i965/fs: Add emit_cs_terminate to emit CS_OPCODE_CS_TERMINATE
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_vec4.h"
43 #include "brw_fs.h"
44 #include "main/uniforms.h"
45 #include "glsl/glsl_types.h"
46 #include "glsl/ir_optimization.h"
47 #include "program/sampler.h"
48
49
50 fs_reg *
51 fs_visitor::emit_vs_system_value(int location)
52 {
53 fs_reg *reg = new(this->mem_ctx)
54 fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D);
55 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
56
57 switch (location) {
58 case SYSTEM_VALUE_BASE_VERTEX:
59 reg->reg_offset = 0;
60 vs_prog_data->uses_vertexid = true;
61 break;
62 case SYSTEM_VALUE_VERTEX_ID:
63 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
64 reg->reg_offset = 2;
65 vs_prog_data->uses_vertexid = true;
66 break;
67 case SYSTEM_VALUE_INSTANCE_ID:
68 reg->reg_offset = 3;
69 vs_prog_data->uses_instanceid = true;
70 break;
71 default:
72 unreachable("not reached");
73 }
74
75 return reg;
76 }
77
78 void
79 fs_visitor::visit(ir_variable *ir)
80 {
81 fs_reg *reg = NULL;
82
83 if (variable_storage(ir))
84 return;
85
86 if (ir->data.mode == ir_var_shader_in) {
87 assert(ir->data.location != -1);
88 if (stage == MESA_SHADER_VERTEX) {
89 reg = new(this->mem_ctx)
90 fs_reg(ATTR, ir->data.location,
91 brw_type_for_base_type(ir->type->get_scalar_type()));
92 } else if (ir->data.location == VARYING_SLOT_POS) {
93 reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer,
94 ir->data.origin_upper_left);
95 } else if (ir->data.location == VARYING_SLOT_FACE) {
96 reg = emit_frontfacing_interpolation();
97 } else {
98 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
99 emit_general_interpolation(*reg, ir->name, ir->type,
100 (glsl_interp_qualifier) ir->data.interpolation,
101 ir->data.location, ir->data.centroid,
102 ir->data.sample);
103 }
104 assert(reg);
105 hash_table_insert(this->variable_ht, reg, ir);
106 return;
107 } else if (ir->data.mode == ir_var_shader_out) {
108 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
109
110 if (stage == MESA_SHADER_VERTEX) {
111 int vector_elements =
112 ir->type->is_array() ? ir->type->fields.array->vector_elements
113 : ir->type->vector_elements;
114
115 for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) {
116 int output = ir->data.location + i;
117 this->outputs[output] = *reg;
118 this->outputs[output].reg_offset = i * 4;
119 this->output_components[output] = vector_elements;
120 }
121
122 } else if (ir->data.index > 0) {
123 assert(ir->data.location == FRAG_RESULT_DATA0);
124 assert(ir->data.index == 1);
125 this->dual_src_output = *reg;
126 this->do_dual_src = true;
127 } else if (ir->data.location == FRAG_RESULT_COLOR) {
128 /* Writing gl_FragColor outputs to all color regions. */
129 assert(stage == MESA_SHADER_FRAGMENT);
130 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
131 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
132 this->outputs[i] = *reg;
133 this->output_components[i] = 4;
134 }
135 } else if (ir->data.location == FRAG_RESULT_DEPTH) {
136 this->frag_depth = *reg;
137 } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
138 this->sample_mask = *reg;
139 } else {
140 /* gl_FragData or a user-defined FS output */
141 assert(ir->data.location >= FRAG_RESULT_DATA0 &&
142 ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
143
144 int vector_elements =
145 ir->type->is_array() ? ir->type->fields.array->vector_elements
146 : ir->type->vector_elements;
147
148 /* General color output. */
149 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
150 int output = ir->data.location - FRAG_RESULT_DATA0 + i;
151 this->outputs[output] = offset(*reg, vector_elements * i);
152 this->output_components[output] = vector_elements;
153 }
154 }
155 } else if (ir->data.mode == ir_var_uniform) {
156 int param_index = uniforms;
157
158 /* Thanks to the lower_ubo_reference pass, we will see only
159 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
160 * variables, so no need for them to be in variable_ht.
161 *
162 * Some uniforms, such as samplers and atomic counters, have no actual
163 * storage, so we should ignore them.
164 */
165 if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
166 return;
167
168 if (dispatch_width == 16) {
169 if (!variable_storage(ir)) {
170 fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
171 }
172 return;
173 }
174
175 param_size[param_index] = type_size(ir->type);
176 if (!strncmp(ir->name, "gl_", 3)) {
177 setup_builtin_uniform_values(ir);
178 } else {
179 setup_uniform_values(ir);
180 }
181
182 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
183 reg->type = brw_type_for_base_type(ir->type);
184
185 } else if (ir->data.mode == ir_var_system_value) {
186 switch (ir->data.location) {
187 case SYSTEM_VALUE_BASE_VERTEX:
188 case SYSTEM_VALUE_VERTEX_ID:
189 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
190 case SYSTEM_VALUE_INSTANCE_ID:
191 reg = emit_vs_system_value(ir->data.location);
192 break;
193 case SYSTEM_VALUE_SAMPLE_POS:
194 reg = emit_samplepos_setup();
195 break;
196 case SYSTEM_VALUE_SAMPLE_ID:
197 reg = emit_sampleid_setup();
198 break;
199 case SYSTEM_VALUE_SAMPLE_MASK_IN:
200 assert(devinfo->gen >= 7);
201 reg = new(mem_ctx)
202 fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
203 BRW_REGISTER_TYPE_D));
204 break;
205 }
206 }
207
208 if (!reg)
209 reg = new(this->mem_ctx) fs_reg(vgrf(ir->type));
210
211 hash_table_insert(this->variable_ht, reg, ir);
212 }
213
214 void
215 fs_visitor::visit(ir_dereference_variable *ir)
216 {
217 fs_reg *reg = variable_storage(ir->var);
218
219 if (!reg) {
220 fail("Failed to find variable storage for %s\n", ir->var->name);
221 this->result = fs_reg(reg_null_d);
222 return;
223 }
224 this->result = *reg;
225 }
226
227 void
228 fs_visitor::visit(ir_dereference_record *ir)
229 {
230 const glsl_type *struct_type = ir->record->type;
231
232 ir->record->accept(this);
233
234 unsigned int off = 0;
235 for (unsigned int i = 0; i < struct_type->length; i++) {
236 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
237 break;
238 off += type_size(struct_type->fields.structure[i].type);
239 }
240 this->result = offset(this->result, off);
241 this->result.type = brw_type_for_base_type(ir->type);
242 }
243
244 void
245 fs_visitor::visit(ir_dereference_array *ir)
246 {
247 ir_constant *constant_index;
248 fs_reg src;
249 int element_size = type_size(ir->type);
250
251 constant_index = ir->array_index->as_constant();
252
253 ir->array->accept(this);
254 src = this->result;
255 src.type = brw_type_for_base_type(ir->type);
256
257 if (constant_index) {
258 if (src.file == ATTR) {
259 /* Attribute arrays get loaded as one vec4 per element. In that case
260 * offset the source register.
261 */
262 src.reg += constant_index->value.i[0];
263 } else {
264 assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
265 src = offset(src, constant_index->value.i[0] * element_size);
266 }
267 } else {
268 /* Variable index array dereference. We attach the variable index
269 * component to the reg as a pointer to a register containing the
270 * offset. Currently only uniform arrays are supported in this patch,
271 * and that reladdr pointer is resolved by
272 * move_uniform_array_access_to_pull_constants(). All other array types
273 * are lowered by lower_variable_index_to_cond_assign().
274 */
275 ir->array_index->accept(this);
276
277 fs_reg index_reg;
278 index_reg = vgrf(glsl_type::int_type);
279 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
280
281 if (src.reladdr) {
282 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
283 }
284
285 src.reladdr = ralloc(mem_ctx, fs_reg);
286 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
287 }
288 this->result = src;
289 }
290
291 fs_inst *
292 fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
293 const fs_reg &a)
294 {
295 if (devinfo->gen < 6) {
296 /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
297 fs_reg y_times_a = vgrf(glsl_type::float_type);
298 fs_reg one_minus_a = vgrf(glsl_type::float_type);
299 fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type);
300
301 emit(MUL(y_times_a, y, a));
302
303 fs_reg negative_a = a;
304 negative_a.negate = !a.negate;
305 emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
306 emit(MUL(x_times_one_minus_a, x, one_minus_a));
307
308 return emit(ADD(dst, x_times_one_minus_a, y_times_a));
309 } else {
310 /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
311 * we need to reorder the operands.
312 */
313 return emit(LRP(dst, a, y, x));
314 }
315 }
316
317 void
318 fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
319 const fs_reg &src0, const fs_reg &src1)
320 {
321 assert(conditionalmod == BRW_CONDITIONAL_GE ||
322 conditionalmod == BRW_CONDITIONAL_L);
323
324 fs_inst *inst;
325
326 if (devinfo->gen >= 6) {
327 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
328 inst->conditional_mod = conditionalmod;
329 } else {
330 emit(CMP(reg_null_d, src0, src1, conditionalmod));
331
332 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
333 inst->predicate = BRW_PREDICATE_NORMAL;
334 }
335 }
336
337 bool
338 fs_visitor::try_emit_saturate(ir_expression *ir)
339 {
340 if (ir->operation != ir_unop_saturate)
341 return false;
342
343 ir_rvalue *sat_val = ir->operands[0];
344
345 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
346
347 sat_val->accept(this);
348 fs_reg src = this->result;
349
350 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
351
352 /* If the last instruction from our accept() generated our
353 * src, just set the saturate flag instead of emmitting a separate mov.
354 */
355 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
356 if (modify && modify->regs_written == modify->dst.width / 8 &&
357 modify->can_do_saturate()) {
358 modify->saturate = true;
359 this->result = src;
360 return true;
361 }
362
363 return false;
364 }
365
366 bool
367 fs_visitor::try_emit_line(ir_expression *ir)
368 {
369 /* LINE's src0 must be of type float. */
370 if (ir->type != glsl_type::float_type)
371 return false;
372
373 ir_rvalue *nonmul = ir->operands[1];
374 ir_expression *mul = ir->operands[0]->as_expression();
375
376 if (!mul || mul->operation != ir_binop_mul) {
377 nonmul = ir->operands[0];
378 mul = ir->operands[1]->as_expression();
379
380 if (!mul || mul->operation != ir_binop_mul)
381 return false;
382 }
383
384 ir_constant *const_add = nonmul->as_constant();
385 if (!const_add)
386 return false;
387
388 int add_operand_vf = brw_float_to_vf(const_add->value.f[0]);
389 if (add_operand_vf == -1)
390 return false;
391
392 ir_rvalue *non_const_mul = mul->operands[1];
393 ir_constant *const_mul = mul->operands[0]->as_constant();
394 if (!const_mul) {
395 const_mul = mul->operands[1]->as_constant();
396
397 if (!const_mul)
398 return false;
399
400 non_const_mul = mul->operands[0];
401 }
402
403 int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]);
404 if (mul_operand_vf == -1)
405 return false;
406
407 non_const_mul->accept(this);
408 fs_reg src1 = this->result;
409
410 fs_reg src0 = vgrf(ir->type);
411 emit(BRW_OPCODE_MOV, src0,
412 fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf));
413
414 this->result = vgrf(ir->type);
415 emit(BRW_OPCODE_LINE, this->result, src0, src1);
416 return true;
417 }
418
419 bool
420 fs_visitor::try_emit_mad(ir_expression *ir)
421 {
422 /* 3-src instructions were introduced in gen6. */
423 if (devinfo->gen < 6)
424 return false;
425
426 /* MAD can only handle floating-point data. */
427 if (ir->type != glsl_type::float_type)
428 return false;
429
430 ir_rvalue *nonmul;
431 ir_expression *mul;
432 bool mul_negate, mul_abs;
433
434 for (int i = 0; i < 2; i++) {
435 mul_negate = false;
436 mul_abs = false;
437
438 mul = ir->operands[i]->as_expression();
439 nonmul = ir->operands[1 - i];
440
441 if (mul && mul->operation == ir_unop_abs) {
442 mul = mul->operands[0]->as_expression();
443 mul_abs = true;
444 } else if (mul && mul->operation == ir_unop_neg) {
445 mul = mul->operands[0]->as_expression();
446 mul_negate = true;
447 }
448
449 if (mul && mul->operation == ir_binop_mul)
450 break;
451 }
452
453 if (!mul || mul->operation != ir_binop_mul)
454 return false;
455
456 nonmul->accept(this);
457 fs_reg src0 = this->result;
458
459 mul->operands[0]->accept(this);
460 fs_reg src1 = this->result;
461 src1.negate ^= mul_negate;
462 src1.abs = mul_abs;
463 if (mul_abs)
464 src1.negate = false;
465
466 mul->operands[1]->accept(this);
467 fs_reg src2 = this->result;
468 src2.abs = mul_abs;
469 if (mul_abs)
470 src2.negate = false;
471
472 this->result = vgrf(ir->type);
473 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
474
475 return true;
476 }
477
478 bool
479 fs_visitor::try_emit_b2f_of_comparison(ir_expression *ir)
480 {
481 /* On platforms that do not natively generate 0u and ~0u for Boolean
482 * results, b2f expressions that look like
483 *
484 * f = b2f(expr cmp 0)
485 *
486 * will generate better code by pretending the expression is
487 *
488 * f = ir_triop_csel(0.0, 1.0, expr cmp 0)
489 *
490 * This is because the last instruction of "expr" can generate the
491 * condition code for the "cmp 0". This avoids having to do the "-(b & 1)"
492 * trick to generate 0u or ~0u for the Boolean result. This means code like
493 *
494 * mov(16) g16<1>F 1F
495 * mul.ge.f0(16) null g6<8,8,1>F g14<8,8,1>F
496 * (+f0) sel(16) m6<1>F g16<8,8,1>F 0F
497 *
498 * will be generated instead of
499 *
500 * mul(16) g2<1>F g12<8,8,1>F g4<8,8,1>F
501 * cmp.ge.f0(16) g2<1>D g4<8,8,1>F 0F
502 * and(16) g4<1>D g2<8,8,1>D 1D
503 * and(16) m6<1>D -g4<8,8,1>D 0x3f800000UD
504 *
505 * When the comparison is != 0.0 using the knowledge that the false case
506 * already results in zero would allow better code generation by possibly
507 * avoiding a load-immediate instruction.
508 */
509 ir_expression *cmp = ir->operands[0]->as_expression();
510 if (cmp == NULL)
511 return false;
512
513 if (cmp->operation == ir_binop_nequal) {
514 for (unsigned i = 0; i < 2; i++) {
515 ir_constant *c = cmp->operands[i]->as_constant();
516 if (c == NULL || !c->is_zero())
517 continue;
518
519 ir_expression *expr = cmp->operands[i ^ 1]->as_expression();
520 if (expr != NULL) {
521 fs_reg op[2];
522
523 for (unsigned j = 0; j < 2; j++) {
524 cmp->operands[j]->accept(this);
525 op[j] = this->result;
526
527 resolve_ud_negate(&op[j]);
528 }
529
530 emit_bool_to_cond_code_of_reg(cmp, op);
531
532 /* In this case we know when the condition is true, op[i ^ 1]
533 * contains zero. Invert the predicate, use op[i ^ 1] as src0,
534 * and immediate 1.0f as src1.
535 */
536 this->result = vgrf(ir->type);
537 op[i ^ 1].type = BRW_REGISTER_TYPE_F;
538
539 fs_inst *inst = emit(SEL(this->result, op[i ^ 1], fs_reg(1.0f)));
540 inst->predicate = BRW_PREDICATE_NORMAL;
541 inst->predicate_inverse = true;
542 return true;
543 }
544 }
545 }
546
547 emit_bool_to_cond_code(cmp);
548
549 fs_reg temp = vgrf(ir->type);
550 emit(MOV(temp, fs_reg(1.0f)));
551
552 this->result = vgrf(ir->type);
553 fs_inst *inst = emit(SEL(this->result, temp, fs_reg(0.0f)));
554 inst->predicate = BRW_PREDICATE_NORMAL;
555
556 return true;
557 }
558
559 static int
560 pack_pixel_offset(float x)
561 {
562 /* Clamp upper end of the range to +7/16. See explanation in non-constant
563 * offset case below. */
564 int n = MIN2((int)(x * 16), 7);
565 return n & 0xf;
566 }
567
568 void
569 fs_visitor::emit_interpolate_expression(ir_expression *ir)
570 {
571 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
572 * 8 channels at a time, same as the barycentric coords presented in
573 * the FS payload. this requires a bit of extra work to support.
574 */
575 no16("interpolate_at_* not yet supported in SIMD16 mode.");
576
577 assert(stage == MESA_SHADER_FRAGMENT);
578 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
579
580 ir_dereference * deref = ir->operands[0]->as_dereference();
581 ir_swizzle * swiz = NULL;
582 if (!deref) {
583 /* the api does not allow a swizzle here, but the varying packing code
584 * may have pushed one into here.
