW_REGISTER_TYPE_D;
1048 emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
1049 this->result.type = BRW_REGISTER_TYPE_F;
1050 break;
1051
1052 case ir_unop_f2b:
1053 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1054 break;
1055 case ir_unop_i2b:
1056 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1057 break;
1058
1059 case ir_unop_trunc:
1060 emit(RNDZ(this->result, op[0]));
1061 break;
1062 case ir_unop_ceil: {
1063 fs_reg tmp = vgrf(ir->type);
1064 op[0].negate = !op[0].negate;
1065 emit(RNDD(tmp, op[0]));
1066 tmp.negate = true;
1067 emit(MOV(this->result, tmp));
1068 }
1069 break;
1070 case ir_unop_floor:
1071 emit(RNDD(this->result, op[0]));
1072 break;
1073 case ir_unop_fract:
1074 emit(FRC(this->result, op[0]));
1075 break;
1076 case ir_unop_round_even:
1077 emit(RNDE(this->result, op[0]));
1078 break;
1079
1080 case ir_binop_min:
1081 case ir_binop_max:
1082 resolve_ud_negate(&op[0]);
1083 resolve_ud_negate(&op[1]);
1084 emit_minmax(ir->operation == ir_binop_min ?
1085 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
1086 this->result, op[0], op[1]);
1087 break;
1088 case ir_unop_pack_snorm_2x16:
1089 case ir_unop_pack_snorm_4x8:
1090 case ir_unop_pack_unorm_2x16:
1091 case ir_unop_pack_unorm_4x8:
1092 case ir_unop_unpack_snorm_2x16:
1093 case ir_unop_unpack_snorm_4x8:
1094 case ir_unop_unpack_unorm_2x16:
1095 case ir_unop_unpack_unorm_4x8:
1096 case ir_unop_unpack_half_2x16:
1097 case ir_unop_pack_half_2x16:
1098 unreachable("not reached: should be handled by lower_packing_builtins");
1099 case ir_unop_unpack_half_2x16_split_x:
1100 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
1101 break;
1102 case ir_unop_unpack_half_2x16_split_y:
1103 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
1104 break;
1105 case ir_binop_pow:
1106 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
1107 break;
1108
1109 case ir_unop_bitfield_reverse:
1110 emit(BFREV(this->result, op[0]));
1111 break;
1112 case ir_unop_bit_count:
1113 emit(CBIT(this->result, op[0]));
1114 break;
1115 case ir_unop_find_msb:
1116 temp = vgrf(glsl_type::uint_type);
1117 emit(FBH(temp, op[0]));
1118
1119 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1120 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1121 * subtract the result from 31 to convert the MSB count into an LSB count.
1122 */
1123
1124 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1125 emit(MOV(this->result, temp));
1126 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1127
1128 temp.negate = true;
1129 inst = emit(ADD(this->result, temp, fs_reg(31)));
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132 case ir_unop_find_lsb:
1133 emit(FBL(this->result, op[0]));
1134 break;
1135 case ir_unop_saturate:
1136 inst = emit(MOV(this->result, op[0]));
1137 inst->saturate = true;
1138 break;
1139 case ir_triop_bitfield_extract:
1140 /* Note that the instruction's argument order is reversed from GLSL
1141 * and the IR.
1142 */
1143 emit(BFE(this->result, op[2], op[1], op[0]));
1144 break;
1145 case ir_binop_bfm:
1146 emit(BFI1(this->result, op[0], op[1]));
1147 break;
1148 case ir_triop_bfi:
1149 emit(BFI2(this->result, op[0], op[1], op[2]));
1150 break;
1151 case ir_quadop_bitfield_insert:
1152 unreachable("not reached: should be handled by "
1153 "lower_instructions::bitfield_insert_to_bfm_bfi");
1154
1155 case ir_unop_bit_not:
1156 emit(NOT(this->result, op[0]));
1157 break;
1158 case ir_binop_bit_and:
1159 emit(AND(this->result, op[0], op[1]));
1160 break;
1161 case ir_binop_bit_xor:
1162 emit(XOR(this->result, op[0], op[1]));
1163 break;
1164 case ir_binop_bit_or:
1165 emit(OR(this->result, op[0], op[1]));
1166 break;
1167
1168 case ir_binop_lshift:
1169 emit(SHL(this->result, op[0], op[1]));
1170 break;
1171
1172 case ir_binop_rshift:
1173 if (ir->type->base_type == GLSL_TYPE_INT)
1174 emit(ASR(this->result, op[0], op[1]));
1175 else
1176 emit(SHR(this->result, op[0], op[1]));
1177 break;
1178 case ir_binop_pack_half_2x16_split:
1179 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
1180 break;
1181 case ir_binop_ubo_load: {
1182 /* This IR node takes a constant uniform block and a constant or
1183 * variable byte offset within the block and loads a vector from that.
1184 */
1185 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1186 ir_constant *const_offset = ir->operands[1]->as_constant();
1187 fs_reg surf_index;
1188
1189 if (const_uniform_block) {
1190 /* The block index is a constant, so just emit the binding table entry
1191 * as an immediate.
1192 */
1193 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1194 const_uniform_block->value.u[0]);
1195 } else {
1196 /* The block index is not a constant. Evaluate the index expression
1197 * per-channel and add the base UBO index; the generator will select
1198 * a value from any live channel.
1199 */
1200 surf_index = vgrf(glsl_type::uint_type);
1201 emit(ADD(surf_index, op[0],
1202 fs_reg(stage_prog_data->binding_table.ubo_start)))
1203 ->force_writemask_all = true;
1204
1205 /* Assume this may touch any UBO. It would be nice to provide
1206 * a tighter bound, but the array information is already lowered away.
1207 */
1208 brw_mark_surface_used(prog_data,
1209 stage_prog_data->binding_table.ubo_start +
1210 shader_prog->NumUniformBlocks - 1);
1211 }
1212
1213 if (const_offset) {
1214 fs_reg packed_consts = vgrf(glsl_type::float_type);
1215 packed_consts.type = result.type;
1216
1217 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
1218 emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
1219 packed_consts, surf_index, const_offset_reg));
1220
1221 for (int i = 0; i < ir->type->vector_elements; i++) {
1222 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
1223
1224 /* The std140 packing rules don't allow vectors to cross 16-byte
1225 * boundaries, and a reg is 32 bytes.
1226 */
1227 assert(packed_consts.subreg_offset < 32);
1228
1229 /* UBO bools are any nonzero value. We consider bools to be
1230 * values with the low bit set to 1. Convert them using CMP.
1231 */
1232 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1233 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
1234 } else {
1235 emit(MOV(result, packed_consts));
1236 }
1237
1238 result = offset(result, 1);
1239 }
1240 } else {
1241 /* Turn the byte offset into a dword offset. */
1242 fs_reg base_offset = vgrf(glsl_type::int_type);
1243 emit(SHR(base_offset, op[1], fs_reg(2)));
1244
1245 for (int i = 0; i < ir->type->vector_elements; i++) {
1246 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
1247 base_offset, i));
1248
1249 if (ir->type->base_type == GLSL_TYPE_BOOL)
1250 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
1251
1252 result = offset(result, 1);
1253 }
1254 }
1255
1256 result.reg_offset = 0;
1257 break;
1258 }
1259
1260 case ir_triop_fma:
1261 /* Note that the instruction's argument order is reversed from GLSL
1262 * and the IR.
1263 */
1264 emit(MAD(this->result, op[2], op[1], op[0]));
1265 break;
1266
1267 case ir_triop_lrp:
1268 emit_lrp(this->result, op[0], op[1], op[2]);
1269 break;
1270
1271 case ir_triop_csel:
1272 case ir_unop_interpolate_at_centroid:
1273 case ir_binop_interpolate_at_offset:
1274 case ir_binop_interpolate_at_sample:
1275 unreachable("already handled above");
1276 break;
1277
1278 case ir_unop_d2f:
1279 case ir_unop_f2d:
1280 case ir_unop_d2i:
1281 case ir_unop_i2d:
1282 case ir_unop_d2u:
1283 case ir_unop_u2d:
1284 case ir_unop_d2b:
1285 case ir_unop_pack_double_2x32:
1286 case ir_unop_unpack_double_2x32:
1287 case ir_unop_frexp_sig:
1288 case ir_unop_frexp_exp:
1289 unreachable("fp64 todo");
1290 break;
1291 }
1292 }
1293
1294 void
1295 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1296 const glsl_type *type, bool predicated)
1297 {
1298 switch (type->base_type) {
1299 case GLSL_TYPE_FLOAT:
1300 case GLSL_TYPE_UINT:
1301 case GLSL_TYPE_INT:
1302 case GLSL_TYPE_BOOL:
1303 for (unsigned int i = 0; i < type->components(); i++) {
1304 l.type = brw_type_for_base_type(type);
1305 r.type = brw_type_for_base_type(type);
1306
1307 if (predicated || !l.equals(r)) {
1308 fs_inst *inst = emit(MOV(l, r));
1309 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
1310 }
1311
1312 l = offset(l, 1);
1313 r = offset(r, 1);
1314 }
1315 break;
1316 case GLSL_TYPE_ARRAY:
1317 for (unsigned int i = 0; i < type->length; i++) {
1318 emit_assignment_writes(l, r, type->fields.array, predicated);
1319 }
1320 break;
1321
1322 case GLSL_TYPE_STRUCT:
1323 for (unsigned int i = 0; i < type->length; i++) {
1324 emit_assignment_writes(l, r, type->fields.structure[i].type,
1325 predicated);
1326 }
1327 break;
1328
1329 case GLSL_TYPE_SAMPLER:
1330 case GLSL_TYPE_IMAGE:
1331 case GLSL_TYPE_ATOMIC_UINT:
1332 break;
1333
1334 case GLSL_TYPE_DOUBLE:
1335 case GLSL_TYPE_VOID:
1336 case GLSL_TYPE_ERROR:
1337 case GLSL_TYPE_INTERFACE:
1338 unreachable("not reached");
1339 }
1340 }
1341
1342 /* If the RHS processing resulted in an instruction generating a
1343 * temporary value, and it would be easy to rewrite the instruction to
1344 * generate its result right into the LHS instead, do so. This ends
1345 * up reliably removing instructions where it can be tricky to do so
1346 * later without real UD chain information.
1347 */
1348 bool
1349 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1350 fs_reg dst,
1351 fs_reg src,
1352 fs_inst *pre_rhs_inst,
1353 fs_inst *last_rhs_inst)
1354 {
1355 /* Only attempt if we're doing a direct assignment. */
1356 if (ir->condition ||
1357 !(ir->lhs->type->is_scalar() ||
1358 (ir->lhs->type->is_vector() &&
1359 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
1360 return false;
1361
1362 /* Make sure the last instruction generated our source reg. */
1363 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
1364 last_rhs_inst,
1365 src);
1366 if (!modify)
1367 return false;
1368
1369 /* If last_rhs_inst wrote a different number of components than our LHS,
1370 * we can't safely rewrite it.
1371 */
1372 if (alloc.sizes[dst.reg] != modify->regs_written)
1373 return false;
1374
1375 /* Success! Rewrite the instruction. */
1376 modify->dst = dst;
1377
1378 return true;
1379 }
1380
1381 void
1382 fs_visitor::visit(ir_assignment *ir)
1383 {
1384 fs_reg l, r;
1385 fs_inst *inst;
1386
1387 /* FINISHME: arrays on the lhs */
1388 ir->lhs->accept(this);
1389 l = this->result;
1390
1391 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
1392
1393 ir->rhs->accept(this);
1394 r = this->result;
1395
1396 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
1397
1398 assert(l.file != BAD_FILE);
1399 assert(r.file != BAD_FILE);
1400
1401 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
1402 return;
1403
1404 if (ir->condition) {
1405 emit_bool_to_cond_code(ir->condition);
1406 }
1407
1408 if (ir->lhs->type->is_scalar() ||
1409 ir->lhs->type->is_vector()) {
1410 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1411 if (ir->write_mask & (1 << i)) {
1412 inst = emit(MOV(l, r));
1413 if (ir->condition)
1414 inst->predicate = BRW_PREDICATE_NORMAL;
1415 r = offset(r, 1);
1416 }
1417 l = offset(l, 1);
1418 }
1419 } else {
1420 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1421 }
1422 }
1423
1424 fs_inst *
1425 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
1426 fs_reg coordinate, int coord_components,
1427 fs_reg shadow_c,
1428 fs_reg lod, fs_reg dPdy, int grad_components,
1429 uint32_t sampler)
1430 {
1431 int mlen;
1432 int base_mrf = 1;
1433 bool simd16 = false;
1434 fs_reg orig_dst;
1435
1436 no16("SIMD16 texturing on Gen4 not supported yet.");
1437
1438 /* g0 header. */
1439 mlen = 1;
1440
1441 if (shadow_c.file != BAD_FILE) {
1442 for (int i = 0; i < coord_components; i++) {
1443 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1444 coordinate = offset(coordinate, 1);
1445 }
1446
1447 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
1448 * the unused slots must be zeroed.
