i965: Add tessellation evaluation shaders
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "glsl/nir/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_vertexid = true;
47 break;
48 case SYSTEM_VALUE_VERTEX_ID:
49 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
50 reg->reg_offset = 2;
51 vs_prog_data->uses_vertexid = true;
52 break;
53 case SYSTEM_VALUE_INSTANCE_ID:
54 reg->reg_offset = 3;
55 vs_prog_data->uses_instanceid = true;
56 break;
57 default:
58 unreachable("not reached");
59 }
60
61 return reg;
62 }
63
64 /* Sample from the MCS surface attached to this multisample texture. */
65 fs_reg
66 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
67 const fs_reg &sampler)
68 {
69 const fs_reg dest = vgrf(glsl_type::uvec4_type);
70 const fs_reg srcs[] = {
71 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
72 sampler, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
73 };
74 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
75 ARRAY_SIZE(srcs));
76
77 /* We only care about one or two regs of response, but the sampler always
78 * writes 4/8.
79 */
80 inst->regs_written = 4 * dispatch_width / 8;
81
82 return dest;
83 }
84
85 void
86 fs_visitor::emit_texture(ir_texture_opcode op,
87 const glsl_type *dest_type,
88 fs_reg coordinate, int coord_components,
89 fs_reg shadow_c,
90 fs_reg lod, fs_reg lod2, int grad_components,
91 fs_reg sample_index,
92 fs_reg offset_value,
93 fs_reg mcs,
94 int gather_component,
95 bool is_cube_array,
96 uint32_t sampler,
97 fs_reg sampler_reg)
98 {
99 fs_inst *inst = NULL;
100
101 if (op == ir_query_levels) {
102 /* textureQueryLevels() is implemented in terms of TXS so we need to
103 * pass a valid LOD argument.
104 */
105 assert(lod.file == BAD_FILE);
106 lod = brw_imm_ud(0u);
107 }
108
109 if (op == ir_samples_identical) {
110 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
111
112 /* If mcs is an immediate value, it means there is no MCS. In that case
113 * just return false.
114 */
115 if (mcs.file == BRW_IMMEDIATE_VALUE) {
116 bld.MOV(dst, brw_imm_ud(0u));
117 } else if ((key_tex->msaa_16 & (1 << sampler))) {
118 fs_reg tmp = vgrf(glsl_type::uint_type);
119 bld.OR(tmp, mcs, offset(mcs, bld, 1));
120 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
121 } else {
122 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
123 }
124
125 this->result = dst;
126 return;
127 }
128
129 /* Writemasking doesn't eliminate channels on SIMD8 texture
130 * samples, so don't worry about them.
131 */
132 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
133 const fs_reg srcs[] = {
134 coordinate, shadow_c, lod, lod2,
135 sample_index, mcs, sampler_reg, offset_value,
136 brw_imm_d(coord_components), brw_imm_d(grad_components)
137 };
138 enum opcode opcode;
139
140 switch (op) {
141 case ir_tex:
142 opcode = SHADER_OPCODE_TEX_LOGICAL;
143 break;
144 case ir_txb:
145 opcode = FS_OPCODE_TXB_LOGICAL;
146 break;
147 case ir_txl:
148 opcode = SHADER_OPCODE_TXL_LOGICAL;
149 break;
150 case ir_txd:
151 opcode = SHADER_OPCODE_TXD_LOGICAL;
152 break;
153 case ir_txf:
154 opcode = SHADER_OPCODE_TXF_LOGICAL;
155 break;
156 case ir_txf_ms:
157 if ((key_tex->msaa_16 & (1 << sampler)))
158 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
159 else
160 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
161 break;
162 case ir_txs:
163 case ir_query_levels:
164 opcode = SHADER_OPCODE_TXS_LOGICAL;
165 break;
166 case ir_lod:
167 opcode = SHADER_OPCODE_LOD_LOGICAL;
168 break;
169 case ir_tg4:
170 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
171 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
172 break;
173 default:
174 unreachable("Invalid texture opcode.");
175 }
176
177 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
178 inst->regs_written = 4 * dispatch_width / 8;
179
180 if (shadow_c.file != BAD_FILE)
181 inst->shadow_compare = true;
182
183 if (offset_value.file == IMM)
184 inst->offset = offset_value.ud;
185
186 if (op == ir_tg4) {
187 if (gather_component == 1 &&
188 key_tex->gather_channel_quirk_mask & (1 << sampler)) {
189 /* gather4 sampler is broken for green channel on RG32F --
190 * we must ask for blue instead.
