i965/fs: Organize prog_data by ksp number rather than SIMD width
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info.system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->reg_offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &texture)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85
86 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
87 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
88 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
89 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
90 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
91 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
92
93 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
94 ARRAY_SIZE(srcs));
95
96 /* We only care about one or two regs of response, but the sampler always
97 * writes 4/8.
98 */
99 inst->regs_written = 4 * dispatch_width / 8;
100
101 return dest;
102 }
103
104 /**
105 * Apply workarounds for Gen6 gather with UINT/SINT
106 */
107 void
108 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
109 {
110 if (!wa)
111 return;
112
113 int width = (wa & WA_8BIT) ? 8 : 16;
114
115 for (int i = 0; i < 4; i++) {
116 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
117 /* Convert from UNORM to UINT */
118 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
119 bld.MOV(dst, dst_f);
120
121 if (wa & WA_SIGN) {
122 /* Reinterpret the UINT value as a signed INT value by
123 * shifting the sign bit into place, then shifting back
124 * preserving sign.
125 */
126 bld.SHL(dst, dst, brw_imm_d(32 - width));
127 bld.ASR(dst, dst, brw_imm_d(32 - width));
128 }
129
130 dst = offset(dst, bld, 1);
131 }
132 }
133
134 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
135 void
136 fs_visitor::emit_dummy_fs()
137 {
138 int reg_width = dispatch_width / 8;
139
140 /* Everyone's favorite color. */
141 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
142 for (int i = 0; i < 4; i++) {
143 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
144 brw_imm_f(color[i]));
145 }
146
147 fs_inst *write;
148 write = bld.emit(FS_OPCODE_FB_WRITE);
149 write->eot = true;
150 if (devinfo->gen >= 6) {
151 write->base_mrf = 2;
152 write->mlen = 4 * reg_width;
153 } else {
154 write->header_size = 2;
155 write->base_mrf = 0;
156 write->mlen = 2 + 4 * reg_width;
157 }
158
159 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
160 * varying to avoid GPU hangs, so set that.
161 */
162 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
163 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
164 memset(wm_prog_data->urb_setup, -1,
165 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
166
167 /* We don't have any uniforms. */
168 stage_prog_data->nr_params = 0;
169 stage_prog_data->nr_pull_params = 0;
170 stage_prog_data->curb_read_length = 0;
171 stage_prog_data->dispatch_grf_start_reg = 2;
172 wm_prog_data->dispatch_grf_start_reg_2 = 2;
173 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
174
175 calculate_cfg();
176 }
177
178 /* The register location here is relative to the start of the URB
179 * data. It will get adjusted to be a real location before
180 * generate_code() time.
181 */
182 struct brw_reg
183 fs_visitor::interp_reg(int location, int channel)
184 {
185 assert(stage == MESA_SHADER_FRAGMENT);
186 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
187 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
188 int stride = (channel & 1) * 4;
189
190 assert(prog_data->urb_setup[location] != -1);
191
192 return brw_vec1_grf(regnr, stride);
193 }
194
195 /** Emits the interpolation for the varying inputs. */
196 void
197 fs_visitor::emit_interpolation_setup_gen4()
198 {
199 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
200
201 fs_builder abld = bld.annotate("compute pixel centers");
202 this->pixel_x = vgrf(glsl_type::uint_type);
203 this->pixel_y = vgrf(glsl_type::uint_type);
204 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
205 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
206 abld.ADD(this->pixel_x,
207 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
208 fs_reg(brw_imm_v(0x10101010)));
209 abld.ADD(this->pixel_y,
210 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
211 fs_reg(brw_imm_v(0x11001100)));
212
213 abld = bld.annotate("compute pixel deltas from v0");
214
215 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
216 vgrf(glsl_type::vec2_type);
217 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
218 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
219 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
220
221 if (devinfo->has_pln && dispatch_width == 16) {
222 for (unsigned i = 0; i < 2; i++) {
223 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
224 half(this->pixel_x, i), xstart);
225 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
226 half(this->pixel_y, i), ystart);
227 }
228 } else {
229 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
230 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
231 }
232
233 abld = bld.annotate("compute pos.w and 1/pos.w");
234 /* Compute wpos.w. It's always in our setup, since it's needed to
235 * interpolate the other attributes.