1449 */
1450 for (int i = coord_components; i < 3; i++) {
1451 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1452 }
1453 mlen += 3;
1454
1455 if (op == ir_tex) {
1456 /* There's no plain shadow compare message, so we use shadow
1457 * compare with a bias of 0.0.
1458 */
1459 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
1460 mlen++;
1461 } else if (op == ir_txb || op == ir_txl) {
1462 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1463 mlen++;
1464 } else {
1465 unreachable("Should not get here.");
1466 }
1467
1468 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1469 mlen++;
1470 } else if (op == ir_tex) {
1471 for (int i = 0; i < coord_components; i++) {
1472 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1473 coordinate = offset(coordinate, 1);
1474 }
1475 /* zero the others. */
1476 for (int i = coord_components; i<3; i++) {
1477 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1478 }
1479 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1480 mlen += 3;
1481 } else if (op == ir_txd) {
1482 fs_reg &dPdx = lod;
1483
1484 for (int i = 0; i < coord_components; i++) {
1485 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1486 coordinate = offset(coordinate, 1);
1487 }
1488 /* the slots for u and v are always present, but r is optional */
1489 mlen += MAX2(coord_components, 2);
1490
1491 /* P = u, v, r
1492 * dPdx = dudx, dvdx, drdx
1493 * dPdy = dudy, dvdy, drdy
1494 *
1495 * 1-arg: Does not exist.
1496 *
1497 * 2-arg: dudx dvdx dudy dvdy
1498 * dPdx.x dPdx.y dPdy.x dPdy.y
1499 * m4 m5 m6 m7
1500 *
1501 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1502 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1503 * m5 m6 m7 m8 m9 m10
1504 */
1505 for (int i = 0; i < grad_components; i++) {
1506 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1507 dPdx = offset(dPdx, 1);
1508 }
1509 mlen += MAX2(grad_components, 2);
1510
1511 for (int i = 0; i < grad_components; i++) {
1512 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1513 dPdy = offset(dPdy, 1);
1514 }
1515 mlen += MAX2(grad_components, 2);
1516 } else if (op == ir_txs) {
1517 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1518 simd16 = true;
1519 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1520 mlen += 2;
1521 } else {
1522 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1523 * instructions. We'll need to do SIMD16 here.
1524 */
1525 simd16 = true;
1526 assert(op == ir_txb || op == ir_txl || op == ir_txf);
1527
1528 for (int i = 0; i < coord_components; i++) {
1529 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1530 coordinate));
1531 coordinate = offset(coordinate, 1);
1532 }
1533
1534 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1535 * be necessary for TXF (ld), but seems wise to do for all messages.
1536 */
1537 for (int i = coord_components; i < 3; i++) {
1538 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1539 }
1540
1541 /* lod/bias appears after u/v/r. */
1542 mlen += 6;
1543
1544 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1545 mlen++;
1546
1547 /* The unused upper half. */
1548 mlen++;
1549 }
1550
1551 if (simd16) {
1552 /* Now, since we're doing simd16, the return is 2 interleaved
1553 * vec4s where the odd-indexed ones are junk. We'll need to move
1554 * this weirdness around to the expected layout.
1555 */
1556 orig_dst = dst;
1557 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
1558 }
1559
1560 enum opcode opcode;
1561 switch (op) {
1562 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1563 case ir_txb: opcode = FS_OPCODE_TXB; break;
1564 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1565 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1566 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1567 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1568 default:
1569 unreachable("not reached");
1570 }
1571
1572 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1573 inst->base_mrf = base_mrf;
1574 inst->mlen = mlen;
1575 inst->header_present = true;
1576 inst->regs_written = simd16 ? 8 : 4;
1577
1578 if (simd16) {
1579 for (int i = 0; i < 4; i++) {
1580 emit(MOV(orig_dst, dst));
1581 orig_dst = offset(orig_dst, 1);
1582 dst = offset(dst, 2);
1583 }
1584 }
1585
1586 return inst;
1587 }
1588
1589 /* gen5's sampler has slots for u, v, r, array index, then optional
1590 * parameters like shadow comparitor or LOD bias. If optional
1591 * parameters aren't present, those base slots are optional and don't
1592 * need to be included in the message.
1593 *
1594 * We don't fill in the unnecessary slots regardless, which may look
1595 * surprising in the disassembly.
1596 */
1597 fs_inst *
1598 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
1599 fs_reg coordinate, int vector_elements,
1600 fs_reg shadow_c,
1601 fs_reg lod, fs_reg lod2, int grad_components,
1602 fs_reg sample_index, uint32_t sampler,
1603 bool has_offset)
1604 {
1605 int reg_width = dispatch_width / 8;
1606 bool header_present = false;
1607
1608 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1609 fs_reg msg_coords = message;
1610
1611 if (has_offset) {
1612 /* The offsets set up by the ir_texture visitor are in the
1613 * m1 header, so we can't go headerless.
1614 */
1615 header_present = true;
1616 message.reg--;
1617 }
1618
1619 for (int i = 0; i < vector_elements; i++) {
1620 emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
1621 coordinate = offset(coordinate, 1);
1622 }
1623 fs_reg msg_end = offset(msg_coords, vector_elements);
1624 fs_reg msg_lod = offset(msg_coords, 4);
1625
1626 if (shadow_c.file != BAD_FILE) {
1627 fs_reg msg_shadow = msg_lod;
1628 emit(MOV(msg_shadow, shadow_c));
1629 msg_lod = offset(msg_shadow, 1);
1630 msg_end = msg_lod;
1631 }
1632
1633 enum opcode opcode;
1634 switch (op) {
1635 case ir_tex:
1636 opcode = SHADER_OPCODE_TEX;
1637 break;
1638 case ir_txb:
1639 emit(MOV(msg_lod, lod));
1640 msg_end = offset(msg_lod, 1);
1641
1642 opcode = FS_OPCODE_TXB;
1643 break;
1644 case ir_txl:
1645 emit(MOV(msg_lod, lod));
1646 msg_end = offset(msg_lod, 1);
1647
1648 opcode = SHADER_OPCODE_TXL;
1649 break;
1650 case ir_txd: {
1651 /**
1652 * P = u, v, r
1653 * dPdx = dudx, dvdx, drdx
1654 * dPdy = dudy, dvdy, drdy
1655 *
1656 * Load up these values:
1657 * - dudx dudy dvdx dvdy drdx drdy
1658 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1659 */
1660 msg_end = msg_lod;
1661 for (int i = 0; i < grad_components; i++) {
1662 emit(MOV(msg_end, lod));
1663 lod = offset(lod, 1);
1664 msg_end = offset(msg_end, 1);
1665
1666 emit(MOV(msg_end, lod2));
1667 lod2 = offset(lod2, 1);
1668 msg_end = offset(msg_end, 1);
1669 }
1670
1671 opcode = SHADER_OPCODE_TXD;
1672 break;
1673 }
1674 case ir_txs:
1675 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
1676 emit(MOV(msg_lod, lod));
1677 msg_end = offset(msg_lod, 1);
1678
1679 opcode = SHADER_OPCODE_TXS;
1680 break;
1681 case ir_query_levels:
1682 msg_lod = msg_end;
1683 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1684 msg_end = offset(msg_lod, 1);
1685
1686 opcode = SHADER_OPCODE_TXS;
1687 break;
1688 case ir_txf:
1689 msg_lod = offset(msg_coords, 3);
1690 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
1691 msg_end = offset(msg_lod, 1);
1692
1693 opcode = SHADER_OPCODE_TXF;
1694 break;
1695 case ir_txf_ms:
1696 msg_lod = offset(msg_coords, 3);
1697 /* lod */
1698 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1699 /* sample index */
1700 emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
1701 msg_end = offset(msg_lod, 2);
1702
1703 opcode = SHADER_OPCODE_TXF_CMS;
1704 break;
1705 case ir_lod:
1706 opcode = SHADER_OPCODE_LOD;
1707 break;
1708 case ir_tg4:
1709 opcode = SHADER_OPCODE_TG4;
1710 break;
1711 default:
1712 unreachable("not reached");
1713 }
1714
1715 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1716 inst->base_mrf = message.reg;
1717 inst->mlen = msg_end.reg - message.reg;
1718 inst->header_present = header_present;
1719 inst->regs_written = 4 * reg_width;
1720
1721 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1722 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1723 " disallowed by hardware\n");
1724 }
1725
1726 return inst;
1727 }
1728
1729 static bool
1730 is_high_sampler(struct brw_context *brw, fs_reg sampler)
1731 {
1732 if (brw->gen < 8 && !brw->is_haswell)
1733 return false;
1734
1735 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
1736 }
1737
1738 fs_inst *
1739 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
1740 fs_reg coordinate, int coord_components,
1741 fs_reg shadow_c,
1742 fs_reg lod, fs_reg lod2, int grad_components,
1743 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
1744 fs_reg offset_value)
1745 {
1746 int reg_width = dispatch_width / 8;
1747 bool header_present = false;
1748
1749 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
1750 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
1751 sources[i] = vgrf(glsl_type::float_type);
1752 }
1753 int length = 0;
1754
1755 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
1756 is_high_sampler(brw, sampler)) {
1757 /* For general texture offsets (no txf workaround), we need a header to
1758 * put them in. Note that for SIMD16 we're making space for two actual
1759 * hardware registers here, so the emit will have to fix up for this.
1760 *
1761 * * ir4_tg4 needs to place its channel select in the header,
1762 * for interaction with ARB_texture_swizzle
1763 *
1764 * The sampler index is only 4-bits, so for larger sampler numbers we
1765 * need to offset the Sampler State Pointer in the header.
1766 */
1767 header_present = true;
1768 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1769 length++;
1770 }
1771
1772 if (shadow_c.file != BAD_FILE) {
1773 emit(MOV(sources[length], shadow_c));
1774 length++;
1775 }
1776
1777 bool has_nonconstant_offset =
1778 offset_value.file != BAD_FILE && offset_value.file != IMM;
1779 bool coordinate_done = false;
1780
1781 /* Set up the LOD info */
1782 switch (op) {
1783 case ir_tex:
1784 case ir_lod:
1785 break;
1786 case ir_txb:
1787 emit(MOV(sources[length], lod));
1788 length++;
1789 break;
1790 case ir_txl:
1791 emit(MOV(sources[length], lod));
1792 length++;
1793 break;
1794 case ir_txd: {
1795 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1796
1797 /* Load dPdx and the coordinate together:
1798 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1799 */
1800 for (int i = 0; i < coord_components; i++) {
1801 emit(MOV(sources[length], coordinate));
1802 coordinate = offset(coordinate, 1);
1803 length++;
1804
1805 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1806 * only derivatives for (u, v, r).