585 */
586 swiz = ir->operands[0]->as_swizzle();
587 assert(swiz);
588 deref = swiz->val->as_dereference();
589 }
590 assert(deref);
591 ir_variable * var = deref->variable_referenced();
592 assert(var);
593
594 /* 1. collect interpolation factors */
595
596 fs_reg dst_xy = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1));
597
598 /* for most messages, we need one reg of ignored data; the hardware requires mlen==1
599 * even when there is no payload. in the per-slot offset case, we'll replace this with
600 * the proper source data. */
601 fs_reg src = vgrf(glsl_type::float_type);
602 int mlen = 1; /* one reg unless overriden */
603 int reg_width = dispatch_width / 8;
604 fs_inst *inst;
605
606 switch (ir->operation) {
607 case ir_unop_interpolate_at_centroid:
608 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
609 break;
610
611 case ir_binop_interpolate_at_sample: {
612 ir_constant *sample_num = ir->operands[1]->as_constant();
613 assert(sample_num || !"nonconstant sample number should have been lowered.");
614
615 unsigned msg_data = sample_num->value.i[0] << 4;
616 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src, fs_reg(msg_data));
617 break;
618 }
619
620 case ir_binop_interpolate_at_offset: {
621 ir_constant *const_offset = ir->operands[1]->as_constant();
622 if (const_offset) {
623 unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
624 (pack_pixel_offset(const_offset->value.f[1]) << 4);
625 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
626 fs_reg(msg_data));
627 } else {
628 /* pack the operands: hw wants offsets as 4 bit signed ints */
629 ir->operands[1]->accept(this);
630 src = vgrf(glsl_type::ivec2_type);
631 fs_reg src2 = src;
632 for (int i = 0; i < 2; i++) {
633 fs_reg temp = vgrf(glsl_type::float_type);
634 emit(MUL(temp, this->result, fs_reg(16.0f)));
635 emit(MOV(src2, temp)); /* float to int */
636
637 /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
638 * that we support a maximum offset of +0.5, which isn't representable
639 * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
640 * which is the opposite of what the shader author wanted.
641 *
642 * This is legal due to ARB_gpu_shader5's quantization rules:
643 *
644 * "Not all values of <offset> may be supported; x and y offsets may
645 * be rounded to fixed-point values with the number of fraction bits
646 * given by the implementation-dependent constant
647 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
648 */
649
650 fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
651 inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
652
653 src2 = offset(src2, 1);
654 this->result = offset(this->result, 1);
655 }
656
657 mlen = 2 * reg_width;
658 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
659 fs_reg(0u));
660 }
661 break;
662 }
663
664 default:
665 unreachable("not reached");
666 }
667
668 inst->mlen = mlen;
669 inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
670 inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
671 INTERP_QUALIFIER_NOPERSPECTIVE;
672
673 /* 2. emit linterp */
674
675 fs_reg res = vgrf(ir->type);
676 this->result = res;
677
678 for (int i = 0; i < ir->type->vector_elements; i++) {
679 int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
680 emit(FS_OPCODE_LINTERP, res, dst_xy,
681 fs_reg(interp_reg(var->data.location, ch)));
682 res = offset(res, 1);
683 }
684 }
685
686 void
687 fs_visitor::visit(ir_expression *ir)
688 {
689 unsigned int operand;
690 fs_reg op[3], temp;
691 fs_inst *inst;
692 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
693
694 assert(ir->get_num_operands() <= 3);
695
696 if (try_emit_saturate(ir))
697 return;
698
699 /* Deal with the real oddball stuff first */
700 switch (ir->operation) {
701 case ir_binop_add:
702 if (devinfo->gen <= 5 && try_emit_line(ir))
703 return;
704 if (try_emit_mad(ir))
705 return;
706 break;
707
708 case ir_triop_csel:
709 ir->operands[1]->accept(this);
710 op[1] = this->result;
711 ir->operands[2]->accept(this);
712 op[2] = this->result;
713
714 emit_bool_to_cond_code(ir->operands[0]);
715
716 this->result = vgrf(ir->type);
717 inst = emit(SEL(this->result, op[1], op[2]));
718 inst->predicate = BRW_PREDICATE_NORMAL;
719 return;
720
721 case ir_unop_b2f:
722 if (devinfo->gen <= 5 && try_emit_b2f_of_comparison(ir))
723 return;
724 break;
725
726 case ir_unop_interpolate_at_centroid:
727 case ir_binop_interpolate_at_offset:
728 case ir_binop_interpolate_at_sample:
729 emit_interpolate_expression(ir);
730 return;
731
732 default:
733 break;
734 }
735
736 for (operand = 0; operand < ir->get_num_operands(); operand++) {
737 ir->operands[operand]->accept(this);
738 if (this->result.file == BAD_FILE) {
739 fail("Failed to get tree for expression operand:\n");
740 ir->operands[operand]->fprint(stderr);
741 fprintf(stderr, "\n");
742 }
743 assert(this->result.file == GRF ||
744 this->result.file == UNIFORM || this->result.file == ATTR);
745 op[operand] = this->result;
746
747 /* Matrix expression operands should have been broken down to vector
748 * operations already.
749 */
750 assert(!ir->operands[operand]->type->is_matrix());
751 /* And then those vector operands should have been broken down to scalar.
752 */
753 assert(!ir->operands[operand]->type->is_vector());
754 }
755
756 /* Storage for our result. If our result goes into an assignment, it will
757 * just get copy-propagated out, so no worries.
758 */
759 this->result = vgrf(ir->type);
760
761 switch (ir->operation) {
762 case ir_unop_logic_not:
763 emit(NOT(this->result, op[0]));
764 break;
765 case ir_unop_neg:
766 op[0].negate = !op[0].negate;
767 emit(MOV(this->result, op[0]));
768 break;
769 case ir_unop_abs:
770 op[0].abs = true;
771 op[0].negate = false;
772 emit(MOV(this->result, op[0]));
773 break;
774 case ir_unop_sign:
775 if (ir->type->is_float()) {
776 /* AND(val, 0x80000000) gives the sign bit.
777 *
778 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
779 * zero.
780 */
781 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
782
783 op[0].type = BRW_REGISTER_TYPE_UD;
784 this->result.type = BRW_REGISTER_TYPE_UD;
785 emit(AND(this->result, op[0], fs_reg(0x80000000u)));
786
787 inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
788 inst->predicate = BRW_PREDICATE_NORMAL;
789
790 this->result.type = BRW_REGISTER_TYPE_F;
791 } else {
792 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
793 * -> non-negative val generates 0x00000000.
794 * Predicated OR sets 1 if val is positive.
795 */
796 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
797
798 emit(ASR(this->result, op[0], fs_reg(31)));
799
800 inst = emit(OR(this->result, this->result, fs_reg(1)));
801 inst->predicate = BRW_PREDICATE_NORMAL;
802 }
803 break;
804 case ir_unop_rcp:
805 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
806 break;
807
808 case ir_unop_exp2:
809 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
810 break;
811 case ir_unop_log2:
812 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
813 break;
814 case ir_unop_exp:
815 case ir_unop_log:
816 unreachable("not reached: should be handled by ir_explog_to_explog2");
817 case ir_unop_sin:
818 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
819 break;
820 case ir_unop_cos:
821 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
822 break;
823
824 case ir_unop_dFdx:
825 /* Select one of the two opcodes based on the glHint value. */
826 if (fs_key->high_quality_derivatives)
827 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
828 else
829 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
830 break;
831
832 case ir_unop_dFdx_coarse:
833 emit(FS_OPCODE_DDX_COARSE, this->result, op[0]);
834 break;
835
836 case ir_unop_dFdx_fine:
837 emit(FS_OPCODE_DDX_FINE, this->result, op[0]);
838 break;
839
840 case ir_unop_dFdy:
841 /* Select one of the two opcodes based on the glHint value. */
842 if (fs_key->high_quality_derivatives)
843 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
844 else
845 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
846 break;
847
848 case ir_unop_dFdy_coarse:
849 emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo));
850 break;
851
852 case ir_unop_dFdy_fine:
853 emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo));
854 break;
855
856 case ir_binop_add:
857 emit(ADD(this->result, op[0], op[1]));
858 break;
859 case ir_binop_sub:
860 unreachable("not reached: should be handled by ir_sub_to_add_neg");
861
862 case ir_binop_mul:
863 if (devinfo->gen < 8 && ir->type->is_integer()) {
864 /* For integer multiplication, the MUL uses the low 16 bits
865 * of one of the operands (src0 on gen6, src1 on gen7). The
866 * MACH accumulates in the contribution of the upper 16 bits
867 * of that operand.
868 */
869 if (ir->operands[0]->is_uint16_constant()) {
870 if (devinfo->gen < 7)
871 emit(MUL(this->result, op[0], op[1]));
872 else
873 emit(MUL(this->result, op[1], op[0]));
874 } else if (ir->operands[1]->is_uint16_constant()) {
875 if (devinfo->gen < 7)
876 emit(MUL(this->result, op[1], op[0]));
877 else
878 emit(MUL(this->result, op[0], op[1]));
879 } else {
880 if (devinfo->gen >= 7)
881 no16("SIMD16 explicit accumulator operands unsupported\n");
882
883 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
884 this->result.type);
885
886 emit(MUL(acc, op[0], op[1]));
887 emit(MACH(reg_null_d, op[0], op[1]));
888 emit(MOV(this->result, fs_reg(acc)));
889 }
890 } else {
891 emit(MUL(this->result, op[0], op[1]));
892 }
893 break;
894 case ir_binop_imul_high: {
895 if (devinfo->gen >= 7)
896 no16("SIMD16 explicit accumulator operands unsupported\n");
897
898 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
899 this->result.type);
900
901 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
902 emit(MACH(this->result, op[0], op[1]));
903
904 /* Until Gen8, integer multiplies read 32-bits from one source, and
905 * 16-bits from the other, and relying on the MACH instruction to
906 * generate the high bits of the result.
907 *
908 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
909 * but in order to do a 64x64-bit multiply we have to simulate the
910 * previous behavior and then use a MACH instruction.
911 *
912 * FINISHME: Don't use source modifiers on src1.
913 */
914 if (devinfo->gen >= 8) {
915 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
916 mul->src[1].type == BRW_REGISTER_TYPE_UD);
917 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
918 mul->src[1].type = BRW_REGISTER_TYPE_W;
919 mul->src[1].stride = 2;
920 } else {
921 mul->src[1].type = BRW_REGISTER_TYPE_UW;
922 mul->src[1].stride = 2;
923 }
924 }
925
926 break;
927 }
928 case ir_binop_div:
929 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
930 assert(ir->type->is_integer());
931 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
932 break;
933 case ir_binop_carry: {
934 if (devinfo->gen >= 7)
935 no16("SIMD16 explicit accumulator operands unsupported\n");
936
937 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
938 BRW_REGISTER_TYPE_UD);
939
940 emit(ADDC(reg_null_ud, op[0], op[1]));
941 emit(MOV(this->result, fs_reg(acc)));
942 break;
943 }
944 case ir_binop_borrow: {
945 if (devinfo->gen >= 7)
946 no16("SIMD16 explicit accumulator operands unsupported\n");
947
948 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
949 BRW_REGISTER_TYPE_UD);
950
951 emit(SUBB(reg_null_ud, op[0], op[1]));
952 emit(MOV(this->result, fs_reg(acc)));
953 break;
954 }
955 case ir_binop_mod:
956 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
957 assert(ir->type->is_integer());
958 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
959 break;
960
961 case ir_binop_less:
962 case ir_binop_greater:
963 case ir_binop_lequal:
964 case ir_binop_gequal:
965 case ir_binop_equal:
966 case ir_binop_all_equal:
967 case ir_binop_nequal:
968 case ir_binop_any_nequal:
969 if (devinfo->gen <= 5) {
970 resolve_bool_comparison(ir->operands[0], &op[0]);
971 resolve_bool_comparison(ir->operands[1], &op[1]);
972 }
973
974 emit(CMP(this->result, op[0], op[1],
975 brw_conditional_for_comparison(ir->operation)));
976 break;
977
978 case ir_binop_logic_xor:
979 emit(XOR(this->result, op[0], op[1]));
980 break;
981
982 case ir_binop_logic_or:
983 emit(OR(this->result, op[0], op[1]));
984 break;
985
986 case ir_binop_logic_and:
987 emit(AND(this->result, op[0], op[1]));
988 break;
989
990 case ir_binop_dot:
991 case ir_unop_any:
992 unreachable("not reached: should be handled by brw_fs_channel_expressions");
993
994 case ir_unop_noise:
995 unreachable("not reached: should be handled by lower_noise");
996
997 case ir_quadop_vector:
998 unreachable("not reached: should be handled by lower_quadop_vector");
999
1000 case ir_binop_vector_extract:
1001 unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
1002
1003 case ir_triop_vector_insert:
1004 unreachable("not reached: should be handled by lower_vector_insert()");
1005
1006 case ir_binop_ldexp:
1007 unreachable("not reached: should be handled by ldexp_to_arith()");
1008
1009 case ir_unop_sqrt:
1010 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
1011 break;
1012
1013 case ir_unop_rsq:
1014 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
1015 break;
1016
1017 case ir_unop_bitcast_i2f:
1018 case ir_unop_bitcast_u2f:
1019 op[0].type = BRW_REGISTER_TYPE_F;
1020 this->result = op[0];
1021 break;
1022 case ir_unop_i2u:
1023 case ir_unop_bitcast_f2u:
1024 op[0].type = BRW_REGISTER_TYPE_UD;
1025 this->result = op[0];
1026 break;
1027 case ir_unop_u2i:
1028 case ir_unop_bitcast_f2i:
1029 op[0].type = BRW_REGISTER_TYPE_D;
1030 this->result = op[0];
1031 break;
1032 case ir_unop_i2f:
1033 case ir_unop_u2f:
1034 case ir_unop_f2i:
1035 case ir_unop_f2u:
1036 emit(MOV(this->result, op[0]));
1037 break;
1038
1039 case ir_unop_b2i:
1040 emit(AND(this->result, op[0], fs_reg(1)));
1041 break;
1042 case ir_unop_b2f:
1043 if (devinfo->gen <= 5) {
1044 resolve_bool_comparison(ir->operands[0], &op[0]);
1045 }
1046 op[0].type = BRW_REGISTER_TYPE_D;
1047 this->result.type = BRW_REGISTER_TYPE_D;
1048 emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
1049 this->result.type = BRW_REGISTER_TYPE_F;
1050 break;
1051
1052 case ir_unop_f2b:
1053 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1054 break;
1055 case ir_unop_i2b:
1056 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1057 break;
1058
1059 case ir_unop_trunc:
1060 emit(RNDZ(this->result, op[0]));
1061 break;
1062 case ir_unop_ceil: {
1063 fs_reg tmp = vgrf(ir->type);
1064 op[0].negate = !op[0].negate;
1065 emit(RNDD(tmp, op[0]));
1066 tmp.negate = true;
1067 emit(MOV(this->result, tmp));
1068 }
1069 break;
1070 case ir_unop_floor:
1071 emit(RNDD(this->result, op[0]));
1072 break;
1073 case ir_unop_fract:
1074 emit(FRC(this->result, op[0]));
1075 break;
1076 case ir_unop_round_even:
1077 emit(RNDE(this->result, op[0]));
1078 break;
1079
1080 case ir_binop_min:
1081 case ir_binop_max:
1082 resolve_ud_negate(&op[0]);
1083 resolve_ud_negate(&op[1]);
1084 emit_minmax(ir->operation == ir_binop_min ?
1085 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
1086 this->result, op[0], op[1]);
1087 break;
1088 case ir_unop_pack_snorm_2x16:
1089 case ir_unop_pack_snorm_4x8:
1090 case ir_unop_pack_unorm_2x16:
1091 case ir_unop_pack_unorm_4x8:
1092 case ir_unop_unpack_snorm_2x16:
1093 case ir_unop_unpack_snorm_4x8:
1094 case ir_unop_unpack_unorm_2x16:
1095 case ir_unop_unpack_unorm_4x8:
1096 case ir_unop_unpack_half_2x16:
1097 case ir_unop_pack_half_2x16:
1098 unreachable("not reached: should be handled by lower_packing_builtins");
1099 case ir_unop_unpack_half_2x16_split_x:
1100 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
1101 break;
1102 case ir_unop_unpack_half_2x16_split_y:
1103 emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
1104 break;
1105 case ir_binop_pow:
1106 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
1107 break;
1108
1109 case ir_unop_bitfield_reverse:
1110 emit(BFREV(this->result, op[0]));
1111 break;
1112 case ir_unop_bit_count:
1113 emit(CBIT(this->result, op[0]));
1114 break;
1115 case ir_unop_find_msb:
1116 temp = vgrf(glsl_type::uint_type);
1117 emit(FBH(temp, op[0]));
1118
1119 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1120 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1121 * subtract the result from 31 to convert the MSB count into an LSB count.