236 */
237 this->wpos_w = vgrf(glsl_type::float_type);
238 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
239 interp_reg(VARYING_SLOT_POS, 3));
240 /* Compute the pixel 1/W value from wpos.w. */
241 this->pixel_w = vgrf(glsl_type::float_type);
242 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
243 }
244
245 /** Emits the interpolation for the varying inputs. */
246 void
247 fs_visitor::emit_interpolation_setup_gen6()
248 {
249 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
250
251 fs_builder abld = bld.annotate("compute pixel centers");
252 if (devinfo->gen >= 8 || dispatch_width == 8) {
253 /* The "Register Region Restrictions" page says for BDW (and newer,
254 * presumably):
255 *
256 * "When destination spans two registers, the source may be one or
257 * two registers. The destination elements must be evenly split
258 * between the two registers."
259 *
260 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
261 * compute our pixel centers.
262 */
263 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
264 BRW_REGISTER_TYPE_UW);
265
266 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
267 dbld.ADD(int_pixel_xy,
268 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
269 fs_reg(brw_imm_v(0x11001010)));
270
271 this->pixel_x = vgrf(glsl_type::float_type);
272 this->pixel_y = vgrf(glsl_type::float_type);
273 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
274 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
275 } else {
276 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
277 *
278 * "When destination spans two registers, the source MUST span two
279 * registers."
280 *
281 * Since the GRF source of the ADD will only read a single register, we
282 * must do two separate ADDs in SIMD16.
283 */
284 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
285 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
286 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
287 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
288 abld.ADD(int_pixel_x,
289 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
290 fs_reg(brw_imm_v(0x10101010)));
291 abld.ADD(int_pixel_y,
292 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
293 fs_reg(brw_imm_v(0x11001100)));
294
295 /* As of gen6, we can no longer mix float and int sources. We have
296 * to turn the integer pixel centers into floats for their actual
297 * use.
298 */
299 this->pixel_x = vgrf(glsl_type::float_type);
300 this->pixel_y = vgrf(glsl_type::float_type);
301 abld.MOV(this->pixel_x, int_pixel_x);
302 abld.MOV(this->pixel_y, int_pixel_y);
303 }
304
305 abld = bld.annotate("compute pos.w");
306 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
307 this->wpos_w = vgrf(glsl_type::float_type);
308 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
309
310 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
311 uint8_t reg = payload.barycentric_coord_reg[i];
312 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
313 }
314 }
315
316 static enum brw_conditional_mod
317 cond_for_alpha_func(GLenum func)
318 {
319 switch(func) {
320 case GL_GREATER:
321 return BRW_CONDITIONAL_G;
322 case GL_GEQUAL:
323 return BRW_CONDITIONAL_GE;
324 case GL_LESS:
325 return BRW_CONDITIONAL_L;
326 case GL_LEQUAL:
327 return BRW_CONDITIONAL_LE;
328 case GL_EQUAL:
329 return BRW_CONDITIONAL_EQ;
330 case GL_NOTEQUAL:
331 return BRW_CONDITIONAL_NEQ;
332 default:
333 unreachable("Not reached");
334 }
335 }
336
337 /**
338 * Alpha test support for when we compile it into the shader instead
339 * of using the normal fixed-function alpha test.
340 */
341 void
342 fs_visitor::emit_alpha_test()
343 {
344 assert(stage == MESA_SHADER_FRAGMENT);
345 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
346 const fs_builder abld = bld.annotate("Alpha test");
347
348 fs_inst *cmp;
349 if (key->alpha_test_func == GL_ALWAYS)
350 return;
351
352 if (key->alpha_test_func == GL_NEVER) {
353 /* f0.1 = 0 */
354 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
355 BRW_REGISTER_TYPE_UW));
356 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
357 BRW_CONDITIONAL_NEQ);
358 } else {
359 /* RT0 alpha */
360 fs_reg color = offset(outputs[0], bld, 3);
361
362 /* f0.1 &= func(color, ref) */
363 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
364 cond_for_alpha_func(key->alpha_test_func));
365 }
366 cmp->predicate = BRW_PREDICATE_NORMAL;
367 cmp->flag_subreg = 1;
368 }
369
370 fs_inst *
371 fs_visitor::emit_single_fb_write(const fs_builder &bld,
372 fs_reg color0, fs_reg color1,
373 fs_reg src0_alpha, unsigned components)
374 {
375 assert(stage == MESA_SHADER_FRAGMENT);
376 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
377
378 /* Hand over gl_FragDepth or the payload depth. */
379 const fs_reg dst_depth = (payload.dest_depth_reg ?
