i965/fs: Don't mix integer/float immediates in i2b handling.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 extern "C" {
31
32 #include <sys/types.h>
33
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/uniforms.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "program/prog_optimize.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_fs.h"
48 #include "glsl/glsl_types.h"
49 #include "glsl/ir_optimization.h"
50 #include "glsl/ir_print_visitor.h"
51
52 void
53 fs_visitor::visit(ir_variable *ir)
54 {
55 fs_reg *reg = NULL;
56
57 if (variable_storage(ir))
58 return;
59
60 if (ir->mode == ir_var_in) {
61 if (!strcmp(ir->name, "gl_FragCoord")) {
62 reg = emit_fragcoord_interpolation(ir);
63 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
64 reg = emit_frontfacing_interpolation(ir);
65 } else {
66 reg = emit_general_interpolation(ir);
67 }
68 assert(reg);
69 hash_table_insert(this->variable_ht, reg, ir);
70 return;
71 } else if (ir->mode == ir_var_out) {
72 reg = new(this->mem_ctx) fs_reg(this, ir->type);
73
74 if (ir->index > 0) {
75 assert(ir->location == FRAG_RESULT_DATA0);
76 assert(ir->index == 1);
77 this->dual_src_output = *reg;
78 } else if (ir->location == FRAG_RESULT_COLOR) {
79 /* Writing gl_FragColor outputs to all color regions. */
80 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
81 this->outputs[i] = *reg;
82 this->output_components[i] = 4;
83 }
84 } else if (ir->location == FRAG_RESULT_DEPTH) {
85 this->frag_depth = *reg;
86 } else {
87 /* gl_FragData or a user-defined FS output */
88 assert(ir->location >= FRAG_RESULT_DATA0 &&
89 ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
90
91 int vector_elements =
92 ir->type->is_array() ? ir->type->fields.array->vector_elements
93 : ir->type->vector_elements;
94
95 /* General color output. */
96 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
97 int output = ir->location - FRAG_RESULT_DATA0 + i;
98 this->outputs[output] = *reg;
99 this->outputs[output].reg_offset += vector_elements * i;
100 this->output_components[output] = vector_elements;
101 }
102 }
103 } else if (ir->mode == ir_var_uniform) {
104 int param_index = c->prog_data.nr_params;
105
106 /* Thanks to the lower_ubo_reference pass, we will see only
107 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
108 * variables, so no need for them to be in variable_ht.
109 */
110 if (ir->uniform_block != -1)
111 return;
112
113 if (dispatch_width == 16) {
114 if (!variable_storage(ir)) {
115 fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
116 }
117 return;
118 }
119
120 param_size[param_index] = type_size(ir->type);
121 if (!strncmp(ir->name, "gl_", 3)) {
122 setup_builtin_uniform_values(ir);
123 } else {
124 setup_uniform_values(ir);
125 }
126
127 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
128 reg->type = brw_type_for_base_type(ir->type);
129 }
130
131 if (!reg)
132 reg = new(this->mem_ctx) fs_reg(this, ir->type);
133
134 hash_table_insert(this->variable_ht, reg, ir);
135 }
136
137 void
138 fs_visitor::visit(ir_dereference_variable *ir)
139 {
140 fs_reg *reg = variable_storage(ir->var);
141 this->result = *reg;
142 }
143
144 void
145 fs_visitor::visit(ir_dereference_record *ir)
146 {
147 const glsl_type *struct_type = ir->record->type;
148
149 ir->record->accept(this);
150
151 unsigned int offset = 0;
152 for (unsigned int i = 0; i < struct_type->length; i++) {
153 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
154 break;
155 offset += type_size(struct_type->fields.structure[i].type);
156 }
157 this->result.reg_offset += offset;
158 this->result.type = brw_type_for_base_type(ir->type);
159 }
160
161 void
162 fs_visitor::visit(ir_dereference_array *ir)
163 {
164 ir_constant *constant_index;
165 fs_reg src;
166 int element_size = type_size(ir->type);
167
168 constant_index = ir->array_index->as_constant();
169
170 ir->array->accept(this);
171 src = this->result;
172 src.type = brw_type_for_base_type(ir->type);
173
174 if (constant_index) {
175 assert(src.file == UNIFORM || src.file == GRF);
176 src.reg_offset += constant_index->value.i[0] * element_size;
177 } else {
178 /* Variable index array dereference. We attach the variable index
179 * component to the reg as a pointer to a register containing the
180 * offset. Currently only uniform arrays are supported in this patch,
181 * and that reladdr pointer is resolved by
182 * move_uniform_array_access_to_pull_constants(). All other array types
183 * are lowered by lower_variable_index_to_cond_assign().