1122 */
1123
1124 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1125 emit(MOV(this->result, temp));
1126 emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1127
1128 temp.negate = true;
1129 inst = emit(ADD(this->result, temp, fs_reg(31)));
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132 case ir_unop_find_lsb:
1133 emit(FBL(this->result, op[0]));
1134 break;
1135 case ir_unop_saturate:
1136 inst = emit(MOV(this->result, op[0]));
1137 inst->saturate = true;
1138 break;
1139 case ir_triop_bitfield_extract:
1140 /* Note that the instruction's argument order is reversed from GLSL
1141 * and the IR.
1142 */
1143 emit(BFE(this->result, op[2], op[1], op[0]));
1144 break;
1145 case ir_binop_bfm:
1146 emit(BFI1(this->result, op[0], op[1]));
1147 break;
1148 case ir_triop_bfi:
1149 emit(BFI2(this->result, op[0], op[1], op[2]));
1150 break;
1151 case ir_quadop_bitfield_insert:
1152 unreachable("not reached: should be handled by "
1153 "lower_instructions::bitfield_insert_to_bfm_bfi");
1154
1155 case ir_unop_bit_not:
1156 emit(NOT(this->result, op[0]));
1157 break;
1158 case ir_binop_bit_and:
1159 emit(AND(this->result, op[0], op[1]));
1160 break;
1161 case ir_binop_bit_xor:
1162 emit(XOR(this->result, op[0], op[1]));
1163 break;
1164 case ir_binop_bit_or:
1165 emit(OR(this->result, op[0], op[1]));
1166 break;
1167
1168 case ir_binop_lshift:
1169 emit(SHL(this->result, op[0], op[1]));
1170 break;
1171
1172 case ir_binop_rshift:
1173 if (ir->type->base_type == GLSL_TYPE_INT)
1174 emit(ASR(this->result, op[0], op[1]));
1175 else
1176 emit(SHR(this->result, op[0], op[1]));
1177 break;
1178 case ir_binop_pack_half_2x16_split:
1179 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
1180 break;
1181 case ir_binop_ubo_load: {
1182 /* This IR node takes a constant uniform block and a constant or
1183 * variable byte offset within the block and loads a vector from that.
1184 */
1185 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1186 ir_constant *const_offset = ir->operands[1]->as_constant();
1187 fs_reg surf_index;
1188
1189 if (const_uniform_block) {
1190 /* The block index is a constant, so just emit the binding table entry
1191 * as an immediate.
1192 */
1193 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1194 const_uniform_block->value.u[0]);
1195 } else {
1196 /* The block index is not a constant. Evaluate the index expression
1197 * per-channel and add the base UBO index; the generator will select
1198 * a value from any live channel.
1199 */
1200 surf_index = vgrf(glsl_type::uint_type);
1201 emit(ADD(surf_index, op[0],
1202 fs_reg(stage_prog_data->binding_table.ubo_start)))
1203 ->force_writemask_all = true;
1204
1205 /* Assume this may touch any UBO. It would be nice to provide
1206 * a tighter bound, but the array information is already lowered away.
1207 */
1208 brw_mark_surface_used(prog_data,
1209 stage_prog_data->binding_table.ubo_start +
1210 shader_prog->NumUniformBlocks - 1);
1211 }
1212
1213 if (const_offset) {
1214 fs_reg packed_consts = vgrf(glsl_type::float_type);
1215 packed_consts.type = result.type;
1216
1217 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
1218 emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
1219 packed_consts, surf_index, const_offset_reg));
1220
1221 for (int i = 0; i < ir->type->vector_elements; i++) {
1222 packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
1223
1224 /* The std140 packing rules don't allow vectors to cross 16-byte
1225 * boundaries, and a reg is 32 bytes.
1226 */
1227 assert(packed_consts.subreg_offset < 32);
1228
1229 /* UBO bools are any nonzero value. We consider bools to be
1230 * values with the low bit set to 1. Convert them using CMP.
1231 */
1232 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1233 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
1234 } else {
1235 emit(MOV(result, packed_consts));
1236 }
1237
1238 result = offset(result, 1);
1239 }
1240 } else {
1241 /* Turn the byte offset into a dword offset. */
1242 fs_reg base_offset = vgrf(glsl_type::int_type);
1243 emit(SHR(base_offset, op[1], fs_reg(2)));
1244
1245 for (int i = 0; i < ir->type->vector_elements; i++) {
1246 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
1247 base_offset, i));
1248
1249 if (ir->type->base_type == GLSL_TYPE_BOOL)
1250 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
1251
1252 result = offset(result, 1);
1253 }
1254 }
1255
1256 result.reg_offset = 0;
1257 break;
1258 }
1259
1260 case ir_triop_fma:
1261 /* Note that the instruction's argument order is reversed from GLSL
1262 * and the IR.
1263 */
1264 emit(MAD(this->result, op[2], op[1], op[0]));
1265 break;
1266
1267 case ir_triop_lrp:
1268 emit_lrp(this->result, op[0], op[1], op[2]);
1269 break;
1270
1271 case ir_triop_csel:
1272 case ir_unop_interpolate_at_centroid:
1273 case ir_binop_interpolate_at_offset:
1274 case ir_binop_interpolate_at_sample:
1275 unreachable("already handled above");
1276 break;
1277
1278 case ir_unop_d2f:
1279 case ir_unop_f2d:
1280 case ir_unop_d2i:
1281 case ir_unop_i2d:
1282 case ir_unop_d2u:
1283 case ir_unop_u2d:
1284 case ir_unop_d2b:
1285 case ir_unop_pack_double_2x32:
1286 case ir_unop_unpack_double_2x32:
1287 case ir_unop_frexp_sig:
1288 case ir_unop_frexp_exp:
1289 unreachable("fp64 todo");
1290 break;
1291 }
1292 }
1293
1294 void
1295 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1296 const glsl_type *type, bool predicated)
1297 {
1298 switch (type->base_type) {
1299 case GLSL_TYPE_FLOAT:
1300 case GLSL_TYPE_UINT:
1301 case GLSL_TYPE_INT:
1302 case GLSL_TYPE_BOOL:
1303 for (unsigned int i = 0; i < type->components(); i++) {
1304 l.type = brw_type_for_base_type(type);
1305 r.type = brw_type_for_base_type(type);
1306
1307 if (predicated || !l.equals(r)) {
1308 fs_inst *inst = emit(MOV(l, r));
1309 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
1310 }
1311
1312 l = offset(l, 1);
1313 r = offset(r, 1);
1314 }
1315 break;
1316 case GLSL_TYPE_ARRAY:
1317 for (unsigned int i = 0; i < type->length; i++) {
1318 emit_assignment_writes(l, r, type->fields.array, predicated);
1319 }
1320 break;
1321
1322 case GLSL_TYPE_STRUCT:
1323 for (unsigned int i = 0; i < type->length; i++) {
1324 emit_assignment_writes(l, r, type->fields.structure[i].type,
1325 predicated);
1326 }
1327 break;
1328
1329 case GLSL_TYPE_SAMPLER:
1330 case GLSL_TYPE_IMAGE:
1331 case GLSL_TYPE_ATOMIC_UINT:
1332 break;
1333
1334 case GLSL_TYPE_DOUBLE:
1335 case GLSL_TYPE_VOID:
1336 case GLSL_TYPE_ERROR:
1337 case GLSL_TYPE_INTERFACE:
1338 unreachable("not reached");
1339 }
1340 }
1341
1342 /* If the RHS processing resulted in an instruction generating a
1343 * temporary value, and it would be easy to rewrite the instruction to
1344 * generate its result right into the LHS instead, do so. This ends
1345 * up reliably removing instructions where it can be tricky to do so
1346 * later without real UD chain information.
1347 */
1348 bool
1349 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1350 fs_reg dst,
1351 fs_reg src,
1352 fs_inst *pre_rhs_inst,
1353 fs_inst *last_rhs_inst)
1354 {
1355 /* Only attempt if we're doing a direct assignment. */
1356 if (ir->condition ||
1357 !(ir->lhs->type->is_scalar() ||
1358 (ir->lhs->type->is_vector() &&
1359 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
1360 return false;
1361
1362 /* Make sure the last instruction generated our source reg. */
1363 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
1364 last_rhs_inst,
1365 src);
1366 if (!modify)
1367 return false;
1368
1369 /* If last_rhs_inst wrote a different number of components than our LHS,
1370 * we can't safely rewrite it.
1371 */
1372 if (alloc.sizes[dst.reg] != modify->regs_written)
1373 return false;
1374
1375 /* Success! Rewrite the instruction. */
1376 modify->dst = dst;
1377
1378 return true;
1379 }
1380
1381 void
1382 fs_visitor::visit(ir_assignment *ir)
1383 {
1384 fs_reg l, r;
1385 fs_inst *inst;
1386
1387 /* FINISHME: arrays on the lhs */
1388 ir->lhs->accept(this);
1389 l = this->result;
1390
1391 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
1392
1393 ir->rhs->accept(this);
1394 r = this->result;
1395
1396 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
1397
1398 assert(l.file != BAD_FILE);
1399 assert(r.file != BAD_FILE);
1400
1401 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
1402 return;
1403
1404 if (ir->condition) {
1405 emit_bool_to_cond_code(ir->condition);
1406 }
1407
1408 if (ir->lhs->type->is_scalar() ||
1409 ir->lhs->type->is_vector()) {
1410 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1411 if (ir->write_mask & (1 << i)) {
1412 inst = emit(MOV(l, r));
1413 if (ir->condition)
1414 inst->predicate = BRW_PREDICATE_NORMAL;
1415 r = offset(r, 1);
1416 }
1417 l = offset(l, 1);
1418 }
1419 } else {
1420 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1421 }
1422 }
1423
1424 fs_inst *
1425 fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
1426 fs_reg coordinate, int coord_components,
1427 fs_reg shadow_c,
1428 fs_reg lod, fs_reg dPdy, int grad_components,
1429 uint32_t sampler)
1430 {
1431 int mlen;
1432 int base_mrf = 1;
1433 bool simd16 = false;
1434 fs_reg orig_dst;
1435
1436 /* g0 header. */
1437 mlen = 1;
1438
1439 if (shadow_c.file != BAD_FILE) {
1440 for (int i = 0; i < coord_components; i++) {
1441 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1442 coordinate = offset(coordinate, 1);
1443 }
1444
1445 /* gen4's SIMD8 sampler always has the slots for u,v,r present.
1446 * the unused slots must be zeroed.
1447 */
1448 for (int i = coord_components; i < 3; i++) {
1449 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1450 }
1451 mlen += 3;
1452
1453 if (op == ir_tex) {
1454 /* There's no plain shadow compare message, so we use shadow
1455 * compare with a bias of 0.0.
1456 */
1457 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
1458 mlen++;
1459 } else if (op == ir_txb || op == ir_txl) {
1460 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1461 mlen++;
1462 } else {
1463 unreachable("Should not get here.");
1464 }
1465
1466 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1467 mlen++;
1468 } else if (op == ir_tex) {
1469 for (int i = 0; i < coord_components; i++) {
1470 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1471 coordinate = offset(coordinate, 1);
1472 }
1473 /* zero the others. */
1474 for (int i = coord_components; i<3; i++) {
1475 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
1476 }
1477 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1478 mlen += 3;
1479 } else if (op == ir_txd) {
1480 fs_reg &dPdx = lod;
1481
1482 for (int i = 0; i < coord_components; i++) {
1483 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
1484 coordinate = offset(coordinate, 1);
1485 }
1486 /* the slots for u and v are always present, but r is optional */
1487 mlen += MAX2(coord_components, 2);
1488
1489 /* P = u, v, r
1490 * dPdx = dudx, dvdx, drdx
1491 * dPdy = dudy, dvdy, drdy
1492 *
1493 * 1-arg: Does not exist.
1494 *
1495 * 2-arg: dudx dvdx dudy dvdy
1496 * dPdx.x dPdx.y dPdy.x dPdy.y
1497 * m4 m5 m6 m7
1498 *
1499 * 3-arg: dudx dvdx drdx dudy dvdy drdy
1500 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
1501 * m5 m6 m7 m8 m9 m10
1502 */
1503 for (int i = 0; i < grad_components; i++) {
1504 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
1505 dPdx = offset(dPdx, 1);
1506 }
1507 mlen += MAX2(grad_components, 2);
1508
1509 for (int i = 0; i < grad_components; i++) {
1510 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
1511 dPdy = offset(dPdy, 1);
1512 }
1513 mlen += MAX2(grad_components, 2);
1514 } else if (op == ir_txs) {
1515 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
1516 simd16 = true;
1517 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1518 mlen += 2;
1519 } else {
1520 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1521 * instructions. We'll need to do SIMD16 here.
1522 */
1523 simd16 = true;
1524 assert(op == ir_txb || op == ir_txl || op == ir_txf);
1525
1526 for (int i = 0; i < coord_components; i++) {
1527 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
1528 coordinate));
1529 coordinate = offset(coordinate, 1);
1530 }
1531
1532 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
1533 * be necessary for TXF (ld), but seems wise to do for all messages.
1534 */
1535 for (int i = coord_components; i < 3; i++) {
1536 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
1537 }
1538
1539 /* lod/bias appears after u/v/r. */
1540 mlen += 6;
1541
1542 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
1543 mlen++;
1544
1545 /* The unused upper half. */
1546 mlen++;
1547 }
1548
1549 if (simd16) {
1550 /* Now, since we're doing simd16, the return is 2 interleaved
1551 * vec4s where the odd-indexed ones are junk. We'll need to move
1552 * this weirdness around to the expected layout.
1553 */
1554 orig_dst = dst;
1555 dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type);
1556 }
1557
1558 enum opcode opcode;
1559 switch (op) {
1560 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1561 case ir_txb: opcode = FS_OPCODE_TXB; break;
1562 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1563 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1564 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1565 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1566 default:
1567 unreachable("not reached");
1568 }
1569
1570 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1571 inst->base_mrf = base_mrf;
1572 inst->mlen = mlen;
1573 inst->header_present = true;
1574 inst->regs_written = simd16 ? 8 : 4;
1575
1576 if (simd16) {
1577 for (int i = 0; i < 4; i++) {
1578 emit(MOV(orig_dst, dst));
1579 orig_dst = offset(orig_dst, 1);
1580 dst = offset(dst, 2);
1581 }
1582 }
1583
1584 return inst;
1585 }
1586
1587 fs_inst *
1588 fs_visitor::emit_texture_gen4_simd16(ir_texture_opcode op, fs_reg dst,
1589 fs_reg coordinate, int vector_elements,
1590 fs_reg shadow_c, fs_reg lod,
1591 uint32_t sampler)
1592 {
1593 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1594 bool has_lod = op == ir_txl || op == ir_txb || op == ir_txf;
1595
1596 if (has_lod && shadow_c.file != BAD_FILE)
1597 no16("TXB and TXL with shadow comparison unsupported in SIMD16.");
1598
1599 if (op == ir_txd)
1600 no16("textureGrad unsupported in SIMD16.");
1601
1602 /* Copy the coordinates. */
1603 for (int i = 0; i < vector_elements; i++) {
1604 emit(MOV(retype(offset(message, i), coordinate.type), coordinate));
1605 coordinate = offset(coordinate, 1);
1606 }
1607
1608 fs_reg msg_end = offset(message, vector_elements);
1609
1610 /* Messages other than sample and ld require all three components */
1611 if (has_lod || shadow_c.file != BAD_FILE) {
1612 for (int i = vector_elements; i < 3; i++) {
1613 emit(MOV(offset(message, i), fs_reg(0.0f)));
1614 }
1615 }
1616
1617 if (has_lod) {
1618 fs_reg msg_lod = retype(offset(message, 3), op == ir_txf ?
1619 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
1620 emit(MOV(msg_lod, lod));
1621 msg_end = offset(msg_lod, 1);
1622 }
1623
1624 if (shadow_c.file != BAD_FILE) {
1625 fs_reg msg_ref = offset(message, 3 + has_lod);
1626 emit(MOV(msg_ref, shadow_c));
1627 msg_end = offset(msg_ref, 1);
1628 }
1629
1630 enum opcode opcode;
1631 switch (op) {
1632 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1633 case ir_txb: opcode = FS_OPCODE_TXB; break;
1634 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
1635 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
1636 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
1637 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
1638 default: unreachable("not reached");
1639 }
1640
1641 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1642 inst->base_mrf = message.reg - 1;
1643 inst->mlen = msg_end.reg - inst->base_mrf;
1644 inst->header_present = true;
1645 inst->regs_written = 8;
1646
1647 return inst;
1648 }
1649
1650 /* gen5's sampler has slots for u, v, r, array index, then optional
1651 * parameters like shadow comparitor or LOD bias. If optional
1652 * parameters aren't present, those base slots are optional and don't
1653 * need to be included in the message.