380 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
381 fs_reg());
382 fs_reg src_depth, src_stencil;
383
384 if (source_depth_to_render_target) {
385 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
386 src_depth = frag_depth;
387 else
388 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
389 }
390
391 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
392 src_stencil = frag_stencil;
393
394 const fs_reg sources[] = {
395 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
396 sample_mask, brw_imm_ud(components)
397 };
398 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
399 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
400 sources, ARRAY_SIZE(sources));
401
402 if (prog_data->uses_kill) {
403 write->predicate = BRW_PREDICATE_NORMAL;
404 write->flag_subreg = 1;
405 }
406
407 return write;
408 }
409
410 void
411 fs_visitor::emit_fb_writes()
412 {
413 assert(stage == MESA_SHADER_FRAGMENT);
414 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
415 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
416
417 fs_inst *inst = NULL;
418
419 if (source_depth_to_render_target && devinfo->gen == 6) {
420 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
421 * would require SIMD8 moves of each half to message regs, e.g. by using
422 * the SIMD lowering pass. Unfortunately this is more difficult than it
423 * sounds because the SIMD8 single-source message lacks channel selects
424 * for the second and third subspans.
425 */
426 no16("Missing support for simd16 depth writes on gen6\n");
427 }
428
429 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
430 /* From the 'Render Target Write message' section of the docs:
431 * "Output Stencil is not supported with SIMD16 Render Target Write
432 * Messages."
433 *
434 * FINISHME: split 16 into 2 8s
435 */
436 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
437 }
438
439 if (do_dual_src) {
440 const fs_builder abld = bld.annotate("FB dual-source write");
441
442 inst = emit_single_fb_write(abld, this->outputs[0],
443 this->dual_src_output, reg_undef, 4);
444 inst->target = 0;
445
446 prog_data->dual_src_blend = true;
447 } else {
448 for (int target = 0; target < key->nr_color_regions; target++) {
449 /* Skip over outputs that weren't written. */
450 if (this->outputs[target].file == BAD_FILE)
451 continue;
452
453 const fs_builder abld = bld.annotate(
454 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
455
456 fs_reg src0_alpha;
457 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
458 src0_alpha = offset(outputs[0], bld, 3);
459
460 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
461 src0_alpha,
462 this->output_components[target]);
463 inst->target = target;
464 }
465 }
466
467 if (inst == NULL) {
468 /* Even if there's no color buffers enabled, we still need to send
469 * alpha out the pipeline to our null renderbuffer to support
470 * alpha-testing, alpha-to-coverage, and so on.
471 */
472 /* FINISHME: Factor out this frequently recurring pattern into a
473 * helper function.
474 */
475 const fs_reg srcs[] = { reg_undef, reg_undef,
476 reg_undef, offset(this->outputs[0], bld, 3) };
477 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
478 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
479
480 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
481 inst->target = 0;
482 }
483
484 inst->eot = true;
485 }
486
487 void
488 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
489 {
490 const struct brw_vs_prog_key *key =
491 (const struct brw_vs_prog_key *) this->key;
492
493 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
494 this->userplane[i] = fs_reg(UNIFORM, uniforms);
495 for (int j = 0; j < 4; ++j) {
496 stage_prog_data->param[uniforms + j] =
497 (gl_constant_value *) &clip_planes[i][j];
498 }
499 uniforms += 4;
500 }
501 }
502
503 /**
504 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
505 *
506 * This does nothing if the shader uses gl_ClipDistance or user clipping is
507 * disabled altogether.