1807 */
1808 if (i < grad_components) {
1809 emit(MOV(sources[length], lod));
1810 lod = offset(lod, 1);
1811 length++;
1812
1813 emit(MOV(sources[length], lod2));
1814 lod2 = offset(lod2, 1);
1815 length++;
1816 }
1817 }
1818
1819 coordinate_done = true;
1820 break;
1821 }
1822 case ir_txs:
1823 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
1824 length++;
1825 break;
1826 case ir_query_levels:
1827 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1828 length++;
1829 break;
1830 case ir_txf:
1831 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1832 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1833 coordinate = offset(coordinate, 1);
1834 length++;
1835
1836 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
1837 length++;
1838
1839 for (int i = 1; i < coord_components; i++) {
1840 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1841 coordinate = offset(coordinate, 1);
1842 length++;
1843 }
1844
1845 coordinate_done = true;
1846 break;
1847 case ir_txf_ms:
1848 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
1849 length++;
1850
1851 /* data from the multisample control surface */
1852 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
1853 length++;
1854
1855 /* there is no offsetting for this message; just copy in the integer
1856 * texture coordinates
1857 */
1858 for (int i = 0; i < coord_components; i++) {
1859 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1860 coordinate = offset(coordinate, 1);
1861 length++;
1862 }
1863
1864 coordinate_done = true;
1865 break;
1866 case ir_tg4:
1867 if (has_nonconstant_offset) {
1868 if (shadow_c.file != BAD_FILE)
1869 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
1870
1871 /* More crazy intermixing */
1872 for (int i = 0; i < 2; i++) { /* u, v */
1873 emit(MOV(sources[length], coordinate));
1874 coordinate = offset(coordinate, 1);
1875 length++;
1876 }
1877
1878 for (int i = 0; i < 2; i++) { /* offu, offv */
1879 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
1880 offset_value = offset(offset_value, 1);
1881 length++;
1882 }
1883
1884 if (coord_components == 3) { /* r if present */
1885 emit(MOV(sources[length], coordinate));
1886 coordinate = offset(coordinate, 1);
1887 length++;
1888 }
1889
1890 coordinate_done = true;
1891 }
1892 break;
1893 }
1894
1895 /* Set up the coordinate (except for cases where it was done above) */
1896 if (!coordinate_done) {
1897 for (int i = 0; i < coord_components; i++) {
1898 emit(MOV(sources[length], coordinate));
1899 coordinate = offset(coordinate, 1);
1900 length++;
1901 }
1902 }
1903
1904 int mlen;
1905 if (reg_width == 2)
1906 mlen = length * reg_width - header_present;
1907 else
1908 mlen = length * reg_width;
1909
1910 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1911 BRW_REGISTER_TYPE_F);
1912 emit(LOAD_PAYLOAD(src_payload, sources, length));
1913
1914 /* Generate the SEND */
1915 enum opcode opcode;
1916 switch (op) {
1917 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1918 case ir_txb: opcode = FS_OPCODE_TXB; break;
1919 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1920 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1921 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1922 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
1923 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1924 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
1925 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
1926 case ir_tg4:
1927 if (has_nonconstant_offset)
1928 opcode = SHADER_OPCODE_TG4_OFFSET;
1929 else
1930 opcode = SHADER_OPCODE_TG4;
1931 break;
1932 default:
1933 unreachable("not reached");
1934 }
1935 fs_inst *inst = emit(opcode, dst, src_payload, sampler);
1936 inst->base_mrf = -1;
1937 inst->mlen = mlen;
1938 inst->header_present = header_present;
1939 inst->regs_written = 4 * reg_width;
1940
1941 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1942 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1943 " disallowed by hardware\n");
1944 }
1945
1946 return inst;
1947 }
1948
1949 fs_reg
1950 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
1951 bool is_rect, uint32_t sampler, int texunit)
1952 {
1953 fs_inst *inst = NULL;
1954 bool needs_gl_clamp = true;
1955 fs_reg scale_x, scale_y;
1956
1957 /* The 965 requires the EU to do the normalization of GL rectangle
1958 * texture coordinates. We use the program parameter state
1959 * tracking to get the scaling factor.
1960 */
1961 if (is_rect &&
1962 (brw->gen < 6 ||
1963 (brw->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
1964 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
1965 struct gl_program_parameter_list *params = prog->Parameters;
1966 int tokens[STATE_LENGTH] = {
1967 STATE_INTERNAL,
1968 STATE_TEXRECT_SCALE,
1969 texunit,
1970 0,
1971 0
1972 };
1973
1974 no16("rectangle scale uniform setup not supported on SIMD16\n");
1975 if (dispatch_width == 16) {
1976 return coordinate;
1977 }
1978
1979 GLuint index = _mesa_add_state_reference(params,
1980 (gl_state_index *)tokens);
1981 /* Try to find existing copies of the texrect scale uniforms. */
1982 for (unsigned i = 0; i < uniforms; i++) {
1983 if (stage_prog_data->param[i] ==
1984 &prog->Parameters->ParameterValues[index][0]) {
1985 scale_x = fs_reg(UNIFORM, i);
1986 scale_y = fs_reg(UNIFORM, i + 1);
1987 break;
1988 }
1989 }
1990
1991 /* If we didn't already set them up, do so now. */
1992 if (scale_x.file == BAD_FILE) {
1993 scale_x = fs_reg(UNIFORM, uniforms);
1994 scale_y = fs_reg(UNIFORM, uniforms + 1);
1995
1996 stage_prog_data->param[uniforms++] =
1997 &prog->Parameters->ParameterValues[index][0];
1998 stage_prog_data->param[uniforms++] =
1999 &prog->Parameters->ParameterValues[index][1];
2000 }
2001 }
2002
2003 /* The 965 requires the EU to do the normalization of GL rectangle
2004 * texture coordinates. We use the program parameter state
2005 * tracking to get the scaling factor.
2006 */
2007 if (brw->gen < 6 && is_rect) {
2008 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
2009 fs_reg src = coordinate;
2010 coordinate = dst;
2011
2012 emit(MUL(dst, src, scale_x));
2013 dst = offset(dst, 1);
2014 src = offset(src, 1);
2015 emit(MUL(dst, src, scale_y));
2016 } else if (is_rect) {
2017 /* On gen6+, the sampler handles the rectangle coordinates
2018 * natively, without needing rescaling. But that means we have
2019 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
2020 * not [0, 1] like the default case below.
2021 */
2022 needs_gl_clamp = false;
2023
2024 for (int i = 0; i < 2; i++) {
2025 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2026 fs_reg chan = coordinate;
2027 chan = offset(chan, i);
2028
2029 inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
2030 inst->conditional_mod = BRW_CONDITIONAL_GE;
2031
2032 /* Our parameter comes in as 1.0/width or 1.0/height,
2033 * because that's what people normally want for doing
2034 * texture rectangle handling. We need width or height
2035 * for clamping, but we don't care enough to make a new
2036 * parameter type, so just invert back.
2037 */
2038 fs_reg limit = vgrf(glsl_type::float_type);
2039 emit(MOV(limit, i == 0 ? scale_x : scale_y));
2040 emit(SHADER_OPCODE_RCP, limit, limit);
2041
2042 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
2043 inst->conditional_mod = BRW_CONDITIONAL_L;
2044 }
2045 }
2046 }
2047
2048 if (coord_components > 0 && needs_gl_clamp) {
2049 for (int i = 0; i < MIN2(coord_components, 3); i++) {
2050 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2051 fs_reg chan = coordinate;
2052 chan = offset(chan, i);
2053
2054 fs_inst *inst = emit(MOV(chan, chan));
2055 inst->saturate = true;
2056 }
2057 }
2058 }
2059 return coordinate;
2060 }
2061
2062 /* Sample from the MCS surface attached to this multisample texture. */
2063 fs_reg
2064 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
2065 {
2066 int reg_width = dispatch_width / 8;
2067 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
2068 BRW_REGISTER_TYPE_F);
2069 fs_reg dest = vgrf(glsl_type::uvec4_type);
2070 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
2071
2072 /* parameters are: u, v, r; missing parameters are treated as zero */
2073 for (int i = 0; i < components; i++) {
2074 sources[i] = vgrf(glsl_type::float_type);
2075 emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
2076 coordinate = offset(coordinate, 1);
2077 }
2078
2079 emit(LOAD_PAYLOAD(payload, sources, components));
2080
2081 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
2082 inst->base_mrf = -1;
2083 inst->mlen = components * reg_width;
2084 inst->header_present = false;
2085 inst->regs_written = 4 * reg_width; /* we only care about one reg of
2086 * response, but the sampler always
2087 * writes 4/8
2088 */
2089
2090 return dest;
2091 }
2092
2093 void
2094 fs_visitor::emit_texture(ir_texture_opcode op,
2095 const glsl_type *dest_type,
2096 fs_reg coordinate, int coord_components,
2097 fs_reg shadow_c,
2098 fs_reg lod, fs_reg lod2, int grad_components,
2099 fs_reg sample_index,
2100 fs_reg offset_value,
2101 fs_reg mcs,
2102 int gather_component,
2103 bool is_cube_array,
2104 bool is_rect,
2105 uint32_t sampler,
2106 fs_reg sampler_reg, int texunit)
2107 {
2108 fs_inst *inst = NULL;
2109
2110 if (op == ir_tg4) {
2111 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2112 * emitting anything other than setting up the constant result.
2113 */
2114 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
2115 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2116
2117 fs_reg res = vgrf(glsl_type::vec4_type);
2118 this->result = res;
2119
2120 for (int i=0; i<4; i++) {
2121 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
2122 res = offset(res, 1);
2123 }
2124 return;
2125 }
2126 }
2127
2128 if (coordinate.file != BAD_FILE) {
2129 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
2130 * samplers. This should only be a problem with GL_CLAMP on Gen7.
2131 */
2132 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
2133 sampler, texunit);
2134 }
2135
2136 /* Writemasking doesn't eliminate channels on SIMD8 texture
2137 * samples, so don't worry about them.
2138 */
2139 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
2140
2141 if (brw->gen >= 7) {
2142 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
2143 shadow_c, lod, lod2, grad_components,
2144 sample_index, mcs, sampler_reg,
2145 offset_value);
2146 } else if (brw->gen >= 5) {
2147 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
2148 shadow_c, lod, lod2, grad_components,
2149 sample_index, sampler,
2150 offset_value.file != BAD_FILE);
2151 } else {
2152 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
2153 shadow_c, lod, lod2, grad_components,
2154 sampler);
2155 }
2156
2157 if (shadow_c.file != BAD_FILE)
2158 inst->shadow_compare = true;
2159
2160 if (offset_value.file == IMM)
2161 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
2162
2163 if (op == ir_tg4) {
2164 inst->offset |=
2165 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
2166
2167 if (brw->gen == 6)
2168 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
2169 }
2170
2171 /* fixup #layers for cube map arrays */
2172 if (op == ir_txs && is_cube_array) {
2173 fs_reg depth = offset(dst, 2);
2174 fs_reg fixed_depth = vgrf(glsl_type::int_type);
2175 emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
2176
2177 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
2178 int components = inst->regs_written / (dst.width / 8);
2179 for (int i = 0; i < components; i++) {
2180 if (i == 2) {
2181 fixed_payload[i] = fixed_depth;
2182 } else {
2183 fixed_payload[i] = offset(dst, i);
2184 }
2185 }
2186 emit(LOAD_PAYLOAD(dst, fixed_payload, components));
2187 }
2188
2189 swizzle_result(op, dest_type->vector_elements, dst, sampler);
2190 }
2191
2192 void
2193 fs_visitor::visit(ir_texture *ir)
2194 {
2195 uint32_t sampler =
2196 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2197
2198 ir_rvalue *nonconst_sampler_index =
2199 _mesa_get_sampler_array_nonconst_index(ir->sampler);
2200
2201 /* Handle non-constant sampler array indexing */
2202 fs_reg sampler_reg;
2203 if (nonconst_sampler_index) {
2204 /* The highest sampler which may be used by this operation is
2205 * the last element of the array. Mark it here, because the generator
2206 * doesn't have enough information to determine the bound.
2207 */
2208 uint32_t array_size = ir->sampler->as_dereference_array()
2209 ->array->type->array_size();
2210
2211 uint32_t max_used = sampler + array_size - 1;
2212 if (ir->op == ir_tg4 && brw->gen < 8) {
2213 max_used += stage_prog_data->binding_table.gather_texture_start;
2214 } else {
2215 max_used += stage_prog_data->binding_table.texture_start;
2216 }
2217
2218 brw_mark_surface_used(prog_data, max_used);
2219
2220 /* Emit code to evaluate the actual indexing expression */
2221 nonconst_sampler_index->accept(this);
2222 fs_reg temp = vgrf(glsl_type::uint_type);
2223 emit(ADD(temp, this->result, fs_reg(sampler)))
2224 ->force_writemask_all = true;
2225 sampler_reg = temp;
2226 } else {
2227 /* Single sampler, or constant array index; the indexing expression
2228 * is just an immediate.