191 */
192 inst->offset |= 2 << 16;
193 } else {
194 inst->offset |= gather_component << 16;
195 }
196
197 if (devinfo->gen == 6)
198 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
199 }
200
201 /* fixup #layers for cube map arrays */
202 if (op == ir_txs && is_cube_array) {
203 fs_reg depth = offset(dst, bld, 2);
204 fs_reg fixed_depth = vgrf(glsl_type::int_type);
205 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
206
207 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
208 int components = inst->regs_written / (inst->exec_size / 8);
209 for (int i = 0; i < components; i++) {
210 if (i == 2) {
211 fixed_payload[i] = fixed_depth;
212 } else {
213 fixed_payload[i] = offset(dst, bld, i);
214 }
215 }
216 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
217 }
218
219 if (op == ir_query_levels) {
220 /* # levels is in .w */
221 dst = offset(dst, bld, 3);
222 }
223
224 this->result = dst;
225 }
226
227 /**
228 * Apply workarounds for Gen6 gather with UINT/SINT
229 */
230 void
231 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
232 {
233 if (!wa)
234 return;
235
236 int width = (wa & WA_8BIT) ? 8 : 16;
237
238 for (int i = 0; i < 4; i++) {
239 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
240 /* Convert from UNORM to UINT */
241 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
242 bld.MOV(dst, dst_f);
243
244 if (wa & WA_SIGN) {
245 /* Reinterpret the UINT value as a signed INT value by
246 * shifting the sign bit into place, then shifting back
247 * preserving sign.
248 */
249 bld.SHL(dst, dst, brw_imm_d(32 - width));
250 bld.ASR(dst, dst, brw_imm_d(32 - width));
251 }
252
253 dst = offset(dst, bld, 1);
254 }
255 }
256
257 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
258 void
259 fs_visitor::emit_dummy_fs()
260 {
261 int reg_width = dispatch_width / 8;
262
263 /* Everyone's favorite color. */
264 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
265 for (int i = 0; i < 4; i++) {
266 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
267 brw_imm_f(color[i]));
268 }
269
270 fs_inst *write;
271 write = bld.emit(FS_OPCODE_FB_WRITE);
272 write->eot = true;
273 if (devinfo->gen >= 6) {
274 write->base_mrf = 2;
275 write->mlen = 4 * reg_width;
276 } else {
277 write->header_size = 2;
278 write->base_mrf = 0;
279 write->mlen = 2 + 4 * reg_width;
280 }
281
282 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
283 * varying to avoid GPU hangs, so set that.
284 */
285 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
286 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
287 memset(wm_prog_data->urb_setup, -1,
288 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
289
290 /* We don't have any uniforms. */
291 stage_prog_data->nr_params = 0;
292 stage_prog_data->nr_pull_params = 0;
293 stage_prog_data->curb_read_length = 0;
294 stage_prog_data->dispatch_grf_start_reg = 2;
295 wm_prog_data->dispatch_grf_start_reg_16 = 2;
296 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
297
298 calculate_cfg();
299 }
300
301 /* The register location here is relative to the start of the URB
302 * data. It will get adjusted to be a real location before
303 * generate_code() time.
304 */
305 struct brw_reg
306 fs_visitor::interp_reg(int location, int channel)
307 {
308 assert(stage == MESA_SHADER_FRAGMENT);
309 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
310 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
311 int stride = (channel & 1) * 4;
312
313 assert(prog_data->urb_setup[location] != -1);
314
315 return brw_vec1_grf(regnr, stride);
316 }
317
318 /** Emits the interpolation for the varying inputs. */
319 void
320 fs_visitor::emit_interpolation_setup_gen4()
321 {
322 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
323
324 fs_builder abld = bld.annotate("compute pixel centers");
325 this->pixel_x = vgrf(glsl_type::uint_type);
326 this->pixel_y = vgrf(glsl_type::uint_type);
327 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
328 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
329 abld.ADD(this->pixel_x,
330 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
331 fs_reg(brw_imm_v(0x10101010)));
332 abld.ADD(this->pixel_y,
333 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
334 fs_reg(brw_imm_v(0x11001100)));
335
336 abld = bld.annotate("compute pixel deltas from v0");
337
338 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
339 vgrf(glsl_type::vec2_type);
340 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
341 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
342 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
343
344 if (devinfo->has_pln && dispatch_width == 16) {
345 for (unsigned i = 0; i < 2; i++) {
346 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
347 half(this->pixel_x, i), xstart);
348 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
349 half(this->pixel_y, i), ystart);
350 }
351 } else {
352 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
353 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
354 }
355
356 abld = bld.annotate("compute pos.w and 1/pos.w");
357 /* Compute wpos.w. It's always in our setup, since it's needed to
358 * interpolate the other attributes.