508 */
509 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
510 {
511 struct brw_vue_prog_data *vue_prog_data =
512 (struct brw_vue_prog_data *) prog_data;
513 const struct brw_vs_prog_key *key =
514 (const struct brw_vs_prog_key *) this->key;
515
516 /* Bail unless some sort of legacy clipping is enabled */
517 if (key->nr_userclip_plane_consts == 0)
518 return;
519
520 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
521 *
522 * "If a linked set of shaders forming the vertex stage contains no
523 * static write to gl_ClipVertex or gl_ClipDistance, but the
524 * application has requested clipping against user clip planes through
525 * the API, then the coordinate written to gl_Position is used for
526 * comparison against the user clip planes."
527 *
528 * This function is only called if the shader didn't write to
529 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
530 * if the user wrote to it; otherwise we use gl_Position.
531 */
532
533 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
534 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
535 clip_vertex = VARYING_SLOT_POS;
536
537 /* If the clip vertex isn't written, skip this. Typically this means
538 * the GS will set up clipping. */
539 if (outputs[clip_vertex].file == BAD_FILE)
540 return;
541
542 setup_uniform_clipplane_values(clip_planes);
543
544 const fs_builder abld = bld.annotate("user clip distances");
545
546 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
547 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
548 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
549 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
550
551 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
552 fs_reg u = userplane[i];
553 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
554 output.reg_offset = i & 3;
555
556 abld.MUL(output, outputs[clip_vertex], u);
557 for (int j = 1; j < 4; j++) {
558 u.nr = userplane[i].nr + j;
559 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
560 }
561 }
562 }
563
564 void
565 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
566 {
567 int slot, urb_offset, length;
568 int starting_urb_offset = 0;
569 const struct brw_vue_prog_data *vue_prog_data =
570 (const struct brw_vue_prog_data *) this->prog_data;
571 const struct brw_vs_prog_key *vs_key =
572 (const struct brw_vs_prog_key *) this->key;
573 const GLbitfield64 psiz_mask =
574 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
575 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
576 bool flush;
577 fs_reg sources[8];
578 fs_reg urb_handle;
579
580 if (stage == MESA_SHADER_TESS_EVAL)
581 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
582 else
583 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
584
585 /* If we don't have any valid slots to write, just do a minimal urb write
586 * send to terminate the shader. This includes 1 slot of undefined data,
587 * because it's invalid to write 0 data:
588 *
589 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
590 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
591 * Write Data Payload:
592 *
593 * "The write data payload can be between 1 and 8 message phases long."
594 */
595 if (vue_map->slots_valid == 0) {
596 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
597 bld.exec_all().MOV(payload, urb_handle);
598
599 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
600 inst->eot = true;
601 inst->mlen = 2;
602 inst->offset = 1;
603 return;
604 }
605
606 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
607 int header_size = 1;
608 fs_reg per_slot_offsets;
609
610 if (stage == MESA_SHADER_GEOMETRY) {
611 const struct brw_gs_prog_data *gs_prog_data =
612 (const struct brw_gs_prog_data *) this->prog_data;
613
614 /* We need to increment the Global Offset to skip over the control data
615 * header and the extra "Vertex Count" field (1 HWord) at the beginning
616 * of the VUE. We're counting in OWords, so the units are doubled.
617 */
618 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
619 if (gs_prog_data->static_vertex_count == -1)
620 starting_urb_offset += 2;
621
622 /* We also need to use per-slot offsets. The per-slot offset is the
623 * Vertex Count. SIMD8 mode processes 8 different primitives at a
624 * time; each may output a different number of vertices.