1654 *
1655 * We don't fill in the unnecessary slots regardless, which may look
1656 * surprising in the disassembly.
1657 */
1658 fs_inst *
1659 fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
1660 fs_reg coordinate, int vector_elements,
1661 fs_reg shadow_c,
1662 fs_reg lod, fs_reg lod2, int grad_components,
1663 fs_reg sample_index, uint32_t sampler,
1664 bool has_offset)
1665 {
1666 int reg_width = dispatch_width / 8;
1667 bool header_present = false;
1668
1669 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
1670 fs_reg msg_coords = message;
1671
1672 if (has_offset) {
1673 /* The offsets set up by the ir_texture visitor are in the
1674 * m1 header, so we can't go headerless.
1675 */
1676 header_present = true;
1677 message.reg--;
1678 }
1679
1680 for (int i = 0; i < vector_elements; i++) {
1681 emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
1682 coordinate = offset(coordinate, 1);
1683 }
1684 fs_reg msg_end = offset(msg_coords, vector_elements);
1685 fs_reg msg_lod = offset(msg_coords, 4);
1686
1687 if (shadow_c.file != BAD_FILE) {
1688 fs_reg msg_shadow = msg_lod;
1689 emit(MOV(msg_shadow, shadow_c));
1690 msg_lod = offset(msg_shadow, 1);
1691 msg_end = msg_lod;
1692 }
1693
1694 enum opcode opcode;
1695 switch (op) {
1696 case ir_tex:
1697 opcode = SHADER_OPCODE_TEX;
1698 break;
1699 case ir_txb:
1700 emit(MOV(msg_lod, lod));
1701 msg_end = offset(msg_lod, 1);
1702
1703 opcode = FS_OPCODE_TXB;
1704 break;
1705 case ir_txl:
1706 emit(MOV(msg_lod, lod));
1707 msg_end = offset(msg_lod, 1);
1708
1709 opcode = SHADER_OPCODE_TXL;
1710 break;
1711 case ir_txd: {
1712 /**
1713 * P = u, v, r
1714 * dPdx = dudx, dvdx, drdx
1715 * dPdy = dudy, dvdy, drdy
1716 *
1717 * Load up these values:
1718 * - dudx dudy dvdx dvdy drdx drdy
1719 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1720 */
1721 msg_end = msg_lod;
1722 for (int i = 0; i < grad_components; i++) {
1723 emit(MOV(msg_end, lod));
1724 lod = offset(lod, 1);
1725 msg_end = offset(msg_end, 1);
1726
1727 emit(MOV(msg_end, lod2));
1728 lod2 = offset(lod2, 1);
1729 msg_end = offset(msg_end, 1);
1730 }
1731
1732 opcode = SHADER_OPCODE_TXD;
1733 break;
1734 }
1735 case ir_txs:
1736 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
1737 emit(MOV(msg_lod, lod));
1738 msg_end = offset(msg_lod, 1);
1739
1740 opcode = SHADER_OPCODE_TXS;
1741 break;
1742 case ir_query_levels:
1743 msg_lod = msg_end;
1744 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1745 msg_end = offset(msg_lod, 1);
1746
1747 opcode = SHADER_OPCODE_TXS;
1748 break;
1749 case ir_txf:
1750 msg_lod = offset(msg_coords, 3);
1751 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
1752 msg_end = offset(msg_lod, 1);
1753
1754 opcode = SHADER_OPCODE_TXF;
1755 break;
1756 case ir_txf_ms:
1757 msg_lod = offset(msg_coords, 3);
1758 /* lod */
1759 emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1760 /* sample index */
1761 emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
1762 msg_end = offset(msg_lod, 2);
1763
1764 opcode = SHADER_OPCODE_TXF_CMS;
1765 break;
1766 case ir_lod:
1767 opcode = SHADER_OPCODE_LOD;
1768 break;
1769 case ir_tg4:
1770 opcode = SHADER_OPCODE_TG4;
1771 break;
1772 default:
1773 unreachable("not reached");
1774 }
1775
1776 fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
1777 inst->base_mrf = message.reg;
1778 inst->mlen = msg_end.reg - message.reg;
1779 inst->header_present = header_present;
1780 inst->regs_written = 4 * reg_width;
1781
1782 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
1783 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
1784 " disallowed by hardware\n");
1785 }
1786
1787 return inst;
1788 }
1789
1790 static bool
1791 is_high_sampler(const struct brw_device_info *devinfo, fs_reg sampler)
1792 {
1793 if (devinfo->gen < 8 && !devinfo->is_haswell)
1794 return false;
1795
1796 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
1797 }
1798
1799 fs_inst *
1800 fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
1801 fs_reg coordinate, int coord_components,
1802 fs_reg shadow_c,
1803 fs_reg lod, fs_reg lod2, int grad_components,
1804 fs_reg sample_index, fs_reg mcs, fs_reg sampler,
1805 fs_reg offset_value)
1806 {
1807 int reg_width = dispatch_width / 8;
1808 bool header_present = false;
1809
1810 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
1811 for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
1812 sources[i] = vgrf(glsl_type::float_type);
1813 }
1814 int length = 0;
1815
1816 if (op == ir_tg4 || offset_value.file != BAD_FILE ||
1817 is_high_sampler(devinfo, sampler)) {
1818 /* For general texture offsets (no txf workaround), we need a header to
1819 * put them in. Note that for SIMD16 we're making space for two actual
1820 * hardware registers here, so the emit will have to fix up for this.
1821 *
1822 * * ir4_tg4 needs to place its channel select in the header,
1823 * for interaction with ARB_texture_swizzle
1824 *
1825 * The sampler index is only 4-bits, so for larger sampler numbers we
1826 * need to offset the Sampler State Pointer in the header.
1827 */
1828 header_present = true;
1829 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1830 length++;
1831 }
1832
1833 if (shadow_c.file != BAD_FILE) {
1834 emit(MOV(sources[length], shadow_c));
1835 length++;
1836 }
1837
1838 bool has_nonconstant_offset =
1839 offset_value.file != BAD_FILE && offset_value.file != IMM;
1840 bool coordinate_done = false;
1841
1842 /* The sampler can only meaningfully compute LOD for fragment shader
1843 * messages. For all other stages, we change the opcode to ir_txl and
1844 * hardcode the LOD to 0.
1845 */
1846 if (stage != MESA_SHADER_FRAGMENT && op == ir_tex) {
1847 op = ir_txl;
1848 lod = fs_reg(0.0f);
1849 }
1850
1851 /* Set up the LOD info */
1852 switch (op) {
1853 case ir_tex:
1854 case ir_lod:
1855 break;
1856 case ir_txb:
1857 emit(MOV(sources[length], lod));
1858 length++;
1859 break;
1860 case ir_txl:
1861 emit(MOV(sources[length], lod));
1862 length++;
1863 break;
1864 case ir_txd: {
1865 no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1866
1867 /* Load dPdx and the coordinate together:
1868 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1869 */
1870 for (int i = 0; i < coord_components; i++) {
1871 emit(MOV(sources[length], coordinate));
1872 coordinate = offset(coordinate, 1);
1873 length++;
1874
1875 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1876 * only derivatives for (u, v, r).
1877 */
1878 if (i < grad_components) {
1879 emit(MOV(sources[length], lod));
1880 lod = offset(lod, 1);
1881 length++;
1882
1883 emit(MOV(sources[length], lod2));
1884 lod2 = offset(lod2, 1);
1885 length++;
1886 }
1887 }
1888
1889 coordinate_done = true;
1890 break;
1891 }
1892 case ir_txs:
1893 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
1894 length++;
1895 break;
1896 case ir_query_levels:
1897 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
1898 length++;
1899 break;
1900 case ir_txf:
1901 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
1902 * On Gen9 they are u, v, lod, r
1903 */
1904
1905 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1906 coordinate = offset(coordinate, 1);
1907 length++;
1908
1909 if (devinfo->gen >= 9) {
1910 if (coord_components >= 2) {
1911 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1912 coordinate = offset(coordinate, 1);
1913 }
1914 length++;
1915 }
1916
1917 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
1918 length++;
1919
1920 for (int i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
1921 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1922 coordinate = offset(coordinate, 1);
1923 length++;
1924 }
1925
1926 coordinate_done = true;
1927 break;
1928 case ir_txf_ms:
1929 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
1930 length++;
1931
1932 /* data from the multisample control surface */
1933 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
1934 length++;
1935
1936 /* there is no offsetting for this message; just copy in the integer
1937 * texture coordinates
1938 */
1939 for (int i = 0; i < coord_components; i++) {
1940 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
1941 coordinate = offset(coordinate, 1);
1942 length++;
1943 }
1944
1945 coordinate_done = true;
1946 break;
1947 case ir_tg4:
1948 if (has_nonconstant_offset) {
1949 if (shadow_c.file != BAD_FILE)
1950 no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
1951
1952 /* More crazy intermixing */
1953 for (int i = 0; i < 2; i++) { /* u, v */
1954 emit(MOV(sources[length], coordinate));
1955 coordinate = offset(coordinate, 1);
1956 length++;
1957 }
1958
1959 for (int i = 0; i < 2; i++) { /* offu, offv */
1960 emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
1961 offset_value = offset(offset_value, 1);
1962 length++;
1963 }
1964
1965 if (coord_components == 3) { /* r if present */
1966 emit(MOV(sources[length], coordinate));
1967 coordinate = offset(coordinate, 1);
1968 length++;
1969 }
1970
1971 coordinate_done = true;
1972 }
1973 break;
1974 }
1975
1976 /* Set up the coordinate (except for cases where it was done above) */
1977 if (!coordinate_done) {
1978 for (int i = 0; i < coord_components; i++) {
1979 emit(MOV(sources[length], coordinate));
1980 coordinate = offset(coordinate, 1);
1981 length++;
1982 }
1983 }
1984
1985 int mlen;
1986 if (reg_width == 2)
1987 mlen = length * reg_width - header_present;
1988 else
1989 mlen = length * reg_width;
1990
1991 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
1992 BRW_REGISTER_TYPE_F);
1993 emit(LOAD_PAYLOAD(src_payload, sources, length));
1994
1995 /* Generate the SEND */
1996 enum opcode opcode;
1997 switch (op) {
1998 case ir_tex: opcode = SHADER_OPCODE_TEX; break;
1999 case ir_txb: opcode = FS_OPCODE_TXB; break;
2000 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
2001 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
2002 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
2003 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
2004 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
2005 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
2006 case ir_lod: opcode = SHADER_OPCODE_LOD; break;
2007 case ir_tg4:
2008 if (has_nonconstant_offset)
2009 opcode = SHADER_OPCODE_TG4_OFFSET;
2010 else
2011 opcode = SHADER_OPCODE_TG4;
2012 break;
2013 default:
2014 unreachable("not reached");
2015 }
2016 fs_inst *inst = emit(opcode, dst, src_payload, sampler);
2017 inst->base_mrf = -1;
2018 inst->mlen = mlen;
2019 inst->header_present = header_present;
2020 inst->regs_written = 4 * reg_width;
2021
2022 if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
2023 fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
2024 " disallowed by hardware\n");
2025 }
2026
2027 return inst;
2028 }
2029
2030 fs_reg
2031 fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components,
2032 bool is_rect, uint32_t sampler, int texunit)
2033 {
2034 fs_inst *inst = NULL;
2035 bool needs_gl_clamp = true;
2036 fs_reg scale_x, scale_y;
2037
2038 /* The 965 requires the EU to do the normalization of GL rectangle
2039 * texture coordinates. We use the program parameter state
2040 * tracking to get the scaling factor.
2041 */
2042 if (is_rect &&
2043 (devinfo->gen < 6 ||
2044 (devinfo->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) ||
2045 key_tex->gl_clamp_mask[1] & (1 << sampler))))) {
2046 struct gl_program_parameter_list *params = prog->Parameters;
2047 int tokens[STATE_LENGTH] = {
2048 STATE_INTERNAL,
2049 STATE_TEXRECT_SCALE,
2050 texunit,
2051 0,
2052 0
2053 };
2054
2055 no16("rectangle scale uniform setup not supported on SIMD16\n");
2056 if (dispatch_width == 16) {
2057 return coordinate;
2058 }
2059
2060 GLuint index = _mesa_add_state_reference(params,
2061 (gl_state_index *)tokens);
2062 /* Try to find existing copies of the texrect scale uniforms. */
2063 for (unsigned i = 0; i < uniforms; i++) {
2064 if (stage_prog_data->param[i] ==
2065 &prog->Parameters->ParameterValues[index][0]) {
2066 scale_x = fs_reg(UNIFORM, i);
2067 scale_y = fs_reg(UNIFORM, i + 1);
2068 break;
2069 }
2070 }
2071
2072 /* If we didn't already set them up, do so now. */
2073 if (scale_x.file == BAD_FILE) {
2074 scale_x = fs_reg(UNIFORM, uniforms);
2075 scale_y = fs_reg(UNIFORM, uniforms + 1);
2076
2077 stage_prog_data->param[uniforms++] =
2078 &prog->Parameters->ParameterValues[index][0];
2079 stage_prog_data->param[uniforms++] =
2080 &prog->Parameters->ParameterValues[index][1];
2081 }
2082 }
2083
2084 /* The 965 requires the EU to do the normalization of GL rectangle
2085 * texture coordinates. We use the program parameter state
2086 * tracking to get the scaling factor.
2087 */
2088 if (devinfo->gen < 6 && is_rect) {
2089 fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components));
2090 fs_reg src = coordinate;
2091 coordinate = dst;
2092
2093 emit(MUL(dst, src, scale_x));
2094 dst = offset(dst, 1);
2095 src = offset(src, 1);
2096 emit(MUL(dst, src, scale_y));
2097 } else if (is_rect) {
2098 /* On gen6+, the sampler handles the rectangle coordinates
2099 * natively, without needing rescaling. But that means we have
2100 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
2101 * not [0, 1] like the default case below.
2102 */
2103 needs_gl_clamp = false;
2104
2105 for (int i = 0; i < 2; i++) {
2106 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2107 fs_reg chan = coordinate;
2108 chan = offset(chan, i);
2109
2110 inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
2111 inst->conditional_mod = BRW_CONDITIONAL_GE;
2112
2113 /* Our parameter comes in as 1.0/width or 1.0/height,
2114 * because that's what people normally want for doing
2115 * texture rectangle handling. We need width or height
2116 * for clamping, but we don't care enough to make a new
2117 * parameter type, so just invert back.
2118 */
2119 fs_reg limit = vgrf(glsl_type::float_type);
2120 emit(MOV(limit, i == 0 ? scale_x : scale_y));
2121 emit(SHADER_OPCODE_RCP, limit, limit);
2122
2123 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
2124 inst->conditional_mod = BRW_CONDITIONAL_L;
2125 }
2126 }
2127 }
2128
2129 if (coord_components > 0 && needs_gl_clamp) {
2130 for (int i = 0; i < MIN2(coord_components, 3); i++) {
2131 if (key_tex->gl_clamp_mask[i] & (1 << sampler)) {
2132 fs_reg chan = coordinate;
2133 chan = offset(chan, i);
2134
2135 fs_inst *inst = emit(MOV(chan, chan));
2136 inst->saturate = true;
2137 }
2138 }
2139 }
2140 return coordinate;
2141 }
2142
2143 /* Sample from the MCS surface attached to this multisample texture. */
2144 fs_reg
2145 fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
2146 {
2147 int reg_width = dispatch_width / 8;
2148 fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width),
2149 BRW_REGISTER_TYPE_F);
2150 fs_reg dest = vgrf(glsl_type::uvec4_type);
2151 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
2152
2153 /* parameters are: u, v, r; missing parameters are treated as zero */
2154 for (int i = 0; i < components; i++) {
2155 sources[i] = vgrf(glsl_type::float_type);
2156 emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
2157 coordinate = offset(coordinate, 1);
2158 }
2159
2160 emit(LOAD_PAYLOAD(payload, sources, components));
2161
2162 fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
2163 inst->base_mrf = -1;
2164 inst->mlen = components * reg_width;
2165 inst->header_present = false;
2166 inst->regs_written = 4 * reg_width; /* we only care about one reg of
2167 * response, but the sampler always
2168 * writes 4/8
2169 */
2170
2171 return dest;
2172 }
2173
2174 void
2175 fs_visitor::emit_texture(ir_texture_opcode op,
2176 const glsl_type *dest_type,
2177 fs_reg coordinate, int coord_components,
2178 fs_reg shadow_c,
2179 fs_reg lod, fs_reg lod2, int grad_components,
2180 fs_reg sample_index,
2181 fs_reg offset_value,
2182 fs_reg mcs,
2183 int gather_component,
2184 bool is_cube_array,
2185 bool is_rect,
2186 uint32_t sampler,
2187 fs_reg sampler_reg, int texunit)
2188 {
2189 fs_inst *inst = NULL;
2190
2191 if (op == ir_tg4) {
2192 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2193 * emitting anything other than setting up the constant result.
