i965: Rename GRF to VGRF.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_vec4_gs_visitor.h"
45 #include "brw_fs.h"
46 #include "main/uniforms.h"
47 #include "glsl/nir/glsl_types.h"
48 #include "glsl/ir_optimization.h"
49 #include "program/sampler.h"
50
51 using namespace brw;
52
53 fs_reg *
54 fs_visitor::emit_vs_system_value(int location)
55 {
56 fs_reg *reg = new(this->mem_ctx)
57 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
58 BRW_REGISTER_TYPE_D);
59 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
60
61 switch (location) {
62 case SYSTEM_VALUE_BASE_VERTEX:
63 reg->reg_offset = 0;
64 vs_prog_data->uses_vertexid = true;
65 break;
66 case SYSTEM_VALUE_VERTEX_ID:
67 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
68 reg->reg_offset = 2;
69 vs_prog_data->uses_vertexid = true;
70 break;
71 case SYSTEM_VALUE_INSTANCE_ID:
72 reg->reg_offset = 3;
73 vs_prog_data->uses_instanceid = true;
74 break;
75 default:
76 unreachable("not reached");
77 }
78
79 return reg;
80 }
81
82 fs_reg
83 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
84 bool is_rect, uint32_t sampler)
85 {
86 bool needs_gl_clamp = true;
87 fs_reg scale_x, scale_y;
88
89 /* The 965 requires the EU to do the normalization of GL rectangle
90 * texture coordinates. We use the program parameter state
91 * tracking to get the scaling factor.
92 */
93 if (is_rect &&
94 (devinfo->gen < 6 ||
95 (devinfo->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
96 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
97 struct gl_program_parameter_list *params = prog->Parameters;
98
99
100 /* FINISHME: We're failing to recompile our programs when the sampler is
101 * updated. This only matters for the texture rectangle scale
102 * parameters (pre-gen6, or gen6+ with GL_CLAMP).
103 */
104 int tokens[STATE_LENGTH] = {
105 STATE_INTERNAL,
106 STATE_TEXRECT_SCALE,
107 prog->SamplerUnits[sampler],
108 0,
109 0
110 };
111
112 no16("rectangle scale uniform setup not supported on SIMD16\n");
113 if (dispatch_width == 16) {
114 return coordinate;
115 }
116
117 GLuint index = _mesa_add_state_reference(params,
118 (gl_state_index *)tokens);
119 /* Try to find existing copies of the texrect scale uniforms. */
120 for (unsigned i = 0; i < uniforms; i++) {
121 if (stage_prog_data->param[i] ==
122 &prog->Parameters->ParameterValues[index][0]) {
123 scale_x = fs_reg(UNIFORM, i);
124 scale_y = fs_reg(UNIFORM, i + 1);
125 break;
126 }
127 }
128
129 /* If we didn't already set them up, do so now. */
130 if (scale_x.file == BAD_FILE) {
131 scale_x = fs_reg(UNIFORM, uniforms);
132 scale_y = fs_reg(UNIFORM, uniforms + 1);
133
134 stage_prog_data->param[uniforms++] =
135 &prog->Parameters->ParameterValues[index][0];
136 stage_prog_data->param[uniforms++] =
137 &prog->Parameters->ParameterValues[index][1];
138 }
139 }
140
141 /* The 965 requires the EU to do the normalization of GL rectangle
142 * texture coordinates. We use the program parameter state
143 * tracking to get the scaling factor.
144 */
145 if (devinfo->gen < 6 && is_rect) {
146 fs_reg dst = fs_reg(VGRF, alloc.allocate(coord_components));
147 fs_reg src = coordinate;
148 coordinate = dst;
149
150 bld.MUL(dst, src, scale_x);
151 dst = offset(dst, bld, 1);
152 src = offset(src, bld, 1);
153 bld.MUL(dst, src, scale_y);
154 } else if (is_rect) {
155 /* On gen6+, the sampler handles the rectangle coordinates
156 * natively, without needing rescaling. But that means we have
157 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
158 * not [0, 1] like the default case below.
159 */
160 needs_gl_clamp = false;
161
162 for (int i = 0; i < 2; i++) {
163 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
164 fs_reg chan = coordinate;
165 chan = offset(chan, bld, i);
166
167 set_condmod(BRW_CONDITIONAL_GE,
168 bld.emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f)));
169
170 /* Our parameter comes in as 1.0/width or 1.0/height,
171 * because that's what people normally want for doing
172 * texture rectangle handling. We need width or height
173 * for clamping, but we don't care enough to make a new
174 * parameter type, so just invert back.
