i965: Pass the number of components as a source of the untyped surface read opcode.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_fs.h"
45 #include "main/uniforms.h"
46 #include "glsl/glsl_types.h"
47 #include "glsl/ir_optimization.h"
48 #include "program/sampler.h"
49
50
51 fs_reg *
52 fs_visitor::emit_vs_system_value(int location)
53 {
54 fs_reg *reg = new(this->mem_ctx)
55 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
56 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
57
58 switch (location) {
59 case SYSTEM_VALUE_BASE_VERTEX:
60 reg->reg_offset = 0;
61 vs_prog_data->uses_vertexid = true;
62 break;
63 case SYSTEM_VALUE_VERTEX_ID:
64 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
65 reg->reg_offset = 2;
66 vs_prog_data->uses_vertexid = true;
67 break;
68 case SYSTEM_VALUE_INSTANCE_ID:
69 reg->reg_offset = 3;
70 vs_prog_data->uses_instanceid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 void
80 fs_visitor::visit(ir_variable *ir)
81 {
82 fs_reg *reg = NULL;
83
84 if (variable_storage(ir))
85 return;
86
87 if (ir->data.mode == ir_var_shader_in) {
88 assert(ir->data.location != -1);
89 if (stage == MESA_SHADER_VERTEX) {
90 reg = new(this->mem_ctx)
91 fs_reg(ATTR, ir->data.location,
92 brw_type_for_base_type(ir->type->get_scalar_type()));
93 } else if (ir->data.location == VARYING_SLOT_POS) {
94 reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer,
95 ir->data.origin_upper_left);
96 } else if (ir->data.location == VARYING_SLOT_FACE) {
97 reg = emit_frontfacing_interpolation();
98 } else {
99 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
100 emit_general_interpolation(*reg, ir->name, ir->type,
101 (glsl_interp_qualifier) ir->data.interpolation,
102 ir->data.location, ir->data.centroid,
103 ir->data.sample);
104 }
105 assert(reg);
106 hash_table_insert(this->variable_ht, reg, ir);
107 return;
108 } else if (ir->data.mode == ir_var_shader_out) {
109 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
110
111 if (stage == MESA_SHADER_VERTEX) {
112 int vector_elements =
113 ir->type->is_array() ? ir->type->fields.array->vector_elements
114 : ir->type->vector_elements;
115
116 for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) {
117 int output = ir->data.location + i;
118 this->outputs[output] = *reg;
119 this->outputs[output].reg_offset = i * 4;
120 this->output_components[output] = vector_elements;
121 }
122
123 } else if (ir->data.index > 0) {
124 assert(ir->data.location == FRAG_RESULT_DATA0);
125 assert(ir->data.index == 1);
126 this->dual_src_output = *reg;
127 this->do_dual_src = true;
128 } else if (ir->data.location == FRAG_RESULT_COLOR) {
129 /* Writing gl_FragColor outputs to all color regions. */
130 assert(stage == MESA_SHADER_FRAGMENT);
131 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
132 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
133 this->outputs[i] = *reg;
134 this->output_components[i] = 4;
135 }
136 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
137 this->frag_depth = *reg;
138 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
139 this->sample_mask = *reg;
140 } else {
141 /* gl_FragData or a user-defined FS output */
142 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
143 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
144
145 int vector_elements =
146 ir->type->is_array() ? ir->type->fields.array->vector_elements
147 : ir->type->vector_elements;
148
149 /* General color output. */
150 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
151 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
152 this->outputs[output] = offset(*reg, vector_elements * i);
153 this->output_components[output] = vector_elements;
154 }
155 }
156 } else if (ir->data.mode == ir_var_uniform) {
157 int param_index = uniforms;
158
159 /* Thanks to the lower_ubo_reference pass, we will see only
160 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
161 * variables, so no need for them to be in variable_ht.
162 *
163 * Some uniforms, such as samplers and atomic counters, have no actual
164 * storage, so we should ignore them.
165 */
166 if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
167 return;
168
169 if (dispatch_width == 16) {
170 if (!variable_storage(ir)) {
171 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
172 }
173 return;
174 }
175
176 param_size[param_index] = type_size(ir->type);
177 if (!strncmp(ir->name, "gl_", 3)) {
178 setup_builtin_uniform_values(ir);
179 } else {
180 setup_uniform_values(ir);
181 }
182
183 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
184 reg->type = brw_type_for_base_type(ir->type);
185
186 } else if (ir->data.mode == ir_var_system_value) {
187 switch (ir->data.location) {
188 case SYSTEM_VALUE_BASE_VERTEX:
189 case SYSTEM_VALUE_VERTEX_ID:
190 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
191 case SYSTEM_VALUE_INSTANCE_ID:
192 reg = emit_vs_system_value(ir->data.location);
193 break;
194 case SYSTEM_VALUE_SAMPLE_POS:
195 reg = emit_samplepos_setup();
196 break;
197 case SYSTEM_VALUE_SAMPLE_ID:
198 reg = emit_sampleid_setup();
199 break;
200 case SYSTEM_VALUE_SAMPLE_MASK_IN:
201 assert(devinfo->gen >= 7);
202 reg = new(mem_ctx)
203 fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
204 BRW_REGISTER_TYPE_D));
205 break;
206 }
207 }
208
209 if (!reg)
210 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
211
212 hash_table_insert(this->variable_ht, reg, ir);
213 }
214
215 void
216 fs_visitor::visit(ir_dereference_variable *ir)
217 {
218 fs_reg *reg = variable_storage(ir->var);
219
220 if (!reg) {
221 fail("Failed to find variable storage for %s\n", ir->var->name);
222 this->result = fs_reg(reg_null_d);
223 return;
224 }
225 this->result = *reg;
226 }
227
228 void
229 fs_visitor::visit(ir_dereference_record *ir)
230 {
231 const glsl_type *struct_type = ir->record->type;
232
233 ir->record->accept(this);
234
235 unsigned int off = 0;
236 for (unsigned int i = 0; i < struct_type->length; i++) {
237 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
238 break;
239 off += type_size(struct_type->fields.structure[i].type);
240 }
241 this->result = offset(this->result, off);
242 this->result.type = brw_type_for_base_type(ir->type);
243 }
244
245 void
246 fs_visitor::visit(ir_dereference_array *ir)
247 {
248 ir_constant *constant_index;
249 fs_reg src;
250 int element_size = type_size(ir->type);
251
252 constant_index = ir->array_index->as_constant();
253
254 ir->array->accept(this);
255 src = this->result;
256 src.type = brw_type_for_base_type(ir->type);
257
258 if (constant_index) {
259 if (src.file == ATTR) {
260 /* Attribute arrays get loaded as one vec4 per element. In that case
261 * offset the source register.
262 */
263 src.reg += constant_index->value.i[0];
264 } else {
265 assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
266 src = offset(src, constant_index->value.i[0] * element_size);
267 }
268 } else {
269 /* Variable index array dereference. We attach the variable index
270 * component to the reg as a pointer to a register containing the
271 * offset. Currently only uniform arrays are supported in this patch,
272 * and that reladdr pointer is resolved by
273 * move_uniform_array_access_to_pull_constants(). All other array types
274 * are lowered by lower_variable_index_to_cond_assign().
275 */
276 ir->array_index->accept(this);
277
278 fs_reg index_reg;
279 index_reg = vgrf(glsl_type::int_type);
280 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
281
282 if (src.reladdr) {
283 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
284 }
285
286 src.reladdr = ralloc(mem_ctx, fs_reg);
287 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
288 }
289 this->result = src;
290 }
291
292 fs_inst *
293 fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
294 const fs_reg &a)
295 {
296 if (devinfo->gen < 6) {
297 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
298 fs_reg y_times_a = vgrf(glsl_type::float_type);
299 fs_reg one_minus_a = vgrf(glsl_type::float_type);
300 fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type);
301
302 emit(MUL(y_times_a, y, a));
303
304 fs_reg negative_a = a;
305 negative_a.negate = !a.negate;
306 emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
307 emit(MUL(x_times_one_minus_a, x, one_minus_a));
308
309 return emit(ADD(dst, x_times_one_minus_a, y_times_a));
310 } else {
311 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
312 * we need to reorder the operands.
313 */
314 return emit(LRP(dst, a, y, x));
315 }
316 }
317
318 void
319 fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
320 const fs_reg &src0, const fs_reg &src1)
321 {
322 assert(conditionalmod == BRW_CONDITIONAL_GE ||
323 conditionalmod == BRW_CONDITIONAL_L);
324
325 fs_inst *inst;
326
327 if (devinfo->gen >= 6) {
328 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
329 inst->conditional_mod = conditionalmod;
330 } else {
331 emit(CMP(reg_null_d, src0, src1, conditionalmod));
332
333 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
334 inst->predicate = BRW_PREDICATE_NORMAL;
335 }
336 }
337
338 bool
339 fs_visitor::try_emit_saturate(ir_expression *ir)
340 {
341 if (ir->operation != ir_unop_saturate)
342 return false;
343
344 ir_rvalue *sat_val = ir->operands[0];
345
346 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
347
348 sat_val->accept(this);
349 fs_reg src = this->result;
350
351 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
352
353 /* If the last instruction from our accept() generated our
354 * src, just set the saturate flag instead of emmitting a separate mov.
355 */
356 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
357 if (modify && modify->regs_written == modify->dst.width / 8 &&
358 modify->can_do_saturate()) {
359 modify->saturate = true;
360 this->result = src;
361 return true;
362 }
363
364 return false;
365 }
366
367 bool
368 fs_visitor::try_emit_line(ir_expression *ir)
369 {
370 /* LINE's src0 must be of type float. */
371 if (ir->type != glsl_type::float_type)
372 return false;
373
374 ir_rvalue *nonmul = ir->operands[1];
375 ir_expression *mul = ir->operands[0]->as_expression();
376
377 if (!mul || mul->operation != ir_binop_mul) {
378 nonmul = ir->operands[0];
379 mul = ir->operands[1]->as_expression();
380
381 if (!mul || mul->operation != ir_binop_mul)
382 return false;
383 }
384
385 ir_constant *const_add = nonmul->as_constant();
386 if (!const_add)
387 return false;
388
389 int add_operand_vf = brw_float_to_vf(const_add->value.f[0]);
390 if (add_operand_vf == -1)
391 return false;
392
393 ir_rvalue *non_const_mul = mul->operands[1];
394 ir_constant *const_mul = mul->operands[0]->as_constant();
395 if (!const_mul) {
396 const_mul = mul->operands[1]->as_constant();
397
398 if (!const_mul)
399 return false;
400
401 non_const_mul = mul->operands[0];
402 }
403
404 int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]);
405 if (mul_operand_vf == -1)
406 return false;
407
408 non_const_mul->accept(this);
409 fs_reg src1 = this->result;
410
411 fs_reg src0 = vgrf(ir->type);
412 emit(BRW_OPCODE_MOV, src0,
413 fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf));
414
415 this->result = vgrf(ir->type);
416 emit(BRW_OPCODE_LINE, this->result, src0, src1);
417 return true;
418 }
419
420 bool
421 fs_visitor::try_emit_mad(ir_expression *ir)
422 {
423 /* 3-src instructions were introduced in gen6. */
424 if (devinfo->gen < 6)
425 return false;
426
427 /* MAD can only handle floating-point data. */
428 if (ir->type != glsl_type::float_type)
429 return false;
430
431 ir_rvalue *nonmul;
432 ir_expression *mul;
433 bool mul_negate, mul_abs;
434
435 for (int i = 0; i < 2; i++) {
436 mul_negate = false;
437 mul_abs = false;
438
439 mul = ir->operands[i]->as_expression();
440 nonmul = ir->operands[1 - i];
441
442 if (mul && mul->operation == ir_unop_abs) {
443 mul = mul->operands[0]->as_expression();
444 mul_abs = true;
445 } else if (mul && mul->operation == ir_unop_neg) {
446 mul = mul->operands[0]->as_expression();
447 mul_negate = true;
448 }
449
450 if (mul && mul->operation == ir_binop_mul)
451 break;
452 }
453
454 if (!mul || mul->operation != ir_binop_mul)
455 return false;
456
457 nonmul->accept(this);
458 fs_reg src0 = this->result;
459
460 mul->operands[0]->accept(this);
461 fs_reg src1 = this->result;
462 src1.negate ^= mul_negate;
463 src1.abs = mul_abs;
464 if (mul_abs)
465 src1.negate = false;
466
467 mul->operands[1]->accept(this);
468 fs_reg src2 = this->result;
469 src2.abs = mul_abs;
470 if (mul_abs)
471 src2.negate = false;
472
473 this->result = vgrf(ir->type);
474 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
475
476 return true;
477 }
478
479 bool
480 fs_visitor::try_emit_b2f_of_comparison(ir_expression *ir)
481 {
482 /* On platforms that do not natively generate 0u and ~0u for Boolean
483 * results, b2f expressions that look like
484 *
485 * f = b2f(expr cmp 0)
486 *
487 * will generate better code by pretending the expression is
488 *
489 * f = ir_triop_csel(0.0, 1.0, expr cmp 0)
490 *
491 * This is because the last instruction of "expr" can generate the
492 * condition code for the "cmp 0". This avoids having to do the "-(b & 1)"
493 * trick to generate 0u or ~0u for the Boolean result. This means code like
494 *
495 * mov(16) g16<1>F 1F
496 * mul.ge.f0(16) null g6<8,8,1>F g14<8,8,1>F
497 * (+f0) sel(16) m6<1>F g16<8,8,1>F 0F
498 *
499 * will be generated instead of
500 *
501 * mul(16) g2<1>F g12<8,8,1>F g4<8,8,1>F
502 * cmp.ge.f0(16) g2<1>D g4<8,8,1>F 0F
503 * and(16) g4<1>D g2<8,8,1>D 1D
504 * and(16) m6<1>D -g4<8,8,1>D 0x3f800000UD
505 *
506 * When the comparison is != 0.0 using the knowledge that the false case
507 * already results in zero would allow better code generation by possibly
508 * avoiding a load-immediate instruction.
509 */
510 ir_expression *cmp = ir->operands[0]->as_expression();
511 if (cmp == NULL)
512 return false;
513
514 if (cmp->operation == ir_binop_nequal) {
515 for (unsigned i = 0; i < 2; i++) {
516 ir_constant *c = cmp->operands[i]->as_constant();
517 if (c == NULL || !c->is_zero())
518 continue;
519
520 ir_expression *expr = cmp->operands[i ^ 1]->as_expression();
521 if (expr != NULL) {
522 fs_reg op[2];
523
524 for (unsigned j = 0; j < 2; j++) {
525 cmp->operands[j]->accept(this);
526 op[j] = this->result;
527
528 resolve_ud_negate(&op[j]);
529 }
530
531 emit_bool_to_cond_code_of_reg(cmp, op);
532
533 /* In this case we know when the condition is true, op[i ^ 1]
534 * contains zero. Invert the predicate, use op[i ^ 1] as src0,
535 * and immediate 1.0f as src1.
536 */
537 this->result = vgrf(ir->type);
538 op[i ^ 1].type = BRW_REGISTER_TYPE_F;
539
540 fs_inst *inst = emit(SEL(this->result, op[i ^ 1], fs_reg(1.0f)));
541 inst->predicate = BRW_PREDICATE_NORMAL;
542 inst->predicate_inverse = true;
543 return true;
544 }
545 }
546 }
547
548 emit_bool_to_cond_code(cmp);
549
550 fs_reg temp = vgrf(ir->type);
551 emit(MOV(temp, fs_reg(1.0f)));
552
553 this->result = vgrf(ir->type);
554 fs_inst *inst = emit(SEL(this->result, temp, fs_reg(0.0f)));
555 inst->predicate = BRW_PREDICATE_NORMAL;
556
557 return true;
558 }
559
560 static int
561 pack_pixel_offset(float x)
562 {
563 /* Clamp upper end of the range to +7/16. See explanation in non-constant
564 * offset case below. */
565 int n = MIN2((int)(x * 16), 7);
566 return n & 0xf;
567 }
568
569 void
570 fs_visitor::emit_interpolate_expression(ir_expression *ir)
571 {
572 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
573 * 8 channels at a time, same as the barycentric coords presented in
574 * the FS payload. this requires a bit of extra work to support.
575 */
576 no16("interpolate_at_* not yet supported in SIMD16 mode.");
577
578 assert(stage == MESA_SHADER_FRAGMENT);
579 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
580
581 ir_dereference * deref = ir->operands[0]->as_dereference();
582 ir_swizzle * swiz = NULL;
583 if (!deref) {
584 /* the api does not allow a swizzle here, but the varying packing code
585 * may have pushed one into here.