625 */
626 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
627 header_size++;
628
629 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
630 const int output_vertex_size_owords =
631 gs_prog_data->output_vertex_size_hwords * 2;
632
633 if (gs_vertex_count.file == IMM) {
634 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
635 gs_vertex_count.ud);
636 } else {
637 per_slot_offsets = vgrf(glsl_type::int_type);
638 bld.MUL(per_slot_offsets, gs_vertex_count,
639 brw_imm_ud(output_vertex_size_owords));
640 }
641 }
642
643 length = 0;
644 urb_offset = starting_urb_offset;
645 flush = false;
646 for (slot = 0; slot < vue_map->num_slots; slot++) {
647 int varying = vue_map->slot_to_varying[slot];
648 switch (varying) {
649 case VARYING_SLOT_PSIZ: {
650 /* The point size varying slot is the vue header and is always in the
651 * vue map. But often none of the special varyings that live there
652 * are written and in that case we can skip writing to the vue
653 * header, provided the corresponding state properly clamps the
654 * values further down the pipeline. */
655 if ((vue_map->slots_valid & psiz_mask) == 0) {
656 assert(length == 0);
657 urb_offset++;
658 break;
659 }
660
661 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
662 bld.MOV(zero, brw_imm_ud(0u));
663
664 sources[length++] = zero;
665 if (vue_map->slots_valid & VARYING_BIT_LAYER)
666 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
667 else
668 sources[length++] = zero;
669
670 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
671 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
672 else
673 sources[length++] = zero;
674
675 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
676 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
677 else
678 sources[length++] = zero;
679 break;
680 }
681 case BRW_VARYING_SLOT_NDC:
682 case VARYING_SLOT_EDGE:
683 unreachable("unexpected scalar vs output");
684 break;
685
686 default:
687 /* gl_Position is always in the vue map, but isn't always written by
688 * the shader. Other varyings (clip distances) get added to the vue
689 * map but don't always get written. In those cases, the
690 * corresponding this->output[] slot will be invalid we and can skip
691 * the urb write for the varying. If we've already queued up a vue
692 * slot for writing we flush a mlen 5 urb write, otherwise we just
693 * advance the urb_offset.
694 */
695 if (varying == BRW_VARYING_SLOT_PAD ||
696 this->outputs[varying].file == BAD_FILE) {
697 if (length > 0)
698 flush = true;
699 else
700 urb_offset++;
701 break;
702 }
703
704 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
705 (varying == VARYING_SLOT_COL0 ||
706 varying == VARYING_SLOT_COL1 ||
707 varying == VARYING_SLOT_BFC0 ||
708 varying == VARYING_SLOT_BFC1)) {
709 /* We need to clamp these guys, so do a saturating MOV into a
710 * temp register and use that for the payload.
711 */
712 for (int i = 0; i < 4; i++) {
713 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
714 fs_reg src = offset(this->outputs[varying], bld, i);
715 set_saturate(true, bld.MOV(reg, src));
716 sources[length++] = reg;
717 }
718 } else {
719 for (unsigned i = 0; i < output_components[varying]; i++)
720 sources[length++] = offset(this->outputs[varying], bld, i);
721 for (unsigned i = output_components[varying]; i < 4; i++)
722 sources[length++] = brw_imm_d(0);
723 }
724 break;
725 }
726
727 const fs_builder abld = bld.annotate("URB write");
728
729 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
730 * the last slot or if we need to flush (see BAD_FILE varying case
731 * above), emit a URB write send now to flush out the data.
732 */
733 int last = slot == vue_map->num_slots - 1;
734 if (length == 8 || last)
735 flush = true;
736 if (flush) {
737 fs_reg *payload_sources =
738 ralloc_array(mem_ctx, fs_reg, length + header_size);
739 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
740 BRW_REGISTER_TYPE_F);
741 payload_sources[0] = urb_handle;
742
743 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
744 payload_sources[1] = per_slot_offsets;
745
746 memcpy(&payload_sources[header_size], sources,
747 length * sizeof sources[0]);
748
749 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
750 header_size);
751
752 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
753 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
754 inst->mlen = length + header_size;
755 inst->offset = urb_offset;
756 urb_offset = starting_urb_offset + slot + 1;
757 length = 0;
758 flush = false;
759 }
760 }
761 }
762
763 void
764 fs_visitor::emit_cs_terminate()
765 {
766 assert(devinfo->gen >= 7);
767
768 /* We are getting the thread ID from the compute shader header */
769 assert(stage == MESA_SHADER_COMPUTE);
770
771 /* We can't directly send from g0, since sends with EOT have to use
772 * g112-127. So, copy it to a virtual register, The register allocator will
773 * make sure it uses the appropriate register range.
