i965/fs: Move sampler fetch to the top of the ir_texture visit function.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "../glsl/glsl_types.h"
50 #include "../glsl/ir_optimization.h"
51 #include "../glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (strcmp(ir->name, "gl_FragColor") == 0) {
62 this->frag_color = ir;
63 } else if (strcmp(ir->name, "gl_FragData") == 0) {
64 this->frag_data = ir;
65 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66 this->frag_depth = ir;
67 }
68
69 if (ir->mode == ir_var_in) {
70 if (!strcmp(ir->name, "gl_FragCoord")) {
71 reg = emit_fragcoord_interpolation(ir);
72 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73 reg = emit_frontfacing_interpolation(ir);
74 } else {
75 reg = emit_general_interpolation(ir);
76 }
77 assert(reg);
78 hash_table_insert(this->variable_ht, reg, ir);
79 return;
80 }
81
82 if (ir->mode == ir_var_uniform) {
83 int param_index = c->prog_data.nr_params;
84
85 if (c->dispatch_width == 16) {
86 if (!variable_storage(ir)) {
87 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88 }
89 return;
90 }
91
92 if (!strncmp(ir->name, "gl_", 3)) {
93 setup_builtin_uniform_values(ir);
94 } else {
95 setup_uniform_values(ir->location, ir->type);
96 }
97
98 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99 reg->type = brw_type_for_base_type(ir->type);
100 }
101
102 if (!reg)
103 reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105 hash_table_insert(this->variable_ht, reg, ir);
106 }
107
108 void
109 fs_visitor::visit(ir_dereference_variable *ir)
110 {
111 fs_reg *reg = variable_storage(ir->var);
112 this->result = *reg;
113 }
114
115 void
116 fs_visitor::visit(ir_dereference_record *ir)
117 {
118 const glsl_type *struct_type = ir->record->type;
119
120 ir->record->accept(this);
121
122 unsigned int offset = 0;
123 for (unsigned int i = 0; i < struct_type->length; i++) {
124 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125 break;
126 offset += type_size(struct_type->fields.structure[i].type);
127 }
128 this->result.reg_offset += offset;
129 this->result.type = brw_type_for_base_type(ir->type);
130 }
131
132 void
133 fs_visitor::visit(ir_dereference_array *ir)
134 {
135 ir_constant *index;
136 int element_size;
137
138 ir->array->accept(this);
139 index = ir->array_index->as_constant();
140
141 element_size = type_size(ir->type);
142 this->result.type = brw_type_for_base_type(ir->type);
143
144 if (index) {
145 assert(this->result.file == UNIFORM ||
146 (this->result.file == GRF &&
147 this->result.reg != 0));
148 this->result.reg_offset += index->value.i[0] * element_size;
149 } else {
150 assert(!"FINISHME: non-constant array element");
151 }
152 }
153
154 /* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157 bool
158 fs_visitor::try_emit_saturate(ir_expression *ir)
159 {
160 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162 if (!sat_val)
163 return false;
164
165 this->result = reg_undef;
166 sat_val->accept(this);
167 fs_reg src = this->result;
168
169 this->result = fs_reg(this, ir->type);
170 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171 inst->saturate = true;
172
173 return true;
174 }
175
176 void
177 fs_visitor::visit(ir_expression *ir)
178 {
179 unsigned int operand;
180 fs_reg op[2], temp;
181 fs_inst *inst;
182
183 assert(ir->get_num_operands() <= 2);
184
185 if (try_emit_saturate(ir))
186 return;
187
188 /* This is where our caller would like us to put the result, if possible. */
189 fs_reg saved_result_storage = this->result;
190
191 for (operand = 0; operand < ir->get_num_operands(); operand++) {
192 this->result = reg_undef;
193 ir->operands[operand]->accept(this);
194 if (this->result.file == BAD_FILE) {
195 ir_print_visitor v;
196 fail("Failed to get tree for expression operand:\n");
197 ir->operands[operand]->accept(&v);
198 }
199 op[operand] = this->result;
200
201 /* Matrix expression operands should have been broken down to vector
202 * operations already.
203 */
204 assert(!ir->operands[operand]->type->is_matrix());
205 /* And then those vector operands should have been broken down to scalar.
206 */
207 assert(!ir->operands[operand]->type->is_vector());
208 }
209
210 /* Inherit storage from our parent if possible, and otherwise we
211 * alloc a temporary.
212 */
213 if (saved_result_storage.file == BAD_FILE) {
214 this->result = fs_reg(this, ir->type);
215 } else {
216 this->result = saved_result_storage;
217 }
218
219 switch (ir->operation) {
220 case ir_unop_logic_not:
221 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222 * ones complement of the whole register, not just bit 0.