2194 */
2195 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
2196 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2197
2198 fs_reg res = vgrf(glsl_type::vec4_type);
2199 this->result = res;
2200
2201 for (int i=0; i<4; i++) {
2202 emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
2203 res = offset(res, 1);
2204 }
2205 return;
2206 }
2207 }
2208
2209 if (coordinate.file != BAD_FILE) {
2210 /* FINISHME: Texture coordinate rescaling doesn't work with non-constant
2211 * samplers. This should only be a problem with GL_CLAMP on Gen7.
2212 */
2213 coordinate = rescale_texcoord(coordinate, coord_components, is_rect,
2214 sampler, texunit);
2215 }
2216
2217 /* Writemasking doesn't eliminate channels on SIMD8 texture
2218 * samples, so don't worry about them.
2219 */
2220 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
2221
2222 if (devinfo->gen >= 7) {
2223 inst = emit_texture_gen7(op, dst, coordinate, coord_components,
2224 shadow_c, lod, lod2, grad_components,
2225 sample_index, mcs, sampler_reg,
2226 offset_value);
2227 } else if (devinfo->gen >= 5) {
2228 inst = emit_texture_gen5(op, dst, coordinate, coord_components,
2229 shadow_c, lod, lod2, grad_components,
2230 sample_index, sampler,
2231 offset_value.file != BAD_FILE);
2232 } else if (dispatch_width == 16) {
2233 inst = emit_texture_gen4_simd16(op, dst, coordinate, coord_components,
2234 shadow_c, lod, sampler);
2235 } else {
2236 inst = emit_texture_gen4(op, dst, coordinate, coord_components,
2237 shadow_c, lod, lod2, grad_components,
2238 sampler);
2239 }
2240
2241 if (shadow_c.file != BAD_FILE)
2242 inst->shadow_compare = true;
2243
2244 if (offset_value.file == IMM)
2245 inst->offset = offset_value.fixed_hw_reg.dw1.ud;
2246
2247 if (op == ir_tg4) {
2248 inst->offset |=
2249 gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
2250
2251 if (devinfo->gen == 6)
2252 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
2253 }
2254
2255 /* fixup #layers for cube map arrays */
2256 if (op == ir_txs && is_cube_array) {
2257 fs_reg depth = offset(dst, 2);
2258 fs_reg fixed_depth = vgrf(glsl_type::int_type);
2259 emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
2260
2261 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
2262 int components = inst->regs_written / (dst.width / 8);
2263 for (int i = 0; i < components; i++) {
2264 if (i == 2) {
2265 fixed_payload[i] = fixed_depth;
2266 } else {
2267 fixed_payload[i] = offset(dst, i);
2268 }
2269 }
2270 emit(LOAD_PAYLOAD(dst, fixed_payload, components));
2271 }
2272
2273 swizzle_result(op, dest_type->vector_elements, dst, sampler);
2274 }
2275
2276 void
2277 fs_visitor::visit(ir_texture *ir)
2278 {
2279 uint32_t sampler =
2280 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2281
2282 ir_rvalue *nonconst_sampler_index =
2283 _mesa_get_sampler_array_nonconst_index(ir->sampler);
2284
2285 /* Handle non-constant sampler array indexing */
2286 fs_reg sampler_reg;
2287 if (nonconst_sampler_index) {
2288 /* The highest sampler which may be used by this operation is
2289 * the last element of the array. Mark it here, because the generator
2290 * doesn't have enough information to determine the bound.
2291 */
2292 uint32_t array_size = ir->sampler->as_dereference_array()
2293 ->array->type->array_size();
2294
2295 uint32_t max_used = sampler + array_size - 1;
2296 if (ir->op == ir_tg4 && devinfo->gen < 8) {
2297 max_used += stage_prog_data->binding_table.gather_texture_start;
2298 } else {
2299 max_used += stage_prog_data->binding_table.texture_start;
2300 }
2301
2302 brw_mark_surface_used(prog_data, max_used);
2303
2304 /* Emit code to evaluate the actual indexing expression */
2305 nonconst_sampler_index->accept(this);
2306 fs_reg temp = vgrf(glsl_type::uint_type);
2307 emit(ADD(temp, this->result, fs_reg(sampler)))
2308 ->force_writemask_all = true;
2309 sampler_reg = temp;
2310 } else {
2311 /* Single sampler, or constant array index; the indexing expression
2312 * is just an immediate.
2313 */
2314 sampler_reg = fs_reg(sampler);
2315 }
2316
2317 /* FINISHME: We're failing to recompile our programs when the sampler is
2318 * updated. This only matters for the texture rectangle scale parameters
2319 * (pre-gen6, or gen6+ with GL_CLAMP).
2320 */
2321 int texunit = prog->SamplerUnits[sampler];
2322
2323 /* Should be lowered by do_lower_texture_projection */
2324 assert(!ir->projector);
2325
2326 /* Should be lowered */
2327 assert(!ir->offset || !ir->offset->type->is_array());
2328
2329 /* Generate code to compute all the subexpression trees. This has to be
2330 * done before loading any values into MRFs for the sampler message since
2331 * generating these values may involve SEND messages that need the MRFs.
2332 */
2333 fs_reg coordinate;
2334 int coord_components = 0;
2335 if (ir->coordinate) {
2336 coord_components = ir->coordinate->type->vector_elements;
2337 ir->coordinate->accept(this);
2338 coordinate = this->result;
2339 }
2340
2341 fs_reg shadow_comparitor;
2342 if (ir->shadow_comparitor) {
2343 ir->shadow_comparitor->accept(this);
2344 shadow_comparitor = this->result;
2345 }
2346
2347 fs_reg offset_value;
2348 if (ir->offset) {
2349 ir_constant *const_offset = ir->offset->as_constant();
2350 if (const_offset) {
2351 /* Store the header bitfield in an IMM register. This allows us to
2352 * use offset_value.file to distinguish between no offset, a constant
2353 * offset, and a non-constant offset.
2354 */
2355 offset_value =
2356 fs_reg(brw_texture_offset(const_offset->value.i,
2357 const_offset->type->vector_elements));
2358 } else {
2359 ir->offset->accept(this);
2360 offset_value = this->result;
2361 }
2362 }
2363
2364 fs_reg lod, lod2, sample_index, mcs;
2365 int grad_components = 0;
2366 switch (ir->op) {
2367 case ir_tex:
2368 case ir_lod:
2369 case ir_tg4:
2370 case ir_query_levels:
2371 break;
2372 case ir_txb:
2373 ir->lod_info.bias->accept(this);
2374 lod = this->result;
2375 break;
2376 case ir_txd:
2377 ir->lod_info.grad.dPdx->accept(this);
2378 lod = this->result;
2379
2380 ir->lod_info.grad.dPdy->accept(this);
2381 lod2 = this->result;
2382
2383 grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
2384 break;
2385 case ir_txf:
2386 case ir_txl:
2387 case ir_txs:
2388 ir->lod_info.lod->accept(this);
2389 lod = this->result;
2390 break;
2391 case ir_txf_ms:
2392 ir->lod_info.sample_index->accept(this);
2393 sample_index = this->result;
2394
2395 if (devinfo->gen >= 7 &&
2396 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2397 mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
2398 sampler_reg);
2399 } else {
2400 mcs = fs_reg(0u);
2401 }
2402 break;
2403 default:
2404 unreachable("Unrecognized texture opcode");
2405 };
2406
2407 int gather_component = 0;
2408 if (ir->op == ir_tg4)
2409 gather_component = ir->lod_info.component->as_constant()->value.i[0];
2410
2411 bool is_rect =
2412 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
2413
2414 bool is_cube_array =
2415 ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2416 ir->sampler->type->sampler_array;
2417
2418 emit_texture(ir->op, ir->type, coordinate, coord_components,
2419 shadow_comparitor, lod, lod2, grad_components,
2420 sample_index, offset_value, mcs,
2421 gather_component, is_cube_array, is_rect, sampler,
2422 sampler_reg, texunit);
2423 }
2424
2425 /**
2426 * Apply workarounds for Gen6 gather with UINT/SINT
2427 */
2428 void
2429 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
2430 {
2431 if (!wa)
2432 return;
2433
2434 int width = (wa & WA_8BIT) ? 8 : 16;
2435
2436 for (int i = 0; i < 4; i++) {
2437 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
2438 /* Convert from UNORM to UINT */
2439 emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
2440 emit(MOV(dst, dst_f));
2441
2442 if (wa & WA_SIGN) {
2443 /* Reinterpret the UINT value as a signed INT value by
2444 * shifting the sign bit into place, then shifting back
2445 * preserving sign.
2446 */
2447 emit(SHL(dst, dst, fs_reg(32 - width)));
2448 emit(ASR(dst, dst, fs_reg(32 - width)));
2449 }
2450
2451 dst = offset(dst, 1);
2452 }
2453 }
2454
2455 /**
2456 * Set up the gather channel based on the swizzle, for gather4.
2457 */
2458 uint32_t
2459 fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
2460 {
2461 int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan);
2462 switch (swiz) {
2463 case SWIZZLE_X: return 0;
2464 case SWIZZLE_Y:
2465 /* gather4 sampler is broken for green channel on RG32F --
2466 * we must ask for blue instead.
2467 */
2468 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
2469 return 2;
2470 return 1;
2471 case SWIZZLE_Z: return 2;
2472 case SWIZZLE_W: return 3;
2473 default:
2474 unreachable("Not reached"); /* zero, one swizzles handled already */
2475 }
2476 }
2477
2478 /**
2479 * Swizzle the result of a texture result. This is necessary for
2480 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
2481 */
2482 void
2483 fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
2484 fs_reg orig_val, uint32_t sampler)
2485 {
2486 if (op == ir_query_levels) {
2487 /* # levels is in .w */
2488 this->result = offset(orig_val, 3);
2489 return;
2490 }
2491
2492 this->result = orig_val;
2493
2494 /* txs,lod don't actually sample the texture, so swizzling the result
2495 * makes no sense.
2496 */
2497 if (op == ir_txs || op == ir_lod || op == ir_tg4)
2498 return;
2499
2500 if (dest_components == 1) {
2501 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
2502 } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) {
2503 fs_reg swizzled_result = vgrf(glsl_type::vec4_type);
2504 swizzled_result.type = orig_val.type;
2505
2506 for (int i = 0; i < 4; i++) {
2507 int swiz = GET_SWZ(key_tex->swizzles[sampler], i);
2508 fs_reg l = swizzled_result;
2509 l = offset(l, i);
2510
2511 if (swiz == SWIZZLE_ZERO) {
2512 emit(MOV(l, fs_reg(0.0f)));
2513 } else if (swiz == SWIZZLE_ONE) {
2514 emit(MOV(l, fs_reg(1.0f)));
2515 } else {
2516 emit(MOV(l, offset(orig_val,
2517 GET_SWZ(key_tex->swizzles[sampler], i))));
2518 }
2519 }
2520 this->result = swizzled_result;
2521 }
2522 }
2523
2524 void
2525 fs_visitor::visit(ir_swizzle *ir)
2526 {
2527 ir->val->accept(this);
2528 fs_reg val = this->result;
2529
2530 if (ir->type->vector_elements == 1) {
2531 this->result = offset(this->result, ir->mask.x);
2532 return;
2533 }
2534
2535 fs_reg result = vgrf(ir->type);
2536 this->result = result;
2537
2538 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
2539 fs_reg channel = val;
2540 int swiz = 0;
2541
2542 switch (i) {
2543 case 0:
2544 swiz = ir->mask.x;
2545 break;
2546 case 1:
2547 swiz = ir->mask.y;
2548 break;
2549 case 2:
2550 swiz = ir->mask.z;
2551 break;
2552 case 3:
2553 swiz = ir->mask.w;
2554 break;
2555 }
2556
2557 emit(MOV(result, offset(channel, swiz)));
2558 result = offset(result, 1);
2559 }
2560 }
2561
2562 void
2563 fs_visitor::visit(ir_discard *ir)
2564 {
2565 /* We track our discarded pixels in f0.1. By predicating on it, we can
2566 * update just the flag bits that aren't yet discarded. If there's no
2567 * condition, we emit a CMP of g0 != g0, so all currently executing
2568 * channels will get turned off.
2569 */
2570 fs_inst *cmp;
2571 if (ir->condition) {
2572 emit_bool_to_cond_code(ir->condition);
2573 cmp = (fs_inst *) this->instructions.get_tail();
2574 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
2575 } else {
2576 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2577 BRW_REGISTER_TYPE_UW));
2578 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
2579 }
2580 cmp->predicate = BRW_PREDICATE_NORMAL;
2581 cmp->flag_subreg = 1;
2582
2583 if (devinfo->gen >= 6) {
2584 emit_discard_jump();
2585 }
2586 }
2587
2588 void
2589 fs_visitor::visit(ir_constant *ir)
2590 {
2591 /* Set this->result to reg at the bottom of the function because some code
2592 * paths will cause this visitor to be applied to other fields. This will
2593 * cause the value stored in this->result to be modified.
2594 *
2595 * Make reg constant so that it doesn't get accidentally modified along the
2596 * way. Yes, I actually had this problem. :(
2597 */
2598 const fs_reg reg = vgrf(ir->type);
2599 fs_reg dst_reg = reg;
2600
2601 if (ir->type->is_array()) {
2602 const unsigned size = type_size(ir->type->fields.array);
2603
2604 for (unsigned i = 0; i < ir->type->length; i++) {
2605 ir->array_elements[i]->accept(this);
2606 fs_reg src_reg = this->result;
2607
2608 dst_reg.type = src_reg.type;
2609 for (unsigned j = 0; j < size; j++) {
2610 emit(MOV(dst_reg, src_reg));
2611 src_reg = offset(src_reg, 1);
2612 dst_reg = offset(dst_reg, 1);
2613 }
2614 }
2615 } else if (ir->type->is_record()) {
2616 foreach_in_list(ir_constant, field, &ir->components) {
2617 const unsigned size = type_size(field->type);
2618
2619 field->accept(this);
2620 fs_reg src_reg = this->result;
2621
2622 dst_reg.type = src_reg.type;
2623 for (unsigned j = 0; j < size; j++) {
2624 emit(MOV(dst_reg, src_reg));
2625 src_reg = offset(src_reg, 1);
2626 dst_reg = offset(dst_reg, 1);
2627 }
2628 }
2629 } else {
2630 const unsigned size = type_size(ir->type);
2631
2632 for (unsigned i = 0; i < size; i++) {
2633 switch (ir->type->base_type) {
2634 case GLSL_TYPE_FLOAT:
2635 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
2636 break;
2637 case GLSL_TYPE_UINT:
2638 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
2639 break;
2640 case GLSL_TYPE_INT:
2641 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
2642 break;
2643 case GLSL_TYPE_BOOL:
2644 emit(MOV(dst_reg, fs_reg(ir->value.b[i] != 0 ? ~0 : 0)));
2645 break;
2646 default:
2647 unreachable("Non-float/uint/int/bool constant");
2648 }
2649 dst_reg = offset(dst_reg, 1);
2650 }
2651 }
2652
2653 this->result = reg;
2654 }
2655
2656 void
2657 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
2658 {
2659 ir_expression *expr = ir->as_expression();
2660
2661 if (!expr || expr->operation == ir_binop_ubo_load) {
2662 ir->accept(this);
2663
2664 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
2665 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2666 return;
2667 }
2668
2669 fs_reg op[3];
2670
2671 assert(expr->get_num_operands() <= 3);
2672 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2673 assert(expr->operands[i]->type->is_scalar());
2674
2675 expr->operands[i]->accept(this);
2676 op[i] = this->result;
2677
2678 resolve_ud_negate(&op[i]);
2679 }
2680
2681 emit_bool_to_cond_code_of_reg(expr, op);
2682 }
2683
2684 void
2685 fs_visitor::emit_bool_to_cond_code_of_reg(ir_expression *expr, fs_reg op[3])
2686 {
2687 fs_inst *inst;
2688
2689 switch (expr->operation) {
2690 case ir_unop_logic_not:
2691 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
2692 inst->conditional_mod = BRW_CONDITIONAL_Z;
2693 break;
2694
2695 case ir_binop_logic_xor:
2696 if (devinfo->gen <= 5) {
2697 fs_reg temp = vgrf(expr->type);
2698 emit(XOR(temp, op[0], op[1]));
2699 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2700 } else {
2701 inst = emit(XOR(reg_null_d, op[0], op[1]));
2702 }
2703 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2704 break;
2705
2706 case ir_binop_logic_or:
2707 if (devinfo->gen <= 5) {
2708 fs_reg temp = vgrf(expr->type);
2709 emit(OR(temp, op[0], op[1]));
2710 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2711 } else {
2712 inst = emit(OR(reg_null_d, op[0], op[1]));
2713 }
2714 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2715 break;
2716
2717 case ir_binop_logic_and:
2718 if (devinfo->gen <= 5) {
2719 fs_reg temp = vgrf(expr->type);
2720 emit(AND(temp, op[0], op[1]));
2721 inst = emit(AND(reg_null_d, temp, fs_reg(1)));
2722 } else {
2723 inst = emit(AND(reg_null_d, op[0], op[1]));
2724 }
2725 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2726 break;
2727
2728 case ir_unop_f2b:
2729 if (devinfo->gen >= 6) {
2730 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
2731 } else {
2732 inst = emit(MOV(reg_null_f, op[0]));
2733 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2734 }
2735 break;
2736
2737 case ir_unop_i2b:
2738 if (devinfo->gen >= 6) {
2739 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2740 } else {
2741 inst = emit(MOV(reg_null_d, op[0]));
2742 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2743 }
2744 break;
2745
2746 case ir_binop_greater:
2747 case ir_binop_gequal:
2748 case ir_binop_less:
2749 case ir_binop_lequal:
2750 case ir_binop_equal:
2751 case ir_binop_all_equal:
2752 case ir_binop_nequal:
2753 case ir_binop_any_nequal:
2754 if (devinfo->gen <= 5) {
2755 resolve_bool_comparison(expr->operands[0], &op[0]);
2756 resolve_bool_comparison(expr->operands[1], &op[1]);
2757 }
2758
2759 emit(CMP(reg_null_d, op[0], op[1],
2760 brw_conditional_for_comparison(expr->operation)));
2761 break;
2762
2763 case ir_triop_csel: {
2764 /* Expand the boolean condition into the flag register. */
2765 inst = emit(MOV(reg_null_d, op[0]));
2766 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2767
2768 /* Select which boolean to return. */
2769 fs_reg temp = vgrf(expr->operands[1]->type);
2770 inst = emit(SEL(temp, op[1], op[2]));
2771 inst->predicate = BRW_PREDICATE_NORMAL;
2772
2773 /* Expand the result to a condition code. */
2774 inst = emit(MOV(reg_null_d, temp));
2775 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2776 break;
2777 }
2778
2779 default:
2780 unreachable("not reached");
2781 }
2782 }
2783
2784 /**
2785 * Emit a gen6 IF statement with the comparison folded into the IF
2786 * instruction.
