Merge remote-tracking branch 'origin/master' into pipe-video
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "../glsl/glsl_types.h"
50 #include "../glsl/ir_optimization.h"
51 #include "../glsl/ir_print_visitor.h"
52
53 void
54 fs_visitor::visit(ir_variable *ir)
55 {
56 fs_reg *reg = NULL;
57
58 if (variable_storage(ir))
59 return;
60
61 if (strcmp(ir->name, "gl_FragColor") == 0) {
62 this->frag_color = ir;
63 } else if (strcmp(ir->name, "gl_FragData") == 0) {
64 this->frag_data = ir;
65 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66 this->frag_depth = ir;
67 }
68
69 if (ir->mode == ir_var_in) {
70 if (!strcmp(ir->name, "gl_FragCoord")) {
71 reg = emit_fragcoord_interpolation(ir);
72 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73 reg = emit_frontfacing_interpolation(ir);
74 } else {
75 reg = emit_general_interpolation(ir);
76 }
77 assert(reg);
78 hash_table_insert(this->variable_ht, reg, ir);
79 return;
80 }
81
82 if (ir->mode == ir_var_uniform) {
83 int param_index = c->prog_data.nr_params;
84
85 if (c->dispatch_width == 16) {
86 if (!variable_storage(ir)) {
87 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88 }
89 return;
90 }
91
92 if (!strncmp(ir->name, "gl_", 3)) {
93 setup_builtin_uniform_values(ir);
94 } else {
95 setup_uniform_values(ir->location, ir->type);
96 }
97
98 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99 reg->type = brw_type_for_base_type(ir->type);
100 }
101
102 if (!reg)
103 reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105 hash_table_insert(this->variable_ht, reg, ir);
106 }
107
108 void
109 fs_visitor::visit(ir_dereference_variable *ir)
110 {
111 fs_reg *reg = variable_storage(ir->var);
112 this->result = *reg;
113 }
114
115 void
116 fs_visitor::visit(ir_dereference_record *ir)
117 {
118 const glsl_type *struct_type = ir->record->type;
119
120 ir->record->accept(this);
121
122 unsigned int offset = 0;
123 for (unsigned int i = 0; i < struct_type->length; i++) {
124 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125 break;
126 offset += type_size(struct_type->fields.structure[i].type);
127 }
128 this->result.reg_offset += offset;
129 this->result.type = brw_type_for_base_type(ir->type);
130 }
131
132 void
133 fs_visitor::visit(ir_dereference_array *ir)
134 {
135 ir_constant *index;
136 int element_size;
137
138 ir->array->accept(this);
139 index = ir->array_index->as_constant();
140
141 element_size = type_size(ir->type);
142 this->result.type = brw_type_for_base_type(ir->type);
143
144 if (index) {
145 assert(this->result.file == UNIFORM ||
146 (this->result.file == GRF &&
147 this->result.reg != 0));
148 this->result.reg_offset += index->value.i[0] * element_size;
149 } else {
150 assert(!"FINISHME: non-constant array element");
151 }
152 }
153
154 /* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157 bool
158 fs_visitor::try_emit_saturate(ir_expression *ir)
159 {
160 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162 if (!sat_val)
163 return false;
164
165 this->result = reg_undef;
166 sat_val->accept(this);
167 fs_reg src = this->result;
168
169 this->result = fs_reg(this, ir->type);
170 fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171 inst->saturate = true;
172
173 return true;
174 }
175
176 void
177 fs_visitor::visit(ir_expression *ir)
178 {
179 unsigned int operand;
180 fs_reg op[2], temp;
181 fs_inst *inst;
182
183 assert(ir->get_num_operands() <= 2);
184
185 if (try_emit_saturate(ir))
186 return;
187
188 /* This is where our caller would like us to put the result, if possible. */
189 fs_reg saved_result_storage = this->result;
190
191 for (operand = 0; operand < ir->get_num_operands(); operand++) {
192 this->result = reg_undef;
193 ir->operands[operand]->accept(this);
194 if (this->result.file == BAD_FILE) {
195 ir_print_visitor v;
196 fail("Failed to get tree for expression operand:\n");
197 ir->operands[operand]->accept(&v);
198 }
199 op[operand] = this->result;
200
201 /* Matrix expression operands should have been broken down to vector
202 * operations already.
203 */
204 assert(!ir->operands[operand]->type->is_matrix());
205 /* And then those vector operands should have been broken down to scalar.
206 */
207 assert(!ir->operands[operand]->type->is_vector());
208 }
209
210 /* Inherit storage from our parent if possible, and otherwise we
211 * alloc a temporary.
212 */
213 if (saved_result_storage.file == BAD_FILE) {
214 this->result = fs_reg(this, ir->type);
215 } else {
216 this->result = saved_result_storage;
217 }
218
219 switch (ir->operation) {
220 case ir_unop_logic_not:
221 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222 * ones complement of the whole register, not just bit 0.