223 */
224 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225 break;
226 case ir_unop_neg:
227 op[0].negate = !op[0].negate;
228 this->result = op[0];
229 break;
230 case ir_unop_abs:
231 op[0].abs = true;
232 op[0].negate = false;
233 this->result = op[0];
234 break;
235 case ir_unop_sign:
236 temp = fs_reg(this, ir->type);
237
238 /* Unalias the destination. (imagine a = sign(a)) */
239 this->result = fs_reg(this, ir->type);
240
241 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244 inst->conditional_mod = BRW_CONDITIONAL_G;
245 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246 inst->predicated = true;
247
248 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249 inst->conditional_mod = BRW_CONDITIONAL_L;
250 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251 inst->predicated = true;
252
253 break;
254 case ir_unop_rcp:
255 emit_math(FS_OPCODE_RCP, this->result, op[0]);
256 break;
257
258 case ir_unop_exp2:
259 emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260 break;
261 case ir_unop_log2:
262 emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263 break;
264 case ir_unop_exp:
265 case ir_unop_log:
266 assert(!"not reached: should be handled by ir_explog_to_explog2");
267 break;
268 case ir_unop_sin:
269 case ir_unop_sin_reduced:
270 emit_math(FS_OPCODE_SIN, this->result, op[0]);
271 break;
272 case ir_unop_cos:
273 case ir_unop_cos_reduced:
274 emit_math(FS_OPCODE_COS, this->result, op[0]);
275 break;
276
277 case ir_unop_dFdx:
278 emit(FS_OPCODE_DDX, this->result, op[0]);
279 break;
280 case ir_unop_dFdy:
281 emit(FS_OPCODE_DDY, this->result, op[0]);
282 break;
283
284 case ir_binop_add:
285 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286 break;
287 case ir_binop_sub:
288 assert(!"not reached: should be handled by ir_sub_to_add_neg");
289 break;
290
291 case ir_binop_mul:
292 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293 break;
294 case ir_binop_div:
295 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296 break;
297 case ir_binop_mod:
298 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299 break;
300
301 case ir_binop_less:
302 case ir_binop_greater:
303 case ir_binop_lequal:
304 case ir_binop_gequal:
305 case ir_binop_equal:
306 case ir_binop_all_equal:
307 case ir_binop_nequal:
308 case ir_binop_any_nequal:
309 temp = this->result;
310 /* original gen4 does implicit conversion before comparison. */
311 if (intel->gen < 5)
312 temp.type = op[0].type;
313
314 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317 break;
318
319 case ir_binop_logic_xor:
320 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321 break;
322
323 case ir_binop_logic_or:
324 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325 break;
326
327 case ir_binop_logic_and:
328 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329 break;
330
331 case ir_binop_dot:
332 case ir_unop_any:
333 assert(!"not reached: should be handled by brw_fs_channel_expressions");
334 break;
335
336 case ir_unop_noise:
337 assert(!"not reached: should be handled by lower_noise");
338 break;
339
340 case ir_quadop_vector:
341 assert(!"not reached: should be handled by lower_quadop_vector");
342 break;
343
344 case ir_unop_sqrt:
345 emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346 break;
347
348 case ir_unop_rsq:
349 emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350 break;
351
352 case ir_unop_i2f:
353 case ir_unop_b2f:
354 case ir_unop_b2i:
355 case ir_unop_f2i:
356 emit(BRW_OPCODE_MOV, this->result, op[0]);
357 break;
358 case ir_unop_f2b:
359 case ir_unop_i2b:
360 temp = this->result;
361 /* original gen4 does implicit conversion before comparison. */
362 if (intel->gen < 5)
363 temp.type = op[0].type;
364
365 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
366 inst->conditional_mod = BRW_CONDITIONAL_NZ;
367 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
368 break;
369
370 case ir_unop_trunc:
371 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
372 break;
373 case ir_unop_ceil:
374 op[0].negate = !op[0].negate;
375 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
376 this->result.negate = true;
377 break;
378 case ir_unop_floor:
379 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
380 break;
381 case ir_unop_fract:
382 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
383 break;
384 case ir_unop_round_even:
385 emit(BRW_OPCODE_RNDE, this->result, op[0]);
386 break;
387
388 case ir_binop_min:
389 if (intel->gen >= 6) {
390 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
391 inst->conditional_mod = BRW_CONDITIONAL_L;
392 } else {
393 /* Unalias the destination */
394 this->result = fs_reg(this, ir->type);
395
396 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
397 inst->conditional_mod = BRW_CONDITIONAL_L;
398
399 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
400 inst->predicated = true;
401 }
402 break;
403 case ir_binop_max:
404 if (intel->gen >= 6) {
405 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406 inst->conditional_mod = BRW_CONDITIONAL_GE;
407 } else {
408 /* Unalias the destination */
409 this->result = fs_reg(this, ir->type);
410
411 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
412 inst->conditional_mod = BRW_CONDITIONAL_G;
413
414 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
415 inst->predicated = true;
416 }
417 break;
418
419 case ir_binop_pow:
420 emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
421 break;
422
423 case ir_unop_bit_not:
424 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
425 break;
426 case ir_binop_bit_and:
427 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
428 break;
429 case ir_binop_bit_xor:
430 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
431 break;
432 case ir_binop_bit_or:
433 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
434 break;
435
436 case ir_unop_u2f:
437 case ir_binop_lshift:
438 case ir_binop_rshift:
439 assert(!"GLSL 1.30 features unsupported");
440 break;
441 }
442 }
443
444 void
445 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
446 const glsl_type *type, bool predicated)
447 {
448 switch (type->base_type) {
449 case GLSL_TYPE_FLOAT:
450 case GLSL_TYPE_UINT:
451 case GLSL_TYPE_INT:
452 case GLSL_TYPE_BOOL:
453 for (unsigned int i = 0; i < type->components(); i++) {
454 l.type = brw_type_for_base_type(type);
455 r.type = brw_type_for_base_type(type);
456
457 if (predicated || !l.equals(&r)) {
458 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
459 inst->predicated = predicated;
460 }
461
462 l.reg_offset++;
463 r.reg_offset++;
464 }
465 break;
466 case GLSL_TYPE_ARRAY:
467 for (unsigned int i = 0; i < type->length; i++) {
468 emit_assignment_writes(l, r, type->fields.array, predicated);
469 }
470 break;
471
472 case GLSL_TYPE_STRUCT:
473 for (unsigned int i = 0; i < type->length; i++) {
474 emit_assignment_writes(l, r, type->fields.structure[i].type,
475 predicated);
476 }
477 break;
478
479 case GLSL_TYPE_SAMPLER:
480 break;
481
482 default:
483 assert(!"not reached");
484 break;
485 }
486 }
487
488 void
489 fs_visitor::visit(ir_assignment *ir)
490 {
491 struct fs_reg l, r;
492 fs_inst *inst;
493
494 /* FINISHME: arrays on the lhs */
495 this->result = reg_undef;
496 ir->lhs->accept(this);
497 l = this->result;
498
499 /* If we're doing a direct assignment, an RHS expression could
500 * drop its result right into our destination. Otherwise, tell it
501 * not to.