586 */
587 swiz = ir->operands[0]->as_swizzle();
588 assert(swiz);
589 deref = swiz->val->as_dereference();
590 }
591 assert(deref);
592 ir_variable * var = deref->variable_referenced();
593 assert(var);
594
595 /* 1. collect interpolation factors */
596
597 fs_reg dst_xy = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1));
598
599 /* for most messages, we need one reg of ignored data; the hardware requires mlen==1
600 * even when there is no payload. in the per-slot offset case, we'll replace this with
601 * the proper source data. */
602 fs_reg src = vgrf(glsl_type::float_type);
603 int mlen = 1; /* one reg unless overriden */
604 int reg_width = dispatch_width / 8;
605 fs_inst *inst;
606
607 switch (ir->operation) {
608 case ir_unop_interpolate_at_centroid:
609 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
610 break;
611
612 case ir_binop_interpolate_at_sample: {
613 ir_constant *sample_num = ir->operands[1]->as_constant();
614 assert(sample_num || !"nonconstant sample number should have been lowered.");
615
616 unsigned msg_data = sample_num->value.i[0] << 4;
617 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src, fs_reg(msg_data));
618 break;
619 }
620
621 case ir_binop_interpolate_at_offset: {
622 ir_constant *const_offset = ir->operands[1]->as_constant();
623 if (const_offset) {
624 unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
625 (pack_pixel_offset(const_offset->value.f[1]) << 4);
626 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
627 fs_reg(msg_data));
628 } else {
629 /* pack the operands: hw wants offsets as 4 bit signed ints */
630 ir->operands[1]->accept(this);
631 src = vgrf(glsl_type::ivec2_type);
632 fs_reg src2 = src;
633 for (int i = 0; i < 2; i++) {
634 fs_reg temp = vgrf(glsl_type::float_type);
635 emit(MUL(temp, this->result, fs_reg(16.0f)));
636 emit(MOV(src2, temp)); /* float to int */
637
638 /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
639 * that we support a maximum offset of +0.5, which isn't representable
640 * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
641 * which is the opposite of what the shader author wanted.
642 *
643 * This is legal due to ARB_gpu_shader5's quantization rules:
644 *
645 * "Not all values of <offset> may be supported; x and y offsets may
646 * be rounded to fixed-point values with the number of fraction bits
647 * given by the implementation-dependent constant
648 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
649 */
650
651 fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
652 inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
653
654 src2 = offset(src2, 1);
655 this->result = offset(this->result, 1);
656 }
657
658 mlen = 2 * reg_width;
659 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
660 fs_reg(0u));
661 }
662 break;
663 }
664
665 default:
666 unreachable("not reached");
667 }
668
669 inst->mlen = mlen;
670 inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
671 inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
672 INTERP_QUALIFIER_NOPERSPECTIVE;
673
674 /* 2. emit linterp */
675
676 fs_reg res = vgrf(ir->type);
677 this->result = res;
678
679 for (int i = 0; i < ir->type->vector_elements; i++) {
680 int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
681 emit(FS_OPCODE_LINTERP, res, dst_xy,
682 fs_reg(interp_reg(var->data.location, ch)));
683 res = offset(res, 1);
684 }
685 }
686
687 void
688 fs_visitor::visit(ir_expression *ir)
689 {
690 unsigned int operand;
691 fs_reg op[3], temp;
692 fs_inst *inst;
693 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
694
695 assert(ir->get_num_operands() <= 3);
696
697 if (try_emit_saturate(ir))
698 return;
699
700 /* Deal with the real oddball stuff first */
701 switch (ir->operation) {
702 case ir_binop_add:
703 if (devinfo->gen <= 5 && try_emit_line(ir))
704 return;
705 if (try_emit_mad(ir))
706 return;
707 break;
708
709 case ir_triop_csel:
710 ir->operands[1]->accept(this);
711 op[1] = this->result;
712 ir->operands[2]->accept(this);
713 op[2] = this->result;
714
715 emit_bool_to_cond_code(ir->operands[0]);
716
717 this->result = vgrf(ir->type);
718 inst = emit(SEL(this->result, op[1], op[2]));
719 inst->predicate = BRW_PREDICATE_NORMAL;
720 return;
721
722 case ir_unop_b2f:
723 if (devinfo->gen <= 5 && try_emit_b2f_of_comparison(ir))
724 return;
725 break;
726
727 case ir_unop_interpolate_at_centroid:
728 case ir_binop_interpolate_at_offset:
729 case ir_binop_interpolate_at_sample:
730 emit_interpolate_expression(ir);
731 return;
732
733 default:
734 break;
735 }
736
737 for (operand = 0; operand < ir->get_num_operands(); operand++) {
738 ir->operands[operand]->accept(this);
739 if (this->result.file == BAD_FILE) {
740 fail("Failed to get tree for expression operand:\n");
741 ir->operands[operand]->fprint(stderr);
742 fprintf(stderr, "\n");
743 }
744 assert(this->result.file == GRF ||
745 this->result.file == UNIFORM || this->result.file == ATTR);
746 op[operand] = this->result;
747
748 /* Matrix expression operands should have been broken down to vector
749 * operations already.
750 */
751 assert(!ir->operands[operand]->type->is_matrix());
752 /* And then those vector operands should have been broken down to scalar.
753 */
754 assert(!ir->operands[operand]->type->is_vector());
755 }
756
757 /* Storage for our result. If our result goes into an assignment, it will
758 * just get copy-propagated out, so no worries.
759 */
760 this->result = vgrf(ir->type);
761
762 switch (ir->operation) {
763 case ir_unop_logic_not:
764 emit(NOT(this->result, op[0]));
765 break;
766 case ir_unop_neg:
767 op[0].negate = !op[0].negate;
768 emit(MOV(this->result, op[0]));
769 break;
770 case ir_unop_abs:
771 op[0].abs = true;
772 op[0].negate = false;
773 emit(MOV(this->result, op[0]));
774 break;
775 case ir_unop_sign:
776 if (ir->type->is_float()) {
777 /* AND(val, 0x80000000) gives the sign bit.
778 *
779 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
780 * zero.
781 */
782 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
783
784 op[0].type = BRW_REGISTER_TYPE_UD;
785 this->result.type = BRW_REGISTER_TYPE_UD;
786 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
787
788 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
789 inst->predicate = BRW_PREDICATE_NORMAL;
790
791 this->result.type = BRW_REGISTER_TYPE_F;
792 } else {
793 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
794 * -> non-negative val generates 0x00000000.
795 * Predicated OR sets 1 if val is positive.
796 */
797 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
798
799 emit(ASR(this->result, op[0], fs_reg(31)));
800
801 inst = emit(OR(this->result, this->result, fs_reg(1)));
802 inst->predicate = BRW_PREDICATE_NORMAL;
803 }
804 break;
805 case ir_unop_rcp:
806 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
807 break;
808
809 case ir_unop_exp2:
810 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
811 break;
812 case ir_unop_log2:
813 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
814 break;
815 case ir_unop_exp:
816 case ir_unop_log:
817 unreachable("not reached: should be handled by ir_explog_to_explog2");
818 case ir_unop_sin:
819 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
820 break;
821 case ir_unop_cos:
822 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
823 break;
824
825 case ir_unop_dFdx:
826 /* Select one of the two opcodes based on the glHint value. */
827 if (fs_key->high_quality_derivatives)
828 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
829 else
830 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
831 break;
832
833 case ir_unop_dFdx_coarse:
834 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
835 break;
836
837 case ir_unop_dFdx_fine:
838 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
839 break;
840
841 case ir_unop_dFdy:
842 /* Select one of the two opcodes based on the glHint value. */
843 if (fs_key->high_quality_derivatives)
844 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
845 else
846 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
847 break;
848
849 case ir_unop_dFdy_coarse:
850 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
851 break;
852
853 case ir_unop_dFdy_fine:
854 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
855 break;
856
857 case ir_binop_add:
858 emit(ADD(this->result, op[0], op[1]));
859 break;
860 case ir_binop_sub:
861 unreachable("not reached: should be handled by ir_sub_to_add_neg");
862
863 case ir_binop_mul:
864 if (devinfo->gen < 8 && ir->type->is_integer()) {
865 /* For integer multiplication, the MUL uses the low 16 bits
866 * of one of the operands (src0 on gen6, src1 on gen7). The
867 * MACH accumulates in the contribution of the upper 16 bits
868 * of that operand.
869 */
870 if (ir->operands[0]->is_uint16_constant()) {
871 if (devinfo->gen < 7)
872 emit(MUL(this->result, op[0], op[1]));
873 else
874 emit(MUL(this->result, op[1], op[0]));
875 } else if (ir->operands[1]->is_uint16_constant()) {
876 if (devinfo->gen < 7)
877 emit(MUL(this->result, op[1], op[0]));
878 else
879 emit(MUL(this->result, op[0], op[1]));
880 } else {
881 if (devinfo->gen >= 7)
882 no16("SIMD16 explicit accumulator operands unsupported\n");
883
884 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
885 this->result.type);
886
887 emit(MUL(acc, op[0], op[1]));
888 emit(MACH(reg_null_d, op[0], op[1]));
889 emit(MOV(this->result, fs_reg(acc)));
890 }
891 } else {
892 emit(MUL(this->result, op[0], op[1]));
893 }
894 break;
895 case ir_binop_imul_high: {
896 if (devinfo->gen >= 7)
897 no16("SIMD16 explicit accumulator operands unsupported\n");
898
899 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
900 this->result.type);
901
902 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
903 emit(MACH(this->result, op[0], op[1]));
904
905 /* Until Gen8, integer multiplies read 32-bits from one source, and
906 * 16-bits from the other, and relying on the MACH instruction to
907 * generate the high bits of the result.
908 *
909 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
910 * but in order to do a 64x64-bit multiply we have to simulate the
911 * previous behavior and then use a MACH instruction.
912 *
913 * FINISHME: Don't use source modifiers on src1.
914 */
915 if (devinfo->gen >= 8) {
916 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
917 mul->src[1].type == BRW_REGISTER_TYPE_UD);
918 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
919 mul->src[1].type = BRW_REGISTER_TYPE_W;
920 mul->src[1].stride = 2;
921 } else {
922 mul->src[1].type = BRW_REGISTER_TYPE_UW;
923 mul->src[1].stride = 2;
924 }
925 }
926
927 break;
928 }
929 case ir_binop_div:
930 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
931 assert(ir->type->is_integer());
932 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
933 break;
934 case ir_binop_carry: {
935 if (devinfo->gen >= 7)
936 no16("SIMD16 explicit accumulator operands unsupported\n");
937
938 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
939 BRW_REGISTER_TYPE_UD);
940
941 emit(ADDC(reg_null_ud, op[0], op[1]));
942 emit(MOV(this->result, fs_reg(acc)));
943 break;
944 }
945 case ir_binop_borrow: {
946 if (devinfo->gen >= 7)
947 no16("SIMD16 explicit accumulator operands unsupported\n");
948
949 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
950 BRW_REGISTER_TYPE_UD);
951
952 emit(SUBB(reg_null_ud, op[0], op[1]));
953 emit(MOV(this->result, fs_reg(acc)));
954 break;
955 }
956 case ir_binop_mod:
957 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
958 assert(ir->type->is_integer());
959 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
960 break;
961
962 case ir_binop_less:
963 case ir_binop_greater:
964 case ir_binop_lequal:
965 case ir_binop_gequal:
966 case ir_binop_equal:
967 case ir_binop_all_equal:
968 case ir_binop_nequal:
969 case ir_binop_any_nequal:
970 if (devinfo->gen <= 5) {
971 resolve_bool_comparison(ir->operands[0], &op[0]);
972 resolve_bool_comparison(ir->operands[1], &op[1]);
973 }
974
975 emit(CMP(this->result, op[0], op[1],
976 brw_conditional_for_comparison(ir->operation)));
977 break;
978
979 case ir_binop_logic_xor:
980 emit(XOR(this->result, op[0], op[1]));
981 break;
982
983 case ir_binop_logic_or:
984 emit(OR(this->result, op[0], op[1]));
985 break;
986
987 case ir_binop_logic_and:
988 emit(AND(this->result, op[0], op[1]));
989 break;
990
991 case ir_binop_dot:
992 case ir_unop_any:
993 unreachable("not reached: should be handled by brw_fs_channel_expressions");
994
995 case ir_unop_noise:
996 unreachable("not reached: should be handled by lower_noise");
997
998 case ir_quadop_vector:
999 unreachable("not reached: should be handled by lower_quadop_vector");
1000
1001 case ir_binop_vector_extract:
1002 unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
1003
1004 case ir_triop_vector_insert:
1005 unreachable("not reached: should be handled by lower_vector_insert()");
1006
1007 case ir_binop_ldexp:
1008 unreachable("not reached: should be handled by ldexp_to_arith()");
1009
1010 case ir_unop_sqrt:
1011 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
1012 break;
1013
1014 case ir_unop_rsq:
1015 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
1016 break;
1017
1018 case ir_unop_bitcast_i2f:
1019 case ir_unop_bitcast_u2f:
1020 op[0].type = BRW_REGISTER_TYPE_F;
1021 this->result = op[0];
1022 break;
1023 case ir_unop_i2u:
1024 case ir_unop_bitcast_f2u:
1025 op[0].type = BRW_REGISTER_TYPE_UD;
1026 this->result = op[0];
1027 break;
1028 case ir_unop_u2i:
1029 case ir_unop_bitcast_f2i:
1030 op[0].type = BRW_REGISTER_TYPE_D;
1031 this->result = op[0];
1032 break;
1033 case ir_unop_i2f:
1034 case ir_unop_u2f:
1035 case ir_unop_f2i:
1036 case ir_unop_f2u:
1037 emit(MOV(this->result, op[0]));
1038 break;
1039
1040 case ir_unop_b2i:
1041 emit(AND(this->result, op[0], fs_reg(1)));
1042 break;
1043 case ir_unop_b2f:
1044 if (devinfo->gen <= 5) {
1045 resolve_bool_comparison(ir->operands[0], &op[0]);
1046 }
1047 op[0].type = BRW_REGISTER_TYPE_D;
1048 this->result.type = BRW_REGISTER_TYPE_D;
1049 emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
1050 this->result.type = BRW_REGISTER_TYPE_F;
1051 break;
1052
1053 case ir_unop_f2b:
1054 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1055 break;
1056 case ir_unop_i2b:
1057 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1058 break;
1059
1060 case ir_unop_trunc:
1061 emit(RNDZ(this->result, op[0]));
1062 break;
1063 case ir_unop_ceil: {
1064 fs_reg tmp = vgrf(ir->type);
1065 op[0].negate = !op[0].negate;
1066 emit(RNDD(tmp, op[0]));
1067 tmp.negate = true;
1068 emit(MOV(this->result, tmp));
1069 }
1070 break;
1071 case ir_unop_floor:
1072 emit(RNDD(this->result, op[0]));
1073 break;
1074 case ir_unop_fract:
1075 emit(FRC(this->result, op[0]));
1076 break;
1077 case ir_unop_round_even:
1078 emit(RNDE(this->result, op[0]));
1079 break;
1080
1081 case ir_binop_min:
1082 case ir_binop_max:
1083 resolve_ud_negate(&op[0]);
1084 resolve_ud_negate(&op[1]);
1085 emit_minmax(ir->operation == ir_binop_min ?
1086 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
1087 this->result, op[0], op[1]);
1088 break;
1089 case ir_unop_pack_snorm_2x16:
1090 case ir_unop_pack_snorm_4x8:
1091 case ir_unop_pack_unorm_2x16:
1092 case ir_unop_pack_unorm_4x8:
1093 case ir_unop_unpack_snorm_2x16:
1094 case ir_unop_unpack_snorm_4x8:
1095 case ir_unop_unpack_unorm_2x16:
1096 case ir_unop_unpack_unorm_4x8:
1097 case ir_unop_unpack_half_2x16:
1098 case ir_unop_pack_half_2x16:
1099 unreachable("not reached: should be handled by lower_packing_builtins");
1100 case ir_unop_unpack_half_2x16_split_x:
1101 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
1102 break;
1103 case ir_unop_unpack_half_2x16_split_y:
1104 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
1105 break;
1106 case ir_binop_pow:
1107 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
1108 break;
1109
1110 case ir_unop_bitfield_reverse:
1111 emit(BFREV(this->result, op[0]));
1112 break;
1113 case ir_unop_bit_count:
1114 emit(CBIT(this->result, op[0]));
1115 break;
1116 case ir_unop_find_msb:
1117 temp = vgrf(glsl_type::uint_type);
1118 emit(FBH(temp, op[0]));
1119
1120 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1121 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1122 * subtract the result from 31 to convert the MSB count into an LSB count.