223 */
224 emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225 break;
226 case ir_unop_neg:
227 op[0].negate = !op[0].negate;
228 this->result = op[0];
229 break;
230 case ir_unop_abs:
231 op[0].abs = true;
232 op[0].negate = false;
233 this->result = op[0];
234 break;
235 case ir_unop_sign:
236 temp = fs_reg(this, ir->type);
237
238 /* Unalias the destination. (imagine a = sign(a)) */
239 this->result = fs_reg(this, ir->type);
240
241 emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244 inst->conditional_mod = BRW_CONDITIONAL_G;
245 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246 inst->predicated = true;
247
248 inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249 inst->conditional_mod = BRW_CONDITIONAL_L;
250 inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251 inst->predicated = true;
252
253 break;
254 case ir_unop_rcp:
255 emit_math(FS_OPCODE_RCP, this->result, op[0]);
256 break;
257
258 case ir_unop_exp2:
259 emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260 break;
261 case ir_unop_log2:
262 emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263 break;
264 case ir_unop_exp:
265 case ir_unop_log:
266 assert(!"not reached: should be handled by ir_explog_to_explog2");
267 break;
268 case ir_unop_sin:
269 case ir_unop_sin_reduced:
270 emit_math(FS_OPCODE_SIN, this->result, op[0]);
271 break;
272 case ir_unop_cos:
273 case ir_unop_cos_reduced:
274 emit_math(FS_OPCODE_COS, this->result, op[0]);
275 break;
276
277 case ir_unop_dFdx:
278 emit(FS_OPCODE_DDX, this->result, op[0]);
279 break;
280 case ir_unop_dFdy:
281 emit(FS_OPCODE_DDY, this->result, op[0]);
282 break;
283
284 case ir_binop_add:
285 emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286 break;
287 case ir_binop_sub:
288 assert(!"not reached: should be handled by ir_sub_to_add_neg");
289 break;
290
291 case ir_binop_mul:
292 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293 break;
294 case ir_binop_div:
295 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296 break;
297 case ir_binop_mod:
298 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299 break;
300
301 case ir_binop_less:
302 case ir_binop_greater:
303 case ir_binop_lequal:
304 case ir_binop_gequal:
305 case ir_binop_equal:
306 case ir_binop_all_equal:
307 case ir_binop_nequal:
308 case ir_binop_any_nequal:
309 temp = this->result;
310 /* original gen4 does implicit conversion before comparison. */
311 if (intel->gen < 5)
312 temp.type = op[0].type;
313
314 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316 emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317 break;
318
319 case ir_binop_logic_xor:
320 emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321 break;
322
323 case ir_binop_logic_or:
324 emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325 break;
326
327 case ir_binop_logic_and:
328 emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329 break;
330
331 case ir_binop_dot:
332 case ir_unop_any:
333 assert(!"not reached: should be handled by brw_fs_channel_expressions");
334 break;
335
336 case ir_unop_noise:
337 assert(!"not reached: should be handled by lower_noise");
338 break;
339
340 case ir_quadop_vector:
341 assert(!"not reached: should be handled by lower_quadop_vector");
342 break;
343
344 case ir_unop_sqrt:
345 emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346 break;
347
348 case ir_unop_rsq:
349 emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350 break;
351
352 case ir_unop_i2u:
353 op[0].type = BRW_REGISTER_TYPE_UD;
354 this->result = op[0];
355 break;
356 case ir_unop_u2i:
357 op[0].type = BRW_REGISTER_TYPE_D;
358 this->result = op[0];
359 break;
360 case ir_unop_i2f:
361 case ir_unop_b2f:
362 case ir_unop_b2i:
363 case ir_unop_f2i:
364 emit(BRW_OPCODE_MOV, this->result, op[0]);
365 break;
366 case ir_unop_f2b:
367 case ir_unop_i2b:
368 temp = this->result;
369 /* original gen4 does implicit conversion before comparison. */
370 if (intel->gen < 5)
371 temp.type = op[0].type;
372
373 inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
374 inst->conditional_mod = BRW_CONDITIONAL_NZ;
375 inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
376 break;
377
378 case ir_unop_trunc:
379 emit(BRW_OPCODE_RNDZ, this->result, op[0]);
380 break;
381 case ir_unop_ceil:
382 op[0].negate = !op[0].negate;
383 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
384 this->result.negate = true;
385 break;
386 case ir_unop_floor:
387 inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
388 break;
389 case ir_unop_fract:
390 inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
391 break;
392 case ir_unop_round_even:
393 emit(BRW_OPCODE_RNDE, this->result, op[0]);
394 break;
395
396 case ir_binop_min:
397 if (intel->gen >= 6) {
398 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
399 inst->conditional_mod = BRW_CONDITIONAL_L;
400 } else {
401 /* Unalias the destination */
402 this->result = fs_reg(this, ir->type);
403
404 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
405 inst->conditional_mod = BRW_CONDITIONAL_L;
406
407 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
408 inst->predicated = true;
409 }
410 break;
411 case ir_binop_max:
412 if (intel->gen >= 6) {
413 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
414 inst->conditional_mod = BRW_CONDITIONAL_GE;
415 } else {
416 /* Unalias the destination */
417 this->result = fs_reg(this, ir->type);
418
419 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
420 inst->conditional_mod = BRW_CONDITIONAL_G;
421
422 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
423 inst->predicated = true;
424 }
425 break;
426
427 case ir_binop_pow:
428 emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
429 break;
430
431 case ir_unop_bit_not:
432 inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
433 break;
434 case ir_binop_bit_and:
435 inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
436 break;
437 case ir_binop_bit_xor:
438 inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
439 break;
440 case ir_binop_bit_or:
441 inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
442 break;
443
444 case ir_unop_u2f:
445 case ir_binop_lshift:
446 case ir_binop_rshift:
447 assert(!"GLSL 1.30 features unsupported");
448 break;
449 }
450 }
451
452 void
453 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
454 const glsl_type *type, bool predicated)
455 {
456 switch (type->base_type) {
457 case GLSL_TYPE_FLOAT:
458 case GLSL_TYPE_UINT:
459 case GLSL_TYPE_INT:
460 case GLSL_TYPE_BOOL:
461 for (unsigned int i = 0; i < type->components(); i++) {
462 l.type = brw_type_for_base_type(type);
463 r.type = brw_type_for_base_type(type);
464
465 if (predicated || !l.equals(&r)) {
466 fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
467 inst->predicated = predicated;
468 }
469
470 l.reg_offset++;
471 r.reg_offset++;
472 }
473 break;
474 case GLSL_TYPE_ARRAY:
475 for (unsigned int i = 0; i < type->length; i++) {
476 emit_assignment_writes(l, r, type->fields.array, predicated);
477 }
478 break;
479
480 case GLSL_TYPE_STRUCT:
481 for (unsigned int i = 0; i < type->length; i++) {
482 emit_assignment_writes(l, r, type->fields.structure[i].type,
483 predicated);
484 }
485 break;
486
487 case GLSL_TYPE_SAMPLER:
488 break;
489
490 default:
491 assert(!"not reached");
492 break;
493 }
494 }
495
496 void
497 fs_visitor::visit(ir_assignment *ir)
498 {
499 struct fs_reg l, r;
500 fs_inst *inst;
501
502 /* FINISHME: arrays on the lhs */
503 this->result = reg_undef;
504 ir->lhs->accept(this);
505 l = this->result;
506
507 /* If we're doing a direct assignment, an RHS expression could
508 * drop its result right into our destination. Otherwise, tell it
509 * not to.