359 */
360 this->wpos_w = vgrf(glsl_type::float_type);
361 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
362 interp_reg(VARYING_SLOT_POS, 3));
363 /* Compute the pixel 1/W value from wpos.w. */
364 this->pixel_w = vgrf(glsl_type::float_type);
365 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
366 }
367
368 /** Emits the interpolation for the varying inputs. */
369 void
370 fs_visitor::emit_interpolation_setup_gen6()
371 {
372 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
373
374 fs_builder abld = bld.annotate("compute pixel centers");
375 if (devinfo->gen >= 8 || dispatch_width == 8) {
376 /* The "Register Region Restrictions" page says for BDW (and newer,
377 * presumably):
378 *
379 * "When destination spans two registers, the source may be one or
380 * two registers. The destination elements must be evenly split
381 * between the two registers."
382 *
383 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
384 * compute our pixel centers.
385 */
386 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
387 BRW_REGISTER_TYPE_UW);
388
389 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
390 dbld.ADD(int_pixel_xy,
391 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
392 fs_reg(brw_imm_v(0x11001010)));
393
394 this->pixel_x = vgrf(glsl_type::float_type);
395 this->pixel_y = vgrf(glsl_type::float_type);
396 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
397 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
398 } else {
399 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
400 *
401 * "When destination spans two registers, the source MUST span two
402 * registers."
403 *
404 * Since the GRF source of the ADD will only read a single register, we
405 * must do two separate ADDs in SIMD16.
406 */
407 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
408 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
409 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
410 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
411 abld.ADD(int_pixel_x,
412 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
413 fs_reg(brw_imm_v(0x10101010)));
414 abld.ADD(int_pixel_y,
415 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
416 fs_reg(brw_imm_v(0x11001100)));
417
418 /* As of gen6, we can no longer mix float and int sources. We have
419 * to turn the integer pixel centers into floats for their actual
420 * use.
421 */
422 this->pixel_x = vgrf(glsl_type::float_type);
423 this->pixel_y = vgrf(glsl_type::float_type);
424 abld.MOV(this->pixel_x, int_pixel_x);
425 abld.MOV(this->pixel_y, int_pixel_y);
426 }
427
428 abld = bld.annotate("compute pos.w");
429 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
430 this->wpos_w = vgrf(glsl_type::float_type);
431 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
432
433 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
434 uint8_t reg = payload.barycentric_coord_reg[i];
435 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
436 }
437 }
438
439 static enum brw_conditional_mod
440 cond_for_alpha_func(GLenum func)
441 {
442 switch(func) {
443 case GL_GREATER:
444 return BRW_CONDITIONAL_G;
445 case GL_GEQUAL:
446 return BRW_CONDITIONAL_GE;
447 case GL_LESS:
448 return BRW_CONDITIONAL_L;
449 case GL_LEQUAL:
450 return BRW_CONDITIONAL_LE;
451 case GL_EQUAL:
452 return BRW_CONDITIONAL_EQ;
453 case GL_NOTEQUAL:
454 return BRW_CONDITIONAL_NEQ;
455 default:
456 unreachable("Not reached");
457 }
458 }
459
460 /**
461 * Alpha test support for when we compile it into the shader instead
462 * of using the normal fixed-function alpha test.