175 */
176 fs_reg limit = vgrf(glsl_type::float_type);
177 bld.MOV(limit, i == 0 ? scale_x : scale_y);
178 bld.emit(SHADER_OPCODE_RCP, limit, limit);
179
180 set_condmod(BRW_CONDITIONAL_L,
181 bld.emit(BRW_OPCODE_SEL, chan, chan, limit));
182 }
183 }
184 }
185
186 if (coord_components > 0 && needs_gl_clamp) {
187 for (int i = 0; i < MIN2(coord_components, 3); i++) {
188 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
189 fs_reg chan = coordinate;
190 chan = offset(chan, bld, i);
191 set_saturate(true, bld.MOV(chan, chan));
192 }
193 }
194 }
195 return coordinate;
196 }
197
198 /* Sample from the MCS surface attached to this multisample texture. */
199 fs_reg
200 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
201 const fs_reg &sampler)
202 {
203 const fs_reg dest = vgrf(glsl_type::uvec4_type);
204 const fs_reg srcs[] = {
205 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
206 sampler, fs_reg(), fs_reg(components), fs_reg(0)
207 };
208 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
209 ARRAY_SIZE(srcs));
210
211 /* We only care about one or two regs of response, but the sampler always
212 * writes 4/8.
213 */
214 inst->regs_written = 4 * dispatch_width / 8;
215
216 return dest;
217 }
218
219 void
220 fs_visitor::emit_texture(ir_texture_opcode op,
221 const glsl_type *dest_type,
222 fs_reg coordinate, int coord_components,
223 fs_reg shadow_c,
224 fs_reg lod, fs_reg lod2, int grad_components,
225 fs_reg sample_index,
226 fs_reg offset_value,
227 fs_reg mcs,
228 int gather_component,
229 bool is_cube_array,
230 bool is_rect,
231 uint32_t sampler,
232 fs_reg sampler_reg)
233 {
234 fs_inst *inst = NULL;
235
236 if (op == ir_tg4) {
237 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
238 * emitting anything other than setting up the constant result.
239 */
240 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
241 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
242
243 fs_reg res = vgrf(glsl_type::vec4_type);
244 this->result = res;
245
246 for (int i=0; i<4; i++) {
247 bld.MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f));
248 res = offset(res, bld, 1);
249 }
250 return;
251 }
252 }
253
254 if (op == ir_query_levels) {
255 /* textureQueryLevels() is implemented in terms of TXS so we need to
256 * pass a valid LOD argument.
257 */
258 assert(lod.file == BAD_FILE);
259 lod = fs_reg(0u);
260 }
261
262 if (coordinate.file != BAD_FILE) {
263 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
264 * samplers. This should only be a problem with GL_CLAMP on Gen7.
265 */
266 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
267 sampler);
268 }
269
270 /* Writemasking doesn't eliminate channels on SIMD8 texture
271 * samples, so don't worry about them.
272 */
273 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
274 const fs_reg srcs[] = {
275 coordinate, shadow_c, lod, lod2,
276 sample_index, mcs, sampler_reg, offset_value,
277 fs_reg(coord_components), fs_reg(grad_components)
278 };
279 enum opcode opcode;
280
281 switch (op) {
282 case ir_tex:
283 opcode = SHADER_OPCODE_TEX_LOGICAL;
284 break;
285 case ir_txb:
286 opcode = FS_OPCODE_TXB_LOGICAL;
287 break;
288 case ir_txl:
289 opcode = SHADER_OPCODE_TXL_LOGICAL;
290 break;
291 case ir_txd:
292 opcode = SHADER_OPCODE_TXD_LOGICAL;
293 break;
294 case ir_txf:
295 opcode = SHADER_OPCODE_TXF_LOGICAL;
296 break;
297 case ir_txf_ms:
298 if ((key_tex->msaa_16 & (1 << sampler)))
299 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
300 else
301 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
302 break;
303 case ir_txs:
304 case ir_query_levels:
305 opcode = SHADER_OPCODE_TXS_LOGICAL;
306 break;
307 case ir_lod:
308 opcode = SHADER_OPCODE_LOD_LOGICAL;
309 break;
310 case ir_tg4:
311 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
312 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
313 break;
314 default:
315 unreachable("Invalid texture opcode.");
316 }
317
318 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
319 inst->regs_written = 4 * dispatch_width / 8;
320
321 if (shadow_c.file != BAD_FILE)
322 inst->shadow_compare = true;
323
324 if (offset_value.file == IMM)
325 inst->offset = offset_value.ud;
326
327 if (op == ir_tg4) {
328 inst->offset |=