510 */
511 if (ir->condition ||
512 !(ir->lhs->type->is_scalar() ||
513 (ir->lhs->type->is_vector() &&
514 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
515 this->result = reg_undef;
516 }
517
518 ir->rhs->accept(this);
519 r = this->result;
520
521 assert(l.file != BAD_FILE);
522 assert(r.file != BAD_FILE);
523
524 if (ir->condition) {
525 emit_bool_to_cond_code(ir->condition);
526 }
527
528 if (ir->lhs->type->is_scalar() ||
529 ir->lhs->type->is_vector()) {
530 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
531 if (ir->write_mask & (1 << i)) {
532 if (ir->condition) {
533 inst = emit(BRW_OPCODE_MOV, l, r);
534 inst->predicated = true;
535 } else if (!l.equals(&r)) {
536 inst = emit(BRW_OPCODE_MOV, l, r);
537 }
538
539 r.reg_offset++;
540 }
541 l.reg_offset++;
542 }
543 } else {
544 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
545 }
546 }
547
548 fs_inst *
549 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
550 int sampler)
551 {
552 int mlen;
553 int base_mrf = 1;
554 bool simd16 = false;
555 fs_reg orig_dst;
556
557 /* g0 header. */
558 mlen = 1;
559
560 if (ir->shadow_comparitor && ir->op != ir_txd) {
561 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
562 fs_inst *inst = emit(BRW_OPCODE_MOV,
563 fs_reg(MRF, base_mrf + mlen + i), coordinate);
564 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
565 inst->saturate = true;
566
567 coordinate.reg_offset++;
568 }
569 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
570 mlen += 3;
571
572 if (ir->op == ir_tex) {
573 /* There's no plain shadow compare message, so we use shadow
574 * compare with a bias of 0.0.
575 */
576 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
577 mlen++;
578 } else if (ir->op == ir_txb) {
579 this->result = reg_undef;
580 ir->lod_info.bias->accept(this);
581 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
582 mlen++;
583 } else {
584 assert(ir->op == ir_txl);
585 this->result = reg_undef;
586 ir->lod_info.lod->accept(this);
587 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
588 mlen++;
589 }
590
591 this->result = reg_undef;
592 ir->shadow_comparitor->accept(this);
593 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
594 mlen++;
595 } else if (ir->op == ir_tex) {
596 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
597 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
598 coordinate);
599 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
600 inst->saturate = true;
601 coordinate.reg_offset++;
602 }
603 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
604 mlen += 3;
605 } else if (ir->op == ir_txd) {
606 ir->lod_info.grad.dPdx->accept(this);
607 fs_reg dPdx = this->result;
608
609 ir->lod_info.grad.dPdy->accept(this);
610 fs_reg dPdy = this->result;
611
612 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
613 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
614 coordinate.reg_offset++;
615 }
616 /* the slots for u and v are always present, but r is optional */
617 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
618
619 /* P = u, v, r
620 * dPdx = dudx, dvdx, drdx
621 * dPdy = dudy, dvdy, drdy
622 *
623 * 2-arg: dudx dvdx dudy dvdy
624 * dPdx.x dPdx.y dPdy.x dPdy.y
625 * m4 m5 m6 m7
626 *
627 * 3-arg: dudx dvdx drdx dudy dvdy drdy
628 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
629 * m5 m6 m7 m8 m9 m10
630 */
631 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
632 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
633 dPdx.reg_offset++;
634 mlen++;
635 }
636
637 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
638 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
639 dPdy.reg_offset++;
640 mlen++;
641 }
642 } else {
643 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
644 * instructions. We'll need to do SIMD16 here.
645 */
646 assert(ir->op == ir_txb || ir->op == ir_txl);
647
648 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
649 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
650 base_mrf + mlen + i * 2),
651 coordinate);
652 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
653 inst->saturate = true;
654 coordinate.reg_offset++;
655 }
656
657 /* lod/bias appears after u/v/r. */
658 mlen += 6;
659
660 if (ir->op == ir_txb) {
661 this->result = reg_undef;
662 ir->lod_info.bias->accept(this);
663 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
664 mlen++;
665 } else {
666 this->result = reg_undef;
667 ir->lod_info.lod->accept(this);
668 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
669 mlen++;
670 }
671
672 /* The unused upper half. */
673 mlen++;
674
675 /* Now, since we're doing simd16, the return is 2 interleaved
676 * vec4s where the odd-indexed ones are junk. We'll need to move
677 * this weirdness around to the expected layout.
678 */
679 simd16 = true;
680 orig_dst = dst;
681 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
682 2));
683 dst.type = BRW_REGISTER_TYPE_F;
684 }
685
686 fs_inst *inst = NULL;
687 switch (ir->op) {
688 case ir_tex:
689 inst = emit(FS_OPCODE_TEX, dst);
690 break;
691 case ir_txb:
692 inst = emit(FS_OPCODE_TXB, dst);
693 break;
694 case ir_txl:
695 inst = emit(FS_OPCODE_TXL, dst);
696 break;
697 case ir_txd:
698 inst = emit(FS_OPCODE_TXD, dst);
699 break;
700 case ir_txf:
701 assert(!"GLSL 1.30 features unsupported");
702 break;
703 }
704 inst->base_mrf = base_mrf;
705 inst->mlen = mlen;
706 inst->header_present = true;
707
708 if (simd16) {
709 for (int i = 0; i < 4; i++) {
710 emit(BRW_OPCODE_MOV, orig_dst, dst);
711 orig_dst.reg_offset++;
712 dst.reg_offset += 2;
713 }
714 }
715
716 return inst;
717 }
718
719 /* gen5's sampler has slots for u, v, r, array index, then optional
720 * parameters like shadow comparitor or LOD bias. If optional
721 * parameters aren't present, those base slots are optional and don't
722 * need to be included in the message.
723 *
724 * We don't fill in the unnecessary slots regardless, which may look
725 * surprising in the disassembly.
726 */
727 fs_inst *
728 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
729 int sampler)
730 {
731 int mlen = 0;
732 int base_mrf = 2;
733 int reg_width = c->dispatch_width / 8;
734 bool header_present = false;
735
736 if (ir->offset) {
737 /* The offsets set up by the ir_texture visitor are in the
738 * m1 header, so we can't go headerless.