502 */
503 if (ir->condition ||
504 !(ir->lhs->type->is_scalar() ||
505 (ir->lhs->type->is_vector() &&
506 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
507 this->result = reg_undef;
508 }
509
510 ir->rhs->accept(this);
511 r = this->result;
512
513 assert(l.file != BAD_FILE);
514 assert(r.file != BAD_FILE);
515
516 if (ir->condition) {
517 emit_bool_to_cond_code(ir->condition);
518 }
519
520 if (ir->lhs->type->is_scalar() ||
521 ir->lhs->type->is_vector()) {
522 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
523 if (ir->write_mask & (1 << i)) {
524 if (ir->condition) {
525 inst = emit(BRW_OPCODE_MOV, l, r);
526 inst->predicated = true;
527 } else if (!l.equals(&r)) {
528 inst = emit(BRW_OPCODE_MOV, l, r);
529 }
530
531 r.reg_offset++;
532 }
533 l.reg_offset++;
534 }
535 } else {
536 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
537 }
538 }
539
540 fs_inst *
541 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
542 int sampler)
543 {
544 int mlen;
545 int base_mrf = 1;
546 bool simd16 = false;
547 fs_reg orig_dst;
548
549 /* g0 header. */
550 mlen = 1;
551
552 if (ir->shadow_comparitor) {
553 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
554 fs_inst *inst = emit(BRW_OPCODE_MOV,
555 fs_reg(MRF, base_mrf + mlen + i), coordinate);
556 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
557 inst->saturate = true;
558
559 coordinate.reg_offset++;
560 }
561 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
562 mlen += 3;
563
564 if (ir->op == ir_tex) {
565 /* There's no plain shadow compare message, so we use shadow
566 * compare with a bias of 0.0.
567 */
568 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
569 mlen++;
570 } else if (ir->op == ir_txb) {
571 this->result = reg_undef;
572 ir->lod_info.bias->accept(this);
573 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
574 mlen++;
575 } else {
576 assert(ir->op == ir_txl);
577 this->result = reg_undef;
578 ir->lod_info.lod->accept(this);
579 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
580 mlen++;
581 }
582
583 this->result = reg_undef;
584 ir->shadow_comparitor->accept(this);
585 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
586 mlen++;
587 } else if (ir->op == ir_tex) {
588 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
589 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
590 coordinate);
591 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
592 inst->saturate = true;
593 coordinate.reg_offset++;
594 }
595 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
596 mlen += 3;
597 } else if (ir->op == ir_txd) {
598 ir->lod_info.grad.dPdx->accept(this);
599 fs_reg dPdx = this->result;
600
601 ir->lod_info.grad.dPdy->accept(this);
602 fs_reg dPdy = this->result;
603
604 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
605 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
606 coordinate.reg_offset++;
607 }
608 /* the slots for u and v are always present, but r is optional */
609 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
610
611 /* P = u, v, r
612 * dPdx = dudx, dvdx, drdx
613 * dPdy = dudy, dvdy, drdy
614 *
615 * 2-arg: dudx dvdx dudy dvdy
616 * dPdx.x dPdx.y dPdy.x dPdy.y
617 * m4 m5 m6 m7
618 *
619 * 3-arg: dudx dvdx drdx dudy dvdy drdy
620 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
621 * m5 m6 m7 m8 m9 m10
622 */
623 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
624 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
625 dPdx.reg_offset++;
626 mlen++;
627 }
628
629 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
630 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
631 dPdy.reg_offset++;
632 mlen++;
633 }
634 } else {
635 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
636 * instructions. We'll need to do SIMD16 here.
637 */
638 assert(ir->op == ir_txb || ir->op == ir_txl);
639
640 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
641 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
642 base_mrf + mlen + i * 2),
643 coordinate);
644 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
645 inst->saturate = true;
646 coordinate.reg_offset++;
647 }
648
649 /* lod/bias appears after u/v/r. */
650 mlen += 6;
651
652 if (ir->op == ir_txb) {
653 this->result = reg_undef;
654 ir->lod_info.bias->accept(this);
655 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
656 mlen++;
657 } else {
658 this->result = reg_undef;
659 ir->lod_info.lod->accept(this);
660 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
661 mlen++;
662 }
663
664 /* The unused upper half. */
665 mlen++;
666
667 /* Now, since we're doing simd16, the return is 2 interleaved
668 * vec4s where the odd-indexed ones are junk. We'll need to move
669 * this weirdness around to the expected layout.
670 */
671 simd16 = true;
672 orig_dst = dst;
673 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
674 2));
675 dst.type = BRW_REGISTER_TYPE_F;
676 }
677
678 fs_inst *inst = NULL;
679 switch (ir->op) {
680 case ir_tex:
681 inst = emit(FS_OPCODE_TEX, dst);
682 break;
683 case ir_txb:
684 inst = emit(FS_OPCODE_TXB, dst);
685 break;
686 case ir_txl:
687 inst = emit(FS_OPCODE_TXL, dst);
688 break;
689 case ir_txd:
690 inst = emit(FS_OPCODE_TXD, dst);
691 break;
692 case ir_txf:
693 assert(!"GLSL 1.30 features unsupported");
694 break;
695 }
696 inst->base_mrf = base_mrf;
697 inst->mlen = mlen;
698 inst->header_present = true;
699
700 if (simd16) {
701 for (int i = 0; i < 4; i++) {
702 emit(BRW_OPCODE_MOV, orig_dst, dst);
703 orig_dst.reg_offset++;
704 dst.reg_offset += 2;
705 }
706 }
707
708 return inst;
709 }
710
711 /* gen5's sampler has slots for u, v, r, array index, then optional
712 * parameters like shadow comparitor or LOD bias. If optional
713 * parameters aren't present, those base slots are optional and don't
714 * need to be included in the message.
715 *
716 * We don't fill in the unnecessary slots regardless, which may look
717 * surprising in the disassembly.
718 */
719 fs_inst *
720 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
721 int sampler)
722 {
723 int mlen = 0;
724 int base_mrf = 2;
725 int reg_width = c->dispatch_width / 8;
726 bool header_present = false;
727
728 if (ir->offset) {
729 /* The offsets set up by the ir_texture visitor are in the
730 * m1 header, so we can't go headerless.