2229 */
2230 sampler_reg = fs_reg(sampler);
2231 }
2232
2233 /* FINISHME: We're failing to recompile our programs when the sampler is
2234 * updated. This only matters for the texture rectangle scale parameters
2235 * (pre-gen6, or gen6+ with GL_CLAMP).
2236 */
2237 int texunit = prog->SamplerUnits[sampler];
2238
2239 /* Should be lowered by do_lower_texture_projection */
2240 assert(!ir->projector);
2241
2242 /* Should be lowered */
2243 assert(!ir->offset || !ir->offset->type->is_array());
2244
2245 /* Generate code to compute all the subexpression trees. This has to be
2246 * done before loading any values into MRFs for the sampler message since
2247 * generating these values may involve SEND messages that need the MRFs.
2248 */
2249 fs_reg coordinate;
2250 int coord_components = 0;
2251 if (ir->coordinate) {
2252 coord_components = ir->coordinate->type->vector_elements;
2253 ir->coordinate->accept(this);
2254 coordinate = this->result;
2255 }
2256
2257 fs_reg shadow_comparitor;
2258 if (ir->shadow_comparitor) {
2259 ir->shadow_comparitor->accept(this);
2260 shadow_comparitor = this->result;
2261 }
2262
2263 fs_reg offset_value;
2264 if (ir->offset) {
2265 ir_constant *const_offset = ir->offset->as_constant();
2266 if (const_offset) {
2267 /* Store the header bitfield in an IMM register. This allows us to
2268 * use offset_value.file to distinguish between no offset, a constant
2269 * offset, and a non-constant offset.
2270 */
2271 offset_value =
2272 fs_reg(brw_texture_offset(ctx, const_offset->value.i,
2273 const_offset->type->vector_elements));
2274 } else {
2275 ir->offset->accept(this);
2276 offset_value = this->result;
2277 }
2278 }
2279
2280 fs_reg lod, lod2, sample_index, mcs;
2281 int grad_components = 0;
2282 switch (ir->op) {
2283 case ir_tex:
2284 case ir_lod:
2285 case ir_tg4:
2286 case ir_query_levels:
2287 break;
2288 case ir_txb:
2289 ir->lod_info.bias->accept(this);
2290 lod = this->result;
2291 break;
2292 case ir_txd:
2293 ir->lod_info.grad.dPdx->accept(this);
2294 lod = this->result;
2295
2296 ir->lod_info.grad.dPdy->accept(this);
2297 lod2 = this->result;
2298
2299 grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
2300 break;
2301 case ir_txf:
2302 case ir_txl:
2303 case ir_txs:
2304 ir->lod_info.lod->accept(this);
2305 lod = this->result;
2306 break;
2307 case ir_txf_ms:
2308 ir->lod_info.sample_index->accept(this);
2309 sample_index = this->result;
2310
2311 if (brw->gen >= 7 &&
2312 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2313 mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
2314 sampler_reg);
2315 } else {
2316 mcs = fs_reg(0u);
2317 }
2318 break;
2319 default:
2320 unreachable("Unrecognized texture opcode");
2321 };
2322
2323 int gather_component = 0;
2324 if (ir->op == ir_tg4)
2325 gather_component = ir->lod_info.component->as_constant()->value.i[0];
2326
2327 bool is_rect =
2328 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
2329
2330 bool is_cube_array =
2331 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2332 ir->sampler->type->sampler_array;
2333
2334 emit_texture(ir->op, ir->type, coordinate, coord_components,
2335 shadow_comparitor, lod, lod2, grad_components,
2336 sample_index, offset_value, mcs,
2337 gather_component, is_cube_array, is_rect, sampler,
2338 sampler_reg, texunit);
2339 }
2340
2341 /**
2342 * Apply workarounds for Gen6 gather with UINT/SINT
2343 */
2344 void
2345 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
2346 {
2347 if (!wa)
2348 return;
2349
2350 int width = (wa & WA_8BIT) ? 8 : 16;
2351
2352 for (int i = 0; i < 4; i++) {
2353 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
2354 /* Convert from UNORM to UINT */
2355 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
2356 emit(MOV(dst, dst_f));
2357
2358 if (wa & WA_SIGN) {
2359 /* Reinterpret the UINT value as a signed INT value by
2360 * shifting the sign bit into place, then shifting back
2361 * preserving sign.
2362 */
2363 emit(SHL(dst, dst, fs_reg(32 - width)));
2364 emit(ASR(dst, dst, fs_reg(32 - width)));
2365 }
2366
2367 dst = offset(dst, 1);
2368 }
2369 }
2370
2371 /**
2372 * Set up the gather channel based on the swizzle, for gather4.
2373 */
2374 uint32_t
2375 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
2376 {
2377 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
2378 switch (swiz) {
2379 case SWIZZLE_X: return 0;
2380 case SWIZZLE_Y:
2381 /* gather4 sampler is broken for green channel on RG32F --
2382 * we must ask for blue instead.
2383 */
2384 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
2385 return 2;
2386 return 1;
2387 case SWIZZLE_Z: return 2;
2388 case SWIZZLE_W: return 3;
2389 default:
2390 unreachable("Not reached"); /* zero, one swizzles handled already */
2391 }
2392 }
2393
2394 /**
2395 * Swizzle the result of a texture result. This is necessary for
2396 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
2397 */
2398 void
2399 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
2400 fs_reg orig_val, uint32_t sampler)
2401 {
2402 if (op == ir_query_levels) {
2403 /* # levels is in .w */
2404 this->result = offset(orig_val, 3);
2405 return;
2406 }
2407
2408 this->result = orig_val;
2409
2410 /* txs,lod don't actually sample the texture, so swizzling the result
2411 * makes no sense.
2412 */
2413 if (op == ir_txs || op == ir_lod || op == ir_tg4)
2414 return;
2415
2416 if (dest_components == 1) {
2417 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
2418 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
2419 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
2420 swizzled_result.type = orig_val.type;
2421
2422 for (int i = 0; i < 4; i++) {
2423 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
2424 fs_reg l = swizzled_result;
2425 l = offset(l, i);
2426
2427 if (swiz == SWIZZLE_ZERO) {
2428 emit(MOV(l, fs_reg(0.0f)));
2429 } else if (swiz == SWIZZLE_ONE) {
2430 emit(MOV(l, fs_reg(1.0f)));
2431 } else {
2432 emit(MOV(l, offset(orig_val,
2433 GET_SWZ(key_tex->swizzles[sampler], i))));
2434 }
2435 }
2436 this->result = swizzled_result;
2437 }
2438 }
2439
2440 void
2441 fs_visitor::visit(ir_swizzle *ir)
2442 {
2443 ir->val->accept(this);
2444 fs_reg val = this->result;
2445
2446 if (ir->type->vector_elements == 1) {
2447 this->result = offset(this->result, ir->mask.x);
2448 return;
2449 }
2450
2451 fs_reg result = vgrf(ir->type);
2452 this->result = result;
2453
2454 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
2455 fs_reg channel = val;
2456 int swiz = 0;
2457
2458 switch (i) {
2459 case 0:
2460 swiz = ir->mask.x;
2461 break;
2462 case 1:
2463 swiz = ir->mask.y;
2464 break;
2465 case 2:
2466 swiz = ir->mask.z;
2467 break;
2468 case 3:
2469 swiz = ir->mask.w;
2470 break;
2471 }
2472
2473 emit(MOV(result, offset(channel, swiz)));
2474 result = offset(result, 1);
2475 }
2476 }
2477
2478 void
2479 fs_visitor::visit(ir_discard *ir)
2480 {
2481 /* We track our discarded pixels in f0.1. By predicating on it, we can
2482 * update just the flag bits that aren't yet discarded. If there's no
2483 * condition, we emit a CMP of g0 != g0, so all currently executing
2484 * channels will get turned off.
2485 */
2486 fs_inst *cmp;
2487 if (ir->condition) {
2488 emit_bool_to_cond_code(ir->condition);
2489 cmp = (fs_inst *) this->instructions.get_tail();
2490 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
2491 } else {
2492 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2493 BRW_REGISTER_TYPE_UW));
2494 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
2495 }
2496 cmp->predicate = BRW_PREDICATE_NORMAL;
2497 cmp->flag_subreg = 1;
2498
2499 if (brw->gen >= 6) {
2500 emit_discard_jump();
2501 }
2502 }
2503
2504 void
2505 fs_visitor::visit(ir_constant *ir)
2506 {
2507 /* Set this->result to reg at the bottom of the function because some code
2508 * paths will cause this visitor to be applied to other fields. This will
2509 * cause the value stored in this->result to be modified.
2510 *
2511 * Make reg constant so that it doesn't get accidentally modified along the
2512 * way. Yes, I actually had this problem. :(
2513 */
2514 const fs_reg reg = vgrf(ir->type);
2515 fs_reg dst_reg = reg;
2516
2517 if (ir->type->is_array()) {
2518 const unsigned size = type_size(ir->type->fields.array);
2519
2520 for (unsigned i = 0; i < ir->type->length; i++) {
2521 ir->array_elements[i]->accept(this);
2522 fs_reg src_reg = this->result;
2523
2524 dst_reg.type = src_reg.type;
2525 for (unsigned j = 0; j < size; j++) {
2526 emit(MOV(dst_reg, src_reg));
2527 src_reg = offset(src_reg, 1);
2528 dst_reg = offset(dst_reg, 1);
2529 }
2530 }
2531 } else if (ir->type->is_record()) {
2532 foreach_in_list(ir_constant, field, &ir->components) {
2533 const unsigned size = type_size(field->type);
2534
2535 field->accept(this);
2536 fs_reg src_reg = this->result;
2537
2538 dst_reg.type = src_reg.type;
2539 for (unsigned j = 0; j < size; j++) {
2540 emit(MOV(dst_reg, src_reg));
2541 src_reg = offset(src_reg, 1);
2542 dst_reg = offset(dst_reg, 1);
2543 }
2544 }
2545 } else {
2546 const unsigned size = type_size(ir->type);
2547
2548 for (unsigned i = 0; i < size; i++) {
2549 switch (ir->type->base_type) {
2550 case GLSL_TYPE_FLOAT:
2551 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
2552 break;
2553 case GLSL_TYPE_UINT:
2554 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
2555 break;
2556 case GLSL_TYPE_INT:
2557 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
2558 break;
2559 case GLSL_TYPE_BOOL:
2560 emit(MOV(dst_reg,
2561 fs_reg(ir->value.b[i] != 0 ? (int)ctx->Const.UniformBooleanTrue
2562 : 0)));
2563 break;
2564 default:
2565 unreachable("Non-float/uint/int/bool constant");
2566 }
2567 dst_reg = offset(dst_reg, 1);
2568 }
2569 }
2570
2571 this->result = reg;
2572 }
2573
2574 void
2575 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
2576 {
2577 ir_expression *expr = ir->as_expression();
2578
2579 if (!expr || expr->operation == ir_binop_ubo_load) {
2580 ir->accept(this);
2581
2582 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2583 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2584 return;
2585 }
2586
2587 fs_reg op[3];
2588
2589 assert(expr->get_num_operands() <= 3);
2590 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2591 assert(expr->operands[i]->type->is_scalar());
2592
2593 expr->operands[i]->accept(this);
2594 op[i] = this->result;
2595
2596 resolve_ud_negate(&op[i]);
2597 }
2598
2599 emit_bool_to_cond_code_of_reg(expr, op);
2600 }
2601
2602 void
2603 fs_visitor::emit_bool_to_cond_code_of_reg(ir_expression *expr, fs_reg op[3])
2604 {
2605 fs_inst *inst;
2606
2607 switch (expr->operation) {
2608 case ir_unop_logic_not:
2609 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
2610 inst->conditional_mod = BRW_CONDITIONAL_Z;
2611 break;
2612
2613 case ir_binop_logic_xor:
2614 if (brw->gen <= 5) {
2615 fs_reg temp = vgrf(expr->type);
2616 emit(XOR(temp, op[0], op[1]));
2617 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2618 } else {
2619 inst = emit(XOR(reg_null_d, op[0], op[1]));
2620 }
2621 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2622 break;
2623
2624 case ir_binop_logic_or:
2625 if (brw->gen <= 5) {
2626 fs_reg temp = vgrf(expr->type);
2627 emit(OR(temp, op[0], op[1]));
2628 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2629 } else {
2630 inst = emit(OR(reg_null_d, op[0], op[1]));
2631 }
2632 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2633 break;
2634
2635 case ir_binop_logic_and:
2636 if (brw->gen <= 5) {
2637 fs_reg temp = vgrf(expr->type);
2638 emit(AND(temp, op[0], op[1]));
2639 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2640 } else {
2641 inst = emit(AND(reg_null_d, op[0], op[1]));
2642 }
2643 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2644 break;
2645
2646 case ir_unop_f2b:
2647 if (brw->gen >= 6) {
2648 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
2649 } else {
2650 inst = emit(MOV(reg_null_f, op[0]));
2651 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2652 }
2653 break;
2654
2655 case ir_unop_i2b:
2656 if (brw->gen >= 6) {
2657 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2658 } else {
2659 inst = emit(MOV(reg_null_d, op[0]));
2660 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2661 }
2662 break;
2663
2664 case ir_binop_greater:
2665 case ir_binop_gequal:
2666 case ir_binop_less:
2667 case ir_binop_lequal:
2668 case ir_binop_equal:
2669 case ir_binop_all_equal:
2670 case ir_binop_nequal:
2671 case ir_binop_any_nequal:
2672 if (brw->gen <= 5) {
2673 resolve_bool_comparison(expr->operands[0], &op[0]);
2674 resolve_bool_comparison(expr->operands[1], &op[1]);
2675 }
2676
2677 emit(CMP(reg_null_d, op[0], op[1],
2678 brw_conditional_for_comparison(expr->operation)));
2679 break;
2680
2681 case ir_triop_csel: {
2682 /* Expand the boolean condition into the flag register. */
2683 inst = emit(MOV(reg_null_d, op[0]));
2684 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2685
2686 /* Select which boolean to return. */
2687 fs_reg temp = vgrf(expr->operands[1]->type);
2688 inst = emit(SEL(temp, op[1], op[2]));
2689 inst->predicate = BRW_PREDICATE_NORMAL;
2690
2691 /* Expand the result to a condition code. */
2692 inst = emit(MOV(reg_null_d, temp));
2693 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2694 break;
2695 }
2696
2697 default:
2698 unreachable("not reached");
2699 }
2700 }
2701
2702 /**
2703 * Emit a gen6 IF statement with the comparison folded into the IF
2704 * instruction.