739 */
740 header_present = true;
741 mlen++;
742 base_mrf--;
743 }
744
745 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
746 fs_inst *inst = emit(BRW_OPCODE_MOV,
747 fs_reg(MRF, base_mrf + mlen + i * reg_width),
748 coordinate);
749 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
750 inst->saturate = true;
751 coordinate.reg_offset++;
752 }
753 mlen += ir->coordinate->type->vector_elements * reg_width;
754
755 if (ir->shadow_comparitor && ir->op != ir_txd) {
756 mlen = MAX2(mlen, header_present + 4 * reg_width);
757
758 this->result = reg_undef;
759 ir->shadow_comparitor->accept(this);
760 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
761 mlen += reg_width;
762 }
763
764 fs_inst *inst = NULL;
765 switch (ir->op) {
766 case ir_tex:
767 inst = emit(FS_OPCODE_TEX, dst);
768 break;
769 case ir_txb:
770 this->result = reg_undef;
771 ir->lod_info.bias->accept(this);
772 mlen = MAX2(mlen, header_present + 4 * reg_width);
773 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
774 mlen += reg_width;
775
776 inst = emit(FS_OPCODE_TXB, dst);
777
778 break;
779 case ir_txl:
780 this->result = reg_undef;
781 ir->lod_info.lod->accept(this);
782 mlen = MAX2(mlen, header_present + 4 * reg_width);
783 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
784 mlen += reg_width;
785
786 inst = emit(FS_OPCODE_TXL, dst);
787 break;
788 case ir_txd: {
789 ir->lod_info.grad.dPdx->accept(this);
790 fs_reg dPdx = this->result;
791
792 ir->lod_info.grad.dPdy->accept(this);
793 fs_reg dPdy = this->result;
794
795 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
796
797 /**
798 * P = u, v, r
799 * dPdx = dudx, dvdx, drdx
800 * dPdy = dudy, dvdy, drdy
801 *
802 * Load up these values:
803 * - dudx dudy dvdx dvdy drdx drdy
804 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
805 */
806 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
807 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
808 dPdx.reg_offset++;
809 mlen += reg_width;
810
811 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
812 dPdy.reg_offset++;
813 mlen += reg_width;
814 }
815
816 inst = emit(FS_OPCODE_TXD, dst);
817 break;
818 }
819 case ir_txf:
820 assert(!"GLSL 1.30 features unsupported");
821 break;
822 }
823 inst->base_mrf = base_mrf;
824 inst->mlen = mlen;
825 inst->header_present = header_present;
826
827 if (mlen > 11) {
828 fail("Message length >11 disallowed by hardware\n");
829 }
830
831 return inst;
832 }
833
834 fs_inst *
835 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
836 int sampler)
837 {
838 int mlen = 0;
839 int base_mrf = 2;
840 int reg_width = c->dispatch_width / 8;
841 bool header_present = false;
842
843 if (ir->offset) {
844 /* The offsets set up by the ir_texture visitor are in the
845 * m1 header, so we can't go headerless.
846 */
847 header_present = true;
848 mlen++;
849 base_mrf--;
850 }
851
852 if (ir->shadow_comparitor && ir->op != ir_txd) {
853 ir->shadow_comparitor->accept(this);
854 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
855 mlen += reg_width;
856 }
857
858 /* Set up the LOD info */
859 switch (ir->op) {
860 case ir_tex:
861 break;
862 case ir_txb:
863 ir->lod_info.bias->accept(this);
864 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
865 mlen += reg_width;
866 break;
867 case ir_txl:
868 ir->lod_info.lod->accept(this);
869 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
870 mlen += reg_width;
871 break;
872 case ir_txd: {
873 if (c->dispatch_width == 16)
874 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
875
876 ir->lod_info.grad.dPdx->accept(this);
877 fs_reg dPdx = this->result;
878
879 ir->lod_info.grad.dPdy->accept(this);
880 fs_reg dPdy = this->result;
881
882 /* Load dPdx and the coordinate together:
883 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
884 */
885 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
886 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
887 coordinate);
888 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
889 inst->saturate = true;
890 coordinate.reg_offset++;
891 mlen += reg_width;
892
893 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
894 dPdx.reg_offset++;
895 mlen += reg_width;
896
897 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
898 dPdy.reg_offset++;
899 mlen += reg_width;
900 }
901 break;
902 }
903 case ir_txf:
904 assert(!"GLSL 1.30 features unsupported");
905 break;
906 }
907
908 /* Set up the coordinate (except for TXD where it was done earlier) */
909 if (ir->op != ir_txd) {
910 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
911 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
912 coordinate);
913 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
914 inst->saturate = true;
915 coordinate.reg_offset++;
916 mlen += reg_width;
917 }
918 }
919
920 /* Generate the SEND */
921 fs_inst *inst = NULL;
922 switch (ir->op) {
923 case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
924 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
925 case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
926 case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
927 case ir_txf: assert(!"TXF unsupported.");
928 }
929 inst->base_mrf = base_mrf;
930 inst->mlen = mlen;
931 inst->header_present = header_present;
932
933 if (mlen > 11) {
934 fail("Message length >11 disallowed by hardware\n");
935 }
936
937 return inst;
938 }
939
940 void
941 fs_visitor::visit(ir_texture *ir)
942 {
943 fs_inst *inst = NULL;
944
945 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
946 sampler = fp->Base.SamplerUnits[sampler];
947
948 /* Our hardware doesn't have a sample_d_c message, so shadow compares
949 * for textureGrad/TXD need to be emulated with instructions.
950 */
951 bool hw_compare_supported = ir->op != ir_txd;
952 if (ir->shadow_comparitor && !hw_compare_supported) {
953 assert(c->key.compare_funcs[sampler] != GL_NONE);
954 /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
955 if (c->key.compare_funcs[sampler] == GL_ALWAYS)
956 return swizzle_result(ir, fs_reg(1.0f), sampler);
957 else if (c->key.compare_funcs[sampler] == GL_NEVER)
958 return swizzle_result(ir, fs_reg(0.0f), sampler);
959 }
960
961 this->result = reg_undef;
962 ir->coordinate->accept(this);
963 fs_reg coordinate = this->result;
964
965 if (ir->offset != NULL) {
966 ir_constant *offset = ir->offset->as_constant();
967 assert(offset != NULL);
968
969 signed char offsets[3];
970 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
971 offsets[i] = (signed char) offset->value.i[i];
972
973 /* Combine all three offsets into a single unsigned dword:
974 *
975 * bits 11:8 - U Offset (X component)
976 * bits 7:4 - V Offset (Y component)
977 * bits 3:0 - R Offset (Z component)
978 */
979 unsigned offset_bits = 0;
980 for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
981 const unsigned shift = 4 * (2 - i);
982 offset_bits |= (offsets[i] << shift) & (0xF << shift);
983 }
984
985 /* Explicitly set up the message header by copying g0 to msg reg m1. */
986 emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
987 fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
988
989 /* Then set the offset bits in DWord 2 of the message header. */
990 emit(BRW_OPCODE_MOV,
991 fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
992 BRW_REGISTER_TYPE_UD)),
993 fs_reg(brw_imm_uw(offset_bits)));
994 }
995
996 /* Should be lowered by do_lower_texture_projection */
997 assert(!ir->projector);
998
999 /* The 965 requires the EU to do the normalization of GL rectangle
1000 * texture coordinates. We use the program parameter state
1001 * tracking to get the scaling factor.