1123 */
1124
1125 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1126 emit(MOV(this->result, temp));
1127 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1128
1129 temp.negate = true;
1130 inst = emit(ADD(this->result, temp, fs_reg(31)));
1131 inst->predicate = BRW_PREDICATE_NORMAL;
1132 break;
1133 case ir_unop_find_lsb:
1134 emit(FBL(this->result, op[0]));
1135 break;
1136 case ir_unop_saturate:
1137 inst = emit(MOV(this->result, op[0]));
1138 inst->saturate = true;
1139 break;
1140 case ir_triop_bitfield_extract:
1141 /* Note that the instruction's argument order is reversed from GLSL
1142 * and the IR.
1143 */
1144 emit(BFE(this->result, op[2], op[1], op[0]));
1145 break;
1146 case ir_binop_bfm:
1147 emit(BFI1(this->result, op[0], op[1]));
1148 break;
1149 case ir_triop_bfi:
1150 emit(BFI2(this->result, op[0], op[1], op[2]));
1151 break;
1152 case ir_quadop_bitfield_insert:
1153 unreachable("not reached: should be handled by "
1154 "lower_instructions::bitfield_insert_to_bfm_bfi");
1155
1156 case ir_unop_bit_not:
1157 emit(NOT(this->result, op[0]));
1158 break;
1159 case ir_binop_bit_and:
1160 emit(AND(this->result, op[0], op[1]));
1161 break;
1162 case ir_binop_bit_xor:
1163 emit(XOR(this->result, op[0], op[1]));
1164 break;
1165 case ir_binop_bit_or:
1166 emit(OR(this->result, op[0], op[1]));
1167 break;
1168
1169 case ir_binop_lshift:
1170 emit(SHL(this->result, op[0], op[1]));
1171 break;
1172
1173 case ir_binop_rshift:
1174 if (ir->type->base_type == GLSL_TYPE_INT)
1175 emit(ASR(this->result, op[0], op[1]));
1176 else
1177 emit(SHR(this->result, op[0], op[1]));
1178 break;
1179 case ir_binop_pack_half_2x16_split:
1180 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
1181 break;
1182 case ir_binop_ubo_load: {
1183 /* This IR node takes a constant uniform block and a constant or
1184 * variable byte offset within the block and loads a vector from that.
1185 */
1186 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1187 ir_constant *const_offset = ir->operands[1]->as_constant();
1188 fs_reg surf_index;
1189
1190 if (const_uniform_block) {
1191 /* The block index is a constant, so just emit the binding table entry
1192 * as an immediate.
1193 */
1194 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1195 const_uniform_block->value.u[0]);
1196 } else {
1197 /* The block index is not a constant. Evaluate the index expression
1198 * per-channel and add the base UBO index; the generator will select
1199 * a value from any live channel.
1200 */
1201 surf_index = vgrf(glsl_type::uint_type);
1202 emit(ADD(surf_index, op[0],
1203 fs_reg(stage_prog_data->binding_table.ubo_start)))
1204 ->force_writemask_all = true;
1205
1206 /* Assume this may touch any UBO. It would be nice to provide
1207 * a tighter bound, but the array information is already lowered away.
1208 */
1209 brw_mark_surface_used(prog_data,
1210 stage_prog_data->binding_table.ubo_start +
1211 shader_prog->NumUniformBlocks - 1);
1212 }
1213
1214 if (const_offset) {
1215 fs_reg packed_consts = vgrf(glsl_type::float_type);
1216 packed_consts.type = result.type;
1217
1218 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
1219 emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
1220 packed_consts, surf_index, const_offset_reg));
1221
1222 for (int i = 0; i < ir->type->vector_elements; i++) {
1223 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
1224
1225 /* The std140 packing rules don't allow vectors to cross 16-byte
1226 * boundaries, and a reg is 32 bytes.
1227 */
1228 assert(packed_consts.subreg_offset < 32);
1229
1230 /* UBO bools are any nonzero value. We consider bools to be
1231 * values with the low bit set to 1. Convert them using CMP.
1232 */
1233 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1234 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
1235 } else {
1236 emit(MOV(result, packed_consts));
1237 }
1238
1239 result = offset(result, 1);
1240 }
1241 } else {
1242 /* Turn the byte offset into a dword offset. */
1243 fs_reg base_offset = vgrf(glsl_type::int_type);
1244 emit(SHR(base_offset, op[1], fs_reg(2)));
1245
1246 for (int i = 0; i < ir->type->vector_elements; i++) {
1247 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
1248 base_offset, i));
1249
1250 if (ir->type->base_type == GLSL_TYPE_BOOL)
1251 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
1252
1253 result = offset(result, 1);
1254 }
1255 }
1256
1257 result.reg_offset = 0;
1258 break;
1259 }
1260
1261 case ir_triop_fma:
1262 /* Note that the instruction's argument order is reversed from GLSL
1263 * and the IR.
1264 */
1265 emit(MAD(this->result, op[2], op[1], op[0]));
1266 break;
1267
1268 case ir_triop_lrp:
1269 emit_lrp(this->result, op[0], op[1], op[2]);
1270 break;
1271
1272 case ir_triop_csel:
1273 case ir_unop_interpolate_at_centroid:
1274 case ir_binop_interpolate_at_offset:
1275 case ir_binop_interpolate_at_sample:
1276 unreachable("already handled above");
1277 break;
1278
1279 case ir_unop_d2f:
1280 case ir_unop_f2d:
1281 case ir_unop_d2i:
1282 case ir_unop_i2d:
1283 case ir_unop_d2u:
1284 case ir_unop_u2d:
1285 case ir_unop_d2b:
1286 case ir_unop_pack_double_2x32:
1287 case ir_unop_unpack_double_2x32:
1288 case ir_unop_frexp_sig:
1289 case ir_unop_frexp_exp:
1290 unreachable("fp64 todo");
1291 break;
1292 }
1293 }
1294
1295 void
1296 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1297 const glsl_type *type, bool predicated)
1298 {
1299 switch (type->base_type) {
1300 case GLSL_TYPE_FLOAT:
1301 case GLSL_TYPE_UINT:
1302 case GLSL_TYPE_INT:
1303 case GLSL_TYPE_BOOL:
1304 for (unsigned int i = 0; i < type->components(); i++) {
1305 l.type = brw_type_for_base_type(type);
1306 r.type = brw_type_for_base_type(type);
1307
1308 if (predicated || !l.equals(r)) {
1309 fs_inst *inst = emit(MOV(l, r));
1310 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
1311 }
1312
1313 l = offset(l, 1);
1314 r = offset(r, 1);
1315 }
1316 break;
1317 case GLSL_TYPE_ARRAY:
1318 for (unsigned int i = 0; i < type->length; i++) {
1319 emit_assignment_writes(l, r, type->fields.array, predicated);
1320 }
1321 break;
1322
1323 case GLSL_TYPE_STRUCT:
1324 for (unsigned int i = 0; i < type->length; i++) {
1325 emit_assignment_writes(l, r, type->fields.structure[i].type,
1326 predicated);
1327 }
1328 break;
1329
1330 case GLSL_TYPE_SAMPLER:
1331 case GLSL_TYPE_IMAGE:
1332 case GLSL_TYPE_ATOMIC_UINT:
1333 break;
1334
1335 case GLSL_TYPE_DOUBLE:
1336 case GLSL_TYPE_VOID:
1337 case GLSL_TYPE_ERROR:
1338 case GLSL_TYPE_INTERFACE:
1339 unreachable("not reached");
1340 }
1341 }
1342
1343 /* If the RHS processing resulted in an instruction generating a
1344 * temporary value, and it would be easy to rewrite the instruction to
1345 * generate its result right into the LHS instead, do so. This ends
1346 * up reliably removing instructions where it can be tricky to do so
1347 * later without real UD chain information.
1348 */
1349 bool
1350 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1351 fs_reg dst,
1352 fs_reg src,
1353 fs_inst *pre_rhs_inst,
1354 fs_inst *last_rhs_inst)
1355 {
1356 /* Only attempt if we're doing a direct assignment. */
1357 if (ir->condition ||
1358 !(ir->lhs->type->is_scalar() ||
1359 (ir->lhs->type->is_vector() &&
1360 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
1361 return false;
1362
1363 /* Make sure the last instruction generated our source reg. */
1364 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
1365 last_rhs_inst,
1366 src);
1367 if (!modify)
1368 return false;
1369
1370 /* If last_rhs_inst wrote a different number of components than our LHS,
1371 * we can't safely rewrite it.
1372 */
1373 if (alloc.sizes[dst.reg] != modify->regs_written)
1374 return false;
1375
1376 /* Success! Rewrite the instruction. */
1377 modify->dst = dst;
1378
1379 return true;
1380 }
1381
1382 void
1383 fs_visitor::visit(ir_assignment *ir)
1384 {
1385 fs_reg l, r;
1386 fs_inst *inst;
1387
1388 /* FINISHME: arrays on the lhs */
1389 ir->lhs->accept(this);
1390 l = this->result;
1391
1392 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
1393
1394 ir->rhs->accept(this);
1395 r = this->result;
1396
1397 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
1398
1399 assert(l.file != BAD_FILE);
1400 assert(r.file != BAD_FILE);
1401
1402 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
1403 return;
1404
1405 if (ir->condition) {
1406 emit_bool_to_cond_code(ir->condition);
1407 }
1408
1409 if (ir->lhs->type->is_scalar() ||
1410 ir->lhs->type->is_vector()) {
1411 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1412 if (ir->write_mask & (1 << i)) {
1413 inst = emit(MOV(l, r));
1414 if (ir->condition)
1415 inst->predicate = BRW_PREDICATE_NORMAL;
1416 r = offset(r, 1);
1417 }
1418 l = offset(l, 1);
1419 }
1420 } else {
1421 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1422 }
1423 }
1424
1425 fs_inst *
1426 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
1427 fs_reg coordinate, int coord_components,
1428 fs_reg shadow_c,
1429 fs_reg lod, fs_reg dPdy, int grad_components,
1430 uint32_t sampler)
1431 {
1432 int mlen;
1433 int base_mrf = 1;
1434 bool simd16 = false;
1435 fs_reg orig_dst;
1436
1437 /* g0 header. */
1438 mlen = 1;
1439
1440 if (shadow_c.file != BAD_FILE) {
1441 for (int i = 0; i < coord_components; i++) {
1442 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1443 coordinate = offset(coordinate, 1);
1444 }
1445
1446 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
1447 * the unused slots must be zeroed.
1448 */
1449 for (int i = coord_components; i < 3; i++) {
1450 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1451 }
1452 mlen += 3;
1453
1454 if (op == ir_tex) {
1455 /* There's no plain shadow compare message, so we use shadow
1456 * compare with a bias of 0.0.
1457 */
1458 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
1459 mlen++;
1460 } else if (op == ir_txb || op == ir_txl) {
1461 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1462 mlen++;
1463 } else {
1464 unreachable("Should not get here.");
1465 }
1466
1467 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1468 mlen++;
1469 } else if (op == ir_tex) {
1470 for (int i = 0; i < coord_components; i++) {
1471 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1472 coordinate = offset(coordinate, 1);
1473 }
1474 /* zero the others. */
1475 for (int i = coord_components; i<3; i++) {
1476 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1477 }
1478 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1479 mlen += 3;
1480 } else if (op == ir_txd) {
1481 fs_reg &dPdx = lod;
1482
1483 for (int i = 0; i < coord_components; i++) {
1484 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1485 coordinate = offset(coordinate, 1);
1486 }
1487 /* the slots for u and v are always present, but r is optional */
1488 mlen += MAX2(coord_components, 2);
1489
1490 /* P = u, v, r
1491 * dPdx = dudx, dvdx, drdx
1492 * dPdy = dudy, dvdy, drdy
1493 *
1494 * 1-arg: Does not exist.
1495 *
1496 * 2-arg: dudx dvdx dudy dvdy
1497 * dPdx.x dPdx.y dPdy.x dPdy.y
1498 * m4 m5 m6 m7
1499 *
1500 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1501 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1502 * m5 m6 m7 m8 m9 m10
1503 */
1504 for (int i = 0; i < grad_components; i++) {
1505 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1506 dPdx = offset(dPdx, 1);
1507 }
1508 mlen += MAX2(grad_components, 2);
1509
1510 for (int i = 0; i < grad_components; i++) {
1511 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1512 dPdy = offset(dPdy, 1);
1513 }
1514 mlen += MAX2(grad_components, 2);
1515 } else if (op == ir_txs) {
1516 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1517 simd16 = true;
1518 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1519 mlen += 2;
1520 } else {
1521 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1522 * instructions. We'll need to do SIMD16 here.
1523 */
1524 simd16 = true;
1525 assert(op == ir_txb || op == ir_txl || op == ir_txf);
1526
1527 for (int i = 0; i < coord_components; i++) {
1528 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1529 coordinate));
1530 coordinate = offset(coordinate, 1);
1531 }
1532
1533 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1534 * be necessary for TXF (ld), but seems wise to do for all messages.
1535 */
1536 for (int i = coord_components; i < 3; i++) {
1537 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1538 }
1539
1540 /* lod/bias appears after u/v/r. */
1541 mlen += 6;
1542
1543 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1544 mlen++;
1545
1546 /* The unused upper half. */
1547 mlen++;
1548 }
1549
1550 if (simd16) {
1551 /* Now, since we're doing simd16, the return is 2 interleaved
1552 * vec4s where the odd-indexed ones are junk. We'll need to move
1553 * this weirdness around to the expected layout.
1554 */
1555 orig_dst = dst;
1556 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
1557 }
1558
1559 enum opcode opcode;
1560 switch (op) {
1561 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1562 case ir_txb: opcode = FS_OPCODE_TXB; break;
1563 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1564 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1565 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1566 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1567 default:
1568 unreachable("not reached");
1569 }
1570
1571 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1572 inst->base_mrf = base_mrf;
1573 inst->mlen = mlen;
1574 inst->header_present = true;
1575 inst->regs_written = simd16 ? 8 : 4;
1576
1577 if (simd16) {
1578 for (int i = 0; i < 4; i++) {
1579 emit(MOV(orig_dst, dst));
1580 orig_dst = offset(orig_dst, 1);
1581 dst = offset(dst, 2);
1582 }
1583 }
1584
1585 return inst;
1586 }
1587
1588 fs_inst *
1589 fs_visitor::emit_texture_gen4_simd16(ir_texture_opcode op, fs_reg dst,
1590 fs_reg coordinate, int vector_elements,
1591 fs_reg shadow_c, fs_reg lod,
1592 uint32_t sampler)
1593 {
1594 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1595 bool has_lod = op == ir_txl || op == ir_txb || op == ir_txf;
1596
1597 if (has_lod && shadow_c.file != BAD_FILE)
1598 no16("TXB and TXL with shadow comparison unsupported in SIMD16.");
1599
1600 if (op == ir_txd)
1601 no16("textureGrad unsupported in SIMD16.");
1602
1603 /* Copy the coordinates. */
1604 for (int i = 0; i < vector_elements; i++) {
1605 emit(MOV(retype(offset(message, i), coordinate.type), coordinate));
1606 coordinate = offset(coordinate, 1);
1607 }
1608
1609 fs_reg msg_end = offset(message, vector_elements);
1610
1611 /* Messages other than sample and ld require all three components */
1612 if (has_lod || shadow_c.file != BAD_FILE) {
1613 for (int i = vector_elements; i < 3; i++) {
1614 emit(MOV(offset(message, i), fs_reg(0.0f)));
1615 }
1616 }
1617
1618 if (has_lod) {
1619 fs_reg msg_lod = retype(offset(message, 3), op == ir_txf ?
1620 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
1621 emit(MOV(msg_lod, lod));
1622 msg_end = offset(msg_lod, 1);
1623 }
1624
1625 if (shadow_c.file != BAD_FILE) {
1626 fs_reg msg_ref = offset(message, 3 + has_lod);
1627 emit(MOV(msg_ref, shadow_c));
1628 msg_end = offset(msg_ref, 1);
1629 }
1630
1631 enum opcode opcode;
1632 switch (op) {
1633 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1634 case ir_txb: opcode = FS_OPCODE_TXB; break;
1635 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1636 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1637 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1638 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1639 default: unreachable("not reached");
1640 }
1641
1642 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1643 inst->base_mrf = message.reg - 1;
1644 inst->mlen = msg_end.reg - inst->base_mrf;
1645 inst->header_present = true;
1646 inst->regs_written = 8;
1647
1648 return inst;
1649 }
1650
1651 /* gen5's sampler has slots for u, v, r, array index, then optional
1652 * parameters like shadow comparitor or LOD bias. If optional
1653 * parameters aren't present, those base slots are optional and don't
1654 * need to be included in the message.
1655 *
1656 * We don't fill in the unnecessary slots regardless, which may look
1657 * surprising in the disassembly.