184 */
185 ir->array_index->accept(this);
186
187 fs_reg index_reg;
188 index_reg = fs_reg(this, glsl_type::int_type);
189 emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
190
191 if (src.reladdr) {
192 emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
193 }
194
195 src.reladdr = ralloc(mem_ctx, fs_reg);
196 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
197 }
198 this->result = src;
199 }
200
201 void
202 fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
203 fs_reg src0, fs_reg src1)
204 {
205 fs_inst *inst;
206
207 if (intel->gen >= 6) {
208 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
209 inst->conditional_mod = conditionalmod;
210 } else {
211 emit(CMP(reg_null_d, src0, src1, conditionalmod));
212
213 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
214 inst->predicate = BRW_PREDICATE_NORMAL;
215 }
216 }
217
218 /* Instruction selection: Produce a MOV.sat instead of
219 * MIN(MAX(val, 0), 1) when possible.
220 */
221 bool
222 fs_visitor::try_emit_saturate(ir_expression *ir)
223 {
224 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
225
226 if (!sat_val)
227 return false;
228
229 fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
230
231 sat_val->accept(this);
232 fs_reg src = this->result;
233
234 fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
235
236 /* If the last instruction from our accept() didn't generate our
237 * src, generate a saturated MOV
238 */
239 fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
240 if (!modify || modify->regs_written() != 1) {
241 this->result = fs_reg(this, ir->type);
242 fs_inst *inst = emit(MOV(this->result, src));
243 inst->saturate = true;
244 } else {
245 modify->saturate = true;
246 this->result = src;
247 }
248
249
250 return true;
251 }
252
253 bool
254 fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
255 {
256 /* 3-src instructions were introduced in gen6. */
257 if (intel->gen < 6)
258 return false;
259
260 /* MAD can only handle floating-point data. */
261 if (ir->type != glsl_type::float_type)
262 return false;
263
264 ir_rvalue *nonmul = ir->operands[1 - mul_arg];
265 ir_expression *mul = ir->operands[mul_arg]->as_expression();
266
267 if (!mul || mul->operation != ir_binop_mul)
268 return false;
269
270 if (nonmul->as_constant() ||
271 mul->operands[0]->as_constant() ||
272 mul->operands[1]->as_constant())
273 return false;
274
275 nonmul->accept(this);
276 fs_reg src0 = this->result;
277
278 mul->operands[0]->accept(this);
279 fs_reg src1 = this->result;
280
281 mul->operands[1]->accept(this);
282 fs_reg src2 = this->result;
283
284 this->result = fs_reg(this, ir->type);
285 emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
286
287 return true;
288 }
289
290 void
291 fs_visitor::visit(ir_expression *ir)
292 {
293 unsigned int operand;
294 fs_reg op[2], temp;
295 fs_inst *inst;
296
297 assert(ir->get_num_operands() <= 2);
298
299 if (try_emit_saturate(ir))
300 return;
301 if (ir->operation == ir_binop_add) {
302 if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
303 return;
304 }
305
306 for (operand = 0; operand < ir->get_num_operands(); operand++) {
307 ir->operands[operand]->accept(this);
308 if (this->result.file == BAD_FILE) {
309 ir_print_visitor v;
310 fail("Failed to get tree for expression operand:\n");
311 ir->operands[operand]->accept(&v);
312 }
313 op[operand] = this->result;
314
315 /* Matrix expression operands should have been broken down to vector
316 * operations already.