731 */
732 header_present = true;
733 mlen++;
734 base_mrf--;
735 }
736
737 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
738 fs_inst *inst = emit(BRW_OPCODE_MOV,
739 fs_reg(MRF, base_mrf + mlen + i * reg_width),
740 coordinate);
741 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
742 inst->saturate = true;
743 coordinate.reg_offset++;
744 }
745 mlen += ir->coordinate->type->vector_elements * reg_width;
746
747 if (ir->shadow_comparitor) {
748 mlen = MAX2(mlen, header_present + 4 * reg_width);
749
750 this->result = reg_undef;
751 ir->shadow_comparitor->accept(this);
752 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
753 mlen += reg_width;
754 }
755
756 fs_inst *inst = NULL;
757 switch (ir->op) {
758 case ir_tex:
759 inst = emit(FS_OPCODE_TEX, dst);
760 break;
761 case ir_txb:
762 this->result = reg_undef;
763 ir->lod_info.bias->accept(this);
764 mlen = MAX2(mlen, header_present + 4 * reg_width);
765 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
766 mlen += reg_width;
767
768 inst = emit(FS_OPCODE_TXB, dst);
769
770 break;
771 case ir_txl:
772 this->result = reg_undef;
773 ir->lod_info.lod->accept(this);
774 mlen = MAX2(mlen, header_present + 4 * reg_width);
775 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
776 mlen += reg_width;
777
778 inst = emit(FS_OPCODE_TXL, dst);
779 break;
780 case ir_txd: {
781 ir->lod_info.grad.dPdx->accept(this);
782 fs_reg dPdx = this->result;
783
784 ir->lod_info.grad.dPdy->accept(this);
785 fs_reg dPdy = this->result;
786
787 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
788
789 /**
790 * P = u, v, r
791 * dPdx = dudx, dvdx, drdx
792 * dPdy = dudy, dvdy, drdy
793 *
794 * Load up these values:
795 * - dudx dudy dvdx dvdy drdx drdy
796 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
797 */
798 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
799 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
800 dPdx.reg_offset++;
801 mlen += reg_width;
802
803 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
804 dPdy.reg_offset++;
805 mlen += reg_width;
806 }
807
808 inst = emit(FS_OPCODE_TXD, dst);
809 break;
810 }
811 case ir_txf:
812 assert(!"GLSL 1.30 features unsupported");
813 break;
814 }
815 inst->base_mrf = base_mrf;
816 inst->mlen = mlen;
817 inst->header_present = header_present;
818
819 if (mlen > 11) {
820 fail("Message length >11 disallowed by hardware\n");
821 }
822
823 return inst;
824 }
825
826 fs_inst *
827 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
828 int sampler)
829 {
830 int mlen = 0;
831 int base_mrf = 2;
832 int reg_width = c->dispatch_width / 8;
833 bool header_present = false;
834
835 if (ir->offset) {
836 /* The offsets set up by the ir_texture visitor are in the
837 * m1 header, so we can't go headerless.
838 */
839 header_present = true;
840 mlen++;
841 base_mrf--;
842 }
843
844 if (ir->shadow_comparitor) {
845 ir->shadow_comparitor->accept(this);
846 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
847 mlen += reg_width;
848 }
849
850 /* Set up the LOD info */
851 switch (ir->op) {
852 case ir_tex:
853 break;
854 case ir_txb:
855 ir->lod_info.bias->accept(this);
856 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
857 mlen += reg_width;
858 break;
859 case ir_txl:
860 ir->lod_info.lod->accept(this);
861 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
862 mlen += reg_width;
863 break;
864 case ir_txd: {
865 if (c->dispatch_width == 16)
866 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
867
868 ir->lod_info.grad.dPdx->accept(this);
869 fs_reg dPdx = this->result;
870
871 ir->lod_info.grad.dPdy->accept(this);
872 fs_reg dPdy = this->result;
873
874 /* Load dPdx and the coordinate together:
875 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
876 */
877 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
878 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
879 coordinate);
880 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
881 inst->saturate = true;
882 coordinate.reg_offset++;
883 mlen += reg_width;
884
885 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
886 dPdx.reg_offset++;
887 mlen += reg_width;
888
889 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
890 dPdy.reg_offset++;
891 mlen += reg_width;
892 }
893 break;
894 }
895 case ir_txf:
896 assert(!"GLSL 1.30 features unsupported");
897 break;
898 }
899
900 /* Set up the coordinate (except for TXD where it was done earlier) */
901 if (ir->op != ir_txd) {
902 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
903 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
904 coordinate);
905 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
906 inst->saturate = true;
907 coordinate.reg_offset++;
908 mlen += reg_width;
909 }
910 }
911
912 /* Generate the SEND */
913 fs_inst *inst = NULL;
914 switch (ir->op) {
915 case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
916 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
917 case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
918 case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
919 case ir_txf: assert(!"TXF unsupported.");
920 }
921 inst->base_mrf = base_mrf;
922 inst->mlen = mlen;
923 inst->header_present = header_present;
924
925 if (mlen > 11) {
926 fail("Message length >11 disallowed by hardware\n");
927 }
928
929 return inst;
930 }
931
932 void
933 fs_visitor::visit(ir_texture *ir)
934 {
935 fs_inst *inst = NULL;
936
937 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
938 sampler = fp->Base.SamplerUnits[sampler];
939
940 this->result = reg_undef;
941 ir->coordinate->accept(this);
942 fs_reg coordinate = this->result;
943
944 if (ir->offset != NULL) {
945 ir_constant *offset = ir->offset->as_constant();
946 assert(offset != NULL);
947
948 signed char offsets[3];
949 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
950 offsets[i] = (signed char) offset->value.i[i];
951
952 /* Combine all three offsets into a single unsigned dword:
953 *
954 * bits 11:8 - U Offset (X component)
955 * bits 7:4 - V Offset (Y component)
956 * bits 3:0 - R Offset (Z component)
957 */
958 unsigned offset_bits = 0;
959 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
960 const unsigned shift = 4 * (2 - i);
961 offset_bits |= (offsets[i] << shift) & (0xF << shift);
962 }
963
964 /* Explicitly set up the message header by copying g0 to msg reg m1. */
965 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
966 fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
967
968 /* Then set the offset bits in DWord 2 of the message header. */
969 emit(BRW_OPCODE_MOV,
970 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
971 BRW_REGISTER_TYPE_UD)),
972 fs_reg(brw_imm_uw(offset_bits)));
973 }
974
975 /* Should be lowered by do_lower_texture_projection */
976 assert(!ir->projector);
977
978 /* The 965 requires the EU to do the normalization of GL rectangle
979 * texture coordinates. We use the program parameter state
980 * tracking to get the scaling factor.