1658 */
1659 fs_inst *
1660 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
1661 fs_reg coordinate, int vector_elements,
1662 fs_reg shadow_c,
1663 fs_reg lod, fs_reg lod2, int grad_components,
1664 fs_reg sample_index, uint32_t sampler,
1665 bool has_offset)
1666 {
1667 int reg_width = dispatch_width / 8;
1668 bool header_present = false;
1669
1670 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1671 fs_reg msg_coords = message;
1672
1673 if (has_offset) {
1674 /* The offsets set up by the ir_texture visitor are in the
1675 * m1 header, so we can't go headerless.
1676 */
1677 header_present = true;
1678 message.reg--;
1679 }
1680
1681 for (int i = 0; i < vector_elements; i++) {
1682 emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
1683 coordinate = offset(coordinate, 1);
1684 }
1685 fs_reg msg_end = offset(msg_coords, vector_elements);
1686 fs_reg msg_lod = offset(msg_coords, 4);
1687
1688 if (shadow_c.file != BAD_FILE) {
1689 fs_reg msg_shadow = msg_lod;
1690 emit(MOV(msg_shadow, shadow_c));
1691 msg_lod = offset(msg_shadow, 1);
1692 msg_end = msg_lod;
1693 }
1694
1695 enum opcode opcode;
1696 switch (op) {
1697 case ir_tex:
1698 opcode = SHADER_OPCODE_TEX;
1699 break;
1700 case ir_txb:
1701 emit(MOV(msg_lod, lod));
1702 msg_end = offset(msg_lod, 1);
1703
1704 opcode = FS_OPCODE_TXB;
1705 break;
1706 case ir_txl:
1707 emit(MOV(msg_lod, lod));
1708 msg_end = offset(msg_lod, 1);
1709
1710 opcode = SHADER_OPCODE_TXL;
1711 break;
1712 case ir_txd: {
1713 /**
1714 * P = u, v, r
1715 * dPdx = dudx, dvdx, drdx
1716 * dPdy = dudy, dvdy, drdy
1717 *
1718 * Load up these values:
1719 * - dudx dudy dvdx dvdy drdx drdy
1720 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1721 */
1722 msg_end = msg_lod;
1723 for (int i = 0; i < grad_components; i++) {
1724 emit(MOV(msg_end, lod));
1725 lod = offset(lod, 1);
1726 msg_end = offset(msg_end, 1);
1727
1728 emit(MOV(msg_end, lod2));
1729 lod2 = offset(lod2, 1);
1730 msg_end = offset(msg_end, 1);
1731 }
1732
1733 opcode = SHADER_OPCODE_TXD;
1734 break;
1735 }
1736 case ir_txs:
1737 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
1738 emit(MOV(msg_lod, lod));
1739 msg_end = offset(msg_lod, 1);
1740
1741 opcode = SHADER_OPCODE_TXS;
1742 break;
1743 case ir_query_levels:
1744 msg_lod = msg_end;
1745 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1746 msg_end = offset(msg_lod, 1);
1747
1748 opcode = SHADER_OPCODE_TXS;
1749 break;
1750 case ir_txf:
1751 msg_lod = offset(msg_coords, 3);
1752 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
1753 msg_end = offset(msg_lod, 1);
1754
1755 opcode = SHADER_OPCODE_TXF;
1756 break;
1757 case ir_txf_ms:
1758 msg_lod = offset(msg_coords, 3);
1759 /* lod */
1760 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1761 /* sample index */
1762 emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
1763 msg_end = offset(msg_lod, 2);
1764
1765 opcode = SHADER_OPCODE_TXF_CMS;
1766 break;
1767 case ir_lod:
1768 opcode = SHADER_OPCODE_LOD;
1769 break;
1770 case ir_tg4:
1771 opcode = SHADER_OPCODE_TG4;
1772 break;
1773 default:
1774 unreachable("not reached");
1775 }
1776
1777 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1778 inst->base_mrf = message.reg;
1779 inst->mlen = msg_end.reg - message.reg;
1780 inst->header_present = header_present;
1781 inst->regs_written = 4 * reg_width;
1782
1783 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1784 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1785 " disallowed by hardware\n");
1786 }
1787
1788 return inst;
1789 }
1790
1791 static bool
1792 is_high_sampler(const struct brw_device_info *devinfo, fs_reg sampler)
1793 {
1794 if (devinfo->gen < 8 && !devinfo->is_haswell)
1795 return false;
1796
1797 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
1798 }
1799
1800 fs_inst *
1801 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
1802 fs_reg coordinate, int coord_components,
1803 fs_reg shadow_c,
1804 fs_reg lod, fs_reg lod2, int grad_components,
1805 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
1806 fs_reg offset_value)
1807 {
1808 int reg_width = dispatch_width / 8;
1809 bool header_present = false;
1810
1811 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
1812 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
1813 sources[i] = vgrf(glsl_type::float_type);
1814 }
1815 int length = 0;
1816
1817 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
1818 is_high_sampler(devinfo, sampler)) {
1819 /* For general texture offsets (no txf workaround), we need a header to
1820 * put them in. Note that for SIMD16 we're making space for two actual
1821 * hardware registers here, so the emit will have to fix up for this.
1822 *
1823 * * ir4_tg4 needs to place its channel select in the header,
1824 * for interaction with ARB_texture_swizzle
1825 *
1826 * The sampler index is only 4-bits, so for larger sampler numbers we
1827 * need to offset the Sampler State Pointer in the header.
1828 */
1829 header_present = true;
1830 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1831 length++;
1832 }
1833
1834 if (shadow_c.file != BAD_FILE) {
1835 emit(MOV(sources[length], shadow_c));
1836 length++;
1837 }
1838
1839 bool has_nonconstant_offset =
1840 offset_value.file != BAD_FILE && offset_value.file != IMM;
1841 bool coordinate_done = false;
1842
1843 /* The sampler can only meaningfully compute LOD for fragment shader
1844 * messages. For all other stages, we change the opcode to ir_txl and
1845 * hardcode the LOD to 0.
1846 */
1847 if (stage != MESA_SHADER_FRAGMENT && op == ir_tex) {
1848 op = ir_txl;
1849 lod = fs_reg(0.0f);
1850 }
1851
1852 /* Set up the LOD info */
1853 switch (op) {
1854 case ir_tex:
1855 case ir_lod:
1856 break;
1857 case ir_txb:
1858 emit(MOV(sources[length], lod));
1859 length++;
1860 break;
1861 case ir_txl:
1862 emit(MOV(sources[length], lod));
1863 length++;
1864 break;
1865 case ir_txd: {
1866 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1867
1868 /* Load dPdx and the coordinate together:
1869 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1870 */
1871 for (int i = 0; i < coord_components; i++) {
1872 emit(MOV(sources[length], coordinate));
1873 coordinate = offset(coordinate, 1);
1874 length++;
1875
1876 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1877 * only derivatives for (u, v, r).
1878 */
1879 if (i < grad_components) {
1880 emit(MOV(sources[length], lod));
1881 lod = offset(lod, 1);
1882 length++;
1883
1884 emit(MOV(sources[length], lod2));
1885 lod2 = offset(lod2, 1);
1886 length++;
1887 }
1888 }
1889
1890 coordinate_done = true;
1891 break;
1892 }
1893 case ir_txs:
1894 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
1895 length++;
1896 break;
1897 case ir_query_levels:
1898 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1899 length++;
1900 break;
1901 case ir_txf:
1902 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
1903 * On Gen9 they are u, v, lod, r
1904 */
1905
1906 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1907 coordinate = offset(coordinate, 1);
1908 length++;
1909
1910 if (devinfo->gen >= 9) {
1911 if (coord_components >= 2) {
1912 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1913 coordinate = offset(coordinate, 1);
1914 }
1915 length++;
1916 }
1917
1918 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
1919 length++;
1920
1921 for (int i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
1922 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1923 coordinate = offset(coordinate, 1);
1924 length++;
1925 }
1926
1927 coordinate_done = true;
1928 break;
1929 case ir_txf_ms:
1930 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
1931 length++;
1932
1933 /* data from the multisample control surface */
1934 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
1935 length++;
1936
1937 /* there is no offsetting for this message; just copy in the integer
1938 * texture coordinates
1939 */
1940 for (int i = 0; i < coord_components; i++) {
1941 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1942 coordinate = offset(coordinate, 1);
1943 length++;
1944 }
1945
1946 coordinate_done = true;
1947 break;
1948 case ir_tg4:
1949 if (has_nonconstant_offset) {
1950 if (shadow_c.file != BAD_FILE)
1951 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
1952
1953 /* More crazy intermixing */
1954 for (int i = 0; i < 2; i++) { /* u, v */
1955 emit(MOV(sources[length], coordinate));
1956 coordinate = offset(coordinate, 1);
1957 length++;
1958 }
1959
1960 for (int i = 0; i < 2; i++) { /* offu, offv */
1961 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
1962 offset_value = offset(offset_value, 1);
1963 length++;
1964 }
1965
1966 if (coord_components == 3) { /* r if present */
1967 emit(MOV(sources[length], coordinate));
1968 coordinate = offset(coordinate, 1);
1969 length++;
1970 }
1971
1972 coordinate_done = true;
1973 }
1974 break;
1975 }
1976
1977 /* Set up the coordinate (except for cases where it was done above) */
1978 if (!coordinate_done) {
1979 for (int i = 0; i < coord_components; i++) {
1980 emit(MOV(sources[length], coordinate));
1981 coordinate = offset(coordinate, 1);
1982 length++;
1983 }
1984 }
1985
1986 int mlen;
1987 if (reg_width == 2)
1988 mlen = length * reg_width - header_present;
1989 else
1990 mlen = length * reg_width;
1991
1992 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1993 BRW_REGISTER_TYPE_F);
1994 emit(LOAD_PAYLOAD(src_payload, sources, length));
1995
1996 /* Generate the SEND */
1997 enum opcode opcode;
1998 switch (op) {
1999 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
2000 case ir_txb: opcode = FS_OPCODE_TXB; break;
2001 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
2002 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
2003 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
2004 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
2005 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
2006 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
2007 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
2008 case ir_tg4:
2009 if (has_nonconstant_offset)
2010 opcode = SHADER_OPCODE_TG4_OFFSET;
2011 else
2012 opcode = SHADER_OPCODE_TG4;
2013 break;
2014 default:
2015 unreachable("not reached");
2016 }
2017 fs_inst *inst = emit(opcode, dst, src_payload, sampler);
2018 inst->base_mrf = -1;
2019 inst->mlen = mlen;
2020 inst->header_present = header_present;
2021 inst->regs_written = 4 * reg_width;
2022
2023 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
2024 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
2025 " disallowed by hardware\n");
2026 }
2027
2028 return inst;
2029 }
2030
2031 fs_reg
2032 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
2033 bool is_rect, uint32_t sampler, int texunit)
2034 {
2035 fs_inst *inst = NULL;
2036 bool needs_gl_clamp = true;
2037 fs_reg scale_x, scale_y;
2038
2039 /* The 965 requires the EU to do the normalization of GL rectangle
2040 * texture coordinates. We use the program parameter state
2041 * tracking to get the scaling factor.
2042 */
2043 if (is_rect &&
2044 (devinfo->gen < 6 ||
2045 (devinfo->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
2046 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
2047 struct gl_program_parameter_list *params = prog->Parameters;
2048 int tokens[STATE_LENGTH] = {
2049 STATE_INTERNAL,
2050 STATE_TEXRECT_SCALE,
2051 texunit,
2052 0,
2053 0
2054 };
2055
2056 no16("rectangle scale uniform setup not supported on SIMD16\n");
2057 if (dispatch_width == 16) {
2058 return coordinate;
2059 }
2060
2061 GLuint index = _mesa_add_state_reference(params,
2062 (gl_state_index *)tokens);
2063 /* Try to find existing copies of the texrect scale uniforms. */
2064 for (unsigned i = 0; i < uniforms; i++) {
2065 if (stage_prog_data->param[i] ==
2066 &prog->Parameters->ParameterValues[index][0]) {
2067 scale_x = fs_reg(UNIFORM, i);
2068 scale_y = fs_reg(UNIFORM, i + 1);
2069 break;
2070 }
2071 }
2072
2073 /* If we didn't already set them up, do so now. */
2074 if (scale_x.file == BAD_FILE) {
2075 scale_x = fs_reg(UNIFORM, uniforms);
2076 scale_y = fs_reg(UNIFORM, uniforms + 1);
2077
2078 stage_prog_data->param[uniforms++] =
2079 &prog->Parameters->ParameterValues[index][0];
2080 stage_prog_data->param[uniforms++] =
2081 &prog->Parameters->ParameterValues[index][1];
2082 }
2083 }
2084
2085 /* The 965 requires the EU to do the normalization of GL rectangle
2086 * texture coordinates. We use the program parameter state
2087 * tracking to get the scaling factor.
2088 */
2089 if (devinfo->gen < 6 && is_rect) {
2090 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
2091 fs_reg src = coordinate;
2092 coordinate = dst;
2093
2094 emit(MUL(dst, src, scale_x));
2095 dst = offset(dst, 1);
2096 src = offset(src, 1);
2097 emit(MUL(dst, src, scale_y));
2098 } else if (is_rect) {
2099 /* On gen6+, the sampler handles the rectangle coordinates
2100 * natively, without needing rescaling. But that means we have
2101 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
2102 * not [0, 1] like the default case below.
2103 */
2104 needs_gl_clamp = false;
2105
2106 for (int i = 0; i < 2; i++) {
2107 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2108 fs_reg chan = coordinate;
2109 chan = offset(chan, i);
2110
2111 inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
2112 inst->conditional_mod = BRW_CONDITIONAL_GE;
2113
2114 /* Our parameter comes in as 1.0/width or 1.0/height,
2115 * because that's what people normally want for doing
2116 * texture rectangle handling. We need width or height
2117 * for clamping, but we don't care enough to make a new
2118 * parameter type, so just invert back.
2119 */
2120 fs_reg limit = vgrf(glsl_type::float_type);
2121 emit(MOV(limit, i == 0 ? scale_x : scale_y));
2122 emit(SHADER_OPCODE_RCP, limit, limit);
2123
2124 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
2125 inst->conditional_mod = BRW_CONDITIONAL_L;
2126 }
2127 }
2128 }
2129
2130 if (coord_components > 0 && needs_gl_clamp) {
2131 for (int i = 0; i < MIN2(coord_components, 3); i++) {
2132 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2133 fs_reg chan = coordinate;
2134 chan = offset(chan, i);
2135
2136 fs_inst *inst = emit(MOV(chan, chan));
2137 inst->saturate = true;
2138 }
2139 }
2140 }
2141 return coordinate;
2142 }
2143
2144 /* Sample from the MCS surface attached to this multisample texture. */
2145 fs_reg
2146 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
2147 {
2148 int reg_width = dispatch_width / 8;
2149 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
2150 BRW_REGISTER_TYPE_F);
2151 fs_reg dest = vgrf(glsl_type::uvec4_type);
2152 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
2153
2154 /* parameters are: u, v, r; missing parameters are treated as zero */
2155 for (int i = 0; i < components; i++) {
2156 sources[i] = vgrf(glsl_type::float_type);
2157 emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
2158 coordinate = offset(coordinate, 1);
2159 }
2160
2161 emit(LOAD_PAYLOAD(payload, sources, components));
2162
2163 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
2164 inst->base_mrf = -1;
2165 inst->mlen = components * reg_width;
2166 inst->header_present = false;
2167 inst->regs_written = 4 * reg_width; /* we only care about one reg of
2168 * response, but the sampler always
2169 * writes 4/8
2170 */
2171
2172 return dest;
2173 }
2174
2175 void
2176 fs_visitor::emit_texture(ir_texture_opcode op,
2177 const glsl_type *dest_type,
2178 fs_reg coordinate, int coord_components,
2179 fs_reg shadow_c,
2180 fs_reg lod, fs_reg lod2, int grad_components,
2181 fs_reg sample_index,
2182 fs_reg offset_value,
2183 fs_reg mcs,
2184 int gather_component,
2185 bool is_cube_array,
2186 bool is_rect,
2187 uint32_t sampler,
2188 fs_reg sampler_reg, int texunit)
2189 {
2190 fs_inst *inst = NULL;
2191
2192 if (op == ir_tg4) {
2193 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2194 * emitting anything other than setting up the constant result.
2195 */
2196 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
2197 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2198
2199 fs_reg res = vgrf(glsl_type::vec4_type);
2200 this->result = res;
2201
2202 for (int i=0; i<4; i++) {
2203 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
2204 res = offset(res, 1);
2205 }
2206 return;
2207 }
2208 }
2209
2210 if (coordinate.file != BAD_FILE) {
2211 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
2212 * samplers. This should only be a problem with GL_CLAMP on Gen7.