329 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
330
331 if (devinfo->gen == 6)
332 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
333 }
334
335 /* fixup #layers for cube map arrays */
336 if (op == ir_txs && is_cube_array) {
337 fs_reg depth = offset(dst, bld, 2);
338 fs_reg fixed_depth = vgrf(glsl_type::int_type);
339 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
340
341 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
342 int components = inst->regs_written / (inst->exec_size / 8);
343 for (int i = 0; i < components; i++) {
344 if (i == 2) {
345 fixed_payload[i] = fixed_depth;
346 } else {
347 fixed_payload[i] = offset(dst, bld, i);
348 }
349 }
350 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
351 }
352
353 swizzle_result(op, dest_type->vector_elements, dst, sampler);
354 }
355
356 /**
357 * Apply workarounds for Gen6 gather with UINT/SINT
358 */
359 void
360 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
361 {
362 if (!wa)
363 return;
364
365 int width = (wa & WA_8BIT) ? 8 : 16;
366
367 for (int i = 0; i < 4; i++) {
368 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
369 /* Convert from UNORM to UINT */
370 bld.MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1)));
371 bld.MOV(dst, dst_f);
372
373 if (wa & WA_SIGN) {
374 /* Reinterpret the UINT value as a signed INT value by
375 * shifting the sign bit into place, then shifting back
376 * preserving sign.
377 */
378 bld.SHL(dst, dst, fs_reg(32 - width));
379 bld.ASR(dst, dst, fs_reg(32 - width));
380 }
381
382 dst = offset(dst, bld, 1);
383 }
384 }
385
386 /**
387 * Set up the gather channel based on the swizzle, for gather4.
388 */
389 uint32_t
390 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
391 {
392 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
393 switch (swiz) {
394 case SWIZZLE_X: return 0;
395 case SWIZZLE_Y:
396 /* gather4 sampler is broken for green channel on RG32F --
397 * we must ask for blue instead.
398 */
399 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
400 return 2;
401 return 1;
402 case SWIZZLE_Z: return 2;
403 case SWIZZLE_W: return 3;
404 default:
405 unreachable("Not reached"); /* zero, one swizzles handled already */
406 }
407 }
408
409 /**
410 * Swizzle the result of a texture result. This is necessary for
411 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
412 */
413 void
414 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
415 fs_reg orig_val, uint32_t sampler)
416 {
417 if (op == ir_query_levels) {
418 /* # levels is in .w */
419 this->result = offset(orig_val, bld, 3);
420 return;
421 }
422
423 this->result = orig_val;
424
425 /* txs,lod don't actually sample the texture, so swizzling the result
426 * makes no sense.
427 */
428 if (op == ir_txs || op == ir_lod || op == ir_tg4)
429 return;
430
431 if (dest_components == 1) {
432 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
433 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
434 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
435 swizzled_result.type = orig_val.type;
436
437 for (int i = 0; i < 4; i++) {
438 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
439 fs_reg l = swizzled_result;
440 l = offset(l, bld, i);
441
442 if (swiz == SWIZZLE_ZERO) {
443 bld.MOV(l, fs_reg(0.0f));
444 } else if (swiz == SWIZZLE_ONE) {
445 bld.MOV(l, fs_reg(1.0f));
446 } else {
447 bld.MOV(l, offset(orig_val, bld,
448 GET_SWZ(key_tex->swizzles[sampler], i)));
449 }
450 }
451 this->result = swizzled_result;
452 }
453 }
454
455 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
456 void
457 fs_visitor::emit_dummy_fs()
458 {
459 int reg_width = dispatch_width / 8;
460
461 /* Everyone's favorite color. */
462 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
463 for (int i = 0; i < 4; i++) {
464 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
465 fs_reg(color[i]));
466 }
467
468 fs_inst *write;
469 write = bld.emit(FS_OPCODE_FB_WRITE);
470 write->eot = true;
471 if (devinfo->gen >= 6) {
472 write->base_mrf = 2;
473 write->mlen = 4 * reg_width;
474 } else {
475 write->header_size = 2;
476 write->base_mrf = 0;
477 write->mlen = 2 + 4 * reg_width;
478 }
479
480 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
481 * varying to avoid GPU hangs, so set that.