317 */
318 assert(!ir->operands[operand]->type->is_matrix());
319 /* And then those vector operands should have been broken down to scalar.
320 */
321 assert(!ir->operands[operand]->type->is_vector());
322 }
323
324 /* Storage for our result. If our result goes into an assignment, it will
325 * just get copy-propagated out, so no worries.
326 */
327 this->result = fs_reg(this, ir->type);
328
329 switch (ir->operation) {
330 case ir_unop_logic_not:
331 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
332 * ones complement of the whole register, not just bit 0.
333 */
334 emit(XOR(this->result, op[0], fs_reg(1)));
335 break;
336 case ir_unop_neg:
337 op[0].negate = !op[0].negate;
338 this->result = op[0];
339 break;
340 case ir_unop_abs:
341 op[0].abs = true;
342 op[0].negate = false;
343 this->result = op[0];
344 break;
345 case ir_unop_sign:
346 temp = fs_reg(this, ir->type);
347
348 emit(MOV(this->result, fs_reg(0.0f)));
349
350 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
351 inst = emit(MOV(this->result, fs_reg(1.0f)));
352 inst->predicate = BRW_PREDICATE_NORMAL;
353
354 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
355 inst = emit(MOV(this->result, fs_reg(-1.0f)));
356 inst->predicate = BRW_PREDICATE_NORMAL;
357
358 break;
359 case ir_unop_rcp:
360 emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
361 break;
362
363 case ir_unop_exp2:
364 emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
365 break;
366 case ir_unop_log2:
367 emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
368 break;
369 case ir_unop_exp:
370 case ir_unop_log:
371 assert(!"not reached: should be handled by ir_explog_to_explog2");
372 break;
373 case ir_unop_sin:
374 case ir_unop_sin_reduced:
375 emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
376 break;
377 case ir_unop_cos:
378 case ir_unop_cos_reduced:
379 emit_math(SHADER_OPCODE_COS, this->result, op[0]);
380 break;
381
382 case ir_unop_dFdx:
383 emit(FS_OPCODE_DDX, this->result, op[0]);
384 break;
385 case ir_unop_dFdy:
386 emit(FS_OPCODE_DDY, this->result, op[0]);
387 break;
388
389 case ir_binop_add:
390 emit(ADD(this->result, op[0], op[1]));
391 break;
392 case ir_binop_sub:
393 assert(!"not reached: should be handled by ir_sub_to_add_neg");
394 break;
395
396 case ir_binop_mul:
397 if (ir->type->is_integer()) {
398 /* For integer multiplication, the MUL uses the low 16 bits
399 * of one of the operands (src0 on gen6, src1 on gen7). The
400 * MACH accumulates in the contribution of the upper 16 bits
401 * of that operand.
402 *
403 * FINISHME: Emit just the MUL if we know an operand is small
404 * enough.