463 */
464 void
465 fs_visitor::emit_alpha_test()
466 {
467 assert(stage == MESA_SHADER_FRAGMENT);
468 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
469 const fs_builder abld = bld.annotate("Alpha test");
470
471 fs_inst *cmp;
472 if (key->alpha_test_func == GL_ALWAYS)
473 return;
474
475 if (key->alpha_test_func == GL_NEVER) {
476 /* f0.1 = 0 */
477 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
478 BRW_REGISTER_TYPE_UW));
479 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
480 BRW_CONDITIONAL_NEQ);
481 } else {
482 /* RT0 alpha */
483 fs_reg color = offset(outputs[0], bld, 3);
484
485 /* f0.1 &= func(color, ref) */
486 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
487 cond_for_alpha_func(key->alpha_test_func));
488 }
489 cmp->predicate = BRW_PREDICATE_NORMAL;
490 cmp->flag_subreg = 1;
491 }
492
493 fs_inst *
494 fs_visitor::emit_single_fb_write(const fs_builder &bld,
495 fs_reg color0, fs_reg color1,
496 fs_reg src0_alpha, unsigned components)
497 {
498 assert(stage == MESA_SHADER_FRAGMENT);
499 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
500
501 /* Hand over gl_FragDepth or the payload depth. */
502 const fs_reg dst_depth = (payload.dest_depth_reg ?
503 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
504 fs_reg());
505 fs_reg src_depth, src_stencil;
506
507 if (source_depth_to_render_target) {
508 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
509 src_depth = frag_depth;
510 else
511 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
512 }
513
514 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
515 src_stencil = frag_stencil;
516
517 const fs_reg sources[] = {
518 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
519 sample_mask, brw_imm_ud(components)
520 };
521 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
522 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
523 sources, ARRAY_SIZE(sources));
524
525 if (prog_data->uses_kill) {
526 write->predicate = BRW_PREDICATE_NORMAL;
527 write->flag_subreg = 1;
528 }
529
530 return write;
531 }
532
533 void
534 fs_visitor::emit_fb_writes()
535 {
536 assert(stage == MESA_SHADER_FRAGMENT);
537 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
538 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
539
540 fs_inst *inst = NULL;
541
542 if (source_depth_to_render_target && devinfo->gen == 6) {
543 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
544 * would require SIMD8 moves of each half to message regs, e.g. by using
545 * the SIMD lowering pass. Unfortunately this is more difficult than it
546 * sounds because the SIMD8 single-source message lacks channel selects
547 * for the second and third subspans.
548 */
549 no16("Missing support for simd16 depth writes on gen6\n");
550 }
551
552 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
553 /* From the 'Render Target Write message' section of the docs:
554 * "Output Stencil is not supported with SIMD16 Render Target Write
555 * Messages."
556 *
557 * FINISHME: split 16 into 2 8s
558 */
559 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
560 }
561
562 if (do_dual_src) {
563 const fs_builder abld = bld.annotate("FB dual-source write");
564
565 inst = emit_single_fb_write(abld, this->outputs[0],
566 this->dual_src_output, reg_undef, 4);
567 inst->target = 0;
568
569 prog_data->dual_src_blend = true;
570 } else {
571 for (int target = 0; target < key->nr_color_regions; target++) {
572 /* Skip over outputs that weren't written. */
573 if (this->outputs[target].file == BAD_FILE)
574 continue;
575
576 const fs_builder abld = bld.annotate(
577 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
578
579 fs_reg src0_alpha;
580 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
581 src0_alpha = offset(outputs[0], bld, 3);
582
583 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
584 src0_alpha,
585 this->output_components[target]);
586 inst->target = target;
587 }
588 }
589
590 if (inst == NULL) {
591 /* Even if there's no color buffers enabled, we still need to send
592 * alpha out the pipeline to our null renderbuffer to support
593 * alpha-testing, alpha-to-coverage, and so on.
594 */
595 /* FINISHME: Factor out this frequently recurring pattern into a
596 * helper function.
597 */
598 const fs_reg srcs[] = { reg_undef, reg_undef,
599 reg_undef, offset(this->outputs[0], bld, 3) };
600 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
601 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
602
603 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
604 inst->target = 0;
605 }
606
607 inst->eot = true;
608 }
609
610 void
611 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
612 {
613 const struct brw_vs_prog_key *key =
614 (const struct brw_vs_prog_key *) this->key;
615
616 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
617 this->userplane[i] = fs_reg(UNIFORM, uniforms);
618 for (int j = 0; j < 4; ++j) {
619 stage_prog_data->param[uniforms + j] =
620 (gl_constant_value *) &clip_planes[i][j];
621 }
622 uniforms += 4;
623 }
624 }
625
626 /**
627 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
628 *
629 * This does nothing if the shader uses gl_ClipDistance or user clipping is
630 * disabled altogether.