981 */
982 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
983 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
984 int tokens[STATE_LENGTH] = {
985 STATE_INTERNAL,
986 STATE_TEXRECT_SCALE,
987 sampler,
988 0,
989 0
990 };
991
992 if (c->dispatch_width == 16) {
993 fail("rectangle scale uniform setup not supported on 16-wide\n");
994 this->result = fs_reg(this, ir->type);
995 return;
996 }
997
998 c->prog_data.param_convert[c->prog_data.nr_params] =
999 PARAM_NO_CONVERT;
1000 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1001 PARAM_NO_CONVERT;
1002
1003 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1004 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1005 GLuint index = _mesa_add_state_reference(params,
1006 (gl_state_index *)tokens);
1007
1008 this->param_index[c->prog_data.nr_params] = index;
1009 this->param_offset[c->prog_data.nr_params] = 0;
1010 c->prog_data.nr_params++;
1011 this->param_index[c->prog_data.nr_params] = index;
1012 this->param_offset[c->prog_data.nr_params] = 1;
1013 c->prog_data.nr_params++;
1014
1015 fs_reg dst = fs_reg(this, ir->coordinate->type);
1016 fs_reg src = coordinate;
1017 coordinate = dst;
1018
1019 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1020 dst.reg_offset++;
1021 src.reg_offset++;
1022 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1023 }
1024
1025 /* Writemasking doesn't eliminate channels on SIMD8 texture
1026 * samples, so don't worry about them.
1027 */
1028 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1029
1030 if (intel->gen >= 7) {
1031 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1032 } else if (intel->gen >= 5) {
1033 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1034 } else {
1035 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1036 }
1037
1038 /* If there's an offset, we already set up m1. To avoid the implied move,
1039 * use the null register. Otherwise, we want an implied move from g0.
1040 */
1041 if (ir->offset != NULL || !inst->header_present)
1042 inst->src[0] = reg_undef;
1043 else
1044 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1045
1046 inst->sampler = sampler;
1047
1048 this->result = dst;
1049
1050 if (ir->shadow_comparitor)
1051 inst->shadow_compare = true;
1052
1053 if (ir->type == glsl_type::float_type) {
1054 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1055 assert(ir->sampler->type->sampler_shadow);
1056 } else if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1057 fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1058
1059 for (int i = 0; i < 4; i++) {
1060 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1061 fs_reg l = swizzle_dst;
1062 l.reg_offset += i;
1063
1064 if (swiz == SWIZZLE_ZERO) {
1065 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1066 } else if (swiz == SWIZZLE_ONE) {
1067 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1068 } else {
1069 fs_reg r = dst;
1070 r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1071 emit(BRW_OPCODE_MOV, l, r);
1072 }
1073 }
1074 this->result = swizzle_dst;
1075 }
1076 }
1077
1078 void
1079 fs_visitor::visit(ir_swizzle *ir)
1080 {
1081 this->result = reg_undef;
1082 ir->val->accept(this);
1083 fs_reg val = this->result;
1084
1085 if (ir->type->vector_elements == 1) {
1086 this->result.reg_offset += ir->mask.x;
1087 return;
1088 }
1089
1090 fs_reg result = fs_reg(this, ir->type);
1091 this->result = result;
1092
1093 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1094 fs_reg channel = val;
1095 int swiz = 0;
1096
1097 switch (i) {
1098 case 0:
1099 swiz = ir->mask.x;
1100 break;
1101 case 1:
1102 swiz = ir->mask.y;
1103 break;
1104 case 2:
1105 swiz = ir->mask.z;
1106 break;
1107 case 3:
1108 swiz = ir->mask.w;
1109 break;
1110 }
1111
1112 channel.reg_offset += swiz;
1113 emit(BRW_OPCODE_MOV, result, channel);
1114 result.reg_offset++;
1115 }
1116 }
1117
1118 void
1119 fs_visitor::visit(ir_discard *ir)
1120 {
1121 assert(ir->condition == NULL); /* FINISHME */
1122
1123 emit(FS_OPCODE_DISCARD);
1124 kill_emitted = true;
1125 }
1126
1127 void
1128 fs_visitor::visit(ir_constant *ir)
1129 {
1130 /* Set this->result to reg at the bottom of the function because some code
1131 * paths will cause this visitor to be applied to other fields. This will
1132 * cause the value stored in this->result to be modified.