2705 */
2706 void
2707 fs_visitor::emit_if_gen6(ir_if *ir)
2708 {
2709 ir_expression *expr = ir->condition->as_expression();
2710
2711 if (expr && expr->operation != ir_binop_ubo_load) {
2712 fs_reg op[3];
2713 fs_inst *inst;
2714 fs_reg temp;
2715
2716 assert(expr->get_num_operands() <= 3);
2717 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2718 assert(expr->operands[i]->type->is_scalar());
2719
2720 expr->operands[i]->accept(this);
2721 op[i] = this->result;
2722 }
2723
2724 switch (expr->operation) {
2725 case ir_unop_logic_not:
2726 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
2727 return;
2728
2729 case ir_binop_logic_xor:
2730 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
2731 return;
2732
2733 case ir_binop_logic_or:
2734 temp = vgrf(glsl_type::bool_type);
2735 emit(OR(temp, op[0], op[1]));
2736 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2737 return;
2738
2739 case ir_binop_logic_and:
2740 temp = vgrf(glsl_type::bool_type);
2741 emit(AND(temp, op[0], op[1]));
2742 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2743 return;
2744
2745 case ir_unop_f2b:
2746 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2747 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2748 return;
2749
2750 case ir_unop_i2b:
2751 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2752 return;
2753
2754 case ir_binop_greater:
2755 case ir_binop_gequal:
2756 case ir_binop_less:
2757 case ir_binop_lequal:
2758 case ir_binop_equal:
2759 case ir_binop_all_equal:
2760 case ir_binop_nequal:
2761 case ir_binop_any_nequal:
2762 if (brw->gen <= 5) {
2763 resolve_bool_comparison(expr->operands[0], &op[0]);
2764 resolve_bool_comparison(expr->operands[1], &op[1]);
2765 }
2766
2767 emit(IF(op[0], op[1],
2768 brw_conditional_for_comparison(expr->operation)));
2769 return;
2770
2771 case ir_triop_csel: {
2772 /* Expand the boolean condition into the flag register. */
2773 fs_inst *inst = emit(MOV(reg_null_d, op[0]));
2774 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2775
2776 /* Select which boolean to use as the result. */
2777 fs_reg temp = vgrf(expr->operands[1]->type);
2778 inst = emit(SEL(temp, op[1], op[2]));
2779 inst->predicate = BRW_PREDICATE_NORMAL;
2780
2781 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2782 return;
2783 }
2784
2785 default:
2786 unreachable("not reached");
2787 }
2788 }
2789
2790 ir->condition->accept(this);
2791 emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
2792 }
2793
2794 bool
2795 fs_visitor::try_opt_frontfacing_ternary(ir_if *ir)
2796 {
2797 ir_dereference_variable *deref = ir->condition->as_dereference_variable();
2798 if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0)
2799 return false;
2800
2801 if (ir->then_instructions.length() != 1 ||
2802 ir->else_instructions.length() != 1)
2803 return false;
2804
2805 ir_assignment *then_assign =
2806 ((ir_instruction *)ir->then_instructions.head)->as_assignment();
2807 ir_assignment *else_assign =
2808 ((ir_instruction *)ir->else_instructions.head)->as_assignment();
2809
2810 if (!then_assign || then_assign->condition ||
2811 !else_assign || else_assign->condition ||
2812 then_assign->write_mask != else_assign->write_mask ||
2813 !then_assign->lhs->equals(else_assign->lhs))
2814 return false;
2815
2816 ir_constant *then_rhs = then_assign->rhs->as_constant();
2817 ir_constant *else_rhs = else_assign->rhs->as_constant();
2818
2819 if (!then_rhs || !else_rhs)
2820 return false;
2821
2822 if (then_rhs->type->base_type != GLSL_TYPE_FLOAT)
2823 return false;
2824
2825 if ((then_rhs->is_one() && else_rhs->is_negative_one()) ||
2826 (else_rhs->is_one() && then_rhs->is_negative_one())) {
2827 then_assign->lhs->accept(this);
2828 fs_reg dst = this->result;
2829 dst.type = BRW_REGISTER_TYPE_D;
2830 fs_reg tmp = vgrf(glsl_type::int_type);
2831
2832 if (brw->gen >= 6) {
2833 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
2834 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
2835
2836 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2837 *
2838 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
2839 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2840 *
2841 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
2842 */
2843
2844 if (then_rhs->is_negative_one()) {
2845 assert(else_rhs->is_one());
2846 g0.negate = true;
2847 }
2848
2849 tmp.type = BRW_REGISTER_TYPE_W;
2850 tmp.subreg_offset = 2;
2851 tmp.stride = 2;
2852
2853 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
2854 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
2855
2856 tmp.type = BRW_REGISTER_TYPE_D;
2857 tmp.subreg_offset = 0;
2858 tmp.stride = 1;
2859 } else {
2860 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
2861 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
2862
2863 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2864 *
2865 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
2866 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2867 *
2868 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
2869 */
2870
2871 if (then_rhs->is_negative_one()) {
2872 assert(else_rhs->is_one());
2873 g1_6.negate = true;
2874 }
2875
2876 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
2877 }
2878 emit(AND(dst, tmp, fs_reg(0xbf800000)));
2879 return true;
2880 }
2881
2882 return false;
2883 }
2884
2885 /**
2886 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2887 *
2888 * Many GLSL shaders contain the following pattern:
2889 *
2890 * x = condition ? foo : bar
2891 *
2892 * The compiler emits an ir_if tree for this, since each subexpression might be
2893 * a complex tree that could have side-effects or short-circuit logic.
2894 *
2895 * However, the common case is to simply select one of two constants or
2896 * variable values---which is exactly what SEL is for. In this case, the
2897 * assembly looks like:
2898 *
2899 * (+f0) IF
2900 * MOV dst src0
2901 * ELSE
2902 * MOV dst src1
2903 * ENDIF
2904 *
2905 * which can be easily translated into:
2906 *
2907 * (+f0) SEL dst src0 src1
2908 *
2909 * If src0 is an immediate value, we promote it to a temporary GRF.
2910 */
2911 bool
2912 fs_visitor::try_replace_with_sel()
2913 {
2914 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2915 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2916
2917 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
2918 int opcodes[] = {
2919 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
2920 };
2921
2922 fs_inst *match = (fs_inst *) endif_inst->prev;
2923 for (int i = 0; i < 4; i++) {
2924 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
2925 return false;
2926 match = (fs_inst *) match->prev;
2927 }
2928
2929 /* The opcodes match; it looks like the right sequence of instructions. */
2930 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
2931 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
2932 fs_inst *if_inst = (fs_inst *) then_mov->prev;
2933
2934 /* Check that the MOVs are the right form. */
2935 if (then_mov->dst.equals(else_mov->dst) &&
2936 !then_mov->is_partial_write() &&
2937 !else_mov->is_partial_write()) {
2938
2939 /* Remove the matched instructions; we'll emit a SEL to replace them. */
2940 while (!if_inst->next->is_tail_sentinel())
2941 if_inst->next->exec_node::remove();
2942 if_inst->exec_node::remove();
2943
2944 /* Only the last source register can be a constant, so if the MOV in
2945 * the "then" clause uses a constant, we need to put it in a temporary.
2946 */
2947 fs_reg src0(then_mov->src[0]);
2948 if (src0.file == IMM) {
2949 src0 = vgrf(glsl_type::float_type);
2950 src0.type = then_mov->src[0].type;
2951 emit(MOV(src0, then_mov->src[0]));
2952 }
2953
2954 fs_inst *sel;
2955 if (if_inst->conditional_mod) {
2956 /* Sandybridge-specific IF with embedded comparison */
2957 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
2958 if_inst->conditional_mod));
2959 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2960 sel->predicate = BRW_PREDICATE_NORMAL;
2961 } else {
2962 /* Separate CMP and IF instructions */
2963 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
2964 sel->predicate = if_inst->predicate;
2965 sel->predicate_inverse = if_inst->predicate_inverse;
2966 }
2967
2968 return true;
2969 }
2970
2971 return false;
2972 }
2973
2974 void
2975 fs_visitor::visit(ir_if *ir)
2976 {
2977 if (try_opt_frontfacing_ternary(ir))
2978 return;
2979
2980 /* Don't point the annotation at the if statement, because then it plus
2981 * the then and else blocks get printed.