1002 */
1003 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1004 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1005 int tokens[STATE_LENGTH] = {
1006 STATE_INTERNAL,
1007 STATE_TEXRECT_SCALE,
1008 sampler,
1009 0,
1010 0
1011 };
1012
1013 if (c->dispatch_width == 16) {
1014 fail("rectangle scale uniform setup not supported on 16-wide\n");
1015 this->result = fs_reg(this, ir->type);
1016 return;
1017 }
1018
1019 c->prog_data.param_convert[c->prog_data.nr_params] =
1020 PARAM_NO_CONVERT;
1021 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1022 PARAM_NO_CONVERT;
1023
1024 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1025 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1026 GLuint index = _mesa_add_state_reference(params,
1027 (gl_state_index *)tokens);
1028
1029 this->param_index[c->prog_data.nr_params] = index;
1030 this->param_offset[c->prog_data.nr_params] = 0;
1031 c->prog_data.nr_params++;
1032 this->param_index[c->prog_data.nr_params] = index;
1033 this->param_offset[c->prog_data.nr_params] = 1;
1034 c->prog_data.nr_params++;
1035
1036 fs_reg dst = fs_reg(this, ir->coordinate->type);
1037 fs_reg src = coordinate;
1038 coordinate = dst;
1039
1040 emit(BRW_OPCODE_MUL, dst, src, scale_x);
1041 dst.reg_offset++;
1042 src.reg_offset++;
1043 emit(BRW_OPCODE_MUL, dst, src, scale_y);
1044 }
1045
1046 /* Writemasking doesn't eliminate channels on SIMD8 texture
1047 * samples, so don't worry about them.
1048 */
1049 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1050
1051 if (intel->gen >= 7) {
1052 inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1053 } else if (intel->gen >= 5) {
1054 inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1055 } else {
1056 inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1057 }
1058
1059 /* If there's an offset, we already set up m1. To avoid the implied move,
1060 * use the null register. Otherwise, we want an implied move from g0.
1061 */
1062 if (ir->offset != NULL || !inst->header_present)
1063 inst->src[0] = reg_undef;
1064 else
1065 inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1066
1067 inst->sampler = sampler;
1068
1069 if (ir->shadow_comparitor) {
1070 if (hw_compare_supported) {
1071 inst->shadow_compare = true;
1072 } else {
1073 ir->shadow_comparitor->accept(this);
1074 fs_reg ref = this->result;
1075
1076 fs_reg value = dst;
1077 dst = fs_reg(this, glsl_type::vec4_type);
1078
1079 /* FINISHME: This needs to be done pre-filtering. */
1080
1081 uint32_t conditional = 0;
1082 switch (c->key.compare_funcs[sampler]) {
1083 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1084 case GL_LESS: conditional = BRW_CONDITIONAL_L; break;
1085 case GL_GREATER: conditional = BRW_CONDITIONAL_G; break;
1086 case GL_LEQUAL: conditional = BRW_CONDITIONAL_LE; break;
1087 case GL_GEQUAL: conditional = BRW_CONDITIONAL_GE; break;
1088 case GL_EQUAL: conditional = BRW_CONDITIONAL_EQ; break;
1089 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1090 default: assert(!"Should not get here: bad shadow compare function");
1091 }
1092
1093 /* Use conditional moves to load 0 or 1 as the result */
1094 this->current_annotation = "manual shadow comparison";
1095 for (int i = 0; i < 4; i++) {
1096 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1097
1098 inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1099 inst->conditional_mod = conditional;
1100
1101 inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1102 inst->predicated = true;
1103
1104 dst.reg_offset++;
1105 value.reg_offset++;
1106 }
1107 dst.reg_offset = 0;
1108 }
1109 }
1110
1111 swizzle_result(ir, dst, sampler);
1112 }
1113
1114 /**
1115 * Swizzle the result of a texture result. This is necessary for
1116 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1117 */
1118 void
1119 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1120 {
1121 this->result = orig_val;
1122
1123 if (ir->type == glsl_type::float_type) {
1124 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1125 assert(ir->sampler->type->sampler_shadow);
1126 } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1127 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1128
1129 for (int i = 0; i < 4; i++) {
1130 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1131 fs_reg l = swizzled_result;
1132 l.reg_offset += i;
1133
1134 if (swiz == SWIZZLE_ZERO) {
1135 emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1136 } else if (swiz == SWIZZLE_ONE) {
1137 emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1138 } else {
1139 fs_reg r = orig_val;
1140 r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1141 emit(BRW_OPCODE_MOV, l, r);
1142 }
1143 }
1144 this->result = swizzled_result;
1145 }
1146 }
1147
1148 void
1149 fs_visitor::visit(ir_swizzle *ir)
1150 {
1151 this->result = reg_undef;
1152 ir->val->accept(this);
1153 fs_reg val = this->result;
1154
1155 if (ir->type->vector_elements == 1) {
1156 this->result.reg_offset += ir->mask.x;
1157 return;
1158 }
1159
1160 fs_reg result = fs_reg(this, ir->type);
1161 this->result = result;
1162
1163 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1164 fs_reg channel = val;
1165 int swiz = 0;
1166
1167 switch (i) {
1168 case 0:
1169 swiz = ir->mask.x;
1170 break;
1171 case 1:
1172 swiz = ir->mask.y;
1173 break;
1174 case 2:
1175 swiz = ir->mask.z;
1176 break;
1177 case 3:
1178 swiz = ir->mask.w;
1179 break;
1180 }
1181
1182 channel.reg_offset += swiz;
1183 emit(BRW_OPCODE_MOV, result, channel);
1184 result.reg_offset++;
1185 }
1186 }
1187
1188 void
1189 fs_visitor::visit(ir_discard *ir)
1190 {
1191 assert(ir->condition == NULL); /* FINISHME */
1192
1193 emit(FS_OPCODE_DISCARD);
1194 kill_emitted = true;
1195 }
1196
1197 void
1198 fs_visitor::visit(ir_constant *ir)
1199 {
1200 /* Set this->result to reg at the bottom of the function because some code
1201 * paths will cause this visitor to be applied to other fields. This will
1202 * cause the value stored in this->result to be modified.