1133 *
1134 * Make reg constant so that it doesn't get accidentally modified along the
1135 * way. Yes, I actually had this problem. :(
1136 */
1137 const fs_reg reg(this, ir->type);
1138 fs_reg dst_reg = reg;
1139
1140 if (ir->type->is_array()) {
1141 const unsigned size = type_size(ir->type->fields.array);
1142
1143 for (unsigned i = 0; i < ir->type->length; i++) {
1144 this->result = reg_undef;
1145 ir->array_elements[i]->accept(this);
1146 fs_reg src_reg = this->result;
1147
1148 dst_reg.type = src_reg.type;
1149 for (unsigned j = 0; j < size; j++) {
1150 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1151 src_reg.reg_offset++;
1152 dst_reg.reg_offset++;
1153 }
1154 }
1155 } else if (ir->type->is_record()) {
1156 foreach_list(node, &ir->components) {
1157 ir_instruction *const field = (ir_instruction *) node;
1158 const unsigned size = type_size(field->type);
1159
1160 this->result = reg_undef;
1161 field->accept(this);
1162 fs_reg src_reg = this->result;
1163
1164 dst_reg.type = src_reg.type;
1165 for (unsigned j = 0; j < size; j++) {
1166 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1167 src_reg.reg_offset++;
1168 dst_reg.reg_offset++;
1169 }
1170 }
1171 } else {
1172 const unsigned size = type_size(ir->type);
1173
1174 for (unsigned i = 0; i < size; i++) {
1175 switch (ir->type->base_type) {
1176 case GLSL_TYPE_FLOAT:
1177 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1178 break;
1179 case GLSL_TYPE_UINT:
1180 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1181 break;
1182 case GLSL_TYPE_INT:
1183 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1184 break;
1185 case GLSL_TYPE_BOOL:
1186 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1187 break;
1188 default:
1189 assert(!"Non-float/uint/int/bool constant");
1190 }
1191 dst_reg.reg_offset++;
1192 }
1193 }
1194
1195 this->result = reg;
1196 }
1197
1198 void
1199 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1200 {
1201 ir_expression *expr = ir->as_expression();
1202
1203 if (expr) {
1204 fs_reg op[2];
1205 fs_inst *inst;
1206
1207 assert(expr->get_num_operands() <= 2);
1208 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1209 assert(expr->operands[i]->type->is_scalar());
1210
1211 this->result = reg_undef;
1212 expr->operands[i]->accept(this);
1213 op[i] = this->result;
1214 }
1215
1216 switch (expr->operation) {
1217 case ir_unop_logic_not:
1218 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1219 inst->conditional_mod = BRW_CONDITIONAL_Z;
1220 break;
1221
1222 case ir_binop_logic_xor:
1223 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1224 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1225 break;
1226
1227 case ir_binop_logic_or:
1228 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1229 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1230 break;
1231
1232 case ir_binop_logic_and:
1233 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1234 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1235 break;
1236
1237 case ir_unop_f2b:
1238 if (intel->gen >= 6) {
1239 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1240 } else {
1241 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1242 }
1243 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1244 break;
1245
1246 case ir_unop_i2b:
1247 if (intel->gen >= 6) {
1248 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1249 } else {
1250 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1251 }
1252 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1253 break;
1254
1255 case ir_binop_greater:
1256 case ir_binop_gequal:
1257 case ir_binop_less:
1258 case ir_binop_lequal:
1259 case ir_binop_equal:
1260 case ir_binop_all_equal:
1261 case ir_binop_nequal:
1262 case ir_binop_any_nequal:
1263 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1264 inst->conditional_mod =
1265 brw_conditional_for_comparison(expr->operation);
1266 break;
1267
1268 default:
1269 assert(!"not reached");
1270 fail("bad cond code\n");
1271 break;
1272 }
1273 return;
1274 }
1275
1276 this->result = reg_undef;
1277 ir->accept(this);
1278
1279 if (intel->gen >= 6) {
1280 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1281 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1282 } else {
1283 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1284 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1285 }
1286 }
1287
1288 /**
1289 * Emit a gen6 IF statement with the comparison folded into the IF
1290 * instruction.
1291 */
1292 void
1293 fs_visitor::emit_if_gen6(ir_if *ir)
1294 {
1295 ir_expression *expr = ir->condition->as_expression();
1296
1297 if (expr) {
1298 fs_reg op[2];
1299 fs_inst *inst;
1300 fs_reg temp;
1301
1302 assert(expr->get_num_operands() <= 2);
1303 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1304 assert(expr->operands[i]->type->is_scalar());
1305
1306 this->result = reg_undef;
1307 expr->operands[i]->accept(this);
1308 op[i] = this->result;
1309 }
1310
1311 switch (expr->operation) {
1312 case ir_unop_logic_not:
1313 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1314 inst->conditional_mod = BRW_CONDITIONAL_Z;
1315 return;
1316
1317 case ir_binop_logic_xor:
1318 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1319 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1320 return;
1321
1322 case ir_binop_logic_or:
1323 temp = fs_reg(this, glsl_type::bool_type);
1324 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1325 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1326 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1327 return;
1328
1329 case ir_binop_logic_and:
1330 temp = fs_reg(this, glsl_type::bool_type);
1331 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1332 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1333 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1334 return;
1335
1336 case ir_unop_f2b:
1337 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1338 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1339 return;
1340
1341 case ir_unop_i2b:
1342 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1343 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1344 return;
1345
1346 case ir_binop_greater:
1347 case ir_binop_gequal:
1348 case ir_binop_less:
1349 case ir_binop_lequal:
1350 case ir_binop_equal:
1351 case ir_binop_all_equal:
1352 case ir_binop_nequal:
1353 case ir_binop_any_nequal:
1354 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1355 inst->conditional_mod =
1356 brw_conditional_for_comparison(expr->operation);
1357 return;
1358 default:
1359 assert(!"not reached");
1360 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1361 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1362 fail("bad condition\n");
1363 return;
1364 }
1365 return;
1366 }
1367
1368 this->result = reg_undef;
1369 ir->condition->accept(this);
1370
1371 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1372 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1373 }
1374
1375 void
1376 fs_visitor::visit(ir_if *ir)
1377 {
1378 fs_inst *inst;
1379
1380 if (intel->gen != 6 && c->dispatch_width == 16) {
1381 fail("Can't support (non-uniform) control flow on 16-wide\n");
1382 }
1383
1384 /* Don't point the annotation at the if statement, because then it plus
1385 * the then and else blocks get printed.