631 */
632 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
633 {
634 struct brw_vue_prog_data *vue_prog_data =
635 (struct brw_vue_prog_data *) prog_data;
636 const struct brw_vs_prog_key *key =
637 (const struct brw_vs_prog_key *) this->key;
638
639 /* Bail unless some sort of legacy clipping is enabled */
640 if (key->nr_userclip_plane_consts == 0)
641 return;
642
643 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
644 *
645 * "If a linked set of shaders forming the vertex stage contains no
646 * static write to gl_ClipVertex or gl_ClipDistance, but the
647 * application has requested clipping against user clip planes through
648 * the API, then the coordinate written to gl_Position is used for
649 * comparison against the user clip planes."
650 *
651 * This function is only called if the shader didn't write to
652 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
653 * if the user wrote to it; otherwise we use gl_Position.
654 */
655
656 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
657 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
658 clip_vertex = VARYING_SLOT_POS;
659
660 /* If the clip vertex isn't written, skip this. Typically this means
661 * the GS will set up clipping. */
662 if (outputs[clip_vertex].file == BAD_FILE)
663 return;
664
665 setup_uniform_clipplane_values(clip_planes);
666
667 const fs_builder abld = bld.annotate("user clip distances");
668
669 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
670 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
671 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
672 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
673
674 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
675 fs_reg u = userplane[i];
676 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
677 output.reg_offset = i & 3;
678
679 abld.MUL(output, outputs[clip_vertex], u);
680 for (int j = 1; j < 4; j++) {
681 u.nr = userplane[i].nr + j;
682 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
683 }
684 }
685 }
686
687 void
688 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
689 {
690 int slot, urb_offset, length;
691 int starting_urb_offset = 0;
692 const struct brw_vue_prog_data *vue_prog_data =
693 (const struct brw_vue_prog_data *) this->prog_data;
694 const struct brw_vs_prog_key *vs_key =
695 (const struct brw_vs_prog_key *) this->key;
696 const GLbitfield64 psiz_mask =
697 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
698 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
699 bool flush;
700 fs_reg sources[8];
701 fs_reg urb_handle;
702
703 if (stage == MESA_SHADER_TESS_EVAL)
704 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
705 else
706 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
707
708 /* If we don't have any valid slots to write, just do a minimal urb write
709 * send to terminate the shader. This includes 1 slot of undefined data,
710 * because it's invalid to write 0 data:
711 *
712 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
713 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
714 * Write Data Payload:
715 *
716 * "The write data payload can be between 1 and 8 message phases long."
717 */
718 if (vue_map->slots_valid == 0) {
719 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
720 bld.exec_all().MOV(payload, urb_handle);
721
722 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
723 inst->eot = true;
724 inst->mlen = 2;
725 inst->offset = 1;
726 return;
727 }
728
729 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
730 int header_size = 1;
731 fs_reg per_slot_offsets;
732
733 if (stage == MESA_SHADER_GEOMETRY) {
734 const struct brw_gs_prog_data *gs_prog_data =
735 (const struct brw_gs_prog_data *) this->prog_data;
736
737 /* We need to increment the Global Offset to skip over the control data
738 * header and the extra "Vertex Count" field (1 HWord) at the beginning
739 * of the VUE. We're counting in OWords, so the units are doubled.
740 */
741 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
742 if (gs_prog_data->static_vertex_count == -1)
743 starting_urb_offset += 2;
744
745 /* We also need to use per-slot offsets. The per-slot offset is the
746 * Vertex Count. SIMD8 mode processes 8 different primitives at a
747 * time; each may output a different number of vertices.