2213 */
2214 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
2215 sampler, texunit);
2216 }
2217
2218 /* Writemasking doesn't eliminate channels on SIMD8 texture
2219 * samples, so don't worry about them.
2220 */
2221 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
2222
2223 if (devinfo->gen >= 7) {
2224 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
2225 shadow_c, lod, lod2, grad_components,
2226 sample_index, mcs, sampler_reg,
2227 offset_value);
2228 } else if (devinfo->gen >= 5) {
2229 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
2230 shadow_c, lod, lod2, grad_components,
2231 sample_index, sampler,
2232 offset_value.file != BAD_FILE);
2233 } else if (dispatch_width == 16) {
2234 inst = emit_texture_gen4_simd16(op, dst, coordinate, coord_components,
2235 shadow_c, lod, sampler);
2236 } else {
2237 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
2238 shadow_c, lod, lod2, grad_components,
2239 sampler);
2240 }
2241
2242 if (shadow_c.file != BAD_FILE)
2243 inst->shadow_compare = true;
2244
2245 if (offset_value.file == IMM)
2246 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
2247
2248 if (op == ir_tg4) {
2249 inst->offset |=
2250 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
2251
2252 if (devinfo->gen == 6)
2253 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
2254 }
2255
2256 /* fixup #layers for cube map arrays */
2257 if (op == ir_txs && is_cube_array) {
2258 fs_reg depth = offset(dst, 2);
2259 fs_reg fixed_depth = vgrf(glsl_type::int_type);
2260 emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
2261
2262 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
2263 int components = inst->regs_written / (dst.width / 8);
2264 for (int i = 0; i < components; i++) {
2265 if (i == 2) {
2266 fixed_payload[i] = fixed_depth;
2267 } else {
2268 fixed_payload[i] = offset(dst, i);
2269 }
2270 }
2271 emit(LOAD_PAYLOAD(dst, fixed_payload, components));
2272 }
2273
2274 swizzle_result(op, dest_type->vector_elements, dst, sampler);
2275 }
2276
2277 void
2278 fs_visitor::visit(ir_texture *ir)
2279 {
2280 uint32_t sampler =
2281 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2282
2283 ir_rvalue *nonconst_sampler_index =
2284 _mesa_get_sampler_array_nonconst_index(ir->sampler);
2285
2286 /* Handle non-constant sampler array indexing */
2287 fs_reg sampler_reg;
2288 if (nonconst_sampler_index) {
2289 /* The highest sampler which may be used by this operation is
2290 * the last element of the array. Mark it here, because the generator
2291 * doesn't have enough information to determine the bound.
2292 */
2293 uint32_t array_size = ir->sampler->as_dereference_array()
2294 ->array->type->array_size();
2295
2296 uint32_t max_used = sampler + array_size - 1;
2297 if (ir->op == ir_tg4 && devinfo->gen < 8) {
2298 max_used += stage_prog_data->binding_table.gather_texture_start;
2299 } else {
2300 max_used += stage_prog_data->binding_table.texture_start;
2301 }
2302
2303 brw_mark_surface_used(prog_data, max_used);
2304
2305 /* Emit code to evaluate the actual indexing expression */
2306 nonconst_sampler_index->accept(this);
2307 fs_reg temp = vgrf(glsl_type::uint_type);
2308 emit(ADD(temp, this->result, fs_reg(sampler)))
2309 ->force_writemask_all = true;
2310 sampler_reg = temp;
2311 } else {
2312 /* Single sampler, or constant array index; the indexing expression
2313 * is just an immediate.
2314 */
2315 sampler_reg = fs_reg(sampler);
2316 }
2317
2318 /* FINISHME: We're failing to recompile our programs when the sampler is
2319 * updated. This only matters for the texture rectangle scale parameters
2320 * (pre-gen6, or gen6+ with GL_CLAMP).
2321 */
2322 int texunit = prog->SamplerUnits[sampler];
2323
2324 /* Should be lowered by do_lower_texture_projection */
2325 assert(!ir->projector);
2326
2327 /* Should be lowered */
2328 assert(!ir->offset || !ir->offset->type->is_array());
2329
2330 /* Generate code to compute all the subexpression trees. This has to be
2331 * done before loading any values into MRFs for the sampler message since
2332 * generating these values may involve SEND messages that need the MRFs.
2333 */
2334 fs_reg coordinate;
2335 int coord_components = 0;
2336 if (ir->coordinate) {
2337 coord_components = ir->coordinate->type->vector_elements;
2338 ir->coordinate->accept(this);
2339 coordinate = this->result;
2340 }
2341
2342 fs_reg shadow_comparitor;
2343 if (ir->shadow_comparitor) {
2344 ir->shadow_comparitor->accept(this);
2345 shadow_comparitor = this->result;
2346 }
2347
2348 fs_reg offset_value;
2349 if (ir->offset) {
2350 ir_constant *const_offset = ir->offset->as_constant();
2351 if (const_offset) {
2352 /* Store the header bitfield in an IMM register. This allows us to
2353 * use offset_value.file to distinguish between no offset, a constant
2354 * offset, and a non-constant offset.
2355 */
2356 offset_value =
2357 fs_reg(brw_texture_offset(const_offset->value.i,
2358 const_offset->type->vector_elements));
2359 } else {
2360 ir->offset->accept(this);
2361 offset_value = this->result;
2362 }
2363 }
2364
2365 fs_reg lod, lod2, sample_index, mcs;
2366 int grad_components = 0;
2367 switch (ir->op) {
2368 case ir_tex:
2369 case ir_lod:
2370 case ir_tg4:
2371 case ir_query_levels:
2372 break;
2373 case ir_txb:
2374 ir->lod_info.bias->accept(this);
2375 lod = this->result;
2376 break;
2377 case ir_txd:
2378 ir->lod_info.grad.dPdx->accept(this);
2379 lod = this->result;
2380
2381 ir->lod_info.grad.dPdy->accept(this);
2382 lod2 = this->result;
2383
2384 grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
2385 break;
2386 case ir_txf:
2387 case ir_txl:
2388 case ir_txs:
2389 ir->lod_info.lod->accept(this);
2390 lod = this->result;
2391 break;
2392 case ir_txf_ms:
2393 ir->lod_info.sample_index->accept(this);
2394 sample_index = this->result;
2395
2396 if (devinfo->gen >= 7 &&
2397 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2398 mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
2399 sampler_reg);
2400 } else {
2401 mcs = fs_reg(0u);
2402 }
2403 break;
2404 default:
2405 unreachable("Unrecognized texture opcode");
2406 };
2407
2408 int gather_component = 0;
2409 if (ir->op == ir_tg4)
2410 gather_component = ir->lod_info.component->as_constant()->value.i[0];
2411
2412 bool is_rect =
2413 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
2414
2415 bool is_cube_array =
2416 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2417 ir->sampler->type->sampler_array;
2418
2419 emit_texture(ir->op, ir->type, coordinate, coord_components,
2420 shadow_comparitor, lod, lod2, grad_components,
2421 sample_index, offset_value, mcs,
2422 gather_component, is_cube_array, is_rect, sampler,
2423 sampler_reg, texunit);
2424 }
2425
2426 /**
2427 * Apply workarounds for Gen6 gather with UINT/SINT
2428 */
2429 void
2430 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
2431 {
2432 if (!wa)
2433 return;
2434
2435 int width = (wa & WA_8BIT) ? 8 : 16;
2436
2437 for (int i = 0; i < 4; i++) {
2438 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
2439 /* Convert from UNORM to UINT */
2440 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
2441 emit(MOV(dst, dst_f));
2442
2443 if (wa & WA_SIGN) {
2444 /* Reinterpret the UINT value as a signed INT value by
2445 * shifting the sign bit into place, then shifting back
2446 * preserving sign.
2447 */
2448 emit(SHL(dst, dst, fs_reg(32 - width)));
2449 emit(ASR(dst, dst, fs_reg(32 - width)));
2450 }
2451
2452 dst = offset(dst, 1);
2453 }
2454 }
2455
2456 /**
2457 * Set up the gather channel based on the swizzle, for gather4.
2458 */
2459 uint32_t
2460 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
2461 {
2462 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
2463 switch (swiz) {
2464 case SWIZZLE_X: return 0;
2465 case SWIZZLE_Y:
2466 /* gather4 sampler is broken for green channel on RG32F --
2467 * we must ask for blue instead.
2468 */
2469 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
2470 return 2;
2471 return 1;
2472 case SWIZZLE_Z: return 2;
2473 case SWIZZLE_W: return 3;
2474 default:
2475 unreachable("Not reached"); /* zero, one swizzles handled already */
2476 }
2477 }
2478
2479 /**
2480 * Swizzle the result of a texture result. This is necessary for
2481 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
2482 */
2483 void
2484 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
2485 fs_reg orig_val, uint32_t sampler)
2486 {
2487 if (op == ir_query_levels) {
2488 /* # levels is in .w */
2489 this->result = offset(orig_val, 3);
2490 return;
2491 }
2492
2493 this->result = orig_val;
2494
2495 /* txs,lod don't actually sample the texture, so swizzling the result
2496 * makes no sense.
2497 */
2498 if (op == ir_txs || op == ir_lod || op == ir_tg4)
2499 return;
2500
2501 if (dest_components == 1) {
2502 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
2503 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
2504 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
2505 swizzled_result.type = orig_val.type;
2506
2507 for (int i = 0; i < 4; i++) {
2508 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
2509 fs_reg l = swizzled_result;
2510 l = offset(l, i);
2511
2512 if (swiz == SWIZZLE_ZERO) {
2513 emit(MOV(l, fs_reg(0.0f)));
2514 } else if (swiz == SWIZZLE_ONE) {
2515 emit(MOV(l, fs_reg(1.0f)));
2516 } else {
2517 emit(MOV(l, offset(orig_val,
2518 GET_SWZ(key_tex->swizzles[sampler], i))));
2519 }
2520 }
2521 this->result = swizzled_result;
2522 }
2523 }
2524
2525 void
2526 fs_visitor::visit(ir_swizzle *ir)
2527 {
2528 ir->val->accept(this);
2529 fs_reg val = this->result;
2530
2531 if (ir->type->vector_elements == 1) {
2532 this->result = offset(this->result, ir->mask.x);
2533 return;
2534 }
2535
2536 fs_reg result = vgrf(ir->type);
2537 this->result = result;
2538
2539 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
2540 fs_reg channel = val;
2541 int swiz = 0;
2542
2543 switch (i) {
2544 case 0:
2545 swiz = ir->mask.x;
2546 break;
2547 case 1:
2548 swiz = ir->mask.y;
2549 break;
2550 case 2:
2551 swiz = ir->mask.z;
2552 break;
2553 case 3:
2554 swiz = ir->mask.w;
2555 break;
2556 }
2557
2558 emit(MOV(result, offset(channel, swiz)));
2559 result = offset(result, 1);
2560 }
2561 }
2562
2563 void
2564 fs_visitor::visit(ir_discard *ir)
2565 {
2566 /* We track our discarded pixels in f0.1. By predicating on it, we can
2567 * update just the flag bits that aren't yet discarded. If there's no
2568 * condition, we emit a CMP of g0 != g0, so all currently executing
2569 * channels will get turned off.
2570 */
2571 fs_inst *cmp;
2572 if (ir->condition) {
2573 emit_bool_to_cond_code(ir->condition);
2574 cmp = (fs_inst *) this->instructions.get_tail();
2575 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
2576 } else {
2577 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2578 BRW_REGISTER_TYPE_UW));
2579 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
2580 }
2581 cmp->predicate = BRW_PREDICATE_NORMAL;
2582 cmp->flag_subreg = 1;
2583
2584 if (devinfo->gen >= 6) {
2585 emit_discard_jump();
2586 }
2587 }
2588
2589 void
2590 fs_visitor::visit(ir_constant *ir)
2591 {
2592 /* Set this->result to reg at the bottom of the function because some code
2593 * paths will cause this visitor to be applied to other fields. This will
2594 * cause the value stored in this->result to be modified.
2595 *
2596 * Make reg constant so that it doesn't get accidentally modified along the
2597 * way. Yes, I actually had this problem. :(
2598 */
2599 const fs_reg reg = vgrf(ir->type);
2600 fs_reg dst_reg = reg;
2601
2602 if (ir->type->is_array()) {
2603 const unsigned size = type_size(ir->type->fields.array);
2604
2605 for (unsigned i = 0; i < ir->type->length; i++) {
2606 ir->array_elements[i]->accept(this);
2607 fs_reg src_reg = this->result;
2608
2609 dst_reg.type = src_reg.type;
2610 for (unsigned j = 0; j < size; j++) {
2611 emit(MOV(dst_reg, src_reg));
2612 src_reg = offset(src_reg, 1);
2613 dst_reg = offset(dst_reg, 1);
2614 }
2615 }
2616 } else if (ir->type->is_record()) {
2617 foreach_in_list(ir_constant, field, &ir->components) {
2618 const unsigned size = type_size(field->type);
2619
2620 field->accept(this);
2621 fs_reg src_reg = this->result;
2622
2623 dst_reg.type = src_reg.type;
2624 for (unsigned j = 0; j < size; j++) {
2625 emit(MOV(dst_reg, src_reg));
2626 src_reg = offset(src_reg, 1);
2627 dst_reg = offset(dst_reg, 1);
2628 }
2629 }
2630 } else {
2631 const unsigned size = type_size(ir->type);
2632
2633 for (unsigned i = 0; i < size; i++) {
2634 switch (ir->type->base_type) {
2635 case GLSL_TYPE_FLOAT:
2636 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
2637 break;
2638 case GLSL_TYPE_UINT:
2639 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
2640 break;
2641 case GLSL_TYPE_INT:
2642 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
2643 break;
2644 case GLSL_TYPE_BOOL:
2645 emit(MOV(dst_reg, fs_reg(ir->value.b[i] != 0 ? ~0 : 0)));
2646 break;
2647 default:
2648 unreachable("Non-float/uint/int/bool constant");
2649 }
2650 dst_reg = offset(dst_reg, 1);
2651 }
2652 }
2653
2654 this->result = reg;
2655 }
2656
2657 void
2658 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
2659 {
2660 ir_expression *expr = ir->as_expression();
2661
2662 if (!expr || expr->operation == ir_binop_ubo_load) {
2663 ir->accept(this);
2664
2665 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2666 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2667 return;
2668 }
2669
2670 fs_reg op[3];
2671
2672 assert(expr->get_num_operands() <= 3);
2673 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2674 assert(expr->operands[i]->type->is_scalar());
2675
2676 expr->operands[i]->accept(this);
2677 op[i] = this->result;
2678
2679 resolve_ud_negate(&op[i]);
2680 }
2681
2682 emit_bool_to_cond_code_of_reg(expr, op);
2683 }
2684
2685 void
2686 fs_visitor::emit_bool_to_cond_code_of_reg(ir_expression *expr, fs_reg op[3])
2687 {
2688 fs_inst *inst;
2689
2690 switch (expr->operation) {
2691 case ir_unop_logic_not:
2692 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
2693 inst->conditional_mod = BRW_CONDITIONAL_Z;
2694 break;
2695
2696 case ir_binop_logic_xor:
2697 if (devinfo->gen <= 5) {
2698 fs_reg temp = vgrf(expr->type);
2699 emit(XOR(temp, op[0], op[1]));
2700 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2701 } else {
2702 inst = emit(XOR(reg_null_d, op[0], op[1]));
2703 }
2704 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2705 break;
2706
2707 case ir_binop_logic_or:
2708 if (devinfo->gen <= 5) {
2709 fs_reg temp = vgrf(expr->type);
2710 emit(OR(temp, op[0], op[1]));
2711 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2712 } else {
2713 inst = emit(OR(reg_null_d, op[0], op[1]));
2714 }
2715 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2716 break;
2717
2718 case ir_binop_logic_and:
2719 if (devinfo->gen <= 5) {
2720 fs_reg temp = vgrf(expr->type);
2721 emit(AND(temp, op[0], op[1]));
2722 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2723 } else {
2724 inst = emit(AND(reg_null_d, op[0], op[1]));
2725 }
2726 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2727 break;
2728
2729 case ir_unop_f2b:
2730 if (devinfo->gen >= 6) {
2731 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
2732 } else {
2733 inst = emit(MOV(reg_null_f, op[0]));
2734 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2735 }
2736 break;
2737
2738 case ir_unop_i2b:
2739 if (devinfo->gen >= 6) {
2740 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2741 } else {
2742 inst = emit(MOV(reg_null_d, op[0]));
2743 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2744 }
2745 break;
2746
2747 case ir_binop_greater:
2748 case ir_binop_gequal:
2749 case ir_binop_less:
2750 case ir_binop_lequal:
2751 case ir_binop_equal:
2752 case ir_binop_all_equal:
2753 case ir_binop_nequal:
2754 case ir_binop_any_nequal:
2755 if (devinfo->gen <= 5) {
2756 resolve_bool_comparison(expr->operands[0], &op[0]);
2757 resolve_bool_comparison(expr->operands[1], &op[1]);
2758 }
2759
2760 emit(CMP(reg_null_d, op[0], op[1],
2761 brw_conditional_for_comparison(expr->operation)));
2762 break;
2763
2764 case ir_triop_csel: {
2765 /* Expand the boolean condition into the flag register. */
2766 inst = emit(MOV(reg_null_d, op[0]));
2767 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2768
2769 /* Select which boolean to return. */
2770 fs_reg temp = vgrf(expr->operands[1]->type);
2771 inst = emit(SEL(temp, op[1], op[2]));
2772 inst->predicate = BRW_PREDICATE_NORMAL;
2773
2774 /* Expand the result to a condition code. */
2775 inst = emit(MOV(reg_null_d, temp));
2776 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2777 break;
2778 }
2779
2780 default:
2781 unreachable("not reached");
2782 }
2783 }
2784
2785 /**
2786 * Emit a gen6 IF statement with the comparison folded into the IF
2787 * instruction.