2787 */
2788 void
2789 fs_visitor::emit_if_gen6(ir_if *ir)
2790 {
2791 ir_expression *expr = ir->condition->as_expression();
2792
2793 if (expr && expr->operation != ir_binop_ubo_load) {
2794 fs_reg op[3];
2795 fs_inst *inst;
2796 fs_reg temp;
2797
2798 assert(expr->get_num_operands() <= 3);
2799 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
2800 assert(expr->operands[i]->type->is_scalar());
2801
2802 expr->operands[i]->accept(this);
2803 op[i] = this->result;
2804 }
2805
2806 switch (expr->operation) {
2807 case ir_unop_logic_not:
2808 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
2809 return;
2810
2811 case ir_binop_logic_xor:
2812 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
2813 return;
2814
2815 case ir_binop_logic_or:
2816 temp = vgrf(glsl_type::bool_type);
2817 emit(OR(temp, op[0], op[1]));
2818 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2819 return;
2820
2821 case ir_binop_logic_and:
2822 temp = vgrf(glsl_type::bool_type);
2823 emit(AND(temp, op[0], op[1]));
2824 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2825 return;
2826
2827 case ir_unop_f2b:
2828 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
2829 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2830 return;
2831
2832 case ir_unop_i2b:
2833 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
2834 return;
2835
2836 case ir_binop_greater:
2837 case ir_binop_gequal:
2838 case ir_binop_less:
2839 case ir_binop_lequal:
2840 case ir_binop_equal:
2841 case ir_binop_all_equal:
2842 case ir_binop_nequal:
2843 case ir_binop_any_nequal:
2844 if (devinfo->gen <= 5) {
2845 resolve_bool_comparison(expr->operands[0], &op[0]);
2846 resolve_bool_comparison(expr->operands[1], &op[1]);
2847 }
2848
2849 emit(IF(op[0], op[1],
2850 brw_conditional_for_comparison(expr->operation)));
2851 return;
2852
2853 case ir_triop_csel: {
2854 /* Expand the boolean condition into the flag register. */
2855 fs_inst *inst = emit(MOV(reg_null_d, op[0]));
2856 inst->conditional_mod = BRW_CONDITIONAL_NZ;
2857
2858 /* Select which boolean to use as the result. */
2859 fs_reg temp = vgrf(expr->operands[1]->type);
2860 inst = emit(SEL(temp, op[1], op[2]));
2861 inst->predicate = BRW_PREDICATE_NORMAL;
2862
2863 emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
2864 return;
2865 }
2866
2867 default:
2868 unreachable("not reached");
2869 }
2870 }
2871
2872 ir->condition->accept(this);
2873 emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
2874 }
2875
2876 bool
2877 fs_visitor::try_opt_frontfacing_ternary(ir_if *ir)
2878 {
2879 ir_dereference_variable *deref = ir->condition->as_dereference_variable();
2880 if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0)
2881 return false;
2882
2883 if (ir->then_instructions.length() != 1 ||
2884 ir->else_instructions.length() != 1)
2885 return false;
2886
2887 ir_assignment *then_assign =
2888 ((ir_instruction *)ir->then_instructions.head)->as_assignment();
2889 ir_assignment *else_assign =
2890 ((ir_instruction *)ir->else_instructions.head)->as_assignment();
2891
2892 if (!then_assign || then_assign->condition ||
2893 !else_assign || else_assign->condition ||
2894 then_assign->write_mask != else_assign->write_mask ||
2895 !then_assign->lhs->equals(else_assign->lhs))
2896 return false;
2897
2898 ir_constant *then_rhs = then_assign->rhs->as_constant();
2899 ir_constant *else_rhs = else_assign->rhs->as_constant();
2900
2901 if (!then_rhs || !else_rhs)
2902 return false;
2903
2904 if (then_rhs->type->base_type != GLSL_TYPE_FLOAT)
2905 return false;
2906
2907 if ((then_rhs->is_one() && else_rhs->is_negative_one()) ||
2908 (else_rhs->is_one() && then_rhs->is_negative_one())) {
2909 then_assign->lhs->accept(this);
2910 fs_reg dst = this->result;
2911 dst.type = BRW_REGISTER_TYPE_D;
2912 fs_reg tmp = vgrf(glsl_type::int_type);
2913
2914 if (devinfo->gen >= 6) {
2915 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
2916 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
2917
2918 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2919 *
2920 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
2921 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2922 *
2923 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
2924 */
2925
2926 if (then_rhs->is_negative_one()) {
2927 assert(else_rhs->is_one());
2928 g0.negate = true;
2929 }
2930
2931 tmp.type = BRW_REGISTER_TYPE_W;
2932 tmp.subreg_offset = 2;
2933 tmp.stride = 2;
2934
2935 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
2936 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
2937
2938 tmp.type = BRW_REGISTER_TYPE_D;
2939 tmp.subreg_offset = 0;
2940 tmp.stride = 1;
2941 } else {
2942 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
2943 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
2944
2945 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
2946 *
2947 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
2948 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
2949 *
2950 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
2951 */
2952
2953 if (then_rhs->is_negative_one()) {
2954 assert(else_rhs->is_one());
2955 g1_6.negate = true;
2956 }
2957
2958 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
2959 }
2960 emit(AND(dst, tmp, fs_reg(0xbf800000)));
2961 return true;
2962 }
2963
2964 return false;
2965 }
2966
2967 /**
2968 * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
2969 *
2970 * Many GLSL shaders contain the following pattern:
2971 *
2972 * x = condition ? foo : bar
2973 *
2974 * The compiler emits an ir_if tree for this, since each subexpression might be
2975 * a complex tree that could have side-effects or short-circuit logic.
2976 *
2977 * However, the common case is to simply select one of two constants or
2978 * variable values---which is exactly what SEL is for. In this case, the
2979 * assembly looks like:
2980 *
2981 * (+f0) IF
2982 * MOV dst src0
2983 * ELSE
2984 * MOV dst src1
2985 * ENDIF
2986 *
2987 * which can be easily translated into:
2988 *
2989 * (+f0) SEL dst src0 src1
2990 *
2991 * If src0 is an immediate value, we promote it to a temporary GRF.
2992 */
2993 bool
2994 fs_visitor::try_replace_with_sel()
2995 {
2996 fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
2997 assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
2998
2999 /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
3000 int opcodes[] = {
3001 BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
3002 };
3003
3004 fs_inst *match = (fs_inst *) endif_inst->prev;
3005 for (int i = 0; i < 4; i++) {
3006 if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
3007 return false;
3008 match = (fs_inst *) match->prev;
3009 }
3010
3011 /* The opcodes match; it looks like the right sequence of instructions. */
3012 fs_inst *else_mov = (fs_inst *) endif_inst->prev;
3013 fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
3014 fs_inst *if_inst = (fs_inst *) then_mov->prev;
3015
3016 /* Check that the MOVs are the right form. */
3017 if (then_mov->dst.equals(else_mov->dst) &&
3018 !then_mov->is_partial_write() &&
3019 !else_mov->is_partial_write()) {
3020
3021 /* Remove the matched instructions; we'll emit a SEL to replace them. */
3022 while (!if_inst->next->is_tail_sentinel())
3023 if_inst->next->exec_node::remove();
3024 if_inst->exec_node::remove();
3025
3026 /* Only the last source register can be a constant, so if the MOV in
3027 * the "then" clause uses a constant, we need to put it in a temporary.
3028 */
3029 fs_reg src0(then_mov->src[0]);
3030 if (src0.file == IMM) {
3031 src0 = vgrf(glsl_type::float_type);
3032 src0.type = then_mov->src[0].type;
3033 emit(MOV(src0, then_mov->src[0]));
3034 }
3035
3036 fs_inst *sel;
3037 if (if_inst->conditional_mod) {
3038 /* Sandybridge-specific IF with embedded comparison */
3039 emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
3040 if_inst->conditional_mod));
3041 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3042 sel->predicate = BRW_PREDICATE_NORMAL;
3043 } else {
3044 /* Separate CMP and IF instructions */
3045 sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
3046 sel->predicate = if_inst->predicate;
3047 sel->predicate_inverse = if_inst->predicate_inverse;
3048 }
3049
3050 return true;
3051 }
3052
3053 return false;
3054 }
3055
3056 void
3057 fs_visitor::visit(ir_if *ir)
3058 {
3059 if (try_opt_frontfacing_ternary(ir))
3060 return;
3061
3062 /* Don't point the annotation at the if statement, because then it plus
3063 * the then and else blocks get printed.
3064 */
3065 this->base_ir = ir->condition;
3066
3067 if (devinfo->gen == 6) {
3068 emit_if_gen6(ir);
3069 } else {
3070 emit_bool_to_cond_code(ir->condition);
3071
3072 emit(IF(BRW_PREDICATE_NORMAL));
3073 }
3074
3075 foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
3076 this->base_ir = ir_;
3077 ir_->accept(this);
3078 }
3079
3080 if (!ir->else_instructions.is_empty()) {
3081 emit(BRW_OPCODE_ELSE);
3082
3083 foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
3084 this->base_ir = ir_;
3085 ir_->accept(this);
3086 }
3087 }
3088
3089 emit(BRW_OPCODE_ENDIF);
3090
3091 if (!try_replace_with_sel() && devinfo->gen < 6) {
3092 no16("Can't support (non-uniform) control flow on SIMD16\n");
3093 }
3094 }
3095
3096 void
3097 fs_visitor::visit(ir_loop *ir)
3098 {
3099 if (devinfo->gen < 6) {
3100 no16("Can't support (non-uniform) control flow on SIMD16\n");
3101 }
3102
3103 this->base_ir = NULL;
3104 emit(BRW_OPCODE_DO);
3105
3106 foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
3107 this->base_ir = ir_;
3108 ir_->accept(this);
3109 }
3110
3111 this->base_ir = NULL;
3112 emit(BRW_OPCODE_WHILE);
3113 }
3114
3115 void
3116 fs_visitor::visit(ir_loop_jump *ir)
3117 {
3118 switch (ir->mode) {
3119 case ir_loop_jump::jump_break:
3120 emit(BRW_OPCODE_BREAK);
3121 break;
3122 case ir_loop_jump::jump_continue:
3123 emit(BRW_OPCODE_CONTINUE);
3124 break;
3125 }
3126 }
3127
3128 void
3129 fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3130 {
3131 ir_dereference *deref = static_cast<ir_dereference *>(
3132 ir->actual_parameters.get_head());
3133 ir_variable *location = deref->variable_referenced();
3134 unsigned surf_index = (stage_prog_data->binding_table.abo_start +
3135 location->data.binding);
3136
3137 /* Calculate the surface offset */
3138 fs_reg offset = vgrf(glsl_type::uint_type);
3139 ir_dereference_array *deref_array = deref->as_dereference_array();
3140
3141 if (deref_array) {
3142 deref_array->array_index->accept(this);
3143
3144 fs_reg tmp = vgrf(glsl_type::uint_type);
3145 emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
3146 emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
3147 } else {
3148 offset = fs_reg(location->data.atomic.offset);
3149 }
3150
3151 /* Emit the appropriate machine instruction */
3152 const char *callee = ir->callee->function_name();
3153 ir->return_deref->accept(this);
3154 fs_reg dst = this->result;
3155
3156 if (!strcmp("__intrinsic_atomic_read", callee)) {
3157 emit_untyped_surface_read(surf_index, dst, offset);
3158
3159 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
3160 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
3161 fs_reg(), fs_reg());
3162
3163 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
3164 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
3165 fs_reg(), fs_reg());
3166 }
3167 }
3168
3169 void
3170 fs_visitor::visit(ir_call *ir)
3171 {
3172 const char *callee = ir->callee->function_name();
3173
3174 if (!strcmp("__intrinsic_atomic_read", callee) ||
3175 !strcmp("__intrinsic_atomic_increment", callee) ||
3176 !strcmp("__intrinsic_atomic_predecrement", callee)) {
3177 visit_atomic_counter_intrinsic(ir);
3178 } else {
3179 unreachable("Unsupported intrinsic.");
3180 }
3181 }
3182
3183 void
3184 fs_visitor::visit(ir_return *)
3185 {
3186 unreachable("FINISHME");
3187 }
3188
3189 void
3190 fs_visitor::visit(ir_function *ir)
3191 {
3192 /* Ignore function bodies other than main() -- we shouldn't see calls to
3193 * them since they should all be inlined before we get to ir_to_mesa.
3194 */
3195 if (strcmp(ir->name, "main") == 0) {
3196 const ir_function_signature *sig;
3197 exec_list empty;
3198
3199 sig = ir->matching_signature(NULL, &empty, false);
3200
3201 assert(sig);
3202
3203 foreach_in_list(ir_instruction, ir_, &sig->body) {
3204 this->base_ir = ir_;
3205 ir_->accept(this);
3206 }
3207 }
3208 }
3209
3210 void
3211 fs_visitor::visit(ir_function_signature *)
3212 {
3213 unreachable("not reached");
3214 }
3215
3216 void
3217 fs_visitor::visit(ir_emit_vertex *)
3218 {
3219 unreachable("not reached");
3220 }
3221
3222 void
3223 fs_visitor::visit(ir_end_primitive *)
3224 {
3225 unreachable("not reached");
3226 }
3227
3228 void
3229 fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
3230 fs_reg dst, fs_reg offset, fs_reg src0,
3231 fs_reg src1)
3232 {
3233 int reg_width = dispatch_width / 8;
3234 int length = 0;
3235
3236 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
3237
3238 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3239 /* Initialize the sample mask in the message header. */
3240 emit(MOV(sources[0], fs_reg(0u)))
3241 ->force_writemask_all = true;
3242
3243 if (stage == MESA_SHADER_FRAGMENT) {
3244 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3245 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3246 ->force_writemask_all = true;
3247 } else {
3248 emit(MOV(component(sources[0], 7),
3249 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3250 ->force_writemask_all = true;
3251 }
3252 } else {
3253 /* The execution mask is part of the side-band information sent together with
3254 * the message payload to the data port. It's implicitly ANDed with the sample
3255 * mask sent in the header to compute the actual set of channels that execute
3256 * the atomic operation.