482 */
483 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
484 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
485 memset(wm_prog_data->urb_setup, -1,
486 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
487
488 /* We don't have any uniforms. */
489 stage_prog_data->nr_params = 0;
490 stage_prog_data->nr_pull_params = 0;
491 stage_prog_data->curb_read_length = 0;
492 stage_prog_data->dispatch_grf_start_reg = 2;
493 wm_prog_data->dispatch_grf_start_reg_16 = 2;
494 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
495
496 calculate_cfg();
497 }
498
499 /* The register location here is relative to the start of the URB
500 * data. It will get adjusted to be a real location before
501 * generate_code() time.
502 */
503 struct brw_reg
504 fs_visitor::interp_reg(int location, int channel)
505 {
506 assert(stage == MESA_SHADER_FRAGMENT);
507 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
508 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
509 int stride = (channel & 1) * 4;
510
511 assert(prog_data->urb_setup[location] != -1);
512
513 return brw_vec1_grf(regnr, stride);
514 }
515
516 /** Emits the interpolation for the varying inputs. */
517 void
518 fs_visitor::emit_interpolation_setup_gen4()
519 {
520 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
521
522 fs_builder abld = bld.annotate("compute pixel centers");
523 this->pixel_x = vgrf(glsl_type::uint_type);
524 this->pixel_y = vgrf(glsl_type::uint_type);
525 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
526 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
527 abld.ADD(this->pixel_x,
528 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
529 fs_reg(brw_imm_v(0x10101010)));
530 abld.ADD(this->pixel_y,
531 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
532 fs_reg(brw_imm_v(0x11001100)));
533
534 abld = bld.annotate("compute pixel deltas from v0");
535
536 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
537 vgrf(glsl_type::vec2_type);
538 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
539 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
540 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
541
542 if (devinfo->has_pln && dispatch_width == 16) {
543 for (unsigned i = 0; i < 2; i++) {
544 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
545 half(this->pixel_x, i), xstart);
546 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
547 half(this->pixel_y, i), ystart);
548 }
549 } else {
550 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
551 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
552 }
553
554 abld = bld.annotate("compute pos.w and 1/pos.w");
555 /* Compute wpos.w. It's always in our setup, since it's needed to
556 * interpolate the other attributes.
557 */
558 this->wpos_w = vgrf(glsl_type::float_type);
559 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
560 interp_reg(VARYING_SLOT_POS, 3));
561 /* Compute the pixel 1/W value from wpos.w. */
562 this->pixel_w = vgrf(glsl_type::float_type);
563 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
564 }
565
566 /** Emits the interpolation for the varying inputs. */
567 void
568 fs_visitor::emit_interpolation_setup_gen6()
569 {
570 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
571
572 fs_builder abld = bld.annotate("compute pixel centers");
573 if (devinfo->gen >= 8 || dispatch_width == 8) {
574 /* The "Register Region Restrictions" page says for BDW (and newer,
575 * presumably):
576 *
577 * "When destination spans two registers, the source may be one or
578 * two registers. The destination elements must be evenly split
579 * between the two registers."
580 *
581 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
582 * compute our pixel centers.
583 */
584 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
585 BRW_REGISTER_TYPE_UW);
586
587 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
588 dbld.ADD(int_pixel_xy,
589 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
590 fs_reg(brw_imm_v(0x11001010)));
591
592 this->pixel_x = vgrf(glsl_type::float_type);
593 this->pixel_y = vgrf(glsl_type::float_type);
594 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
595 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
596 } else {
597 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
598 *
599 * "When destination spans two registers, the source MUST span two
600 * registers."
601 *
602 * Since the GRF source of the ADD will only read a single register, we
603 * must do two separate ADDs in SIMD16.
604 */
605 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
606 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
607 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
608 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
609 abld.ADD(int_pixel_x,
610 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
611 fs_reg(brw_imm_v(0x10101010)));
612 abld.ADD(int_pixel_y,
613 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
614 fs_reg(brw_imm_v(0x11001100)));
615
616 /* As of gen6, we can no longer mix float and int sources. We have
617 * to turn the integer pixel centers into floats for their actual
618 * use.
619 */
620 this->pixel_x = vgrf(glsl_type::float_type);
621 this->pixel_y = vgrf(glsl_type::float_type);
622 abld.MOV(this->pixel_x, int_pixel_x);
623 abld.MOV(this->pixel_y, int_pixel_y);
624 }
625
626 abld = bld.annotate("compute pos.w");
627 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
628 this->wpos_w = vgrf(glsl_type::float_type);
629 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
630
631 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
632 uint8_t reg = payload.barycentric_coord_reg[i];
633 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
634 }
635 }
636
637 static enum brw_conditional_mod
638 cond_for_alpha_func(GLenum func)
639 {
640 switch(func) {
641 case GL_GREATER:
642 return BRW_CONDITIONAL_G;
643 case GL_GEQUAL:
644 return BRW_CONDITIONAL_GE;
645 case GL_LESS:
646 return BRW_CONDITIONAL_L;
647 case GL_LEQUAL:
648 return BRW_CONDITIONAL_LE;
649 case GL_EQUAL:
650 return BRW_CONDITIONAL_EQ;
651 case GL_NOTEQUAL:
652 return BRW_CONDITIONAL_NEQ;
653 default:
654 unreachable("Not reached");
655 }
656 }
657
658 /**
659 * Alpha test support for when we compile it into the shader instead
660 * of using the normal fixed-function alpha test.