2788 */
2789 void
2790 fs_visitor::emit_if_gen6(ir_if *ir)
2791 {
2792 ir_expression *expr = ir->condition->as_expression();
2793
2794 if (expr && expr->operation != ir_binop_ubo_load) {
2795 fs_reg op[3];
2796 fs_inst *inst;
2797 fs_reg temp;
2798
2799 assert(expr->get_num_operands() <= 3);
2800 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2801 assert(expr->operands[i]->type->is_scalar());
2802
2803 expr->operands[i]->accept(this);
2804 op[i] = this->result;
2805 }
2806
2807 switch (expr->operation) {
2808 case ir_unop_logic_not:
2809 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
2810 return;
2811
2812 case ir_binop_logic_xor:
2813 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
2814 return;
2815
2816 case ir_binop_logic_or:
2817 temp = vgrf(glsl_type::bool_type);
2818 emit(OR(temp, op[0], op[1]));
2819 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2820 return;
2821
2822 case ir_binop_logic_and:
2823 temp = vgrf(glsl_type::bool_type);
2824 emit(AND(temp, op[0], op[1]));
2825 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2826 return;
2827
2828 case ir_unop_f2b:
2829 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2830 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2831 return;
2832
2833 case ir_unop_i2b:
2834 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2835 return;
2836
2837 case ir_binop_greater:
2838 case ir_binop_gequal:
2839 case ir_binop_less:
2840 case ir_binop_lequal:
2841 case ir_binop_equal:
2842 case ir_binop_all_equal:
2843 case ir_binop_nequal:
2844 case ir_binop_any_nequal:
2845 if (devinfo->gen <= 5) {
2846 resolve_bool_comparison(expr->operands[0], &op[0]);
2847 resolve_bool_comparison(expr->operands[1], &op[1]);
2848 }
2849
2850 emit(IF(op[0], op[1],
2851 brw_conditional_for_comparison(expr->operation)));
2852 return;
2853
2854 case ir_triop_csel: {
2855 /* Expand the boolean condition into the flag register. */
2856 fs_inst *inst = emit(MOV(reg_null_d, op[0]));
2857 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2858
2859 /* Select which boolean to use as the result. */
2860 fs_reg temp = vgrf(expr->operands[1]->type);
2861 inst = emit(SEL(temp, op[1], op[2]));
2862 inst->predicate = BRW_PREDICATE_NORMAL;
2863
2864 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2865 return;
2866 }
2867
2868 default:
2869 unreachable("not reached");
2870 }
2871 }
2872
2873 ir->condition->accept(this);
2874 emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
2875 }
2876
2877 bool
2878 fs_visitor::try_opt_frontfacing_ternary(ir_if *ir)
2879 {
2880 ir_dereference_variable *deref = ir->condition->as_dereference_variable();
2881 if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0)
2882 return false;
2883
2884 if (ir->then_instructions.length() != 1 ||
2885 ir->else_instructions.length() != 1)
2886 return false;
2887
2888 ir_assignment *then_assign =
2889 ((ir_instruction *)ir->then_instructions.head)->as_assignment();
2890 ir_assignment *else_assign =
2891 ((ir_instruction *)ir->else_instructions.head)->as_assignment();
2892
2893 if (!then_assign || then_assign->condition ||
2894 !else_assign || else_assign->condition ||
2895 then_assign->write_mask != else_assign->write_mask ||
2896 !then_assign->lhs->equals(else_assign->lhs))
2897 return false;
2898
2899 ir_constant *then_rhs = then_assign->rhs->as_constant();
2900 ir_constant *else_rhs = else_assign->rhs->as_constant();
2901
2902 if (!then_rhs || !else_rhs)
2903 return false;
2904
2905 if (then_rhs->type->base_type != GLSL_TYPE_FLOAT)
2906 return false;
2907
2908 if ((then_rhs->is_one() && else_rhs->is_negative_one()) ||
2909 (else_rhs->is_one() && then_rhs->is_negative_one())) {
2910 then_assign->lhs->accept(this);
2911 fs_reg dst = this->result;
2912 dst.type = BRW_REGISTER_TYPE_D;
2913 fs_reg tmp = vgrf(glsl_type::int_type);
2914
2915 if (devinfo->gen >= 6) {
2916 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
2917 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
2918
2919 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2920 *
2921 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
2922 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2923 *
2924 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
2925 */
2926
2927 if (then_rhs->is_negative_one()) {
2928 assert(else_rhs->is_one());
2929 g0.negate = true;
2930 }
2931
2932 tmp.type = BRW_REGISTER_TYPE_W;
2933 tmp.subreg_offset = 2;
2934 tmp.stride = 2;
2935
2936 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
2937 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
2938
2939 tmp.type = BRW_REGISTER_TYPE_D;
2940 tmp.subreg_offset = 0;
2941 tmp.stride = 1;
2942 } else {
2943 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
2944 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
2945
2946 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2947 *
2948 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
2949 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2950 *
2951 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
2952 */
2953
2954 if (then_rhs->is_negative_one()) {
2955 assert(else_rhs->is_one());
2956 g1_6.negate = true;
2957 }
2958
2959 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
2960 }
2961 emit(AND(dst, tmp, fs_reg(0xbf800000)));
2962 return true;
2963 }
2964
2965 return false;
2966 }
2967
2968 /**
2969 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2970 *
2971 * Many GLSL shaders contain the following pattern:
2972 *
2973 * x = condition ? foo : bar
2974 *
2975 * The compiler emits an ir_if tree for this, since each subexpression might be
2976 * a complex tree that could have side-effects or short-circuit logic.
2977 *
2978 * However, the common case is to simply select one of two constants or
2979 * variable values---which is exactly what SEL is for. In this case, the
2980 * assembly looks like:
2981 *
2982 * (+f0) IF
2983 * MOV dst src0
2984 * ELSE
2985 * MOV dst src1
2986 * ENDIF
2987 *
2988 * which can be easily translated into:
2989 *
2990 * (+f0) SEL dst src0 src1
2991 *
2992 * If src0 is an immediate value, we promote it to a temporary GRF.
2993 */
2994 bool
2995 fs_visitor::try_replace_with_sel()
2996 {
2997 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2998 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2999
3000 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
3001 int opcodes[] = {
3002 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
3003 };
3004
3005 fs_inst *match = (fs_inst *) endif_inst->prev;
3006 for (int i = 0; i < 4; i++) {
3007 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
3008 return false;
3009 match = (fs_inst *) match->prev;
3010 }
3011
3012 /* The opcodes match; it looks like the right sequence of instructions. */
3013 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
3014 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
3015 fs_inst *if_inst = (fs_inst *) then_mov->prev;
3016
3017 /* Check that the MOVs are the right form. */
3018 if (then_mov->dst.equals(else_mov->dst) &&
3019 !then_mov->is_partial_write() &&
3020 !else_mov->is_partial_write()) {
3021
3022 /* Remove the matched instructions; we'll emit a SEL to replace them. */
3023 while (!if_inst->next->is_tail_sentinel())
3024 if_inst->next->exec_node::remove();
3025 if_inst->exec_node::remove();
3026
3027 /* Only the last source register can be a constant, so if the MOV in
3028 * the "then" clause uses a constant, we need to put it in a temporary.
3029 */
3030 fs_reg src0(then_mov->src[0]);
3031 if (src0.file == IMM) {
3032 src0 = vgrf(glsl_type::float_type);
3033 src0.type = then_mov->src[0].type;
3034 emit(MOV(src0, then_mov->src[0]));
3035 }
3036
3037 fs_inst *sel;
3038 if (if_inst->conditional_mod) {
3039 /* Sandybridge-specific IF with embedded comparison */
3040 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
3041 if_inst->conditional_mod));
3042 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3043 sel->predicate = BRW_PREDICATE_NORMAL;
3044 } else {
3045 /* Separate CMP and IF instructions */
3046 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3047 sel->predicate = if_inst->predicate;
3048 sel->predicate_inverse = if_inst->predicate_inverse;
3049 }
3050
3051 return true;
3052 }
3053
3054 return false;
3055 }
3056
3057 void
3058 fs_visitor::visit(ir_if *ir)
3059 {
3060 if (try_opt_frontfacing_ternary(ir))
3061 return;
3062
3063 /* Don't point the annotation at the if statement, because then it plus
3064 * the then and else blocks get printed.
3065 */
3066 this->base_ir = ir->condition;
3067
3068 if (devinfo->gen == 6) {
3069 emit_if_gen6(ir);
3070 } else {
3071 emit_bool_to_cond_code(ir->condition);
3072
3073 emit(IF(BRW_PREDICATE_NORMAL));
3074 }
3075
3076 foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
3077 this->base_ir = ir_;
3078 ir_->accept(this);
3079 }
3080
3081 if (!ir->else_instructions.is_empty()) {
3082 emit(BRW_OPCODE_ELSE);
3083
3084 foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
3085 this->base_ir = ir_;
3086 ir_->accept(this);
3087 }
3088 }
3089
3090 emit(BRW_OPCODE_ENDIF);
3091
3092 if (!try_replace_with_sel() && devinfo->gen < 6) {
3093 no16("Can't support (non-uniform) control flow on SIMD16\n");
3094 }
3095 }
3096
3097 void
3098 fs_visitor::visit(ir_loop *ir)
3099 {
3100 if (devinfo->gen < 6) {
3101 no16("Can't support (non-uniform) control flow on SIMD16\n");
3102 }
3103
3104 this->base_ir = NULL;
3105 emit(BRW_OPCODE_DO);
3106
3107 foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
3108 this->base_ir = ir_;
3109 ir_->accept(this);
3110 }
3111
3112 this->base_ir = NULL;
3113 emit(BRW_OPCODE_WHILE);
3114 }
3115
3116 void
3117 fs_visitor::visit(ir_loop_jump *ir)
3118 {
3119 switch (ir->mode) {
3120 case ir_loop_jump::jump_break:
3121 emit(BRW_OPCODE_BREAK);
3122 break;
3123 case ir_loop_jump::jump_continue:
3124 emit(BRW_OPCODE_CONTINUE);
3125 break;
3126 }
3127 }
3128
3129 void
3130 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3131 {
3132 ir_dereference *deref = static_cast<ir_dereference *>(
3133 ir->actual_parameters.get_head());
3134 ir_variable *location = deref->variable_referenced();
3135 unsigned surf_index = (stage_prog_data->binding_table.abo_start +
3136 location->data.binding);
3137
3138 /* Calculate the surface offset */
3139 fs_reg offset = vgrf(glsl_type::uint_type);
3140 ir_dereference_array *deref_array = deref->as_dereference_array();
3141
3142 if (deref_array) {
3143 deref_array->array_index->accept(this);
3144
3145 fs_reg tmp = vgrf(glsl_type::uint_type);
3146 emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
3147 emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
3148 } else {
3149 offset = fs_reg(location->data.atomic.offset);
3150 }
3151
3152 /* Emit the appropriate machine instruction */
3153 const char *callee = ir->callee->function_name();
3154 ir->return_deref->accept(this);
3155 fs_reg dst = this->result;
3156
3157 if (!strcmp("__intrinsic_atomic_read", callee)) {
3158 emit_untyped_surface_read(surf_index, dst, offset);
3159
3160 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
3161 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
3162 fs_reg(), fs_reg());
3163
3164 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
3165 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
3166 fs_reg(), fs_reg());
3167 }
3168 }
3169
3170 void
3171 fs_visitor::visit(ir_call *ir)
3172 {
3173 const char *callee = ir->callee->function_name();
3174
3175 if (!strcmp("__intrinsic_atomic_read", callee) ||
3176 !strcmp("__intrinsic_atomic_increment", callee) ||
3177 !strcmp("__intrinsic_atomic_predecrement", callee)) {
3178 visit_atomic_counter_intrinsic(ir);
3179 } else {
3180 unreachable("Unsupported intrinsic.");
3181 }
3182 }
3183
3184 void
3185 fs_visitor::visit(ir_return *)
3186 {
3187 unreachable("FINISHME");
3188 }
3189
3190 void
3191 fs_visitor::visit(ir_function *ir)
3192 {
3193 /* Ignore function bodies other than main() -- we shouldn't see calls to
3194 * them since they should all be inlined before we get to ir_to_mesa.
3195 */
3196 if (strcmp(ir->name, "main") == 0) {
3197 const ir_function_signature *sig;
3198 exec_list empty;
3199
3200 sig = ir->matching_signature(NULL, &empty, false);
3201
3202 assert(sig);
3203
3204 foreach_in_list(ir_instruction, ir_, &sig->body) {
3205 this->base_ir = ir_;
3206 ir_->accept(this);
3207 }
3208 }
3209 }
3210
3211 void
3212 fs_visitor::visit(ir_function_signature *)
3213 {
3214 unreachable("not reached");
3215 }
3216
3217 void
3218 fs_visitor::visit(ir_emit_vertex *)
3219 {
3220 unreachable("not reached");
3221 }
3222
3223 void
3224 fs_visitor::visit(ir_end_primitive *)
3225 {
3226 unreachable("not reached");
3227 }
3228
3229 void
3230 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
3231 fs_reg dst, fs_reg offset, fs_reg src0,
3232 fs_reg src1)
3233 {
3234 int reg_width = dispatch_width / 8;
3235 int length = 0;
3236
3237 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
3238
3239 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3240 /* Initialize the sample mask in the message header. */
3241 emit(MOV(sources[0], fs_reg(0u)))
3242 ->force_writemask_all = true;
3243
3244 if (stage == MESA_SHADER_FRAGMENT) {
3245 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3246 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3247 ->force_writemask_all = true;
3248 } else {
3249 emit(MOV(component(sources[0], 7),
3250 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3251 ->force_writemask_all = true;
3252 }
3253 } else {
3254 /* The execution mask is part of the side-band information sent together with
3255 * the message payload to the data port. It's implicitly ANDed with the sample
3256 * mask sent in the header to compute the actual set of channels that execute
3257 * the atomic operation.
3258 */
3259 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3260 emit(MOV(component(sources[0], 7),
3261 fs_reg(0xffffu)))->force_writemask_all = true;
3262 }
3263 length++;
3264
3265 /* Set the atomic operation offset. */
3266 sources[1] = vgrf(glsl_type::uint_type);
3267 emit(MOV(sources[1], offset));
3268 length++;
3269
3270 /* Set the atomic operation arguments. */
3271 if (src0.file != BAD_FILE) {
3272 sources[length] = vgrf(glsl_type::uint_type);
3273 emit(MOV(sources[length], src0));
3274 length++;
3275 }
3276
3277 if (src1.file != BAD_FILE) {
3278 sources[length] = vgrf(glsl_type::uint_type);
3279 emit(MOV(sources[length], src1));
3280 length++;
3281 }
3282
3283 int mlen = 1 + (length - 1) * reg_width;
3284 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3285 BRW_REGISTER_TYPE_UD);
3286 emit(LOAD_PAYLOAD(src_payload, sources, length));
3287
3288 /* Emit the instruction. */
3289 fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
3290 fs_reg(atomic_op), fs_reg(surf_index));
3291 inst->mlen = mlen;
3292 }
3293
3294 void
3295 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
3296 fs_reg offset)
3297 {
3298 int reg_width = dispatch_width / 8;
3299
3300 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
3301
3302 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3303 /* Initialize the sample mask in the message header. */
3304 emit(MOV(sources[0], fs_reg(0u)))
3305 ->force_writemask_all = true;
3306
3307 if (stage == MESA_SHADER_FRAGMENT) {
3308 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3309 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3310 ->force_writemask_all = true;
3311 } else {
3312 emit(MOV(component(sources[0], 7),
3313 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3314 ->force_writemask_all = true;
3315 }
3316 } else {
3317 /* The execution mask is part of the side-band information sent together with
3318 * the message payload to the data port. It's implicitly ANDed with the sample
3319 * mask sent in the header to compute the actual set of channels that execute
3320 * the atomic operation.