3257 */
3258 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3259 emit(MOV(component(sources[0], 7),
3260 fs_reg(0xffffu)))->force_writemask_all = true;
3261 }
3262 length++;
3263
3264 /* Set the atomic operation offset. */
3265 sources[1] = vgrf(glsl_type::uint_type);
3266 emit(MOV(sources[1], offset));
3267 length++;
3268
3269 /* Set the atomic operation arguments. */
3270 if (src0.file != BAD_FILE) {
3271 sources[length] = vgrf(glsl_type::uint_type);
3272 emit(MOV(sources[length], src0));
3273 length++;
3274 }
3275
3276 if (src1.file != BAD_FILE) {
3277 sources[length] = vgrf(glsl_type::uint_type);
3278 emit(MOV(sources[length], src1));
3279 length++;
3280 }
3281
3282 int mlen = 1 + (length - 1) * reg_width;
3283 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3284 BRW_REGISTER_TYPE_UD);
3285 emit(LOAD_PAYLOAD(src_payload, sources, length));
3286
3287 /* Emit the instruction. */
3288 fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
3289 fs_reg(atomic_op), fs_reg(surf_index));
3290 inst->mlen = mlen;
3291 }
3292
3293 void
3294 fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
3295 fs_reg offset)
3296 {
3297 int reg_width = dispatch_width / 8;
3298
3299 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
3300
3301 sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
3302 /* Initialize the sample mask in the message header. */
3303 emit(MOV(sources[0], fs_reg(0u)))
3304 ->force_writemask_all = true;
3305
3306 if (stage == MESA_SHADER_FRAGMENT) {
3307 if (((brw_wm_prog_data*)this->prog_data)->uses_kill) {
3308 emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
3309 ->force_writemask_all = true;
3310 } else {
3311 emit(MOV(component(sources[0], 7),
3312 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
3313 ->force_writemask_all = true;
3314 }
3315 } else {
3316 /* The execution mask is part of the side-band information sent together with
3317 * the message payload to the data port. It's implicitly ANDed with the sample
3318 * mask sent in the header to compute the actual set of channels that execute
3319 * the atomic operation.
3320 */
3321 assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE);
3322 emit(MOV(component(sources[0], 7),
3323 fs_reg(0xffffu)))->force_writemask_all = true;
3324 }
3325
3326 /* Set the surface read offset. */
3327 sources[1] = vgrf(glsl_type::uint_type);
3328 emit(MOV(sources[1], offset));
3329
3330 int mlen = 1 + reg_width;
3331 fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
3332 BRW_REGISTER_TYPE_UD);
3333 fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
3334
3335 /* Emit the instruction. */
3336 inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
3337 fs_reg(surf_index));
3338 inst->mlen = mlen;
3339 }
3340
3341 fs_inst *
3342 fs_visitor::emit(fs_inst *inst)
3343 {
3344 if (dispatch_width == 16 && inst->exec_size == 8)
3345 inst->force_uncompressed = true;
3346
3347 inst->annotation = this->current_annotation;
3348 inst->ir = this->base_ir;
3349
3350 this->instructions.push_tail(inst);
3351
3352 return inst;
3353 }
3354
3355 void
3356 fs_visitor::emit(exec_list list)
3357 {
3358 foreach_in_list_safe(fs_inst, inst, &list) {
3359 inst->exec_node::remove();
3360 emit(inst);
3361 }
3362 }
3363
3364 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
3365 void
3366 fs_visitor::emit_dummy_fs()
3367 {
3368 int reg_width = dispatch_width / 8;
3369
3370 /* Everyone's favorite color. */
3371 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
3372 for (int i = 0; i < 4; i++) {
3373 emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F,
3374 dispatch_width), fs_reg(color[i])));
3375 }
3376
3377 fs_inst *write;
3378 write = emit(FS_OPCODE_FB_WRITE);
3379 write->eot = true;
3380 if (devinfo->gen >= 6) {
3381 write->base_mrf = 2;
3382 write->mlen = 4 * reg_width;
3383 } else {
3384 write->header_present = true;
3385 write->base_mrf = 0;
3386 write->mlen = 2 + 4 * reg_width;
3387 }
3388
3389 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
3390 * varying to avoid GPU hangs, so set that.
3391 */
3392 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3393 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
3394 memset(wm_prog_data->urb_setup, -1,
3395 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
3396
3397 /* We don't have any uniforms. */
3398 stage_prog_data->nr_params = 0;
3399 stage_prog_data->nr_pull_params = 0;
3400 stage_prog_data->curb_read_length = 0;
3401 stage_prog_data->dispatch_grf_start_reg = 2;
3402 wm_prog_data->dispatch_grf_start_reg_16 = 2;
3403 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
3404
3405 calculate_cfg();
3406 }
3407
3408 /* The register location here is relative to the start of the URB
3409 * data. It will get adjusted to be a real location before
3410 * generate_code() time.
3411 */
3412 struct brw_reg
3413 fs_visitor::interp_reg(int location, int channel)
3414 {
3415 assert(stage == MESA_SHADER_FRAGMENT);
3416 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3417 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
3418 int stride = (channel & 1) * 4;
3419
3420 assert(prog_data->urb_setup[location] != -1);
3421
3422 return brw_vec1_grf(regnr, stride);
3423 }
3424
3425 /** Emits the interpolation for the varying inputs. */
3426 void
3427 fs_visitor::emit_interpolation_setup_gen4()
3428 {
3429 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3430
3431 this->current_annotation = "compute pixel centers";
3432 this->pixel_x = vgrf(glsl_type::uint_type);
3433 this->pixel_y = vgrf(glsl_type::uint_type);
3434 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
3435 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
3436 emit(ADD(this->pixel_x,
3437 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3438 fs_reg(brw_imm_v(0x10101010))));
3439 emit(ADD(this->pixel_y,
3440 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3441 fs_reg(brw_imm_v(0x11001100))));
3442
3443 this->current_annotation = "compute pixel deltas from v0";
3444
3445 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
3446 vgrf(glsl_type::vec2_type);
3447 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
3448 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
3449 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
3450
3451 if (devinfo->has_pln && dispatch_width == 16) {
3452 emit(ADD(half(offset(delta_xy, 0), 0), half(this->pixel_x, 0), xstart));
3453 emit(ADD(half(offset(delta_xy, 0), 1), half(this->pixel_y, 0), ystart));
3454 emit(ADD(half(offset(delta_xy, 1), 0), half(this->pixel_x, 1), xstart))
3455 ->force_sechalf = true;
3456 emit(ADD(half(offset(delta_xy, 1), 1), half(this->pixel_y, 1), ystart))
3457 ->force_sechalf = true;
3458 } else {
3459 emit(ADD(offset(delta_xy, 0), this->pixel_x, xstart));
3460 emit(ADD(offset(delta_xy, 1), this->pixel_y, ystart));
3461 }
3462
3463 this->current_annotation = "compute pos.w and 1/pos.w";
3464 /* Compute wpos.w. It's always in our setup, since it's needed to
3465 * interpolate the other attributes.
3466 */
3467 this->wpos_w = vgrf(glsl_type::float_type);
3468 emit(FS_OPCODE_LINTERP, wpos_w, delta_xy, interp_reg(VARYING_SLOT_POS, 3));
3469 /* Compute the pixel 1/W value from wpos.w. */
3470 this->pixel_w = vgrf(glsl_type::float_type);
3471 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
3472 this->current_annotation = NULL;
3473 }
3474
3475 /** Emits the interpolation for the varying inputs. */
3476 void
3477 fs_visitor::emit_interpolation_setup_gen6()
3478 {
3479 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
3480
3481 this->current_annotation = "compute pixel centers";
3482 if (brw->gen >= 8 || dispatch_width == 8) {
3483 /* The "Register Region Restrictions" page says for BDW (and newer,
3484 * presumably):
3485 *
3486 * "When destination spans two registers, the source may be one or
3487 * two registers. The destination elements must be evenly split
3488 * between the two registers."
3489 *
3490 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
3491 * compute our pixel centers.
3492 */
3493 fs_reg int_pixel_xy(GRF, alloc.allocate(dispatch_width / 8),
3494 BRW_REGISTER_TYPE_UW, dispatch_width * 2);
3495 emit(ADD(int_pixel_xy,
3496 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
3497 fs_reg(brw_imm_v(0x11001010))))
3498 ->force_writemask_all = true;
3499
3500 this->pixel_x = vgrf(glsl_type::float_type);
3501 this->pixel_y = vgrf(glsl_type::float_type);
3502 emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
3503 emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
3504 } else {
3505 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
3506 *
3507 * "When destination spans two registers, the source MUST span two
3508 * registers."
3509 *
3510 * Since the GRF source of the ADD will only read a single register, we
3511 * must do two separate ADDs in SIMD16.
3512 */
3513 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
3514 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
3515 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
3516 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
3517 emit(ADD(int_pixel_x,
3518 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
3519 fs_reg(brw_imm_v(0x10101010))));
3520 emit(ADD(int_pixel_y,
3521 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
3522 fs_reg(brw_imm_v(0x11001100))));
3523
3524 /* As of gen6, we can no longer mix float and int sources. We have
3525 * to turn the integer pixel centers into floats for their actual
3526 * use.
3527 */
3528 this->pixel_x = vgrf(glsl_type::float_type);
3529 this->pixel_y = vgrf(glsl_type::float_type);
3530 emit(MOV(this->pixel_x, int_pixel_x));
3531 emit(MOV(this->pixel_y, int_pixel_y));
3532 }
3533
3534 this->current_annotation = "compute pos.w";
3535 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
3536 this->wpos_w = vgrf(glsl_type::float_type);
3537 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
3538
3539 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3540 uint8_t reg = payload.barycentric_coord_reg[i];
3541 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
3542 }
3543
3544 this->current_annotation = NULL;
3545 }
3546
3547 int
3548 fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components,
3549 bool use_2nd_half)
3550 {
3551 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3552 fs_inst *inst;
3553
3554 if (color.file == BAD_FILE) {
3555 return 4 * (dispatch_width / 8);
3556 }
3557
3558 uint8_t colors_enabled;
3559 if (components == 0) {
3560 /* We want to write one component to the alpha channel */
3561 colors_enabled = 0x8;
3562 } else {
3563 /* Enable the first components-many channels */
3564 colors_enabled = (1 << components) - 1;
3565 }
3566
3567 if (dispatch_width == 8 || (devinfo->gen >= 6 && !do_dual_src)) {
3568 /* SIMD8 write looks like:
3569 * m + 0: r0
3570 * m + 1: r1
3571 * m + 2: g0
3572 * m + 3: g1
3573 *
3574 * gen6 SIMD16 DP write looks like:
3575 * m + 0: r0
3576 * m + 1: r1
3577 * m + 2: g0
3578 * m + 3: g1
3579 * m + 4: b0
3580 * m + 5: b1
3581 * m + 6: a0
3582 * m + 7: a1
3583 */
3584 int len = 0;
3585 for (unsigned i = 0; i < 4; ++i) {
3586 if (colors_enabled & (1 << i)) {
3587 dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8),
3588 color.type, color.width);
3589 inst = emit(MOV(dst[len], offset(color, i)));
3590 inst->saturate = key->clamp_fragment_color;
3591 } else if (color.width == 16) {
3592 /* We need two BAD_FILE slots for a 16-wide color */
3593 len++;
3594 }
3595 len++;
3596 }
3597 return len;
3598 } else if (devinfo->gen >= 6 && do_dual_src) {
3599 /* SIMD16 dual source blending for gen6+.
3600 *
3601 * From the SNB PRM, volume 4, part 1, page 193:
3602 *
3603 * "The dual source render target messages only have SIMD8 forms due to
3604 * maximum message length limitations. SIMD16 pixel shaders must send two
3605 * of these messages to cover all of the pixels. Each message contains
3606 * two colors (4 channels each) for each pixel in the message payload."
3607 *
3608 * So in SIMD16 dual source blending we will send 2 SIMD8 messages,
3609 * each one will call this function twice (one for each color involved),
3610 * so in each pass we only write 4 registers. Notice that the second
3611 * SIMD8 message needs to read color data from the 2nd half of the color
3612 * registers, so it needs to call this with use_2nd_half = true.
3613 */
3614 for (unsigned i = 0; i < 4; ++i) {
3615 if (colors_enabled & (1 << i)) {
3616 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3617 inst = emit(MOV(dst[i], half(offset(color, i),
3618 use_2nd_half ? 1 : 0)));
3619 inst->saturate = key->clamp_fragment_color;
3620 if (use_2nd_half)
3621 inst->force_sechalf = true;
3622 }
3623 }
3624 return 4;
3625 } else {
3626 /* pre-gen6 SIMD16 single source DP write looks like:
3627 * m + 0: r0
3628 * m + 1: g0
3629 * m + 2: b0
3630 * m + 3: a0
3631 * m + 4: r1
3632 * m + 5: g1
3633 * m + 6: b1
3634 * m + 7: a1
3635 */
3636 for (unsigned i = 0; i < 4; ++i) {
3637 if (colors_enabled & (1 << i)) {
3638 dst[i] = fs_reg(GRF, alloc.allocate(1), color.type);
3639 inst = emit(MOV(dst[i], half(offset(color, i), 0)));
3640 inst->saturate = key->clamp_fragment_color;
3641
3642 dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type);
3643 inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
3644 inst->saturate = key->clamp_fragment_color;
3645 inst->force_sechalf = true;
3646 }
3647 }
3648 return 8;
3649 }
3650 }
3651
3652 static enum brw_conditional_mod
3653 cond_for_alpha_func(GLenum func)
3654 {
3655 switch(func) {
3656 case GL_GREATER:
3657 return BRW_CONDITIONAL_G;
3658 case GL_GEQUAL:
3659 return BRW_CONDITIONAL_GE;
3660 case GL_LESS:
3661 return BRW_CONDITIONAL_L;
3662 case GL_LEQUAL:
3663 return BRW_CONDITIONAL_LE;
3664 case GL_EQUAL:
3665 return BRW_CONDITIONAL_EQ;
3666 case GL_NOTEQUAL:
3667 return BRW_CONDITIONAL_NEQ;
3668 default:
3669 unreachable("Not reached");
3670 }
3671 }
3672
3673 /**
3674 * Alpha test support for when we compile it into the shader instead
3675 * of using the normal fixed-function alpha test.
3676 */
3677 void
3678 fs_visitor::emit_alpha_test()
3679 {
3680 assert(stage == MESA_SHADER_FRAGMENT);
3681 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3682 this->current_annotation = "Alpha test";
3683
3684 fs_inst *cmp;
3685 if (key->alpha_test_func == GL_ALWAYS)
3686 return;
3687
3688 if (key->alpha_test_func == GL_NEVER) {
3689 /* f0.1 = 0 */
3690 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3691 BRW_REGISTER_TYPE_UW));
3692 cmp = emit(CMP(reg_null_f, some_reg, some_reg,
3693 BRW_CONDITIONAL_NEQ));
3694 } else {
3695 /* RT0 alpha */
3696 fs_reg color = offset(outputs[0], 3);
3697
3698 /* f0.1 &= func(color, ref) */
3699 cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
3700 cond_for_alpha_func(key->alpha_test_func)));
3701 }
3702 cmp->predicate = BRW_PREDICATE_NORMAL;
3703 cmp->flag_subreg = 1;
3704 }
3705
3706 fs_inst *
3707 fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
3708 fs_reg src0_alpha, unsigned components,
3709 bool use_2nd_half)
3710 {
3711 assert(stage == MESA_SHADER_FRAGMENT);
3712 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3713 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3714
3715 this->current_annotation = "FB write header";
3716 bool header_present = true;
3717 int reg_size = dispatch_width / 8;
3718
3719 /* We can potentially have a message length of up to 15, so we have to set
3720 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3721 */
3722 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
3723 int length = 0;
3724
3725 /* From the Sandy Bridge PRM, volume 4, page 198:
3726 *
3727 * "Dispatched Pixel Enables. One bit per pixel indicating
3728 * which pixels were originally enabled when the thread was
3729 * dispatched. This field is only required for the end-of-
3730 * thread message and on all dual-source messages."
3731 */
3732 if (devinfo->gen >= 6 &&
3733 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3734 color1.file == BAD_FILE &&
3735 key->nr_color_regions == 1) {
3736 header_present = false;
3737 }
3738
3739 if (header_present)
3740 /* Allocate 2 registers for a header */
3741 length += 2;
3742
3743 if (payload.aa_dest_stencil_reg) {
3744 sources[length] = fs_reg(GRF, alloc.allocate(1));
3745 emit(MOV(sources[length],
3746 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
3747 length++;
3748 }
3749
3750 prog_data->uses_omask =
3751 prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
3752 if (prog_data->uses_omask) {
3753 this->current_annotation = "FB write oMask";
3754 assert(this->sample_mask.file != BAD_FILE);
3755 /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
3756 * it's unsinged single words, one vgrf is always 16-wide.
3757 */
3758 sources[length] = fs_reg(GRF, alloc.allocate(1),
3759 BRW_REGISTER_TYPE_UW, 16);
3760 emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
3761 length++;
3762 }
3763
3764 if (color0.file == BAD_FILE) {
3765 /* Even if there's no color buffers enabled, we still need to send
3766 * alpha out the pipeline to our null renderbuffer to support
3767 * alpha-testing, alpha-to-coverage, and so on.