1386 */
1387 this->base_ir = ir->condition;
1388
1389 if (intel->gen == 6) {
1390 emit_if_gen6(ir);
1391 } else {
1392 emit_bool_to_cond_code(ir->condition);
1393
1394 inst = emit(BRW_OPCODE_IF);
1395 inst->predicated = true;
1396 }
1397
1398 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1399 ir_instruction *ir = (ir_instruction *)iter.get();
1400 this->base_ir = ir;
1401 this->result = reg_undef;
1402 ir->accept(this);
1403 }
1404
1405 if (!ir->else_instructions.is_empty()) {
1406 emit(BRW_OPCODE_ELSE);
1407
1408 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1409 ir_instruction *ir = (ir_instruction *)iter.get();
1410 this->base_ir = ir;
1411 this->result = reg_undef;
1412 ir->accept(this);
1413 }
1414 }
1415
1416 emit(BRW_OPCODE_ENDIF);
1417 }
1418
1419 void
1420 fs_visitor::visit(ir_loop *ir)
1421 {
1422 fs_reg counter = reg_undef;
1423
1424 if (c->dispatch_width == 16) {
1425 fail("Can't support (non-uniform) control flow on 16-wide\n");
1426 }
1427
1428 if (ir->counter) {
1429 this->base_ir = ir->counter;
1430 ir->counter->accept(this);
1431 counter = *(variable_storage(ir->counter));
1432
1433 if (ir->from) {
1434 this->result = counter;
1435
1436 this->base_ir = ir->from;
1437 this->result = counter;
1438 ir->from->accept(this);
1439
1440 if (!this->result.equals(&counter))
1441 emit(BRW_OPCODE_MOV, counter, this->result);
1442 }
1443 }
1444
1445 emit(BRW_OPCODE_DO);
1446
1447 if (ir->to) {
1448 this->base_ir = ir->to;
1449 this->result = reg_undef;
1450 ir->to->accept(this);
1451
1452 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1453 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1454
1455 inst = emit(BRW_OPCODE_BREAK);
1456 inst->predicated = true;
1457 }
1458
1459 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1460 ir_instruction *ir = (ir_instruction *)iter.get();
1461
1462 this->base_ir = ir;
1463 this->result = reg_undef;
1464 ir->accept(this);
1465 }
1466
1467 if (ir->increment) {
1468 this->base_ir = ir->increment;
1469 this->result = reg_undef;
1470 ir->increment->accept(this);
1471 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1472 }
1473
1474 emit(BRW_OPCODE_WHILE);
1475 }
1476
1477 void
1478 fs_visitor::visit(ir_loop_jump *ir)
1479 {
1480 switch (ir->mode) {
1481 case ir_loop_jump::jump_break:
1482 emit(BRW_OPCODE_BREAK);
1483 break;
1484 case ir_loop_jump::jump_continue:
1485 emit(BRW_OPCODE_CONTINUE);
1486 break;
1487 }
1488 }
1489
1490 void
1491 fs_visitor::visit(ir_call *ir)
1492 {
1493 assert(!"FINISHME");
1494 }
1495
1496 void
1497 fs_visitor::visit(ir_return *ir)
1498 {
1499 assert(!"FINISHME");
1500 }
1501
1502 void
1503 fs_visitor::visit(ir_function *ir)
1504 {
1505 /* Ignore function bodies other than main() -- we shouldn't see calls to
1506 * them since they should all be inlined before we get to ir_to_mesa.
1507 */
1508 if (strcmp(ir->name, "main") == 0) {
1509 const ir_function_signature *sig;
1510 exec_list empty;
1511
1512 sig = ir->matching_signature(&empty);
1513
1514 assert(sig);
1515
1516 foreach_iter(exec_list_iterator, iter, sig->body) {
1517 ir_instruction *ir = (ir_instruction *)iter.get();
1518 this->base_ir = ir;
1519 this->result = reg_undef;
1520 ir->accept(this);
1521 }
1522 }
1523 }
1524
1525 void
1526 fs_visitor::visit(ir_function_signature *ir)
1527 {
1528 assert(!"not reached");
1529 (void)ir;
1530 }
1531
1532 fs_inst *
1533 fs_visitor::emit(fs_inst inst)
1534 {
1535 fs_inst *list_inst = new(mem_ctx) fs_inst;
1536 *list_inst = inst;
1537
1538 if (force_uncompressed_stack > 0)
1539 list_inst->force_uncompressed = true;
1540 else if (force_sechalf_stack > 0)
1541 list_inst->force_sechalf = true;
1542
1543 list_inst->annotation = this->current_annotation;
1544 list_inst->ir = this->base_ir;
1545
1546 this->instructions.push_tail(list_inst);
1547
1548 return list_inst;
1549 }
1550
1551 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1552 void
1553 fs_visitor::emit_dummy_fs()
1554 {
1555 /* Everyone's favorite color. */
1556 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1557 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1558 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1559 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1560
1561 fs_inst *write;
1562 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1563 write->base_mrf = 0;
1564 }
1565
1566 /* The register location here is relative to the start of the URB
1567 * data. It will get adjusted to be a real location before
1568 * generate_code() time.
1569 */
1570 struct brw_reg
1571 fs_visitor::interp_reg(int location, int channel)
1572 {
1573 int regnr = urb_setup[location] * 2 + channel / 2;
1574 int stride = (channel & 1) * 4;
1575
1576 assert(urb_setup[location] != -1);
1577
1578 return brw_vec1_grf(regnr, stride);
1579 }
1580
1581 /** Emits the interpolation for the varying inputs. */
1582 void
1583 fs_visitor::emit_interpolation_setup_gen4()
1584 {
1585 this->current_annotation = "compute pixel centers";
1586 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1587 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1588 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1589 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1590
1591 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1592 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1593
1594 this->current_annotation = "compute pixel deltas from v0";
1595 if (brw->has_pln) {
1596 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1597 this->delta_y = this->delta_x;
1598 this->delta_y.reg_offset++;
1599 } else {
1600 this->delta_x = fs_reg(this, glsl_type::float_type);
1601 this->delta_y = fs_reg(this, glsl_type::float_type);
1602 }
1603 emit(BRW_OPCODE_ADD, this->delta_x,
1604 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1605 emit(BRW_OPCODE_ADD, this->delta_y,
1606 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1607
1608 this->current_annotation = "compute pos.w and 1/pos.w";
1609 /* Compute wpos.w. It's always in our setup, since it's needed to
1610 * interpolate the other attributes.