1203 *
1204 * Make reg constant so that it doesn't get accidentally modified along the
1205 * way. Yes, I actually had this problem. :(
1206 */
1207 const fs_reg reg(this, ir->type);
1208 fs_reg dst_reg = reg;
1209
1210 if (ir->type->is_array()) {
1211 const unsigned size = type_size(ir->type->fields.array);
1212
1213 for (unsigned i = 0; i < ir->type->length; i++) {
1214 this->result = reg_undef;
1215 ir->array_elements[i]->accept(this);
1216 fs_reg src_reg = this->result;
1217
1218 dst_reg.type = src_reg.type;
1219 for (unsigned j = 0; j < size; j++) {
1220 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1221 src_reg.reg_offset++;
1222 dst_reg.reg_offset++;
1223 }
1224 }
1225 } else if (ir->type->is_record()) {
1226 foreach_list(node, &ir->components) {
1227 ir_instruction *const field = (ir_instruction *) node;
1228 const unsigned size = type_size(field->type);
1229
1230 this->result = reg_undef;
1231 field->accept(this);
1232 fs_reg src_reg = this->result;
1233
1234 dst_reg.type = src_reg.type;
1235 for (unsigned j = 0; j < size; j++) {
1236 emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1237 src_reg.reg_offset++;
1238 dst_reg.reg_offset++;
1239 }
1240 }
1241 } else {
1242 const unsigned size = type_size(ir->type);
1243
1244 for (unsigned i = 0; i < size; i++) {
1245 switch (ir->type->base_type) {
1246 case GLSL_TYPE_FLOAT:
1247 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1248 break;
1249 case GLSL_TYPE_UINT:
1250 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1251 break;
1252 case GLSL_TYPE_INT:
1253 emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1254 break;
1255 case GLSL_TYPE_BOOL:
1256 emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1257 break;
1258 default:
1259 assert(!"Non-float/uint/int/bool constant");
1260 }
1261 dst_reg.reg_offset++;
1262 }
1263 }
1264
1265 this->result = reg;
1266 }
1267
1268 void
1269 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1270 {
1271 ir_expression *expr = ir->as_expression();
1272
1273 if (expr) {
1274 fs_reg op[2];
1275 fs_inst *inst;
1276
1277 assert(expr->get_num_operands() <= 2);
1278 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1279 assert(expr->operands[i]->type->is_scalar());
1280
1281 this->result = reg_undef;
1282 expr->operands[i]->accept(this);
1283 op[i] = this->result;
1284 }
1285
1286 switch (expr->operation) {
1287 case ir_unop_logic_not:
1288 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1289 inst->conditional_mod = BRW_CONDITIONAL_Z;
1290 break;
1291
1292 case ir_binop_logic_xor:
1293 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1294 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1295 break;
1296
1297 case ir_binop_logic_or:
1298 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1299 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1300 break;
1301
1302 case ir_binop_logic_and:
1303 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1304 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1305 break;
1306
1307 case ir_unop_f2b:
1308 if (intel->gen >= 6) {
1309 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1310 } else {
1311 inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1312 }
1313 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1314 break;
1315
1316 case ir_unop_i2b:
1317 if (intel->gen >= 6) {
1318 inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1319 } else {
1320 inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1321 }
1322 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1323 break;
1324
1325 case ir_binop_greater:
1326 case ir_binop_gequal:
1327 case ir_binop_less:
1328 case ir_binop_lequal:
1329 case ir_binop_equal:
1330 case ir_binop_all_equal:
1331 case ir_binop_nequal:
1332 case ir_binop_any_nequal:
1333 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1334 inst->conditional_mod =
1335 brw_conditional_for_comparison(expr->operation);
1336 break;
1337
1338 default:
1339 assert(!"not reached");
1340 fail("bad cond code\n");
1341 break;
1342 }
1343 return;
1344 }
1345
1346 this->result = reg_undef;
1347 ir->accept(this);
1348
1349 if (intel->gen >= 6) {
1350 fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1351 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1352 } else {
1353 fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1354 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1355 }
1356 }
1357
1358 /**
1359 * Emit a gen6 IF statement with the comparison folded into the IF
1360 * instruction.
1361 */
1362 void
1363 fs_visitor::emit_if_gen6(ir_if *ir)
1364 {
1365 ir_expression *expr = ir->condition->as_expression();
1366
1367 if (expr) {
1368 fs_reg op[2];
1369 fs_inst *inst;
1370 fs_reg temp;
1371
1372 assert(expr->get_num_operands() <= 2);
1373 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1374 assert(expr->operands[i]->type->is_scalar());
1375
1376 this->result = reg_undef;
1377 expr->operands[i]->accept(this);
1378 op[i] = this->result;
1379 }
1380
1381 switch (expr->operation) {
1382 case ir_unop_logic_not:
1383 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1384 inst->conditional_mod = BRW_CONDITIONAL_Z;
1385 return;
1386
1387 case ir_binop_logic_xor:
1388 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1389 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1390 return;
1391
1392 case ir_binop_logic_or:
1393 temp = fs_reg(this, glsl_type::bool_type);
1394 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1395 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1396 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1397 return;
1398
1399 case ir_binop_logic_and:
1400 temp = fs_reg(this, glsl_type::bool_type);
1401 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1402 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1403 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1404 return;
1405
1406 case ir_unop_f2b:
1407 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1408 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1409 return;
1410
1411 case ir_unop_i2b:
1412 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1413 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1414 return;
1415
1416 case ir_binop_greater:
1417 case ir_binop_gequal:
1418 case ir_binop_less:
1419 case ir_binop_lequal:
1420 case ir_binop_equal:
1421 case ir_binop_all_equal:
1422 case ir_binop_nequal:
1423 case ir_binop_any_nequal:
1424 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1425 inst->conditional_mod =
1426 brw_conditional_for_comparison(expr->operation);
1427 return;
1428 default:
1429 assert(!"not reached");
1430 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1431 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1432 fail("bad condition\n");
1433 return;
1434 }
1435 return;
1436 }
1437
1438 this->result = reg_undef;
1439 ir->condition->accept(this);
1440
1441 fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1442 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1443 }
1444
1445 void
1446 fs_visitor::visit(ir_if *ir)
1447 {
1448 fs_inst *inst;
1449
1450 if (intel->gen != 6 && c->dispatch_width == 16) {
1451 fail("Can't support (non-uniform) control flow on 16-wide\n");
1452 }
1453
1454 /* Don't point the annotation at the if statement, because then it plus
1455 * the then and else blocks get printed.