2982 */
2983 this->base_ir = ir->condition;
2984
2985 if (brw->gen == 6) {
2986 emit_if_gen6(ir);
2987 } else {
2988 emit_bool_to_cond_code(ir->condition);
2989
2990 emit(IF(BRW_PREDICATE_NORMAL));
2991 }
2992
2993 foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
2994 this->base_ir = ir_;
2995 ir_->accept(this);
2996 }
2997
2998 if (!ir->else_instructions.is_empty()) {
2999 emit(BRW_OPCODE_ELSE);
3000
3001 foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
3002 this->base_ir = ir_;
3003 ir_->accept(this);
3004 }
3005 }
3006
3007 emit(BRW_OPCODE_ENDIF);
3008
3009 if (!try_replace_with_sel() && brw->gen < 6) {
3010 no16("Can't support (non-uniform) control flow on SIMD16\n");
3011 }
3012 }
3013
3014 void
3015 fs_visitor::visit(ir_loop *ir)
3016 {
3017 if (brw->gen < 6) {
3018 no16("Can't support (non-uniform) control flow on SIMD16\n");
3019 }
3020
3021 this->base_ir = NULL;
3022 emit(BRW_OPCODE_DO);
3023
3024 foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
3025 this->base_ir = ir_;
3026 ir_->accept(this);
3027 }
3028
3029 this->base_ir = NULL;
3030 emit(BRW_OPCODE_WHILE);
3031 }
3032
3033 void
3034 fs_visitor::visit(ir_loop_jump *ir)
3035 {
3036 switch (ir->mode) {
3037 case ir_loop_jump::jump_break:
3038 emit(BRW_OPCODE_BREAK);
3039 break;
3040 case ir_loop_jump::jump_continue:
3041 emit(BRW_OPCODE_CONTINUE);
3042 break;
3043 }
3044 }
3045
3046 void
3047 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3048 {
3049 ir_dereference *deref = static_cast<ir_dereference *>(
3050 ir->actual_parameters.get_head());
3051 ir_variable *location = deref->variable_referenced();
3052 unsigned surf_index = (stage_prog_data->binding_table.abo_start +
3053 location->data.binding);
3054
3055 /* Calculate the surface offset */
3056 fs_reg offset = vgrf(glsl_type::uint_type);
3057 ir_dereference_array *deref_array = deref->as_dereference_array();
3058
3059 if (deref_array) {
3060 deref_array->array_index->accept(this);
3061
3062 fs_reg tmp = vgrf(glsl_type::uint_type);
3063 emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
3064 emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
3065 } else {
3066 offset = fs_reg(location->data.atomic.offset);
3067 }
3068
3069 /* Emit the appropriate machine instruction */
3070 const char *callee = ir->callee->function_name();
3071 ir->return_deref->accept(this);
3072 fs_reg dst = this->result;
3073
3074 if (!strcmp("__intrinsic_atomic_read", callee)) {
3075 emit_untyped_surface_read(surf_index, dst, offset);
3076
3077 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
3078 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
3079 fs_reg(), fs_reg());
3080
3081 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
3082 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
3083 fs_reg(), fs_reg());
3084 }
3085 }
3086
3087 void
3088 fs_visitor::visit(ir_call *ir)
3089 {
3090 const char *callee = ir->callee->function_name();
3091
3092 if (!strcmp("__intrinsic_atomic_read", callee) ||
3093 !strcmp("__intrinsic_atomic_increment", callee) ||
3094 !strcmp("__intrinsic_atomic_predecrement", callee)) {
3095 visit_atomic_counter_intrinsic(ir);
3096 } else {
3097 unreachable("Unsupported intrinsic.");
3098 }
3099 }
3100
3101 void
3102 fs_visitor::visit(ir_return *)
3103 {
3104 unreachable("FINISHME");
3105 }
3106
3107 void
3108 fs_visitor::visit(ir_function *ir)
3109 {
3110 /* Ignore function bodies other than main() -- we shouldn't see calls to
3111 * them since they should all be inlined before we get to ir_to_mesa.
3112 */
3113 if (strcmp(ir->name, "main") == 0) {
3114 const ir_function_signature *sig;
3115 exec_list empty;
3116
3117 sig = ir->matching_signature(NULL, &empty, false);
3118
3119 assert(sig);
3120
3121 foreach_in_list(ir_instruction, ir_, &sig->body) {
3122 this->base_ir = ir_;
3123 ir_->accept(this);
3124 }
3125 }
3126 }
3127
3128 void
3129 fs_visitor::visit(ir_function_signature *)
3130 {
3131 unreachable("not reached");
3132 }
3133
3134 void
3135 fs_visitor::visit(ir_emit_vertex *)
3136 {
3137 unreachable("not reached");
3138 }
3139
3140 void
3141 fs_visitor::visit(ir_end_primitive *)
3142 {
3143 unreachable("not reached");
3144 }
3145
3146 void
3147 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
3148 fs_reg dst, fs_reg offset, fs_reg src0,
3149 fs_reg src1)
3150 {
3151 int reg_width = dispatch_width / 8;
3152 int length = 0;
3153
3154 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
3155
3156 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3157 /* Initialize the sample mask in the message header. */
3158 emit(MOV(sources[0], fs_reg(0u)))
3159 ->force_writemask_all = true;
3160
3161 if (stage == MESA_SHADER_FRAGMENT) {
3162 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3163 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3164 ->force_writemask_all = true;
3165 } else {
3166 emit(MOV(component(sources[0], 7),
3167 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3168 ->force_writemask_all = true;
3169 }
3170 } else {
3171 /* The execution mask is part of the side-band information sent together with
3172 * the message payload to the data port. It's implicitly ANDed with the sample
3173 * mask sent in the header to compute the actual set of channels that execute
3174 * the atomic operation.
3175 */
3176 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3177 emit(MOV(component(sources[0], 7),
3178 fs_reg(0xffffu)))->force_writemask_all = true;
3179 }
3180 length++;
3181
3182 /* Set the atomic operation offset. */
3183 sources[1] = vgrf(glsl_type::uint_type);
3184 emit(MOV(sources[1], offset));
3185 length++;
3186
3187 /* Set the atomic operation arguments. */
3188 if (src0.file != BAD_FILE) {
3189 sources[length] = vgrf(glsl_type::uint_type);
3190 emit(MOV(sources[length], src0));
3191 length++;
3192 }
3193
3194 if (src1.file != BAD_FILE) {
3195 sources[length] = vgrf(glsl_type::uint_type);
3196 emit(MOV(sources[length], src1));
3197 length++;
3198 }
3199
3200 int mlen = 1 + (length - 1) * reg_width;
3201 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3202 BRW_REGISTER_TYPE_UD);
3203 emit(LOAD_PAYLOAD(src_payload, sources, length));
3204
3205 /* Emit the instruction. */
3206 fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
3207 fs_reg(atomic_op), fs_reg(surf_index));
3208 inst->mlen = mlen;
3209 }
3210
3211 void
3212 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
3213 fs_reg offset)
3214 {
3215 int reg_width = dispatch_width / 8;
3216
3217 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
3218
3219 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3220 /* Initialize the sample mask in the message header. */
3221 emit(MOV(sources[0], fs_reg(0u)))
3222 ->force_writemask_all = true;
3223
3224 if (stage == MESA_SHADER_FRAGMENT) {
3225 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3226 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3227 ->force_writemask_all = true;
3228 } else {
3229 emit(MOV(component(sources[0], 7),
3230 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3231 ->force_writemask_all = true;
3232 }
3233 } else {
3234 /* The execution mask is part of the side-band information sent together with
3235 * the message payload to the data port. It's implicitly ANDed with the sample
3236 * mask sent in the header to compute the actual set of channels that execute
3237 * the atomic operation.
3238 */
3239 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3240 emit(MOV(component(sources[0], 7),
3241 fs_reg(0xffffu)))->force_writemask_all = true;
3242 }
3243
3244 /* Set the surface read offset. */
3245 sources[1] = vgrf(glsl_type::uint_type);
3246 emit(MOV(sources[1], offset));
3247
3248 int mlen = 1 + reg_width;
3249 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3250 BRW_REGISTER_TYPE_UD);
3251 fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
3252
3253 /* Emit the instruction. */
3254 inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
3255 fs_reg(surf_index));
3256 inst->mlen = mlen;
3257 }
3258
3259 fs_inst *
3260 fs_visitor::emit(fs_inst *inst)
3261 {
3262 if (dispatch_width == 16 && inst->exec_size == 8)
3263 inst->force_uncompressed = true;
3264
3265 inst->annotation = this->current_annotation;
3266 inst->ir = this->base_ir;
3267
3268 this->instructions.push_tail(inst);
3269
3270 return inst;
3271 }
3272
3273 void
3274 fs_visitor::emit(exec_list list)
3275 {
3276 foreach_in_list_safe(fs_inst, inst, &list) {
3277 inst->exec_node::remove();
3278 emit(inst);
3279 }
3280 }
3281
3282 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
3283 void
3284 fs_visitor::emit_dummy_fs()
3285 {
3286 int reg_width = dispatch_width / 8;
3287
3288 /* Everyone's favorite color. */
3289 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
3290 for (int i = 0; i < 4; i++) {
3291 emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F,
3292 dispatch_width), fs_reg(color[i])));
3293 }
3294
3295 fs_inst *write;
3296 write = emit(FS_OPCODE_FB_WRITE);
3297 write->eot = true;
3298 if (brw->gen >= 6) {
3299 write->base_mrf = 2;
3300 write->mlen = 4 * reg_width;
3301 } else {
3302 write->header_present = true;
3303 write->base_mrf = 0;
3304 write->mlen = 2 + 4 * reg_width;
3305 }
3306
3307 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
3308 * varying to avoid GPU hangs, so set that.
3309 */
3310 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3311 wm_prog_data->num_varying_inputs = brw->gen < 6 ? 1 : 0;
3312 memset(wm_prog_data->urb_setup, -1,
3313 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
3314
3315 /* We don't have any uniforms. */
3316 stage_prog_data->nr_params = 0;
3317 stage_prog_data->nr_pull_params = 0;
3318 stage_prog_data->curb_read_length = 0;
3319 stage_prog_data->dispatch_grf_start_reg = 2;
3320 wm_prog_data->dispatch_grf_start_reg_16 = 2;
3321 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
3322
3323 calculate_cfg();
3324 }
3325
3326 /* The register location here is relative to the start of the URB
3327 * data. It will get adjusted to be a real location before
3328 * generate_code() time.
3329 */
3330 struct brw_reg
3331 fs_visitor::interp_reg(int location, int channel)
3332 {
3333 assert(stage == MESA_SHADER_FRAGMENT);
3334 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3335 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
3336 int stride = (channel & 1) * 4;
3337
3338 assert(prog_data->urb_setup[location] != -1);
3339
3340 return brw_vec1_grf(regnr, stride);
3341 }
3342
3343 /** Emits the interpolation for the varying inputs. */
3344 void
3345 fs_visitor::emit_interpolation_setup_gen4()
3346 {
3347 this->current_annotation = "compute pixel centers";
3348 this->pixel_x = vgrf(glsl_type::uint_type);
3349 this->pixel_y = vgrf(glsl_type::uint_type);
3350 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
3351 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
3352
3353 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
3354 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
3355
3356 this->current_annotation = "compute pixel deltas from v0";
3357 if (brw->has_pln) {
3358 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3359 vgrf(glsl_type::vec2_type);
3360 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3361 offset(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 1);
3362 } else {
3363 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3364 vgrf(glsl_type::float_type);
3365 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3366 vgrf(glsl_type::float_type);
3367 }
3368 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3369 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
3370 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3371 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
3372
3373 this->current_annotation = "compute pos.w and 1/pos.w";
3374 /* Compute wpos.w. It's always in our setup, since it's needed to
3375 * interpolate the other attributes.
3376 */
3377 this->wpos_w = vgrf(glsl_type::float_type);
3378 emit(FS_OPCODE_LINTERP, wpos_w,
3379 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3380 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
3381 interp_reg(VARYING_SLOT_POS, 3));
3382 /* Compute the pixel 1/W value from wpos.w. */
3383 this->pixel_w = vgrf(glsl_type::float_type);
3384 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
3385 this->current_annotation = NULL;
3386 }
3387
3388 /** Emits the interpolation for the varying inputs. */
3389 void
3390 fs_visitor::emit_interpolation_setup_gen6()
3391 {
3392 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3393
3394 /* If the pixel centers end up used, the setup is the same as for gen4. */
3395 this->current_annotation = "compute pixel centers";
3396 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
3397 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
3398 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
3399 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
3400 emit(ADD(int_pixel_x,
3401 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3402 fs_reg(brw_imm_v(0x10101010))));
3403 emit(ADD(int_pixel_y,
3404 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3405 fs_reg(brw_imm_v(0x11001100))));
3406
3407 /* As of gen6, we can no longer mix float and int sources. We have
3408 * to turn the integer pixel centers into floats for their actual
3409 * use.