3321 */
3322 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3323 emit(MOV(component(sources[0], 7),
3324 fs_reg(0xffffu)))->force_writemask_all = true;
3325 }
3326
3327 /* Set the surface read offset. */
3328 sources[1] = vgrf(glsl_type::uint_type);
3329 emit(MOV(sources[1], offset));
3330
3331 int mlen = 1 + reg_width;
3332 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3333 BRW_REGISTER_TYPE_UD);
3334 fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
3335
3336 /* Emit the instruction. */
3337 inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
3338 fs_reg(surf_index), fs_reg(1));
3339 inst->mlen = mlen;
3340 }
3341
3342 fs_inst *
3343 fs_visitor::emit(fs_inst *inst)
3344 {
3345 if (dispatch_width == 16 && inst->exec_size == 8)
3346 inst->force_uncompressed = true;
3347
3348 inst->annotation = this->current_annotation;
3349 inst->ir = this->base_ir;
3350
3351 this->instructions.push_tail(inst);
3352
3353 return inst;
3354 }
3355
3356 void
3357 fs_visitor::emit(exec_list list)
3358 {
3359 foreach_in_list_safe(fs_inst, inst, &list) {
3360 inst->exec_node::remove();
3361 emit(inst);
3362 }
3363 }
3364
3365 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
3366 void
3367 fs_visitor::emit_dummy_fs()
3368 {
3369 int reg_width = dispatch_width / 8;
3370
3371 /* Everyone's favorite color. */
3372 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
3373 for (int i = 0; i < 4; i++) {
3374 emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F,
3375 dispatch_width), fs_reg(color[i])));
3376 }
3377
3378 fs_inst *write;
3379 write = emit(FS_OPCODE_FB_WRITE);
3380 write->eot = true;
3381 if (devinfo->gen >= 6) {
3382 write->base_mrf = 2;
3383 write->mlen = 4 * reg_width;
3384 } else {
3385 write->header_present = true;
3386 write->base_mrf = 0;
3387 write->mlen = 2 + 4 * reg_width;
3388 }
3389
3390 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
3391 * varying to avoid GPU hangs, so set that.
3392 */
3393 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3394 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
3395 memset(wm_prog_data->urb_setup, -1,
3396 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
3397
3398 /* We don't have any uniforms. */
3399 stage_prog_data->nr_params = 0;
3400 stage_prog_data->nr_pull_params = 0;
3401 stage_prog_data->curb_read_length = 0;
3402 stage_prog_data->dispatch_grf_start_reg = 2;
3403 wm_prog_data->dispatch_grf_start_reg_16 = 2;
3404 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
3405
3406 calculate_cfg();
3407 }
3408
3409 /* The register location here is relative to the start of the URB
3410 * data. It will get adjusted to be a real location before
3411 * generate_code() time.
3412 */
3413 struct brw_reg
3414 fs_visitor::interp_reg(int location, int channel)
3415 {
3416 assert(stage == MESA_SHADER_FRAGMENT);
3417 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3418 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
3419 int stride = (channel & 1) * 4;
3420
3421 assert(prog_data->urb_setup[location] != -1);
3422
3423 return brw_vec1_grf(regnr, stride);
3424 }
3425
3426 /** Emits the interpolation for the varying inputs. */
3427 void
3428 fs_visitor::emit_interpolation_setup_gen4()
3429 {
3430 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3431
3432 this->current_annotation = "compute pixel centers";
3433 this->pixel_x = vgrf(glsl_type::uint_type);
3434 this->pixel_y = vgrf(glsl_type::uint_type);
3435 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
3436 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
3437 emit(ADD(this->pixel_x,
3438 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3439 fs_reg(brw_imm_v(0x10101010))));
3440 emit(ADD(this->pixel_y,
3441 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3442 fs_reg(brw_imm_v(0x11001100))));
3443
3444 this->current_annotation = "compute pixel deltas from v0";
3445
3446 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3447 vgrf(glsl_type::vec2_type);
3448 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
3449 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
3450 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
3451
3452 if (devinfo->has_pln && dispatch_width == 16) {
3453 emit(ADD(half(offset(delta_xy, 0), 0), half(this->pixel_x, 0), xstart));
3454 emit(ADD(half(offset(delta_xy, 0), 1), half(this->pixel_y, 0), ystart));
3455 emit(ADD(half(offset(delta_xy, 1), 0), half(this->pixel_x, 1), xstart))
3456 ->force_sechalf = true;
3457 emit(ADD(half(offset(delta_xy, 1), 1), half(this->pixel_y, 1), ystart))
3458 ->force_sechalf = true;
3459 } else {
3460 emit(ADD(offset(delta_xy, 0), this->pixel_x, xstart));
3461 emit(ADD(offset(delta_xy, 1), this->pixel_y, ystart));
3462 }
3463
3464 this->current_annotation = "compute pos.w and 1/pos.w";
3465 /* Compute wpos.w. It's always in our setup, since it's needed to
3466 * interpolate the other attributes.
3467 */
3468 this->wpos_w = vgrf(glsl_type::float_type);
3469 emit(FS_OPCODE_LINTERP, wpos_w, delta_xy, interp_reg(VARYING_SLOT_POS, 3));
3470 /* Compute the pixel 1/W value from wpos.w. */
3471 this->pixel_w = vgrf(glsl_type::float_type);
3472 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
3473 this->current_annotation = NULL;
3474 }
3475
3476 /** Emits the interpolation for the varying inputs. */
3477 void
3478 fs_visitor::emit_interpolation_setup_gen6()
3479 {
3480 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3481
3482 this->current_annotation = "compute pixel centers";
3483 if (brw->gen >= 8 || dispatch_width == 8) {
3484 /* The "Register Region Restrictions" page says for BDW (and newer,
3485 * presumably):
3486 *
3487 * "When destination spans two registers, the source may be one or
3488 * two registers. The destination elements must be evenly split
3489 * between the two registers."
3490 *
3491 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
3492 * compute our pixel centers.
3493 */
3494 fs_reg int_pixel_xy(GRF, alloc.allocate(dispatch_width / 8),
3495 BRW_REGISTER_TYPE_UW, dispatch_width * 2);
3496 emit(ADD(int_pixel_xy,
3497 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
3498 fs_reg(brw_imm_v(0x11001010))))
3499 ->force_writemask_all = true;
3500
3501 this->pixel_x = vgrf(glsl_type::float_type);
3502 this->pixel_y = vgrf(glsl_type::float_type);
3503 emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
3504 emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
3505 } else {
3506 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
3507 *
3508 * "When destination spans two registers, the source MUST span two
3509 * registers."
3510 *
3511 * Since the GRF source of the ADD will only read a single register, we
3512 * must do two separate ADDs in SIMD16.
3513 */
3514 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
3515 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
3516 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
3517 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
3518 emit(ADD(int_pixel_x,
3519 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3520 fs_reg(brw_imm_v(0x10101010))));
3521 emit(ADD(int_pixel_y,
3522 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3523 fs_reg(brw_imm_v(0x11001100))));
3524
3525 /* As of gen6, we can no longer mix float and int sources. We have
3526 * to turn the integer pixel centers into floats for their actual
3527 * use.
3528 */
3529 this->pixel_x = vgrf(glsl_type::float_type);
3530 this->pixel_y = vgrf(glsl_type::float_type);
3531 emit(MOV(this->pixel_x, int_pixel_x));
3532 emit(MOV(this->pixel_y, int_pixel_y));
3533 }
3534
3535 this->current_annotation = "compute pos.w";
3536 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
3537 this->wpos_w = vgrf(glsl_type::float_type);
3538 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
3539
3540 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3541 uint8_t reg = payload.barycentric_coord_reg[i];
3542 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
3543 }
3544
3545 this->current_annotation = NULL;
3546 }
3547
3548 int
3549 fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components,
3550 bool use_2nd_half)
3551 {
3552 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3553 fs_inst *inst;
3554
3555 if (color.file == BAD_FILE) {
3556 return 4 * (dispatch_width / 8);
3557 }
3558
3559 uint8_t colors_enabled;
3560 if (components == 0) {
3561 /* We want to write one component to the alpha channel */
3562 colors_enabled = 0x8;
3563 } else {
3564 /* Enable the first components-many channels */
3565 colors_enabled = (1 << components) - 1;
3566 }
3567
3568 if (dispatch_width == 8 || (devinfo->gen >= 6 && !do_dual_src)) {
3569 /* SIMD8 write looks like:
3570 * m + 0: r0
3571 * m + 1: r1
3572 * m + 2: g0
3573 * m + 3: g1
3574 *
3575 * gen6 SIMD16 DP write looks like:
3576 * m + 0: r0
3577 * m + 1: r1
3578 * m + 2: g0
3579 * m + 3: g1
3580 * m + 4: b0
3581 * m + 5: b1
3582 * m + 6: a0
3583 * m + 7: a1
3584 */
3585 int len = 0;
3586 for (unsigned i = 0; i < 4; ++i) {
3587 if (colors_enabled & (1 << i)) {
3588 dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8),
3589 color.type, color.width);
3590 inst = emit(MOV(dst[len], offset(color, i)));
3591 inst->saturate = key->clamp_fragment_color;
3592 } else if (color.width == 16) {
3593 /* We need two BAD_FILE slots for a 16-wide color */
3594 len++;
3595 }
3596 len++;
3597 }
3598 return len;
3599 } else if (devinfo->gen >= 6 && do_dual_src) {
3600 /* SIMD16 dual source blending for gen6+.
3601 *
3602 * From the SNB PRM, volume 4, part 1, page 193:
3603 *
3604 * "The dual source render target messages only have SIMD8 forms due to
3605 * maximum message length limitations. SIMD16 pixel shaders must send two
3606 * of these messages to cover all of the pixels. Each message contains
3607 * two colors (4 channels each) for each pixel in the message payload."
3608 *
3609 * So in SIMD16 dual source blending we will send 2 SIMD8 messages,
3610 * each one will call this function twice (one for each color involved),
3611 * so in each pass we only write 4 registers. Notice that the second
3612 * SIMD8 message needs to read color data from the 2nd half of the color
3613 * registers, so it needs to call this with use_2nd_half = true.
3614 */
3615 for (unsigned i = 0; i < 4; ++i) {
3616 if (colors_enabled & (1 << i)) {
3617 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3618 inst = emit(MOV(dst[i], half(offset(color, i),
3619 use_2nd_half ? 1 : 0)));
3620 inst->saturate = key->clamp_fragment_color;
3621 if (use_2nd_half)
3622 inst->force_sechalf = true;
3623 }
3624 }
3625 return 4;
3626 } else {
3627 /* pre-gen6 SIMD16 single source DP write looks like:
3628 * m + 0: r0
3629 * m + 1: g0
3630 * m + 2: b0
3631 * m + 3: a0
3632 * m + 4: r1
3633 * m + 5: g1
3634 * m + 6: b1
3635 * m + 7: a1
3636 */
3637 for (unsigned i = 0; i < 4; ++i) {
3638 if (colors_enabled & (1 << i)) {
3639 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3640 inst = emit(MOV(dst[i], half(offset(color, i), 0)));
3641 inst->saturate = key->clamp_fragment_color;
3642
3643 dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type);
3644 inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
3645 inst->saturate = key->clamp_fragment_color;
3646 inst->force_sechalf = true;
3647 }
3648 }
3649 return 8;
3650 }
3651 }
3652
3653 static enum brw_conditional_mod
3654 cond_for_alpha_func(GLenum func)
3655 {
3656 switch(func) {
3657 case GL_GREATER:
3658 return BRW_CONDITIONAL_G;
3659 case GL_GEQUAL:
3660 return BRW_CONDITIONAL_GE;
3661 case GL_LESS:
3662 return BRW_CONDITIONAL_L;
3663 case GL_LEQUAL:
3664 return BRW_CONDITIONAL_LE;
3665 case GL_EQUAL:
3666 return BRW_CONDITIONAL_EQ;
3667 case GL_NOTEQUAL:
3668 return BRW_CONDITIONAL_NEQ;
3669 default:
3670 unreachable("Not reached");
3671 }
3672 }
3673
3674 /**
3675 * Alpha test support for when we compile it into the shader instead
3676 * of using the normal fixed-function alpha test.
3677 */
3678 void
3679 fs_visitor::emit_alpha_test()
3680 {
3681 assert(stage == MESA_SHADER_FRAGMENT);
3682 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3683 this->current_annotation = "Alpha test";
3684
3685 fs_inst *cmp;
3686 if (key->alpha_test_func == GL_ALWAYS)
3687 return;
3688
3689 if (key->alpha_test_func == GL_NEVER) {
3690 /* f0.1 = 0 */
3691 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3692 BRW_REGISTER_TYPE_UW));
3693 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
3694 BRW_CONDITIONAL_NEQ));
3695 } else {
3696 /* RT0 alpha */
3697 fs_reg color = offset(outputs[0], 3);
3698
3699 /* f0.1 &= func(color, ref) */
3700 cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
3701 cond_for_alpha_func(key->alpha_test_func)));
3702 }
3703 cmp->predicate = BRW_PREDICATE_NORMAL;
3704 cmp->flag_subreg = 1;
3705 }
3706
3707 fs_inst *
3708 fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
3709 fs_reg src0_alpha, unsigned components,
3710 bool use_2nd_half)
3711 {
3712 assert(stage == MESA_SHADER_FRAGMENT);
3713 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3714 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3715
3716 this->current_annotation = "FB write header";
3717 bool header_present = true;
3718 int reg_size = dispatch_width / 8;
3719
3720 /* We can potentially have a message length of up to 15, so we have to set
3721 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3722 */
3723 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
3724 int length = 0;
3725
3726 /* From the Sandy Bridge PRM, volume 4, page 198:
3727 *
3728 * "Dispatched Pixel Enables. One bit per pixel indicating
3729 * which pixels were originally enabled when the thread was
3730 * dispatched. This field is only required for the end-of-
3731 * thread message and on all dual-source messages."
3732 */
3733 if (devinfo->gen >= 6 &&
3734 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3735 color1.file == BAD_FILE &&
3736 key->nr_color_regions == 1) {
3737 header_present = false;
3738 }
3739
3740 if (header_present)
3741 /* Allocate 2 registers for a header */
3742 length += 2;
3743
3744 if (payload.aa_dest_stencil_reg) {
3745 sources[length] = fs_reg(GRF, alloc.allocate(1));
3746 emit(MOV(sources[length],
3747 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
3748 length++;
3749 }
3750
3751 prog_data->uses_omask =
3752 prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
3753 if (prog_data->uses_omask) {
3754 this->current_annotation = "FB write oMask";
3755 assert(this->sample_mask.file != BAD_FILE);
3756 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
3757 * it's unsinged single words, one vgrf is always 16-wide.
3758 */
3759 sources[length] = fs_reg(GRF, alloc.allocate(1),
3760 BRW_REGISTER_TYPE_UW, 16);
3761 emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
3762 length++;
3763 }
3764
3765 if (color0.file == BAD_FILE) {
3766 /* Even if there's no color buffers enabled, we still need to send
3767 * alpha out the pipeline to our null renderbuffer to support
3768 * alpha-testing, alpha-to-coverage, and so on.
3769 */
3770 length += setup_color_payload(sources + length, this->outputs[0], 0,
3771 false);
3772 } else if (color1.file == BAD_FILE) {
3773 if (src0_alpha.file != BAD_FILE) {
3774 sources[length] = fs_reg(GRF, alloc.allocate(reg_size),
3775 src0_alpha.type, src0_alpha.width);
3776 fs_inst *inst = emit(MOV(sources[length], src0_alpha));
3777 inst->saturate = key->clamp_fragment_color;
3778 length++;
3779 }
3780
3781 length += setup_color_payload(sources + length, color0, components,
3782 false);
3783 } else {
3784 length += setup_color_payload(sources + length, color0, components,
3785 use_2nd_half);
3786 length += setup_color_payload(sources + length, color1, components,
3787 use_2nd_half);
3788 }
3789
3790 if (source_depth_to_render_target) {
3791 if (devinfo->gen == 6) {
3792 /* For outputting oDepth on gen6, SIMD8 writes have to be
3793 * used. This would require SIMD8 moves of each half to
3794 * message regs, kind of like pre-gen5 SIMD16 FB writes.
3795 * Just bail on doing so for now.