748 */
749 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
750 header_size++;
751
752 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
753 const int output_vertex_size_owords =
754 gs_prog_data->output_vertex_size_hwords * 2;
755
756 if (gs_vertex_count.file == IMM) {
757 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
758 gs_vertex_count.ud);
759 } else {
760 per_slot_offsets = vgrf(glsl_type::int_type);
761 bld.MUL(per_slot_offsets, gs_vertex_count,
762 brw_imm_ud(output_vertex_size_owords));
763 }
764 }
765
766 length = 0;
767 urb_offset = starting_urb_offset;
768 flush = false;
769 for (slot = 0; slot < vue_map->num_slots; slot++) {
770 int varying = vue_map->slot_to_varying[slot];
771 switch (varying) {
772 case VARYING_SLOT_PSIZ: {
773 /* The point size varying slot is the vue header and is always in the
774 * vue map. But often none of the special varyings that live there
775 * are written and in that case we can skip writing to the vue
776 * header, provided the corresponding state properly clamps the
777 * values further down the pipeline. */
778 if ((vue_map->slots_valid & psiz_mask) == 0) {
779 assert(length == 0);
780 urb_offset++;
781 break;
782 }
783
784 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
785 bld.MOV(zero, brw_imm_ud(0u));
786
787 sources[length++] = zero;
788 if (vue_map->slots_valid & VARYING_BIT_LAYER)
789 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
790 else
791 sources[length++] = zero;
792
793 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
794 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
795 else
796 sources[length++] = zero;
797
798 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
799 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
800 else
801 sources[length++] = zero;
802 break;
803 }
804 case BRW_VARYING_SLOT_NDC:
805 case VARYING_SLOT_EDGE:
806 unreachable("unexpected scalar vs output");
807 break;
808
809 default:
810 /* gl_Position is always in the vue map, but isn't always written by
811 * the shader. Other varyings (clip distances) get added to the vue
812 * map but don't always get written. In those cases, the
813 * corresponding this->output[] slot will be invalid we and can skip
814 * the urb write for the varying. If we've already queued up a vue
815 * slot for writing we flush a mlen 5 urb write, otherwise we just
816 * advance the urb_offset.
817 */
818 if (varying == BRW_VARYING_SLOT_PAD ||
819 this->outputs[varying].file == BAD_FILE) {
820 if (length > 0)
821 flush = true;
822 else
823 urb_offset++;
824 break;
825 }
826
827 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
828 (varying == VARYING_SLOT_COL0 ||
829 varying == VARYING_SLOT_COL1 ||
830 varying == VARYING_SLOT_BFC0 ||
831 varying == VARYING_SLOT_BFC1)) {
832 /* We need to clamp these guys, so do a saturating MOV into a
833 * temp register and use that for the payload.
834 */
835 for (int i = 0; i < 4; i++) {
836 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
837 fs_reg src = offset(this->outputs[varying], bld, i);
838 set_saturate(true, bld.MOV(reg, src));
839 sources[length++] = reg;
840 }
841 } else {
842 for (unsigned i = 0; i < output_components[varying]; i++)
843 sources[length++] = offset(this->outputs[varying], bld, i);
844 for (unsigned i = output_components[varying]; i < 4; i++)
845 sources[length++] = brw_imm_d(0);
846 }
847 break;
848 }
849
850 const fs_builder abld = bld.annotate("URB write");
851
852 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
853 * the last slot or if we need to flush (see BAD_FILE varying case
854 * above), emit a URB write send now to flush out the data.
855 */
856 int last = slot == vue_map->num_slots - 1;
857 if (length == 8 || last)
858 flush = true;
859 if (flush) {
860 fs_reg *payload_sources =
861 ralloc_array(mem_ctx, fs_reg, length + header_size);
862 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
863 BRW_REGISTER_TYPE_F);
864 payload_sources[0] = urb_handle;
865
866 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
867 payload_sources[1] = per_slot_offsets;
868
869 memcpy(&payload_sources[header_size], sources,
870 length * sizeof sources[0]);
871
872 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
873 header_size);
874
875 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
876 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
877 inst->mlen = length + header_size;
878 inst->offset = urb_offset;
879 urb_offset = starting_urb_offset + slot + 1;
880 length = 0;
881 flush = false;
882 }
883 }
884 }
885
886 void
887 fs_visitor::emit_cs_terminate()
888 {
889 assert(devinfo->gen >= 7);
890
891 /* We are getting the thread ID from the compute shader header */
892 assert(stage == MESA_SHADER_COMPUTE);
893
894 /* We can't directly send from g0, since sends with EOT have to use
895 * g112-127. So, copy it to a virtual register, The register allocator will
896 * make sure it uses the appropriate register range.