1456 */
1457 this->base_ir = ir->condition;
1458
1459 if (intel->gen == 6) {
1460 emit_if_gen6(ir);
1461 } else {
1462 emit_bool_to_cond_code(ir->condition);
1463
1464 inst = emit(BRW_OPCODE_IF);
1465 inst->predicated = true;
1466 }
1467
1468 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1469 ir_instruction *ir = (ir_instruction *)iter.get();
1470 this->base_ir = ir;
1471 this->result = reg_undef;
1472 ir->accept(this);
1473 }
1474
1475 if (!ir->else_instructions.is_empty()) {
1476 emit(BRW_OPCODE_ELSE);
1477
1478 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1479 ir_instruction *ir = (ir_instruction *)iter.get();
1480 this->base_ir = ir;
1481 this->result = reg_undef;
1482 ir->accept(this);
1483 }
1484 }
1485
1486 emit(BRW_OPCODE_ENDIF);
1487 }
1488
1489 void
1490 fs_visitor::visit(ir_loop *ir)
1491 {
1492 fs_reg counter = reg_undef;
1493
1494 if (c->dispatch_width == 16) {
1495 fail("Can't support (non-uniform) control flow on 16-wide\n");
1496 }
1497
1498 if (ir->counter) {
1499 this->base_ir = ir->counter;
1500 ir->counter->accept(this);
1501 counter = *(variable_storage(ir->counter));
1502
1503 if (ir->from) {
1504 this->result = counter;
1505
1506 this->base_ir = ir->from;
1507 this->result = counter;
1508 ir->from->accept(this);
1509
1510 if (!this->result.equals(&counter))
1511 emit(BRW_OPCODE_MOV, counter, this->result);
1512 }
1513 }
1514
1515 emit(BRW_OPCODE_DO);
1516
1517 if (ir->to) {
1518 this->base_ir = ir->to;
1519 this->result = reg_undef;
1520 ir->to->accept(this);
1521
1522 fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1523 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1524
1525 inst = emit(BRW_OPCODE_BREAK);
1526 inst->predicated = true;
1527 }
1528
1529 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1530 ir_instruction *ir = (ir_instruction *)iter.get();
1531
1532 this->base_ir = ir;
1533 this->result = reg_undef;
1534 ir->accept(this);
1535 }
1536
1537 if (ir->increment) {
1538 this->base_ir = ir->increment;
1539 this->result = reg_undef;
1540 ir->increment->accept(this);
1541 emit(BRW_OPCODE_ADD, counter, counter, this->result);
1542 }
1543
1544 emit(BRW_OPCODE_WHILE);
1545 }
1546
1547 void
1548 fs_visitor::visit(ir_loop_jump *ir)
1549 {
1550 switch (ir->mode) {
1551 case ir_loop_jump::jump_break:
1552 emit(BRW_OPCODE_BREAK);
1553 break;
1554 case ir_loop_jump::jump_continue:
1555 emit(BRW_OPCODE_CONTINUE);
1556 break;
1557 }
1558 }
1559
1560 void
1561 fs_visitor::visit(ir_call *ir)
1562 {
1563 assert(!"FINISHME");
1564 }
1565
1566 void
1567 fs_visitor::visit(ir_return *ir)
1568 {
1569 assert(!"FINISHME");
1570 }
1571
1572 void
1573 fs_visitor::visit(ir_function *ir)
1574 {
1575 /* Ignore function bodies other than main() -- we shouldn't see calls to
1576 * them since they should all be inlined before we get to ir_to_mesa.
1577 */
1578 if (strcmp(ir->name, "main") == 0) {
1579 const ir_function_signature *sig;
1580 exec_list empty;
1581
1582 sig = ir->matching_signature(&empty);
1583
1584 assert(sig);
1585
1586 foreach_iter(exec_list_iterator, iter, sig->body) {
1587 ir_instruction *ir = (ir_instruction *)iter.get();
1588 this->base_ir = ir;
1589 this->result = reg_undef;
1590 ir->accept(this);
1591 }
1592 }
1593 }
1594
1595 void
1596 fs_visitor::visit(ir_function_signature *ir)
1597 {
1598 assert(!"not reached");
1599 (void)ir;
1600 }
1601
1602 fs_inst *
1603 fs_visitor::emit(fs_inst inst)
1604 {
1605 fs_inst *list_inst = new(mem_ctx) fs_inst;
1606 *list_inst = inst;
1607
1608 if (force_uncompressed_stack > 0)
1609 list_inst->force_uncompressed = true;
1610 else if (force_sechalf_stack > 0)
1611 list_inst->force_sechalf = true;
1612
1613 list_inst->annotation = this->current_annotation;
1614 list_inst->ir = this->base_ir;
1615
1616 this->instructions.push_tail(list_inst);
1617
1618 return list_inst;
1619 }
1620
1621 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1622 void
1623 fs_visitor::emit_dummy_fs()
1624 {
1625 /* Everyone's favorite color. */
1626 emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1627 emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1628 emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1629 emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1630
1631 fs_inst *write;
1632 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1633 write->base_mrf = 2;
1634 }
1635
1636 /* The register location here is relative to the start of the URB
1637 * data. It will get adjusted to be a real location before
1638 * generate_code() time.
1639 */
1640 struct brw_reg
1641 fs_visitor::interp_reg(int location, int channel)
1642 {
1643 int regnr = urb_setup[location] * 2 + channel / 2;
1644 int stride = (channel & 1) * 4;
1645
1646 assert(urb_setup[location] != -1);
1647
1648 return brw_vec1_grf(regnr, stride);
1649 }
1650
1651 /** Emits the interpolation for the varying inputs. */
1652 void
1653 fs_visitor::emit_interpolation_setup_gen4()
1654 {
1655 this->current_annotation = "compute pixel centers";
1656 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1657 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1658 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1659 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1660
1661 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1662 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1663
1664 this->current_annotation = "compute pixel deltas from v0";
1665 if (brw->has_pln) {
1666 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1667 this->delta_y = this->delta_x;
1668 this->delta_y.reg_offset++;
1669 } else {
1670 this->delta_x = fs_reg(this, glsl_type::float_type);
1671 this->delta_y = fs_reg(this, glsl_type::float_type);
1672 }
1673 emit(BRW_OPCODE_ADD, this->delta_x,
1674 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1675 emit(BRW_OPCODE_ADD, this->delta_y,
1676 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1677
1678 this->current_annotation = "compute pos.w and 1/pos.w";
1679 /* Compute wpos.w. It's always in our setup, since it's needed to
1680 * interpolate the other attributes.