3768 */
3769 length += setup_color_payload(sources + length, this->outputs[0], 0,
3770 false);
3771 } else if (color1.file == BAD_FILE) {
3772 if (src0_alpha.file != BAD_FILE) {
3773 sources[length] = fs_reg(GRF, alloc.allocate(reg_size),
3774 src0_alpha.type, src0_alpha.width);
3775 fs_inst *inst = emit(MOV(sources[length], src0_alpha));
3776 inst->saturate = key->clamp_fragment_color;
3777 length++;
3778 }
3779
3780 length += setup_color_payload(sources + length, color0, components,
3781 false);
3782 } else {
3783 length += setup_color_payload(sources + length, color0, components,
3784 use_2nd_half);
3785 length += setup_color_payload(sources + length, color1, components,
3786 use_2nd_half);
3787 }
3788
3789 if (source_depth_to_render_target) {
3790 if (devinfo->gen == 6) {
3791 /* For outputting oDepth on gen6, SIMD8 writes have to be
3792 * used. This would require SIMD8 moves of each half to
3793 * message regs, kind of like pre-gen5 SIMD16 FB writes.
3794 * Just bail on doing so for now.
3795 */
3796 no16("Missing support for simd16 depth writes on gen6\n");
3797 }
3798
3799 sources[length] = vgrf(glsl_type::float_type);
3800 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3801 /* Hand over gl_FragDepth. */
3802 assert(this->frag_depth.file != BAD_FILE);
3803 emit(MOV(sources[length], this->frag_depth));
3804 } else {
3805 /* Pass through the payload depth. */
3806 emit(MOV(sources[length],
3807 fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
3808 }
3809 length++;
3810 }
3811
3812 if (payload.dest_depth_reg) {
3813 sources[length] = vgrf(glsl_type::float_type);
3814 emit(MOV(sources[length],
3815 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
3816 length++;
3817 }
3818
3819 fs_inst *load;
3820 fs_inst *write;
3821 if (devinfo->gen >= 7) {
3822 /* Send from the GRF */
3823 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3824 load = emit(LOAD_PAYLOAD(payload, sources, length));
3825 payload.reg = alloc.allocate(load->regs_written);
3826 payload.width = dispatch_width;
3827 load->dst = payload;
3828 write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
3829 write->base_mrf = -1;
3830 } else {
3831 /* Send from the MRF */
3832 load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3833 sources, length));
3834 write = emit(FS_OPCODE_FB_WRITE);
3835 write->exec_size = dispatch_width;
3836 write->base_mrf = 1;
3837 }
3838
3839 write->mlen = load->regs_written;
3840 write->header_present = header_present;
3841 if (prog_data->uses_kill) {
3842 write->predicate = BRW_PREDICATE_NORMAL;
3843 write->flag_subreg = 1;
3844 }
3845 return write;
3846 }
3847
3848 void
3849 fs_visitor::emit_fb_writes()
3850 {
3851 assert(stage == MESA_SHADER_FRAGMENT);
3852 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3853 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3854
3855 fs_inst *inst = NULL;
3856 if (do_dual_src) {
3857 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3858 "FB dual-source write");
3859 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3860 reg_undef, 4);
3861 inst->target = 0;
3862
3863 /* SIMD16 dual source blending requires to send two SIMD8 dual source
3864 * messages, where each message contains color data for 8 pixels. Color
3865 * data for the first group of pixels is stored in the "lower" half of
3866 * the color registers, so in SIMD16, the previous message did:
3867 * m + 0: r0
3868 * m + 1: g0
3869 * m + 2: b0
3870 * m + 3: a0
3871 *
3872 * Here goes the second message, which packs color data for the
3873 * remaining 8 pixels. Color data for these pixels is stored in the
3874 * "upper" half of the color registers, so we need to do:
3875 * m + 0: r1
3876 * m + 1: g1
3877 * m + 2: b1
3878 * m + 3: a1
3879 */
3880 if (dispatch_width == 16) {
3881 inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
3882 reg_undef, 4, true);
3883 inst->target = 0;
3884 }
3885
3886 prog_data->dual_src_blend = true;
3887 } else {
3888 for (int target = 0; target < key->nr_color_regions; target++) {
3889 /* Skip over outputs that weren't written. */
3890 if (this->outputs[target].file == BAD_FILE)
3891 continue;
3892
3893 this->current_annotation = ralloc_asprintf(this->mem_ctx,
3894 "FB write target %d",
3895 target);
3896 fs_reg src0_alpha;
3897 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
3898 src0_alpha = offset(outputs[0], 3);
3899
3900 inst = emit_single_fb_write(this->outputs[target], reg_undef,
3901 src0_alpha,
3902 this->output_components[target]);
3903 inst->target = target;
3904 }
3905 }
3906
3907 if (inst == NULL) {
3908 /* Even if there's no color buffers enabled, we still need to send
3909 * alpha out the pipeline to our null renderbuffer to support
3910 * alpha-testing, alpha-to-coverage, and so on.
3911 */
3912 inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
3913 inst->target = 0;
3914 }
3915
3916 inst->eot = true;
3917 this->current_annotation = NULL;
3918 }
3919
3920 void
3921 fs_visitor::setup_uniform_clipplane_values()
3922 {
3923 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
3924 const struct brw_vue_prog_key *key =
3925 (const struct brw_vue_prog_key *) this->key;
3926
3927 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3928 this->userplane[i] = fs_reg(UNIFORM, uniforms);
3929 for (int j = 0; j < 4; ++j) {
3930 stage_prog_data->param[uniforms + j] =
3931 (gl_constant_value *) &clip_planes[i][j];
3932 }
3933 uniforms += 4;
3934 }
3935 }
3936
3937 void fs_visitor::compute_clip_distance()
3938 {
3939 struct brw_vue_prog_data *vue_prog_data =
3940 (struct brw_vue_prog_data *) prog_data;
3941 const struct brw_vue_prog_key *key =
3942 (const struct brw_vue_prog_key *) this->key;
3943
3944 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
3945 *
3946 * "If a linked set of shaders forming the vertex stage contains no
3947 * static write to gl_ClipVertex or gl_ClipDistance, but the
3948 * application has requested clipping against user clip planes through
3949 * the API, then the coordinate written to gl_Position is used for
3950 * comparison against the user clip planes."
3951 *
3952 * This function is only called if the shader didn't write to
3953 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
3954 * if the user wrote to it; otherwise we use gl_Position.
3955 */
3956
3957 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
3958 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
3959 clip_vertex = VARYING_SLOT_POS;
3960
3961 /* If the clip vertex isn't written, skip this. Typically this means
3962 * the GS will set up clipping. */
3963 if (outputs[clip_vertex].file == BAD_FILE)
3964 return;
3965
3966 setup_uniform_clipplane_values();
3967
3968 current_annotation = "user clip distances";
3969
3970 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
3971 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
3972
3973 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
3974 fs_reg u = userplane[i];
3975 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
3976 output.reg_offset = i & 3;
3977
3978 emit(MUL(output, outputs[clip_vertex], u));
3979 for (int j = 1; j < 4; j++) {
3980 u.reg = userplane[i].reg + j;
3981 emit(MAD(output, output, offset(outputs[clip_vertex], j), u));
3982 }
3983 }
3984 }
3985
3986 void
3987 fs_visitor::emit_urb_writes()
3988 {
3989 int slot, urb_offset, length;
3990 struct brw_vs_prog_data *vs_prog_data =
3991 (struct brw_vs_prog_data *) prog_data;
3992 const struct brw_vs_prog_key *key =
3993 (const struct brw_vs_prog_key *) this->key;
3994 const GLbitfield64 psiz_mask =
3995 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
3996 const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map;
3997 bool flush;
3998 fs_reg sources[8];
3999
4000 /* Lower legacy ff and ClipVertex clipping to clip distances */
4001 if (key->base.userclip_active && !prog->UsesClipDistanceOut)
4002 compute_clip_distance();
4003
4004 /* If we don't have any valid slots to write, just do a minimal urb write
4005 * send to terminate the shader. */
4006 if (vue_map->slots_valid == 0) {
4007
4008 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4009 fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
4010 BRW_REGISTER_TYPE_UD))));
4011 inst->force_writemask_all = true;
4012
4013 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4014 inst->eot = true;
4015 inst->mlen = 1;
4016 inst->offset = 1;
4017 return;
4018 }
4019
4020 length = 0;
4021 urb_offset = 0;
4022 flush = false;
4023 for (slot = 0; slot < vue_map->num_slots; slot++) {
4024 fs_reg reg, src, zero;
4025
4026 int varying = vue_map->slot_to_varying[slot];
4027 switch (varying) {
4028 case VARYING_SLOT_PSIZ:
4029
4030 /* The point size varying slot is the vue header and is always in the
4031 * vue map. But often none of the special varyings that live there
4032 * are written and in that case we can skip writing to the vue
4033 * header, provided the corresponding state properly clamps the
4034 * values further down the pipeline. */
4035 if ((vue_map->slots_valid & psiz_mask) == 0) {
4036 assert(length == 0);
4037 urb_offset++;
4038 break;
4039 }
4040
4041 zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4042 emit(MOV(zero, fs_reg(0u)));
4043
4044 sources[length++] = zero;
4045 if (vue_map->slots_valid & VARYING_BIT_LAYER)
4046 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
4047 else
4048 sources[length++] = zero;
4049
4050 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
4051 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
4052 else
4053 sources[length++] = zero;
4054
4055 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
4056 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
4057 else
4058 sources[length++] = zero;
4059 break;
4060
4061 case BRW_VARYING_SLOT_NDC:
4062 case VARYING_SLOT_EDGE:
4063 unreachable("unexpected scalar vs output");
4064 break;
4065
4066 case BRW_VARYING_SLOT_PAD:
4067 break;
4068
4069 default:
4070 /* gl_Position is always in the vue map, but isn't always written by
4071 * the shader. Other varyings (clip distances) get added to the vue
4072 * map but don't always get written. In those cases, the
4073 * corresponding this->output[] slot will be invalid we and can skip
4074 * the urb write for the varying. If we've already queued up a vue
4075 * slot for writing we flush a mlen 5 urb write, otherwise we just
4076 * advance the urb_offset.
4077 */
4078 if (this->outputs[varying].file == BAD_FILE) {
4079 if (length > 0)
4080 flush = true;
4081 else
4082 urb_offset++;
4083 break;
4084 }
4085
4086 if ((varying == VARYING_SLOT_COL0 ||
4087 varying == VARYING_SLOT_COL1 ||
4088 varying == VARYING_SLOT_BFC0 ||
4089 varying == VARYING_SLOT_BFC1) &&
4090 key->clamp_vertex_color) {
4091 /* We need to clamp these guys, so do a saturating MOV into a
4092 * temp register and use that for the payload.
4093 */
4094 for (int i = 0; i < 4; i++) {
4095 reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type);
4096 src = offset(this->outputs[varying], i);
4097 fs_inst *inst = emit(MOV(reg, src));
4098 inst->saturate = true;
4099 sources[length++] = reg;
4100 }
4101 } else {
4102 for (int i = 0; i < 4; i++)
4103 sources[length++] = offset(this->outputs[varying], i);
4104 }
4105 break;
4106 }
4107
4108 current_annotation = "URB write";
4109
4110 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
4111 * the last slot or if we need to flush (see BAD_FILE varying case
4112 * above), emit a URB write send now to flush out the data.
4113 */
4114 int last = slot == vue_map->num_slots - 1;
4115 if (length == 8 || last)
4116 flush = true;
4117 if (flush) {
4118 fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1);
4119 fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1),
4120 BRW_REGISTER_TYPE_F);
4121
4122 /* We need WE_all on the MOV for the message header (the URB handles)
4123 * so do a MOV to a dummy register and set force_writemask_all on the
4124 * MOV. LOAD_PAYLOAD will preserve that.
4125 */
4126 fs_reg dummy = fs_reg(GRF, alloc.allocate(1),
4127 BRW_REGISTER_TYPE_UD);
4128 fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0),
4129 BRW_REGISTER_TYPE_UD))));
4130 inst->force_writemask_all = true;
4131 payload_sources[0] = dummy;
4132
4133 memcpy(&payload_sources[1], sources, length * sizeof sources[0]);
4134 emit(LOAD_PAYLOAD(payload, payload_sources, length + 1));
4135
4136 inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
4137 inst->eot = last;
4138 inst->mlen = length + 1;
4139 inst->offset = urb_offset;
4140 urb_offset = slot + 1;
4141 length = 0;
4142 flush = false;
4143 }
4144 }
4145 }
4146
4147 void
4148 fs_visitor::resolve_ud_negate(fs_reg *reg)
4149 {
4150 if (reg->type != BRW_REGISTER_TYPE_UD ||
4151 !reg->negate)
4152 return;
4153
4154 fs_reg temp = vgrf(glsl_type::uint_type);
4155 emit(MOV(temp, *reg));
4156 *reg = temp;
4157 }
4158
4159 void
4160 fs_visitor::emit_cs_terminate()
4161 {
4162 assert(brw->gen >= 7);
4163
4164 /* We are getting the thread ID from the compute shader header */
4165 assert(stage == MESA_SHADER_COMPUTE);
4166
4167 /* We can't directly send from g0, since sends with EOT have to use
4168 * g112-127. So, copy it to a virtual register, The register allocator will
4169 * make sure it uses the appropriate register range.
4170 */
4171 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
4172 fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
4173 fs_inst *inst = emit(MOV(payload, g0));
4174 inst->force_writemask_all = true;
4175
4176 /* Send a message to the thread spawner to terminate the thread. */
4177 inst = emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
4178 inst->eot = true;
4179 }
4180
4181 /**
4182 * Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
4183 *
4184 * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
4185 * If we need a proper boolean value, we have to fix it up to be 0 or ~0.
4186 */
4187 void
4188 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
4189 {
4190 assert(devinfo->gen <= 5);
4191
4192 if (rvalue->type != glsl_type::bool_type)
4193 return;
4194
4195 fs_reg and_result = vgrf(glsl_type::bool_type);
4196 fs_reg neg_result = vgrf(glsl_type::bool_type);
4197 emit(AND(and_result, *reg, fs_reg(1)));
4198 emit(MOV(neg_result, negate(and_result)));
4199 *reg = neg_result;
4200 }
4201
4202 fs_visitor::fs_visitor(struct brw_context *brw,
4203 void *mem_ctx,
4204 const struct brw_wm_prog_key *key,
4205 struct brw_wm_prog_data *prog_data,
4206 struct gl_shader_program *shader_prog,
4207 struct gl_fragment_program *fp,
4208 unsigned dispatch_width)
4209 : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
4210 MESA_SHADER_FRAGMENT),
4211 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4212 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4213 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4214 key(key), prog_data(&prog_data->base),
4215 dispatch_width(dispatch_width), promoted_constants(0)
4216 {
4217 this->mem_ctx = mem_ctx;
4218 init();
4219 }
4220
4221 fs_visitor::fs_visitor(struct brw_context *brw,
4222 void *mem_ctx,
4223 const struct brw_vs_prog_key *key,
4224 struct brw_vs_prog_data *prog_data,
4225 struct gl_shader_program *shader_prog,
4226 struct gl_vertex_program *cp,
4227 unsigned dispatch_width)
4228 : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base,
4229 MESA_SHADER_VERTEX),
4230 reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
4231 reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
4232 reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
4233 key(key), prog_data(&prog_data->base.base),
4234 dispatch_width(dispatch_width), promoted_constants(0)
4235 {
4236 this->mem_ctx = mem_ctx;
4237 init();
4238 }
4239
4240 void
4241 fs_visitor::init()
4242 {
4243 switch (stage) {
4244 case MESA_SHADER_FRAGMENT:
4245 key_tex = &((const brw_wm_prog_key *) key)->tex;
4246 break;
4247 case MESA_SHADER_VERTEX:
4248 case MESA_SHADER_GEOMETRY:
4249 key_tex = &((const brw_vue_prog_key *) key)->tex;
4250 break;
4251 default:
4252 unreachable("unhandled shader stage");
4253 }
4254
4255 this->failed = false;
4256 this->simd16_unsupported = false;
4257 this->no16_msg = NULL;
4258 this->variable_ht = hash_table_ctor(0,
4259 hash_table_pointer_hash,
4260 hash_table_pointer_compare);
4261
4262 this->nir_locals = NULL;
4263 this->nir_globals = NULL;
4264
4265 memset(&this->payload, 0, sizeof(this->payload));
4266 memset(this->outputs, 0, sizeof(this->outputs));
4267 memset(this->output_components, 0, sizeof(this->output_components));
4268 this->source_depth_to_render_target = false;
4269 this->runtime_check_aads_emit = false;
4270 this->first_non_payload_grf = 0;
4271 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
4272
4273 this->current_annotation = NULL;
4274 this->base_ir = NULL;
4275
4276 this->virtual_grf_start = NULL;
4277 this->virtual_grf_end = NULL;
4278 this->live_intervals = NULL;
4279 this->regs_live_at_ip = NULL;
4280
4281 this->uniforms = 0;
4282 this->last_scratch = 0;
4283 this->pull_constant_loc = NULL;
4284 this->push_constant_loc = NULL;
4285
4286 this->spilled_any_registers = false;
4287 this->do_dual_src = false;
4288
4289 if (dispatch_width == 8)
4290 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
4291 }
4292
4293 fs_visitor::~fs_visitor()
4294 {
4295 hash_table_dtor(this->variable_ht);
4296 }