3410 */
3411 this->pixel_x = vgrf(glsl_type::float_type);
3412 this->pixel_y = vgrf(glsl_type::float_type);
3413 emit(MOV(this->pixel_x, int_pixel_x));
3414 emit(MOV(this->pixel_y, int_pixel_y));
3415
3416 this->current_annotation = "compute pos.w";
3417 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
3418 this->wpos_w = vgrf(glsl_type::float_type);
3419 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
3420
3421 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3422 uint8_t reg = payload.barycentric_coord_reg[i];
3423 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
3424 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
3425 }
3426
3427 this->current_annotation = NULL;
3428 }
3429
3430 int
3431 fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components,
3432 bool use_2nd_half)
3433 {
3434 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3435 fs_inst *inst;
3436
3437 if (color.file == BAD_FILE) {
3438 return 4 * (dispatch_width / 8);
3439 }
3440
3441 uint8_t colors_enabled;
3442 if (components == 0) {
3443 /* We want to write one component to the alpha channel */
3444 colors_enabled = 0x8;
3445 } else {
3446 /* Enable the first components-many channels */
3447 colors_enabled = (1 << components) - 1;
3448 }
3449
3450 if (dispatch_width == 8 || (brw->gen >= 6 && !do_dual_src)) {
3451 /* SIMD8 write looks like:
3452 * m + 0: r0
3453 * m + 1: r1
3454 * m + 2: g0
3455 * m + 3: g1
3456 *
3457 * gen6 SIMD16 DP write looks like:
3458 * m + 0: r0
3459 * m + 1: r1
3460 * m + 2: g0
3461 * m + 3: g1
3462 * m + 4: b0
3463 * m + 5: b1
3464 * m + 6: a0
3465 * m + 7: a1
3466 */
3467 int len = 0;
3468 for (unsigned i = 0; i < 4; ++i) {
3469 if (colors_enabled & (1 << i)) {
3470 dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8),
3471 color.type, color.width);
3472 inst = emit(MOV(dst[len], offset(color, i)));
3473 inst->saturate = key->clamp_fragment_color;
3474 } else if (color.width == 16) {
3475 /* We need two BAD_FILE slots for a 16-wide color */
3476 len++;
3477 }
3478 len++;
3479 }
3480 return len;
3481 } else if (brw->gen >= 6 && do_dual_src) {
3482 /* SIMD16 dual source blending for gen6+.
3483 *
3484 * From the SNB PRM, volume 4, part 1, page 193:
3485 *
3486 * "The dual source render target messages only have SIMD8 forms due to
3487 * maximum message length limitations. SIMD16 pixel shaders must send two
3488 * of these messages to cover all of the pixels. Each message contains
3489 * two colors (4 channels each) for each pixel in the message payload."
3490 *
3491 * So in SIMD16 dual source blending we will send 2 SIMD8 messages,
3492 * each one will call this function twice (one for each color involved),
3493 * so in each pass we only write 4 registers. Notice that the second
3494 * SIMD8 message needs to read color data from the 2nd half of the color
3495 * registers, so it needs to call this with use_2nd_half = true.
3496 */
3497 for (unsigned i = 0; i < 4; ++i) {
3498 if (colors_enabled & (1 << i)) {
3499 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3500 inst = emit(MOV(dst[i], half(offset(color, i),
3501 use_2nd_half ? 1 : 0)));
3502 inst->saturate = key->clamp_fragment_color;
3503 if (use_2nd_half)
3504 inst->force_sechalf = true;
3505 }
3506 }
3507 return 4;
3508 } else {
3509 /* pre-gen6 SIMD16 single source DP write looks like:
3510 * m + 0: r0
3511 * m + 1: g0
3512 * m + 2: b0
3513 * m + 3: a0
3514 * m + 4: r1
3515 * m + 5: g1
3516 * m + 6: b1
3517 * m + 7: a1
3518 */
3519 for (unsigned i = 0; i < 4; ++i) {
3520 if (colors_enabled & (1 << i)) {
3521 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3522 inst = emit(MOV(dst[i], half(offset(color, i), 0)));
3523 inst->saturate = key->clamp_fragment_color;
3524
3525 dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type);
3526 inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
3527 inst->saturate = key->clamp_fragment_color;
3528 inst->force_sechalf = true;
3529 }
3530 }
3531 return 8;
3532 }
3533 }
3534
3535 static enum brw_conditional_mod
3536 cond_for_alpha_func(GLenum func)
3537 {
3538 switch(func) {
3539 case GL_GREATER:
3540 return BRW_CONDITIONAL_G;
3541 case GL_GEQUAL:
3542 return BRW_CONDITIONAL_GE;
3543 case GL_LESS:
3544 return BRW_CONDITIONAL_L;
3545 case GL_LEQUAL:
3546 return BRW_CONDITIONAL_LE;
3547 case GL_EQUAL:
3548 return BRW_CONDITIONAL_EQ;
3549 case GL_NOTEQUAL:
3550 return BRW_CONDITIONAL_NEQ;
3551 default:
3552 unreachable("Not reached");
3553 }
3554 }
3555
3556 /**
3557 * Alpha test support for when we compile it into the shader instead
3558 * of using the normal fixed-function alpha test.
3559 */
3560 void
3561 fs_visitor::emit_alpha_test()
3562 {
3563 assert(stage == MESA_SHADER_FRAGMENT);
3564 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3565 this->current_annotation = "Alpha test";
3566
3567 fs_inst *cmp;
3568 if (key->alpha_test_func == GL_ALWAYS)
3569 return;
3570
3571 if (key->alpha_test_func == GL_NEVER) {
3572 /* f0.1 = 0 */
3573 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3574 BRW_REGISTER_TYPE_UW));
3575 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
3576 BRW_CONDITIONAL_NEQ));
3577 } else {
3578 /* RT0 alpha */
3579 fs_reg color = offset(outputs[0], 3);
3580
3581 /* f0.1 &= func(color, ref) */
3582 cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
3583 cond_for_alpha_func(key->alpha_test_func)));
3584 }
3585 cmp->predicate = BRW_PREDICATE_NORMAL;
3586 cmp->flag_subreg = 1;
3587 }
3588
3589 fs_inst *
3590 fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
3591 fs_reg src0_alpha, unsigned components,
3592 bool use_2nd_half)
3593 {
3594 assert(stage == MESA_SHADER_FRAGMENT);
3595 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3596 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3597
3598 this->current_annotation = "FB write header";
3599 bool header_present = true;
3600 int reg_size = dispatch_width / 8;
3601
3602 /* We can potentially have a message length of up to 15, so we have to set
3603 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3604 */
3605 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
3606 int length = 0;
3607
3608 /* From the Sandy Bridge PRM, volume 4, page 198:
3609 *
3610 * "Dispatched Pixel Enables. One bit per pixel indicating
3611 * which pixels were originally enabled when the thread was
3612 * dispatched. This field is only required for the end-of-
3613 * thread message and on all dual-source messages."
3614 */
3615 if (brw->gen >= 6 &&
3616 (brw->is_haswell || brw->gen >= 8 || !prog_data->uses_kill) &&
3617 color1.file == BAD_FILE &&
3618 key->nr_color_regions == 1) {
3619 header_present = false;
3620 }
3621
3622 if (header_present)
3623 /* Allocate 2 registers for a header */
3624 length += 2;
3625
3626 if (payload.aa_dest_stencil_reg) {
3627 sources[length] = fs_reg(GRF, alloc.allocate(1));
3628 emit(MOV(sources[length],
3629 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
3630 length++;
3631 }
3632
3633 prog_data->uses_omask =
3634 prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
3635 if (prog_data->uses_omask) {
3636 this->current_annotation = "FB write oMask";
3637 assert(this->sample_mask.file != BAD_FILE);
3638 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
3639 * it's unsinged single words, one vgrf is always 16-wide.
3640 */
3641 sources[length] = fs_reg(GRF, alloc.allocate(1),
3642 BRW_REGISTER_TYPE_UW, 16);
3643 emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
3644 length++;
3645 }
3646
3647 if (color0.file == BAD_FILE) {
3648 /* Even if there's no color buffers enabled, we still need to send
3649 * alpha out the pipeline to our null renderbuffer to support
3650 * alpha-testing, alpha-to-coverage, and so on.
3651 */
3652 length += setup_color_payload(sources + length, this->outputs[0], 0,
3653 false);
3654 } else if (color1.file == BAD_FILE) {
3655 if (src0_alpha.file != BAD_FILE) {
3656 sources[length] = fs_reg(GRF, alloc.allocate(reg_size),
3657 src0_alpha.type, src0_alpha.width);
3658 fs_inst *inst = emit(MOV(sources[length], src0_alpha));
3659 inst->saturate = key->clamp_fragment_color;
3660 length++;
3661 }
3662
3663 length += setup_color_payload(sources + length, color0, components,
3664 false);
3665 } else {
3666 length += setup_color_payload(sources + length, color0, components,
3667 use_2nd_half);
3668 length += setup_color_payload(sources + length, color1, components,
3669 use_2nd_half);
3670 }
3671
3672 if (source_depth_to_render_target) {
3673 if (brw->gen == 6) {
3674 /* For outputting oDepth on gen6, SIMD8 writes have to be
3675 * used. This would require SIMD8 moves of each half to
3676 * message regs, kind of like pre-gen5 SIMD16 FB writes.
3677 * Just bail on doing so for now.
3678 */
3679 no16("Missing support for simd16 depth writes on gen6\n");
3680 }
3681
3682 sources[length] = vgrf(glsl_type::float_type);
3683 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3684 /* Hand over gl_FragDepth. */
3685 assert(this->frag_depth.file != BAD_FILE);
3686 emit(MOV(sources[length], this->frag_depth));
3687 } else {
3688 /* Pass through the payload depth. */
3689 emit(MOV(sources[length],
3690 fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
3691 }
3692 length++;
3693 }
3694
3695 if (payload.dest_depth_reg) {
3696 sources[length] = vgrf(glsl_type::float_type);
3697 emit(MOV(sources[length],
3698 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
3699 length++;
3700 }
3701
3702 fs_inst *load;
3703 fs_inst *write;
3704 if (brw->gen >= 7) {
3705 /* Send from the GRF */
3706 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3707 load = emit(LOAD_PAYLOAD(payload, sources, length));
3708 payload.reg = alloc.allocate(load->regs_written);
3709 payload.width = dispatch_width;
3710 load->dst = payload;
3711 write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
3712 write->base_mrf = -1;
3713 } else {
3714 /* Send from the MRF */
3715 load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3716 sources, length));
3717 write = emit(FS_OPCODE_FB_WRITE);
3718 write->exec_size = dispatch_width;
3719 write->base_mrf = 1;
3720 }
3721
3722 write->mlen = load->regs_written;
3723 write->header_present = header_present;
3724 if (prog_data->uses_kill) {
3725 write->predicate = BRW_PREDICATE_NORMAL;
3726 write->flag_subreg = 1;
3727 }
3728 return write;
3729 }
3730
3731 void
3732 fs_visitor::emit_fb_writes()
3733 {
3734 assert(stage == MESA_SHADER_FRAGMENT);
3735 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3736 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3737
3738 fs_inst *inst = NULL;
3739 if (do_dual_src) {
3740 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3741 "FB dual-source write");
3742 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3743 reg_undef, 4);
3744 inst->target = 0;
3745
3746 /* SIMD16 dual source blending requires to send two SIMD8 dual source
3747 * messages, where each message contains color data for 8 pixels. Color
3748 * data for the first group of pixels is stored in the "lower" half of
3749 * the color registers, so in SIMD16, the previous message did:
3750 * m + 0: r0
3751 * m + 1: g0
3752 * m + 2: b0
3753 * m + 3: a0
3754 *
3755 * Here goes the second message, which packs color data for the
3756 * remaining 8 pixels. Color data for these pixels is stored in the
3757 * "upper" half of the color registers, so we need to do:
3758 * m + 0: r1
3759 * m + 1: g1
3760 * m + 2: b1
3761 * m + 3: a1
3762 */
3763 if (dispatch_width == 16) {
3764 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3765 reg_undef, 4, true);
3766 inst->target = 0;
3767 }
3768
3769 prog_data->dual_src_blend = true;
3770 } else {
3771 for (int target = 0; target < key->nr_color_regions; target++) {
3772 /* Skip over outputs that weren't written. */
3773 if (this->outputs[target].file == BAD_FILE)
3774 continue;
3775
3776 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3777 "FB write target %d",
3778 target);
3779 fs_reg src0_alpha;
3780 if (brw->gen >= 6 && key->replicate_alpha && target != 0)
3781 src0_alpha = offset(outputs[0], 3);
3782
3783 inst = emit_single_fb_write(this->outputs[target], reg_undef,
3784 src0_alpha,
3785 this->output_components[target]);
3786 inst->target = target;
3787 }
3788 }
3789
3790 if (inst == NULL) {
3791 /* Even if there's no color buffers enabled, we still need to send
3792 * alpha out the pipeline to our null renderbuffer to support
3793 * alpha-testing, alpha-to-coverage, and so on.