661 */
662 void
663 fs_visitor::emit_alpha_test()
664 {
665 assert(stage == MESA_SHADER_FRAGMENT);
666 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
667 const fs_builder abld = bld.annotate("Alpha test");
668
669 fs_inst *cmp;
670 if (key->alpha_test_func == GL_ALWAYS)
671 return;
672
673 if (key->alpha_test_func == GL_NEVER) {
674 /* f0.1 = 0 */
675 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
676 BRW_REGISTER_TYPE_UW));
677 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
678 BRW_CONDITIONAL_NEQ);
679 } else {
680 /* RT0 alpha */
681 fs_reg color = offset(outputs[0], bld, 3);
682
683 /* f0.1 &= func(color, ref) */
684 cmp = abld.CMP(bld.null_reg_f(), color, fs_reg(key->alpha_test_ref),
685 cond_for_alpha_func(key->alpha_test_func));
686 }
687 cmp->predicate = BRW_PREDICATE_NORMAL;
688 cmp->flag_subreg = 1;
689 }
690
691 fs_inst *
692 fs_visitor::emit_single_fb_write(const fs_builder &bld,
693 fs_reg color0, fs_reg color1,
694 fs_reg src0_alpha, unsigned components)
695 {
696 assert(stage == MESA_SHADER_FRAGMENT);
697 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
698
699 /* Hand over gl_FragDepth or the payload depth. */
700 const fs_reg dst_depth = (payload.dest_depth_reg ?
701 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
702 fs_reg());
703 fs_reg src_depth, src_stencil;
704
705 if (source_depth_to_render_target) {
706 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
707 src_depth = frag_depth;
708 else
709 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
710 }
711
712 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
713 src_stencil = frag_stencil;
714
715 const fs_reg sources[] = {
716 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
717 sample_mask, fs_reg(components)
718 };
719 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
720 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
721 sources, ARRAY_SIZE(sources));
722
723 if (prog_data->uses_kill) {
724 write->predicate = BRW_PREDICATE_NORMAL;
725 write->flag_subreg = 1;
726 }
727
728 return write;
729 }
730
731 void
732 fs_visitor::emit_fb_writes()
733 {
734 assert(stage == MESA_SHADER_FRAGMENT);
735 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
736 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
737
738 fs_inst *inst = NULL;
739
740 if (source_depth_to_render_target && devinfo->gen == 6) {
741 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
742 * would require SIMD8 moves of each half to message regs, e.g. by using
743 * the SIMD lowering pass. Unfortunately this is more difficult than it
744 * sounds because the SIMD8 single-source message lacks channel selects
745 * for the second and third subspans.
746 */
747 no16("Missing support for simd16 depth writes on gen6\n");
748 }
749
750 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
751 /* From the 'Render Target Write message' section of the docs:
752 * "Output Stencil is not supported with SIMD16 Render Target Write
753 * Messages."
754 *
755 * FINISHME: split 16 into 2 8s
756 */
757 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
758 }
759
760 if (do_dual_src) {
761 const fs_builder abld = bld.annotate("FB dual-source write");
762
763 inst = emit_single_fb_write(abld, this->outputs[0],
764 this->dual_src_output, reg_undef, 4);
765 inst->target = 0;
766
767 prog_data->dual_src_blend = true;
768 } else {
769 for (int target = 0; target < key->nr_color_regions; target++) {
770 /* Skip over outputs that weren't written. */
771 if (this->outputs[target].file == BAD_FILE)
772 continue;
773
774 const fs_builder abld = bld.annotate(
775 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
776
777 fs_reg src0_alpha;
778 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
779 src0_alpha = offset(outputs[0], bld, 3);
780
781 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
782 src0_alpha,
783 this->output_components[target]);
784 inst->target = target;
785 }
786 }
787
788 if (inst == NULL) {
789 /* Even if there's no color buffers enabled, we still need to send
790 * alpha out the pipeline to our null renderbuffer to support
791 * alpha-testing, alpha-to-coverage, and so on.