897 */
898 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
899 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
900 bld.group(8, 0).exec_all().MOV(payload, g0);
901
902 /* Send a message to the thread spawner to terminate the thread. */
903 fs_inst *inst = bld.exec_all()
904 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
905 inst->eot = true;
906 }
907
908 void
909 fs_visitor::emit_barrier()
910 {
911 assert(devinfo->gen >= 7);
912
913 /* We are getting the barrier ID from the compute shader header */
914 assert(stage == MESA_SHADER_COMPUTE);
915
916 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
917
918 const fs_builder pbld = bld.exec_all().group(8, 0);
919
920 /* Clear the message payload */
921 pbld.MOV(payload, brw_imm_ud(0u));
922
923 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
924 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
925 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(0x0f000000u));
926
927 /* Emit a gateway "barrier" message using the payload we set up, followed
928 * by a wait instruction.
929 */
930 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
931 }
932
933 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
934 void *mem_ctx,
935 const void *key,
936 struct brw_stage_prog_data *prog_data,
937 struct gl_program *prog,
938 const nir_shader *shader,
939 unsigned dispatch_width,
940 int shader_time_index,
941 const struct brw_vue_map *input_vue_map)
942 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
943 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
944 input_vue_map(input_vue_map),
945 dispatch_width(dispatch_width),
946 shader_time_index(shader_time_index),
947 bld(fs_builder(this, dispatch_width).at_end())
948 {
949 init();
950 }
951
952 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
953 void *mem_ctx,
954 struct brw_gs_compile *c,
955 struct brw_gs_prog_data *prog_data,
956 const nir_shader *shader,
957 int shader_time_index)
958 : backend_shader(compiler, log_data, mem_ctx, shader,
959 &prog_data->base.base),
960 key(&c->key), gs_compile(c),
961 prog_data(&prog_data->base.base), prog(NULL),
962 dispatch_width(8),
963 shader_time_index(shader_time_index),
964 bld(fs_builder(this, dispatch_width).at_end())
965 {
966 init();
967 }
968
969
970 void
971 fs_visitor::init()
972 {
973 switch (stage) {
974 case MESA_SHADER_FRAGMENT:
975 key_tex = &((const brw_wm_prog_key *) key)->tex;
976 break;
977 case MESA_SHADER_VERTEX:
978 key_tex = &((const brw_vs_prog_key *) key)->tex;
979 break;
980 case MESA_SHADER_TESS_EVAL:
981 key_tex = &((const brw_tes_prog_key *) key)->tex;
982 break;
983 case MESA_SHADER_GEOMETRY:
984 key_tex = &((const brw_gs_prog_key *) key)->tex;
985 break;
986 case MESA_SHADER_COMPUTE:
987 key_tex = &((const brw_cs_prog_key*) key)->tex;
988 break;
989 default:
990 unreachable("unhandled shader stage");
991 }
992
993 this->prog_data = this->stage_prog_data;
994
995 this->failed = false;
996 this->simd16_unsupported = false;
997 this->no16_msg = NULL;
998
999 this->nir_locals = NULL;
1000 this->nir_ssa_values = NULL;
1001
1002 memset(&this->payload, 0, sizeof(this->payload));
1003 memset(this->output_components, 0, sizeof(this->output_components));
1004 this->source_depth_to_render_target = false;
1005 this->runtime_check_aads_emit = false;
1006 this->first_non_payload_grf = 0;
1007 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1008
1009 this->virtual_grf_start = NULL;
1010 this->virtual_grf_end = NULL;
1011 this->live_intervals = NULL;
1012 this->regs_live_at_ip = NULL;
1013
1014 this->uniforms = 0;
1015 this->last_scratch = 0;
1016 this->pull_constant_loc = NULL;
1017 this->push_constant_loc = NULL;
1018
1019 this->promoted_constants = 0,
1020
1021 this->spilled_any_registers = false;
1022 this->do_dual_src = false;
1023
1024 if (dispatch_width == 8)
1025 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1026 }
1027
1028 fs_visitor::~fs_visitor()
1029 {
1030 }