3794 */
3795 inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
3796 inst->target = 0;
3797 }
3798
3799 inst->eot = true;
3800 this->current_annotation = NULL;
3801 }
3802
3803 void
3804 fs_visitor::setup_uniform_clipplane_values()
3805 {
3806 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
3807 const struct brw_vue_prog_key *key =
3808 (const struct brw_vue_prog_key *) this->key;
3809
3810 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3811 this->userplane[i] = fs_reg(UNIFORM, uniforms);
3812 for (int j = 0; j < 4; ++j) {
3813 stage_prog_data->param[uniforms + j] =
3814 (gl_constant_value *) &clip_planes[i][j];
3815 }
3816 uniforms += 4;
3817 }
3818 }
3819
3820 void fs_visitor::compute_clip_distance()
3821 {
3822 struct brw_vue_prog_data *vue_prog_data =
3823 (struct brw_vue_prog_data *) prog_data;
3824 const struct brw_vue_prog_key *key =
3825 (const struct brw_vue_prog_key *) this->key;
3826
3827 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
3828 *
3829 * "If a linked set of shaders forming the vertex stage contains no
3830 * static write to gl_ClipVertex or gl_ClipDistance, but the
3831 * application has requested clipping against user clip planes through
3832 * the API, then the coordinate written to gl_Position is used for
3833 * comparison against the user clip planes."
3834 *
3835 * This function is only called if the shader didn't write to
3836 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
3837 * if the user wrote to it; otherwise we use gl_Position.
3838 */
3839
3840 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
3841 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
3842 clip_vertex = VARYING_SLOT_POS;
3843
3844 /* If the clip vertex isn't written, skip this. Typically this means
3845 * the GS will set up clipping. */
3846 if (outputs[clip_vertex].file == BAD_FILE)
3847 return;
3848
3849 setup_uniform_clipplane_values();
3850
3851 current_annotation = "user clip distances";
3852
3853 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
3854 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
3855
3856 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3857 fs_reg u = userplane[i];
3858 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
3859 output.reg_offset = i & 3;
3860
3861 emit(MUL(output, outputs[clip_vertex], u));
3862 for (int j = 1; j < 4; j++) {
3863 u.reg = userplane[i].reg + j;
3864 emit(MAD(output, output, offset(outputs[clip_vertex], j), u));
3865 }
3866 }
3867 }
3868
3869 void
3870 fs_visitor::emit_urb_writes()
3871 {
3872 int slot, urb_offset, length;
3873 struct brw_vs_prog_data *vs_prog_data =
3874 (struct brw_vs_prog_data *) prog_data;
3875 const struct brw_vs_prog_key *key =
3876 (const struct brw_vs_prog_key *) this->key;
3877 const GLbitfield64 psiz_mask =
3878 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
3879 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
3880 bool flush;
3881 fs_reg sources[8];
3882
3883 /* Lower legacy ff and ClipVertex clipping to clip distances */
3884 if (key->base.userclip_active && !prog->UsesClipDistanceOut)
3885 compute_clip_distance();
3886
3887 /* If we don't have any valid slots to write, just do a minimal urb write
3888 * send to terminate the shader. */
3889 if (vue_map->slots_valid == 0) {
3890
3891 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3892 fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
3893 BRW_REGISTER_TYPE_UD))));
3894 inst->force_writemask_all = true;
3895
3896 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
3897 inst->eot = true;
3898 inst->mlen = 1;
3899 inst->offset = 1;
3900 return;
3901 }
3902
3903 length = 0;
3904 urb_offset = 0;
3905 flush = false;
3906 for (slot = 0; slot < vue_map->num_slots; slot++) {
3907 fs_reg reg, src, zero;
3908
3909 int varying = vue_map->slot_to_varying[slot];
3910 switch (varying) {
3911 case VARYING_SLOT_PSIZ:
3912
3913 /* The point size varying slot is the vue header and is always in the
3914 * vue map. But often none of the special varyings that live there
3915 * are written and in that case we can skip writing to the vue
3916 * header, provided the corresponding state properly clamps the
3917 * values further down the pipeline. */
3918 if ((vue_map->slots_valid & psiz_mask) == 0) {
3919 assert(length == 0);
3920 urb_offset++;
3921 break;
3922 }
3923
3924 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3925 emit(MOV(zero, fs_reg(0u)));
3926
3927 sources[length++] = zero;
3928 if (vue_map->slots_valid & VARYING_BIT_LAYER)
3929 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
3930 else
3931 sources[length++] = zero;
3932
3933 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
3934 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
3935 else
3936 sources[length++] = zero;
3937
3938 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
3939 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
3940 else
3941 sources[length++] = zero;
3942 break;
3943
3944 case BRW_VARYING_SLOT_NDC:
3945 case VARYING_SLOT_EDGE:
3946 unreachable("unexpected scalar vs output");
3947 break;
3948
3949 case BRW_VARYING_SLOT_PAD:
3950 break;
3951
3952 default:
3953 /* gl_Position is always in the vue map, but isn't always written by
3954 * the shader. Other varyings (clip distances) get added to the vue
3955 * map but don't always get written. In those cases, the
3956 * corresponding this->output[] slot will be invalid we and can skip
3957 * the urb write for the varying. If we've already queued up a vue
3958 * slot for writing we flush a mlen 5 urb write, otherwise we just
3959 * advance the urb_offset.
3960 */
3961 if (this->outputs[varying].file == BAD_FILE) {
3962 if (length > 0)
3963 flush = true;
3964 else
3965 urb_offset++;
3966 break;
3967 }
3968
3969 if ((varying == VARYING_SLOT_COL0 ||
3970 varying == VARYING_SLOT_COL1 ||
3971 varying == VARYING_SLOT_BFC0 ||
3972 varying == VARYING_SLOT_BFC1) &&
3973 key->clamp_vertex_color) {
3974 /* We need to clamp these guys, so do a saturating MOV into a
3975 * temp register and use that for the payload.
3976 */
3977 for (int i = 0; i < 4; i++) {
3978 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
3979 src = offset(this->outputs[varying], i);
3980 fs_inst *inst = emit(MOV(reg, src));
3981 inst->saturate = true;
3982 sources[length++] = reg;
3983 }
3984 } else {
3985 for (int i = 0; i < 4; i++)
3986 sources[length++] = offset(this->outputs[varying], i);
3987 }
3988 break;
3989 }
3990
3991 current_annotation = "URB write";
3992
3993 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
3994 * the last slot or if we need to flush (see BAD_FILE varying case
3995 * above), emit a URB write send now to flush out the data.
3996 */
3997 int last = slot == vue_map->num_slots - 1;
3998 if (length == 8 || last)
3999 flush = true;
4000 if (flush) {
4001 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
4002 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
4003 BRW_REGISTER_TYPE_F);
4004
4005 /* We need WE_all on the MOV for the message header (the URB handles)
4006 * so do a MOV to a dummy register and set force_writemask_all on the
4007 * MOV. LOAD_PAYLOAD will preserve that.
4008 */
4009 fs_reg dummy = fs_reg(GRF, alloc.allocate(1),
4010 BRW_REGISTER_TYPE_UD);
4011 fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0),
4012 BRW_REGISTER_TYPE_UD))));
4013 inst->force_writemask_all = true;
4014 payload_sources[0] = dummy;
4015
4016 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
4017 emit(LOAD_PAYLOAD(payload, payload_sources, length + 1));
4018
4019 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4020 inst->eot = last;
4021 inst->mlen = length + 1;
4022 inst->offset = urb_offset;
4023 urb_offset = slot + 1;
4024 length = 0;
4025 flush = false;
4026 }
4027 }
4028 }
4029
4030 void
4031 fs_visitor::resolve_ud_negate(fs_reg *reg)
4032 {
4033 if (reg->type != BRW_REGISTER_TYPE_UD ||
4034 !reg->negate)
4035 return;
4036
4037 fs_reg temp = vgrf(glsl_type::uint_type);
4038 emit(MOV(temp, *reg));
4039 *reg = temp;
4040 }
4041
4042 /**
4043 * Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
4044 *
4045 * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
4046 * If we need a proper boolean value, we have to fix it up to be 0 or ~0.
4047 */
4048 void
4049 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
4050 {
4051 assert(brw->gen <= 5);
4052
4053 if (rvalue->type != glsl_type::bool_type)
4054 return;
4055
4056 fs_reg and_result = vgrf(glsl_type::bool_type);
4057 fs_reg neg_result = vgrf(glsl_type::bool_type);
4058 emit(AND(and_result, *reg, fs_reg(1)));
4059 emit(MOV(neg_result, negate(and_result)));
4060 *reg = neg_result;
4061 }
4062
4063 fs_visitor::fs_visitor(struct brw_context *brw,
4064 void *mem_ctx,
4065 const struct brw_wm_prog_key *key,
4066 struct brw_wm_prog_data *prog_data,
4067 struct gl_shader_program *shader_prog,
4068 struct gl_fragment_program *fp,
4069 unsigned dispatch_width)
4070 : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
4071 MESA_SHADER_FRAGMENT),
4072 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4073 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4074 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4075 key(key), prog_data(&prog_data->base),
4076 dispatch_width(dispatch_width), promoted_constants(0)
4077 {
4078 this->mem_ctx = mem_ctx;
4079 init();
4080 }
4081
4082 fs_visitor::fs_visitor(struct brw_context *brw,
4083 void *mem_ctx,
4084 const struct brw_vs_prog_key *key,
4085 struct brw_vs_prog_data *prog_data,
4086 struct gl_shader_program *shader_prog,
4087 struct gl_vertex_program *cp,
4088 unsigned dispatch_width)
4089 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base,
4090 MESA_SHADER_VERTEX),
4091 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4092 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4093 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4094 key(key), prog_data(&prog_data->base.base),
4095 dispatch_width(dispatch_width), promoted_constants(0)
4096 {
4097 this->mem_ctx = mem_ctx;
4098 init();
4099 }
4100
4101 void
4102 fs_visitor::init()
4103 {
4104 switch (stage) {
4105 case MESA_SHADER_FRAGMENT:
4106 key_tex = &((const brw_wm_prog_key *) key)->tex;
4107 break;
4108 case MESA_SHADER_VERTEX:
4109 case MESA_SHADER_GEOMETRY:
4110 key_tex = &((const brw_vue_prog_key *) key)->tex;
4111 break;
4112 default:
4113 unreachable("unhandled shader stage");
4114 }
4115
4116 this->failed = false;
4117 this->simd16_unsupported = false;
4118 this->no16_msg = NULL;
4119 this->variable_ht = hash_table_ctor(0,
4120 hash_table_pointer_hash,
4121 hash_table_pointer_compare);
4122
4123 this->nir_locals = NULL;
4124 this->nir_globals = NULL;
4125
4126 memset(&this->payload, 0, sizeof(this->payload));
4127 memset(this->outputs, 0, sizeof(this->outputs));
4128 memset(this->output_components, 0, sizeof(this->output_components));
4129 this->source_depth_to_render_target = false;
4130 this->runtime_check_aads_emit = false;
4131 this->first_non_payload_grf = 0;
4132 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
4133
4134 this->current_annotation = NULL;
4135 this->base_ir = NULL;
4136
4137 this->virtual_grf_start = NULL;
4138 this->virtual_grf_end = NULL;
4139 this->live_intervals = NULL;
4140 this->regs_live_at_ip = NULL;
4141
4142 this->uniforms = 0;
4143 this->last_scratch = 0;
4144 this->pull_constant_loc = NULL;
4145 this->push_constant_loc = NULL;
4146
4147 this->spilled_any_registers = false;
4148 this->do_dual_src = false;
4149
4150 if (dispatch_width == 8)
4151 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
4152 }
4153
4154 fs_visitor::~fs_visitor()
4155 {
4156 hash_table_dtor(this->variable_ht);
4157 }