792 */
793 /* FINISHME: Factor out this frequently recurring pattern into a
794 * helper function.
795 */
796 const fs_reg srcs[] = { reg_undef, reg_undef,
797 reg_undef, offset(this->outputs[0], bld, 3) };
798 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
799 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
800
801 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
802 inst->target = 0;
803 }
804
805 inst->eot = true;
806 }
807
808 void
809 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
810 {
811 const struct brw_vs_prog_key *key =
812 (const struct brw_vs_prog_key *) this->key;
813
814 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
815 this->userplane[i] = fs_reg(UNIFORM, uniforms);
816 for (int j = 0; j < 4; ++j) {
817 stage_prog_data->param[uniforms + j] =
818 (gl_constant_value *) &clip_planes[i][j];
819 }
820 uniforms += 4;
821 }
822 }
823
824 /**
825 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
826 *
827 * This does nothing if the shader uses gl_ClipDistance or user clipping is
828 * disabled altogether.
829 */
830 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
831 {
832 struct brw_vue_prog_data *vue_prog_data =
833 (struct brw_vue_prog_data *) prog_data;
834 const struct brw_vs_prog_key *key =
835 (const struct brw_vs_prog_key *) this->key;
836
837 /* Bail unless some sort of legacy clipping is enabled */
838 if (key->nr_userclip_plane_consts == 0)
839 return;
840
841 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
842 *
843 * "If a linked set of shaders forming the vertex stage contains no
844 * static write to gl_ClipVertex or gl_ClipDistance, but the
845 * application has requested clipping against user clip planes through
846 * the API, then the coordinate written to gl_Position is used for
847 * comparison against the user clip planes."
848 *
849 * This function is only called if the shader didn't write to
850 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
851 * if the user wrote to it; otherwise we use gl_Position.
852 */
853
854 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
855 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
856 clip_vertex = VARYING_SLOT_POS;
857
858 /* If the clip vertex isn't written, skip this. Typically this means
859 * the GS will set up clipping. */
860 if (outputs[clip_vertex].file == BAD_FILE)
861 return;
862
863 setup_uniform_clipplane_values(clip_planes);
864
865 const fs_builder abld = bld.annotate("user clip distances");
866
867 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
868 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
869 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
870 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
871
872 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
873 fs_reg u = userplane[i];
874 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
875 output.reg_offset = i & 3;
876
877 abld.MUL(output, outputs[clip_vertex], u);
878 for (int j = 1; j < 4; j++) {
879 u.nr = userplane[i].nr + j;
880 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
881 }
882 }
883 }
884
885 void
886 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
887 {
888 int slot, urb_offset, length;
889 int starting_urb_offset = 0;
890 const struct brw_vue_prog_data *vue_prog_data =
891 (const struct brw_vue_prog_data *) this->prog_data;
892 const struct brw_vs_prog_key *vs_key =
893 (const struct brw_vs_prog_key *) this->key;
894 const GLbitfield64 psiz_mask =
895 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
896 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
897 bool flush;
898 fs_reg sources[8];
899
900 /* If we don't have any valid slots to write, just do a minimal urb write
901 * send to terminate the shader. This includes 1 slot of undefined data,
902 * because it's invalid to write 0 data:
903 *
904 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
905 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
906 * Write Data Payload:
907 *
908 * "The write data payload can be between 1 and 8 message phases long."
909 */
910 if (vue_map->slots_valid == 0) {
911 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
912 bld.exec_all().MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
913 BRW_REGISTER_TYPE_UD)));
914
915 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
916 inst->eot = true;
917 inst->mlen = 2;
918 inst->offset = 1;
919 return;
920 }
921
922 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
923 int header_size = 1;
924 fs_reg per_slot_offsets;
925
926 if (stage == MESA_SHADER_GEOMETRY) {
927 const struct brw_gs_prog_data *gs_prog_data =
928 (const struct brw_gs_prog_data *) this->prog_data;
929
930 /* We need to increment the Global Offset to skip over the control data
931 * header and the extra "Vertex Count" field (1 HWord) at the beginning
932 * of the VUE. We're counting in OWords, so the units are doubled.
933 */
934 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
935 if (gs_prog_data->static_vertex_count == -1)
936 starting_urb_offset += 2;
937
938 /* We also need to use per-slot offsets. The per-slot offset is the
939 * Vertex Count. SIMD8 mode processes 8 different primitives at a
940 * time; each may output a different number of vertices.