1611 */
1612 this->wpos_w = fs_reg(this, glsl_type::float_type);
1613 emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1614 interp_reg(FRAG_ATTRIB_WPOS, 3));
1615 /* Compute the pixel 1/W value from wpos.w. */
1616 this->pixel_w = fs_reg(this, glsl_type::float_type);
1617 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1618 this->current_annotation = NULL;
1619 }
1620
1621 /** Emits the interpolation for the varying inputs. */
1622 void
1623 fs_visitor::emit_interpolation_setup_gen6()
1624 {
1625 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1626
1627 /* If the pixel centers end up used, the setup is the same as for gen4. */
1628 this->current_annotation = "compute pixel centers";
1629 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1630 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1631 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1632 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1633 emit(BRW_OPCODE_ADD,
1634 int_pixel_x,
1635 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1636 fs_reg(brw_imm_v(0x10101010)));
1637 emit(BRW_OPCODE_ADD,
1638 int_pixel_y,
1639 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1640 fs_reg(brw_imm_v(0x11001100)));
1641
1642 /* As of gen6, we can no longer mix float and int sources. We have
1643 * to turn the integer pixel centers into floats for their actual
1644 * use.
1645 */
1646 this->pixel_x = fs_reg(this, glsl_type::float_type);
1647 this->pixel_y = fs_reg(this, glsl_type::float_type);
1648 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1649 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1650
1651 this->current_annotation = "compute pos.w";
1652 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1653 this->wpos_w = fs_reg(this, glsl_type::float_type);
1654 emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1655
1656 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1657 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1658
1659 this->current_annotation = NULL;
1660 }
1661
1662 void
1663 fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1664 {
1665 int reg_width = c->dispatch_width / 8;
1666
1667 if (c->dispatch_width == 8 || intel->gen == 6) {
1668 /* SIMD8 write looks like:
1669 * m + 0: r0
1670 * m + 1: r1
1671 * m + 2: g0
1672 * m + 3: g1
1673 *
1674 * gen6 SIMD16 DP write looks like:
1675 * m + 0: r0
1676 * m + 1: r1
1677 * m + 2: g0
1678 * m + 3: g1
1679 * m + 4: b0
1680 * m + 5: b1
1681 * m + 6: a0
1682 * m + 7: a1
1683 */
1684 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1685 color);
1686 } else {
1687 /* pre-gen6 SIMD16 single source DP write looks like:
1688 * m + 0: r0
1689 * m + 1: g0
1690 * m + 2: b0
1691 * m + 3: a0
1692 * m + 4: r1
1693 * m + 5: g1
1694 * m + 6: b1
1695 * m + 7: a1
1696 */
1697 if (brw->has_compr4) {
1698 /* By setting the high bit of the MRF register number, we
1699 * indicate that we want COMPR4 mode - instead of doing the
1700 * usual destination + 1 for the second half we get
1701 * destination + 4.
1702 */
1703 emit(BRW_OPCODE_MOV,
1704 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1705 } else {
1706 push_force_uncompressed();
1707 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1708 pop_force_uncompressed();
1709
1710 push_force_sechalf();
1711 color.sechalf = true;
1712 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1713 pop_force_sechalf();
1714 color.sechalf = false;
1715 }
1716 }
1717 }
1718
1719 void
1720 fs_visitor::emit_fb_writes()
1721 {
1722 this->current_annotation = "FB write header";
1723 GLboolean header_present = GL_TRUE;
1724 int nr = 0;
1725 int reg_width = c->dispatch_width / 8;
1726
1727 if (intel->gen >= 6 &&
1728 !this->kill_emitted &&
1729 c->key.nr_color_regions == 1) {
1730 header_present = false;
1731 }
1732
1733 if (header_present) {
1734 /* m0, m1 header */
1735 nr += 2;
1736 }
1737
1738 if (c->aa_dest_stencil_reg) {
1739 push_force_uncompressed();
1740 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1741 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1742 pop_force_uncompressed();
1743 }
1744
1745 /* Reserve space for color. It'll be filled in per MRT below. */
1746 int color_mrf = nr;
1747 nr += 4 * reg_width;
1748
1749 if (c->source_depth_to_render_target) {
1750 if (intel->gen == 6 && c->dispatch_width == 16) {
1751 /* For outputting oDepth on gen6, SIMD8 writes have to be
1752 * used. This would require 8-wide moves of each half to
1753 * message regs, kind of like pre-gen5 SIMD16 FB writes.
1754 * Just bail on doing so for now.
1755 */
1756 fail("Missing support for simd16 depth writes on gen6\n");
1757 }
1758
1759 if (c->computes_depth) {
1760 /* Hand over gl_FragDepth. */
1761 assert(this->frag_depth);
1762 fs_reg depth = *(variable_storage(this->frag_depth));
1763
1764 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1765 } else {
1766 /* Pass through the payload depth. */
1767 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1768 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1769 }
1770 nr += reg_width;
1771 }
1772
1773 if (c->dest_depth_reg) {
1774 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1775 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1776 nr += reg_width;
1777 }
1778
1779 fs_reg color = reg_undef;
1780 if (this->frag_color)
1781 color = *(variable_storage(this->frag_color));
1782 else if (this->frag_data) {
1783 color = *(variable_storage(this->frag_data));
1784 color.type = BRW_REGISTER_TYPE_F;
1785 }
1786
1787 for (int target = 0; target < c->key.nr_color_regions; target++) {
1788 this->current_annotation = ralloc_asprintf(this->mem_ctx,
1789 "FB write target %d",
1790 target);
1791 if (this->frag_color || this->frag_data) {
1792 for (int i = 0; i < 4; i++) {
1793 emit_color_write(i, color_mrf, color);
1794 color.reg_offset++;
1795 }
1796 }
1797
1798 if (this->frag_color)
1799 color.reg_offset -= 4;
1800
1801 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1802 inst->target = target;
1803 inst->base_mrf = 0;
1804 inst->mlen = nr;
1805 if (target == c->key.nr_color_regions - 1)
1806 inst->eot = true;
1807 inst->header_present = header_present;
1808 }
1809
1810 if (c->key.nr_color_regions == 0) {
1811 if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1812 /* If the alpha test is enabled but there's no color buffer,
1813 * we still need to send alpha out the pipeline to our null
1814 * renderbuffer.
1815 */
1816 color.reg_offset += 3;
1817 emit_color_write(3, color_mrf, color);
1818 }
1819
1820 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1821 inst->base_mrf = 0;
1822 inst->mlen = nr;
1823 inst->eot = true;
1824 inst->header_present = header_present;
1825 }
1826
1827 this->current_annotation = NULL;
1828 }