405 */
406 if (intel->gen >= 7 && dispatch_width == 16)
407 fail("16-wide explicit accumulator operands unsupported\n");
408
409 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
410
411 emit(MUL(acc, op[0], op[1]));
412 emit(MACH(reg_null_d, op[0], op[1]));
413 emit(MOV(this->result, fs_reg(acc)));
414 } else {
415 emit(MUL(this->result, op[0], op[1]));
416 }
417 break;
418 case ir_binop_div:
419 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
420 assert(ir->type->is_integer());
421 emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
422 break;
423 case ir_binop_mod:
424 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
425 assert(ir->type->is_integer());
426 emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
427 break;
428
429 case ir_binop_less:
430 case ir_binop_greater:
431 case ir_binop_lequal:
432 case ir_binop_gequal:
433 case ir_binop_equal:
434 case ir_binop_all_equal:
435 case ir_binop_nequal:
436 case ir_binop_any_nequal:
437 resolve_bool_comparison(ir->operands[0], &op[0]);
438 resolve_bool_comparison(ir->operands[1], &op[1]);
439
440 emit(CMP(this->result, op[0], op[1],
441 brw_conditional_for_comparison(ir->operation)));
442 break;
443
444 case ir_binop_logic_xor:
445 emit(XOR(this->result, op[0], op[1]));
446 break;
447
448 case ir_binop_logic_or:
449 emit(OR(this->result, op[0], op[1]));
450 break;
451
452 case ir_binop_logic_and:
453 emit(AND(this->result, op[0], op[1]));
454 break;
455
456 case ir_binop_dot:
457 case ir_unop_any:
458 assert(!"not reached: should be handled by brw_fs_channel_expressions");
459 break;
460
461 case ir_unop_noise:
462 assert(!"not reached: should be handled by lower_noise");
463 break;
464
465 case ir_quadop_vector:
466 assert(!"not reached: should be handled by lower_quadop_vector");
467 break;
468
469 case ir_unop_sqrt:
470 emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
471 break;
472
473 case ir_unop_rsq:
474 emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
475 break;
476
477 case ir_unop_bitcast_i2f:
478 case ir_unop_bitcast_u2f:
479 op[0].type = BRW_REGISTER_TYPE_F;
480 this->result = op[0];
481 break;
482 case ir_unop_i2u:
483 case ir_unop_bitcast_f2u:
484 op[0].type = BRW_REGISTER_TYPE_UD;
485 this->result = op[0];
486 break;
487 case ir_unop_u2i:
488 case ir_unop_bitcast_f2i:
489 op[0].type = BRW_REGISTER_TYPE_D;
490 this->result = op[0];
491 break;
492 case ir_unop_i2f:
493 case ir_unop_u2f:
494 case ir_unop_f2i:
495 case ir_unop_f2u:
496 emit(MOV(this->result, op[0]));
497 break;
498
499 case ir_unop_b2i:
500 inst = emit(AND(this->result, op[0], fs_reg(1)));
501 break;
502 case ir_unop_b2f:
503 temp = fs_reg(this, glsl_type::int_type);
504 emit(AND(temp, op[0], fs_reg(1)));
505 emit(MOV(this->result, temp));
506 break;
507
508 case ir_unop_f2b:
509 emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
510 break;
511 case ir_unop_i2b:
512 emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
513 break;
514
515 case ir_unop_trunc:
516 emit(RNDZ(this->result, op[0]));
517 break;
518 case ir_unop_ceil:
519 op[0].negate = !op[0].negate;
520 inst = emit(RNDD(this->result, op[0]));
521 this->result.negate = true;
522 break;
523 case ir_unop_floor:
524 inst = emit(RNDD(this->result, op[0]));
525 break;
526 case ir_unop_fract:
527 inst = emit(FRC(this->result, op[0]));
528 break;
529 case ir_unop_round_even:
530 emit(RNDE(this->result, op[0]));
531 break;
532
533 case ir_binop_min:
534 case ir_binop_max:
535 resolve_ud_negate(&op[0]);
536 resolve_ud_negate(&op[1]);
537 emit_minmax(ir->operation == ir_binop_min ?
538 BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
539 this->result, op[0], op[1]);
540 break;
541
542 case ir_binop_pow:
543 emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
544 break;
545
546 case ir_unop_bit_not:
547 inst = emit(NOT(this->result, op[0]));
548 break;
549 case ir_binop_bit_and:
550 inst = emit(AND(this->result, op[0], op[1]));
551 break;
552 case ir_binop_bit_xor:
553 inst = emit(XOR(this->result, op[0], op[1]));
554 break;
555 case ir_binop_bit_or:
556 inst = emit(OR(this->result, op[0], op[1]));
557 break;
558
559 case ir_binop_lshift:
560 inst = emit(SHL(this->result, op[0], op[1]));
561 break;
562
563 case ir_binop_rshift:
564 if (ir->type->base_type == GLSL_TYPE_INT)
565 inst = emit(ASR(this->result, op[0], op[1]));
566 else
567 inst = emit(SHR(this->result, op[0], op[1]));
568 break;
569
570 case ir_binop_ubo_load:
571 /* This IR node takes a constant uniform block and a constant or
572 * variable byte offset within the block and loads a vector from that.