941 */
942 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
943 header_size++;
944
945 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
946 const int output_vertex_size_owords =
947 gs_prog_data->output_vertex_size_hwords * 2;
948
949 fs_reg offset;
950 if (gs_vertex_count.file == IMM) {
951 per_slot_offsets = fs_reg(output_vertex_size_owords *
952 gs_vertex_count.ud);
953 } else {
954 per_slot_offsets = vgrf(glsl_type::int_type);
955 bld.MUL(per_slot_offsets, gs_vertex_count,
956 fs_reg(output_vertex_size_owords));
957 }
958 }
959
960 length = 0;
961 urb_offset = starting_urb_offset;
962 flush = false;
963 for (slot = 0; slot < vue_map->num_slots; slot++) {
964 int varying = vue_map->slot_to_varying[slot];
965 switch (varying) {
966 case VARYING_SLOT_PSIZ: {
967 /* The point size varying slot is the vue header and is always in the
968 * vue map. But often none of the special varyings that live there
969 * are written and in that case we can skip writing to the vue
970 * header, provided the corresponding state properly clamps the
971 * values further down the pipeline. */
972 if ((vue_map->slots_valid & psiz_mask) == 0) {
973 assert(length == 0);
974 urb_offset++;
975 break;
976 }
977
978 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
979 bld.MOV(zero, fs_reg(0u));
980
981 sources[length++] = zero;
982 if (vue_map->slots_valid & VARYING_BIT_LAYER)
983 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
984 else
985 sources[length++] = zero;
986
987 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
988 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
989 else
990 sources[length++] = zero;
991
992 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
993 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
994 else
995 sources[length++] = zero;
996 break;
997 }
998 case BRW_VARYING_SLOT_NDC:
999 case VARYING_SLOT_EDGE:
1000 unreachable("unexpected scalar vs output");
1001 break;
1002
1003 default:
1004 /* gl_Position is always in the vue map, but isn't always written by
1005 * the shader. Other varyings (clip distances) get added to the vue
1006 * map but don't always get written. In those cases, the
1007 * corresponding this->output[] slot will be invalid we and can skip
1008 * the urb write for the varying. If we've already queued up a vue
1009 * slot for writing we flush a mlen 5 urb write, otherwise we just
1010 * advance the urb_offset.
1011 */
1012 if (varying == BRW_VARYING_SLOT_PAD ||
1013 this->outputs[varying].file == BAD_FILE) {
1014 if (length > 0)
1015 flush = true;
1016 else
1017 urb_offset++;
1018 break;
1019 }
1020
1021 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
1022 (varying == VARYING_SLOT_COL0 ||
1023 varying == VARYING_SLOT_COL1 ||
1024 varying == VARYING_SLOT_BFC0 ||
1025 varying == VARYING_SLOT_BFC1)) {
1026 /* We need to clamp these guys, so do a saturating MOV into a
1027 * temp register and use that for the payload.
1028 */
1029 for (int i = 0; i < 4; i++) {
1030 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
1031 fs_reg src = offset(this->outputs[varying], bld, i);
1032 set_saturate(true, bld.MOV(reg, src));
1033 sources[length++] = reg;
1034 }
1035 } else {
1036 for (unsigned i = 0; i < output_components[varying]; i++)
1037 sources[length++] = offset(this->outputs[varying], bld, i);
1038 for (unsigned i = output_components[varying]; i < 4; i++)
1039 sources[length++] = fs_reg(0);
1040 }
1041 break;
1042 }
1043
1044 const fs_builder abld = bld.annotate("URB write");
1045
1046 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
1047 * the last slot or if we need to flush (see BAD_FILE varying case
1048 * above), emit a URB write send now to flush out the data.
1049 */
1050 int last = slot == vue_map->num_slots - 1;
1051 if (length == 8 || last)
1052 flush = true;
1053 if (flush) {
1054 fs_reg *payload_sources =
1055 ralloc_array(mem_ctx, fs_reg, length + header_size);
1056 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
1057 BRW_REGISTER_TYPE_F);
1058 payload_sources[0] =
1059 fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1060
1061 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
1062 payload_sources[1] = per_slot_offsets;
1063
1064 memcpy(&payload_sources[header_size], sources,
1065 length * sizeof sources[0]);
1066
1067 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
1068 header_size);
1069
1070 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1071 inst->eot = last && stage == MESA_SHADER_VERTEX;
1072 inst->mlen = length + header_size;
1073 inst->offset = urb_offset;
1074 urb_offset = starting_urb_offset + slot + 1;
1075 length = 0;
1076 flush = false;
1077 }
1078 }
1079 }
1080
1081 void
1082 fs_visitor::emit_cs_terminate()
1083 {
1084 assert(devinfo->gen >= 7);
1085
1086 /* We are getting the thread ID from the compute shader header */
1087 assert(stage == MESA_SHADER_COMPUTE);
1088
1089 /* We can't directly send from g0, since sends with EOT have to use
1090 * g112-127. So, copy it to a virtual register, The register allocator will
1091 * make sure it uses the appropriate register range.