1681 */
1682 this->wpos_w = fs_reg(this, glsl_type::float_type);
1683 emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1684 interp_reg(FRAG_ATTRIB_WPOS, 3));
1685 /* Compute the pixel 1/W value from wpos.w. */
1686 this->pixel_w = fs_reg(this, glsl_type::float_type);
1687 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1688 this->current_annotation = NULL;
1689 }
1690
1691 /** Emits the interpolation for the varying inputs. */
1692 void
1693 fs_visitor::emit_interpolation_setup_gen6()
1694 {
1695 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1696
1697 /* If the pixel centers end up used, the setup is the same as for gen4. */
1698 this->current_annotation = "compute pixel centers";
1699 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1700 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1701 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1702 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1703 emit(BRW_OPCODE_ADD,
1704 int_pixel_x,
1705 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1706 fs_reg(brw_imm_v(0x10101010)));
1707 emit(BRW_OPCODE_ADD,
1708 int_pixel_y,
1709 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1710 fs_reg(brw_imm_v(0x11001100)));
1711
1712 /* As of gen6, we can no longer mix float and int sources. We have
1713 * to turn the integer pixel centers into floats for their actual
1714 * use.
1715 */
1716 this->pixel_x = fs_reg(this, glsl_type::float_type);
1717 this->pixel_y = fs_reg(this, glsl_type::float_type);
1718 emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1719 emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1720
1721 this->current_annotation = "compute pos.w";
1722 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1723 this->wpos_w = fs_reg(this, glsl_type::float_type);
1724 emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1725
1726 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1727 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1728
1729 this->current_annotation = NULL;
1730 }
1731
1732 void
1733 fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1734 {
1735 int reg_width = c->dispatch_width / 8;
1736
1737 if (c->dispatch_width == 8 || intel->gen == 6) {
1738 /* SIMD8 write looks like:
1739 * m + 0: r0
1740 * m + 1: r1
1741 * m + 2: g0
1742 * m + 3: g1
1743 *
1744 * gen6 SIMD16 DP write looks like:
1745 * m + 0: r0
1746 * m + 1: r1
1747 * m + 2: g0
1748 * m + 3: g1
1749 * m + 4: b0
1750 * m + 5: b1
1751 * m + 6: a0
1752 * m + 7: a1
1753 */
1754 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1755 color);
1756 } else {
1757 /* pre-gen6 SIMD16 single source DP write looks like:
1758 * m + 0: r0
1759 * m + 1: g0
1760 * m + 2: b0
1761 * m + 3: a0
1762 * m + 4: r1
1763 * m + 5: g1
1764 * m + 6: b1
1765 * m + 7: a1
1766 */
1767 if (brw->has_compr4) {
1768 /* By setting the high bit of the MRF register number, we
1769 * indicate that we want COMPR4 mode - instead of doing the
1770 * usual destination + 1 for the second half we get
1771 * destination + 4.
1772 */
1773 emit(BRW_OPCODE_MOV,
1774 fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1775 } else {
1776 push_force_uncompressed();
1777 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1778 pop_force_uncompressed();
1779
1780 push_force_sechalf();
1781 color.sechalf = true;
1782 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1783 pop_force_sechalf();
1784 color.sechalf = false;
1785 }
1786 }
1787 }
1788
1789 void
1790 fs_visitor::emit_fb_writes()
1791 {
1792 this->current_annotation = "FB write header";
1793 GLboolean header_present = GL_TRUE;
1794 int base_mrf = 2;
1795 int nr = base_mrf;
1796 int reg_width = c->dispatch_width / 8;
1797
1798 if (intel->gen >= 6 &&
1799 !this->kill_emitted &&
1800 c->key.nr_color_regions == 1) {
1801 header_present = false;
1802 }
1803
1804 if (header_present) {
1805 /* m2, m3 header */
1806 nr += 2;
1807 }
1808
1809 if (c->aa_dest_stencil_reg) {
1810 push_force_uncompressed();
1811 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1812 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1813 pop_force_uncompressed();
1814 }
1815
1816 /* Reserve space for color. It'll be filled in per MRT below. */
1817 int color_mrf = nr;
1818 nr += 4 * reg_width;
1819
1820 if (c->source_depth_to_render_target) {
1821 if (intel->gen == 6 && c->dispatch_width == 16) {
1822 /* For outputting oDepth on gen6, SIMD8 writes have to be
1823 * used. This would require 8-wide moves of each half to
1824 * message regs, kind of like pre-gen5 SIMD16 FB writes.
1825 * Just bail on doing so for now.
1826 */
1827 fail("Missing support for simd16 depth writes on gen6\n");
1828 }
1829
1830 if (c->computes_depth) {
1831 /* Hand over gl_FragDepth. */
1832 assert(this->frag_depth);
1833 fs_reg depth = *(variable_storage(this->frag_depth));
1834
1835 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1836 } else {
1837 /* Pass through the payload depth. */
1838 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1839 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1840 }
1841 nr += reg_width;
1842 }
1843
1844 if (c->dest_depth_reg) {
1845 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1846 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1847 nr += reg_width;
1848 }
1849
1850 fs_reg color = reg_undef;
1851 if (this->frag_color)
1852 color = *(variable_storage(this->frag_color));
1853 else if (this->frag_data) {
1854 color = *(variable_storage(this->frag_data));
1855 color.type = BRW_REGISTER_TYPE_F;
1856 }
1857
1858 for (int target = 0; target < c->key.nr_color_regions; target++) {
1859 this->current_annotation = ralloc_asprintf(this->mem_ctx,
1860 "FB write target %d",
1861 target);
1862 if (this->frag_color || this->frag_data) {
1863 for (int i = 0; i < 4; i++) {
1864 emit_color_write(i, color_mrf, color);
1865 color.reg_offset++;
1866 }
1867 }
1868
1869 if (this->frag_color)
1870 color.reg_offset -= 4;
1871
1872 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1873 inst->target = target;
1874 inst->base_mrf = base_mrf;
1875 inst->mlen = nr - base_mrf;
1876 if (target == c->key.nr_color_regions - 1)
1877 inst->eot = true;
1878 inst->header_present = header_present;
1879 }
1880
1881 if (c->key.nr_color_regions == 0) {
1882 if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1883 /* If the alpha test is enabled but there's no color buffer,
1884 * we still need to send alpha out the pipeline to our null
1885 * renderbuffer.
1886 */
1887 color.reg_offset += 3;
1888 emit_color_write(3, color_mrf, color);
1889 }
1890
1891 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1892 inst->base_mrf = base_mrf;
1893 inst->mlen = nr - base_mrf;
1894 inst->eot = true;
1895 inst->header_present = header_present;
1896 }
1897
1898 this->current_annotation = NULL;
1899 }