774 */
775 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
776 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
777 bld.group(8, 0).exec_all().MOV(payload, g0);
778
779 /* Send a message to the thread spawner to terminate the thread. */
780 fs_inst *inst = bld.exec_all()
781 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
782 inst->eot = true;
783 }
784
785 void
786 fs_visitor::emit_barrier()
787 {
788 assert(devinfo->gen >= 7);
789 const uint32_t barrier_id_mask =
790 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
791
792 /* We are getting the barrier ID from the compute shader header */
793 assert(stage == MESA_SHADER_COMPUTE);
794
795 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
796
797 const fs_builder pbld = bld.exec_all().group(8, 0);
798
799 /* Clear the message payload */
800 pbld.MOV(payload, brw_imm_ud(0u));
801
802 /* Copy the barrier id from r0.2 to the message payload reg.2 */
803 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
804 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
805
806 /* Emit a gateway "barrier" message using the payload we set up, followed
807 * by a wait instruction.
808 */
809 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
810 }
811
812 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
813 void *mem_ctx,
814 const void *key,
815 struct brw_stage_prog_data *prog_data,
816 struct gl_program *prog,
817 const nir_shader *shader,
818 unsigned dispatch_width,
819 int shader_time_index,
820 const struct brw_vue_map *input_vue_map)
821 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
822 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
823 input_vue_map(input_vue_map),
824 dispatch_width(dispatch_width),
825 shader_time_index(shader_time_index),
826 bld(fs_builder(this, dispatch_width).at_end())
827 {
828 init();
829 }
830
831 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
832 void *mem_ctx,
833 struct brw_gs_compile *c,
834 struct brw_gs_prog_data *prog_data,
835 const nir_shader *shader,
836 int shader_time_index)
837 : backend_shader(compiler, log_data, mem_ctx, shader,
838 &prog_data->base.base),
839 key(&c->key), gs_compile(c),
840 prog_data(&prog_data->base.base), prog(NULL),
841 dispatch_width(8),
842 shader_time_index(shader_time_index),
843 bld(fs_builder(this, dispatch_width).at_end())
844 {
845 init();
846 }
847
848
849 void
850 fs_visitor::init()
851 {
852 switch (stage) {
853 case MESA_SHADER_FRAGMENT:
854 key_tex = &((const brw_wm_prog_key *) key)->tex;
855 break;
856 case MESA_SHADER_VERTEX:
857 key_tex = &((const brw_vs_prog_key *) key)->tex;
858 break;
859 case MESA_SHADER_TESS_CTRL:
860 key_tex = &((const brw_tcs_prog_key *) key)->tex;
861 break;
862 case MESA_SHADER_TESS_EVAL:
863 key_tex = &((const brw_tes_prog_key *) key)->tex;
864 break;
865 case MESA_SHADER_GEOMETRY:
866 key_tex = &((const brw_gs_prog_key *) key)->tex;
867 break;
868 case MESA_SHADER_COMPUTE:
869 key_tex = &((const brw_cs_prog_key*) key)->tex;
870 break;
871 default:
872 unreachable("unhandled shader stage");
873 }
874
875 if (stage == MESA_SHADER_COMPUTE) {
876 const brw_cs_prog_data *cs_prog_data =
877 (const brw_cs_prog_data *) prog_data;
878 unsigned size = cs_prog_data->local_size[0] *
879 cs_prog_data->local_size[1] *
880 cs_prog_data->local_size[2];
881 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
882 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
883 } else {
884 min_dispatch_width = 8;
885 }
886
887 this->prog_data = this->stage_prog_data;
888
889 this->failed = false;
890 this->simd16_unsupported = false;
891 this->no16_msg = NULL;
892
893 this->nir_locals = NULL;
894 this->nir_ssa_values = NULL;
895
896 memset(&this->payload, 0, sizeof(this->payload));
897 memset(this->output_components, 0, sizeof(this->output_components));
898 this->source_depth_to_render_target = false;
899 this->runtime_check_aads_emit = false;
900 this->first_non_payload_grf = 0;
901 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
902
903 this->virtual_grf_start = NULL;
904 this->virtual_grf_end = NULL;
905 this->live_intervals = NULL;
906 this->regs_live_at_ip = NULL;
907
908 this->uniforms = 0;
909 this->last_scratch = 0;
910 this->pull_constant_loc = NULL;
911 this->push_constant_loc = NULL;
912
913 this->promoted_constants = 0,
914
915 this->spilled_any_registers = false;
916 this->do_dual_src = false;
917 }
918
919 fs_visitor::~fs_visitor()
920 {
921 }