1092 */
1093 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
1094 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1095 bld.group(8, 0).exec_all().MOV(payload, g0);
1096
1097 /* Send a message to the thread spawner to terminate the thread. */
1098 fs_inst *inst = bld.exec_all()
1099 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
1100 inst->eot = true;
1101 }
1102
1103 void
1104 fs_visitor::emit_barrier()
1105 {
1106 assert(devinfo->gen >= 7);
1107
1108 /* We are getting the barrier ID from the compute shader header */
1109 assert(stage == MESA_SHADER_COMPUTE);
1110
1111 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1112
1113 const fs_builder pbld = bld.exec_all().group(8, 0);
1114
1115 /* Clear the message payload */
1116 pbld.MOV(payload, fs_reg(0u));
1117
1118 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
1119 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
1120 pbld.AND(component(payload, 2), r0_2, fs_reg(0x0f000000u));
1121
1122 /* Emit a gateway "barrier" message using the payload we set up, followed
1123 * by a wait instruction.
1124 */
1125 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
1126 }
1127
1128 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1129 void *mem_ctx,
1130 const void *key,
1131 struct brw_stage_prog_data *prog_data,
1132 struct gl_program *prog,
1133 const nir_shader *shader,
1134 unsigned dispatch_width,
1135 int shader_time_index)
1136 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
1137 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
1138 dispatch_width(dispatch_width),
1139 shader_time_index(shader_time_index),
1140 bld(fs_builder(this, dispatch_width).at_end())
1141 {
1142 init();
1143 }
1144
1145 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1146 void *mem_ctx,
1147 struct brw_gs_compile *c,
1148 struct brw_gs_prog_data *prog_data,
1149 const nir_shader *shader,
1150 int shader_time_index)
1151 : backend_shader(compiler, log_data, mem_ctx, shader,
1152 &prog_data->base.base),
1153 key(&c->key), gs_compile(c),
1154 prog_data(&prog_data->base.base), prog(NULL),
1155 dispatch_width(8),
1156 shader_time_index(shader_time_index),
1157 bld(fs_builder(this, dispatch_width).at_end())
1158 {
1159 init();
1160 }
1161
1162
1163 void
1164 fs_visitor::init()
1165 {
1166 switch (stage) {
1167 case MESA_SHADER_FRAGMENT:
1168 key_tex = &((const brw_wm_prog_key *) key)->tex;
1169 break;
1170 case MESA_SHADER_VERTEX:
1171 key_tex = &((const brw_vs_prog_key *) key)->tex;
1172 break;
1173 case MESA_SHADER_GEOMETRY:
1174 key_tex = &((const brw_gs_prog_key *) key)->tex;
1175 break;
1176 case MESA_SHADER_COMPUTE:
1177 key_tex = &((const brw_cs_prog_key*) key)->tex;
1178 break;
1179 default:
1180 unreachable("unhandled shader stage");
1181 }
1182
1183 this->prog_data = this->stage_prog_data;
1184
1185 this->failed = false;
1186 this->simd16_unsupported = false;
1187 this->no16_msg = NULL;
1188
1189 this->nir_locals = NULL;
1190 this->nir_ssa_values = NULL;
1191
1192 memset(&this->payload, 0, sizeof(this->payload));
1193 memset(this->output_components, 0, sizeof(this->output_components));
1194 this->source_depth_to_render_target = false;
1195 this->runtime_check_aads_emit = false;
1196 this->first_non_payload_grf = 0;
1197 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1198
1199 this->virtual_grf_start = NULL;
1200 this->virtual_grf_end = NULL;
1201 this->live_intervals = NULL;
1202 this->regs_live_at_ip = NULL;
1203
1204 this->uniforms = 0;
1205 this->last_scratch = 0;
1206 this->pull_constant_loc = NULL;
1207 this->push_constant_loc = NULL;
1208
1209 this->promoted_constants = 0,
1210
1211 this->spilled_any_registers = false;
1212 this->do_dual_src = false;
1213
1214 if (dispatch_width == 8)
1215 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1216 }
1217
1218 fs_visitor::~fs_visitor()
1219 {
1220 }