3796 */
3797 no16("Missing support for simd16 depth writes on gen6\n");
3798 }
3799
3800 sources[length] = vgrf(glsl_type::float_type);
3801 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3802 /* Hand over gl_FragDepth. */
3803 assert(this->frag_depth.file != BAD_FILE);
3804 emit(MOV(sources[length], this->frag_depth));
3805 } else {
3806 /* Pass through the payload depth. */
3807 emit(MOV(sources[length],
3808 fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
3809 }
3810 length++;
3811 }
3812
3813 if (payload.dest_depth_reg) {
3814 sources[length] = vgrf(glsl_type::float_type);
3815 emit(MOV(sources[length],
3816 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
3817 length++;
3818 }
3819
3820 fs_inst *load;
3821 fs_inst *write;
3822 if (devinfo->gen >= 7) {
3823 /* Send from the GRF */
3824 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3825 load = emit(LOAD_PAYLOAD(payload, sources, length));
3826 payload.reg = alloc.allocate(load->regs_written);
3827 payload.width = dispatch_width;
3828 load->dst = payload;
3829 write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
3830 write->base_mrf = -1;
3831 } else {
3832 /* Send from the MRF */
3833 load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3834 sources, length));
3835 write = emit(FS_OPCODE_FB_WRITE);
3836 write->exec_size = dispatch_width;
3837 write->base_mrf = 1;
3838 }
3839
3840 write->mlen = load->regs_written;
3841 write->header_present = header_present;
3842 if (prog_data->uses_kill) {
3843 write->predicate = BRW_PREDICATE_NORMAL;
3844 write->flag_subreg = 1;
3845 }
3846 return write;
3847 }
3848
3849 void
3850 fs_visitor::emit_fb_writes()
3851 {
3852 assert(stage == MESA_SHADER_FRAGMENT);
3853 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3854 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3855
3856 fs_inst *inst = NULL;
3857 if (do_dual_src) {
3858 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3859 "FB dual-source write");
3860 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3861 reg_undef, 4);
3862 inst->target = 0;
3863
3864 /* SIMD16 dual source blending requires to send two SIMD8 dual source
3865 * messages, where each message contains color data for 8 pixels. Color
3866 * data for the first group of pixels is stored in the "lower" half of
3867 * the color registers, so in SIMD16, the previous message did:
3868 * m + 0: r0
3869 * m + 1: g0
3870 * m + 2: b0
3871 * m + 3: a0
3872 *
3873 * Here goes the second message, which packs color data for the
3874 * remaining 8 pixels. Color data for these pixels is stored in the
3875 * "upper" half of the color registers, so we need to do:
3876 * m + 0: r1
3877 * m + 1: g1
3878 * m + 2: b1
3879 * m + 3: a1
3880 */
3881 if (dispatch_width == 16) {
3882 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3883 reg_undef, 4, true);
3884 inst->target = 0;
3885 }
3886
3887 prog_data->dual_src_blend = true;
3888 } else {
3889 for (int target = 0; target < key->nr_color_regions; target++) {
3890 /* Skip over outputs that weren't written. */
3891 if (this->outputs[target].file == BAD_FILE)
3892 continue;
3893
3894 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3895 "FB write target %d",
3896 target);
3897 fs_reg src0_alpha;
3898 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
3899 src0_alpha = offset(outputs[0], 3);
3900
3901 inst = emit_single_fb_write(this->outputs[target], reg_undef,
3902 src0_alpha,
3903 this->output_components[target]);
3904 inst->target = target;
3905 }
3906 }
3907
3908 if (inst == NULL) {
3909 /* Even if there's no color buffers enabled, we still need to send
3910 * alpha out the pipeline to our null renderbuffer to support
3911 * alpha-testing, alpha-to-coverage, and so on.
3912 */
3913 inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
3914 inst->target = 0;
3915 }
3916
3917 inst->eot = true;
3918 this->current_annotation = NULL;
3919 }
3920
3921 void
3922 fs_visitor::setup_uniform_clipplane_values()
3923 {
3924 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
3925 const struct brw_vue_prog_key *key =
3926 (const struct brw_vue_prog_key *) this->key;
3927
3928 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3929 this->userplane[i] = fs_reg(UNIFORM, uniforms);
3930 for (int j = 0; j < 4; ++j) {
3931 stage_prog_data->param[uniforms + j] =
3932 (gl_constant_value *) &clip_planes[i][j];
3933 }
3934 uniforms += 4;
3935 }
3936 }
3937
3938 void fs_visitor::compute_clip_distance()
3939 {
3940 struct brw_vue_prog_data *vue_prog_data =
3941 (struct brw_vue_prog_data *) prog_data;
3942 const struct brw_vue_prog_key *key =
3943 (const struct brw_vue_prog_key *) this->key;
3944
3945 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
3946 *
3947 * "If a linked set of shaders forming the vertex stage contains no
3948 * static write to gl_ClipVertex or gl_ClipDistance, but the
3949 * application has requested clipping against user clip planes through
3950 * the API, then the coordinate written to gl_Position is used for
3951 * comparison against the user clip planes."
3952 *
3953 * This function is only called if the shader didn't write to
3954 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
3955 * if the user wrote to it; otherwise we use gl_Position.
3956 */
3957
3958 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
3959 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
3960 clip_vertex = VARYING_SLOT_POS;
3961
3962 /* If the clip vertex isn't written, skip this. Typically this means
3963 * the GS will set up clipping. */
3964 if (outputs[clip_vertex].file == BAD_FILE)
3965 return;
3966
3967 setup_uniform_clipplane_values();
3968
3969 current_annotation = "user clip distances";
3970
3971 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
3972 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
3973
3974 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3975 fs_reg u = userplane[i];
3976 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
3977 output.reg_offset = i & 3;
3978
3979 emit(MUL(output, outputs[clip_vertex], u));
3980 for (int j = 1; j < 4; j++) {
3981 u.reg = userplane[i].reg + j;
3982 emit(MAD(output, output, offset(outputs[clip_vertex], j), u));
3983 }
3984 }
3985 }
3986
3987 void
3988 fs_visitor::emit_urb_writes()
3989 {
3990 int slot, urb_offset, length;
3991 struct brw_vs_prog_data *vs_prog_data =
3992 (struct brw_vs_prog_data *) prog_data;
3993 const struct brw_vs_prog_key *key =
3994 (const struct brw_vs_prog_key *) this->key;
3995 const GLbitfield64 psiz_mask =
3996 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
3997 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
3998 bool flush;
3999 fs_reg sources[8];
4000
4001 /* Lower legacy ff and ClipVertex clipping to clip distances */
4002 if (key->base.userclip_active && !prog->UsesClipDistanceOut)
4003 compute_clip_distance();
4004
4005 /* If we don't have any valid slots to write, just do a minimal urb write
4006 * send to terminate the shader. */
4007 if (vue_map->slots_valid == 0) {
4008
4009 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4010 fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
4011 BRW_REGISTER_TYPE_UD))));
4012 inst->force_writemask_all = true;
4013
4014 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4015 inst->eot = true;
4016 inst->mlen = 1;
4017 inst->offset = 1;
4018 return;
4019 }
4020
4021 length = 0;
4022 urb_offset = 0;
4023 flush = false;
4024 for (slot = 0; slot < vue_map->num_slots; slot++) {
4025 fs_reg reg, src, zero;
4026
4027 int varying = vue_map->slot_to_varying[slot];
4028 switch (varying) {
4029 case VARYING_SLOT_PSIZ:
4030
4031 /* The point size varying slot is the vue header and is always in the
4032 * vue map. But often none of the special varyings that live there
4033 * are written and in that case we can skip writing to the vue
4034 * header, provided the corresponding state properly clamps the
4035 * values further down the pipeline. */
4036 if ((vue_map->slots_valid & psiz_mask) == 0) {
4037 assert(length == 0);
4038 urb_offset++;
4039 break;
4040 }
4041
4042 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4043 emit(MOV(zero, fs_reg(0u)));
4044
4045 sources[length++] = zero;
4046 if (vue_map->slots_valid & VARYING_BIT_LAYER)
4047 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
4048 else
4049 sources[length++] = zero;
4050
4051 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
4052 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
4053 else
4054 sources[length++] = zero;
4055
4056 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
4057 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
4058 else
4059 sources[length++] = zero;
4060 break;
4061
4062 case BRW_VARYING_SLOT_NDC:
4063 case VARYING_SLOT_EDGE:
4064 unreachable("unexpected scalar vs output");
4065 break;
4066
4067 case BRW_VARYING_SLOT_PAD:
4068 break;
4069
4070 default:
4071 /* gl_Position is always in the vue map, but isn't always written by
4072 * the shader. Other varyings (clip distances) get added to the vue
4073 * map but don't always get written. In those cases, the
4074 * corresponding this->output[] slot will be invalid we and can skip
4075 * the urb write for the varying. If we've already queued up a vue
4076 * slot for writing we flush a mlen 5 urb write, otherwise we just
4077 * advance the urb_offset.
4078 */
4079 if (this->outputs[varying].file == BAD_FILE) {
4080 if (length > 0)
4081 flush = true;
4082 else
4083 urb_offset++;
4084 break;
4085 }
4086
4087 if ((varying == VARYING_SLOT_COL0 ||
4088 varying == VARYING_SLOT_COL1 ||
4089 varying == VARYING_SLOT_BFC0 ||
4090 varying == VARYING_SLOT_BFC1) &&
4091 key->clamp_vertex_color) {
4092 /* We need to clamp these guys, so do a saturating MOV into a
4093 * temp register and use that for the payload.
4094 */
4095 for (int i = 0; i < 4; i++) {
4096 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
4097 src = offset(this->outputs[varying], i);
4098 fs_inst *inst = emit(MOV(reg, src));
4099 inst->saturate = true;
4100 sources[length++] = reg;
4101 }
4102 } else {
4103 for (int i = 0; i < 4; i++)
4104 sources[length++] = offset(this->outputs[varying], i);
4105 }
4106 break;
4107 }
4108
4109 current_annotation = "URB write";
4110
4111 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
4112 * the last slot or if we need to flush (see BAD_FILE varying case
4113 * above), emit a URB write send now to flush out the data.
4114 */
4115 int last = slot == vue_map->num_slots - 1;
4116 if (length == 8 || last)
4117 flush = true;
4118 if (flush) {
4119 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
4120 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
4121 BRW_REGISTER_TYPE_F);
4122
4123 /* We need WE_all on the MOV for the message header (the URB handles)
4124 * so do a MOV to a dummy register and set force_writemask_all on the
4125 * MOV. LOAD_PAYLOAD will preserve that.
4126 */
4127 fs_reg dummy = fs_reg(GRF, alloc.allocate(1),
4128 BRW_REGISTER_TYPE_UD);
4129 fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0),
4130 BRW_REGISTER_TYPE_UD))));
4131 inst->force_writemask_all = true;
4132 payload_sources[0] = dummy;
4133
4134 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
4135 emit(LOAD_PAYLOAD(payload, payload_sources, length + 1));
4136
4137 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4138 inst->eot = last;
4139 inst->mlen = length + 1;
4140 inst->offset = urb_offset;
4141 urb_offset = slot + 1;
4142 length = 0;
4143 flush = false;
4144 }
4145 }
4146 }
4147
4148 void
4149 fs_visitor::resolve_ud_negate(fs_reg *reg)
4150 {
4151 if (reg->type != BRW_REGISTER_TYPE_UD ||
4152 !reg->negate)
4153 return;
4154
4155 fs_reg temp = vgrf(glsl_type::uint_type);
4156 emit(MOV(temp, *reg));
4157 *reg = temp;
4158 }
4159
4160 void
4161 fs_visitor::emit_cs_terminate()
4162 {
4163 assert(brw->gen >= 7);
4164
4165 /* We are getting the thread ID from the compute shader header */
4166 assert(stage == MESA_SHADER_COMPUTE);
4167
4168 /* We can't directly send from g0, since sends with EOT have to use
4169 * g112-127. So, copy it to a virtual register, The register allocator will
4170 * make sure it uses the appropriate register range.
4171 */
4172 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
4173 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4174 fs_inst *inst = emit(MOV(payload, g0));
4175 inst->force_writemask_all = true;
4176
4177 /* Send a message to the thread spawner to terminate the thread. */
4178 inst = emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
4179 inst->eot = true;
4180 }
4181
4182 /**
4183 * Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
4184 *
4185 * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
4186 * If we need a proper boolean value, we have to fix it up to be 0 or ~0.
4187 */
4188 void
4189 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
4190 {
4191 assert(devinfo->gen <= 5);
4192
4193 if (rvalue->type != glsl_type::bool_type)
4194 return;
4195
4196 fs_reg and_result = vgrf(glsl_type::bool_type);
4197 fs_reg neg_result = vgrf(glsl_type::bool_type);
4198 emit(AND(and_result, *reg, fs_reg(1)));
4199 emit(MOV(neg_result, negate(and_result)));
4200 *reg = neg_result;
4201 }
4202
4203 fs_visitor::fs_visitor(struct brw_context *brw,
4204 void *mem_ctx,
4205 const struct brw_wm_prog_key *key,
4206 struct brw_wm_prog_data *prog_data,
4207 struct gl_shader_program *shader_prog,
4208 struct gl_fragment_program *fp,
4209 unsigned dispatch_width)
4210 : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
4211 MESA_SHADER_FRAGMENT),
4212 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4213 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4214 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4215 key(key), prog_data(&prog_data->base),
4216 dispatch_width(dispatch_width), promoted_constants(0)
4217 {
4218 this->mem_ctx = mem_ctx;
4219 init();
4220 }
4221
4222 fs_visitor::fs_visitor(struct brw_context *brw,
4223 void *mem_ctx,
4224 const struct brw_vs_prog_key *key,
4225 struct brw_vs_prog_data *prog_data,
4226 struct gl_shader_program *shader_prog,
4227 struct gl_vertex_program *cp,
4228 unsigned dispatch_width)
4229 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base,
4230 MESA_SHADER_VERTEX),
4231 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4232 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4233 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4234 key(key), prog_data(&prog_data->base.base),
4235 dispatch_width(dispatch_width), promoted_constants(0)
4236 {
4237 this->mem_ctx = mem_ctx;
4238 init();
4239 }
4240
4241 fs_visitor::fs_visitor(struct brw_context *brw,
4242 void *mem_ctx,
4243 const struct brw_cs_prog_key *key,
4244 struct brw_cs_prog_data *prog_data,
4245 struct gl_shader_program *shader_prog,
4246 struct gl_compute_program *cp,
4247 unsigned dispatch_width)
4248 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base,
4249 MESA_SHADER_COMPUTE),
4250 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4251 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4252 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4253 key(key), prog_data(&prog_data->base),
4254 dispatch_width(dispatch_width)
4255 {
4256 this->mem_ctx = mem_ctx;
4257 init();
4258 }
4259
4260 void
4261 fs_visitor::init()
4262 {
4263 switch (stage) {
4264 case MESA_SHADER_FRAGMENT:
4265 key_tex = &((const brw_wm_prog_key *) key)->tex;
4266 break;
4267 case MESA_SHADER_VERTEX:
4268 case MESA_SHADER_GEOMETRY:
4269 key_tex = &((const brw_vue_prog_key *) key)->tex;
4270 break;
4271 case MESA_SHADER_COMPUTE:
4272 key_tex = &((const brw_cs_prog_key*) key)->tex;
4273 break;
4274 default:
4275 unreachable("unhandled shader stage");
4276 }
4277
4278 this->failed = false;
4279 this->simd16_unsupported = false;
4280 this->no16_msg = NULL;
4281 this->variable_ht = hash_table_ctor(0,
4282 hash_table_pointer_hash,
4283 hash_table_pointer_compare);
4284
4285 this->nir_locals = NULL;
4286 this->nir_globals = NULL;
4287
4288 memset(&this->payload, 0, sizeof(this->payload));
4289 memset(this->outputs, 0, sizeof(this->outputs));
4290 memset(this->output_components, 0, sizeof(this->output_components));
4291 this->source_depth_to_render_target = false;
4292 this->runtime_check_aads_emit = false;
4293 this->first_non_payload_grf = 0;
4294 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
4295
4296 this->current_annotation = NULL;
4297 this->base_ir = NULL;
4298
4299 this->virtual_grf_start = NULL;
4300 this->virtual_grf_end = NULL;
4301 this->live_intervals = NULL;
4302 this->regs_live_at_ip = NULL;
4303
4304 this->uniforms = 0;
4305 this->last_scratch = 0;
4306 this->pull_constant_loc = NULL;
4307 this->push_constant_loc = NULL;
4308
4309 this->spilled_any_registers = false;
4310 this->do_dual_src = false;
4311
4312 if (dispatch_width == 8)
4313 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
4314 }
4315
4316 fs_visitor::~fs_visitor()
4317 {
4318 hash_table_dtor(this->variable_ht);
4319 }