573 */
574 ir_constant *uniform_block = ir->operands[0]->as_constant();
575 ir_constant *const_offset = ir->operands[1]->as_constant();
576 fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
577 if (const_offset) {
578 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
579 packed_consts.type = result.type;
580
581 if (intel->gen >= 7) {
582 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] / 16);
583 fs_reg payload = fs_reg(this, glsl_type::uint_type);
584 struct brw_reg g0 = retype(brw_vec8_grf(0, 0),
585 BRW_REGISTER_TYPE_UD);
586 fs_inst *setup = emit(MOV(payload, fs_reg(g0)));
587 setup->force_writemask_all = true;
588 /* We don't need the second half of this vgrf to be filled with g1
589 * in the 16-wide case, but if we use force_uncompressed then live
590 * variable analysis won't consider this a def!
591 */
592
593 emit(FS_OPCODE_SET_GLOBAL_OFFSET, payload,
594 payload, const_offset_reg);
595 emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7, packed_consts,
596 surf_index, payload);
597 } else {
598 fs_reg const_offset_reg = fs_reg(const_offset->value.u[0]);
599 fs_inst *pull = emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
600 packed_consts,
601 surf_index,
602 const_offset_reg));
603 pull->base_mrf = 14;
604 pull->mlen = 1;
605 }
606
607 packed_consts.smear = const_offset->value.u[0] % 16 / 4;
608 for (int i = 0; i < ir->type->vector_elements; i++) {
609 /* UBO bools are any nonzero value. We consider bools to be
610 * values with the low bit set to 1. Convert them using CMP.
611 */
612 if (ir->type->base_type == GLSL_TYPE_BOOL) {
613 emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
614 } else {
615 emit(MOV(result, packed_consts));
616 }
617
618 packed_consts.smear++;
619 result.reg_offset++;
620
621 /* The std140 packing rules don't allow vectors to cross 16-byte
622 * boundaries, and a reg is 32 bytes.
623 */
624 assert(packed_consts.smear < 8);
625 }
626 } else {
627 /* Turn the byte offset into a dword offset. */
628 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
629 emit(SHR(base_offset, op[1], fs_reg(2)));
630
631 for (int i = 0; i < ir->type->vector_elements; i++) {
632 fs_reg offset = fs_reg(this, glsl_type::int_type);
633 emit(ADD(offset, base_offset, fs_reg(i)));
634 emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index, offset));
635
636 if (ir->type->base_type == GLSL_TYPE_BOOL)
637 emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
638
639 result.reg_offset++;
640 }
641 }
642
643 result.reg_offset = 0;
644 break;
645 }
646 }
647
648 void
649 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
650 const glsl_type *type, bool predicated)
651 {
652 switch (type->base_type) {
653 case GLSL_TYPE_FLOAT:
654 case GLSL_TYPE_UINT:
655 case GLSL_TYPE_INT:
656 case GLSL_TYPE_BOOL:
657 for (unsigned int i = 0; i < type->components(); i++) {
658 l.type = brw_type_for_base_type(type);
659 r.type = brw_type_for_base_type(type);
660
661 if (predicated || !l.equals(r)) {
662 fs_inst *inst = emit(MOV(l, r));
663 inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
664 }
665
666 l.reg_offset++;
667 r.reg_offset++;
668 }
669 break;
670 case GLSL_TYPE_ARRAY:
671 for (unsigned int i = 0; i < type->length; i++) {
672 emit_assignment_writes(l, r, type->fields.array, predicated);
673 }
674 break;
675
676 case GLSL_TYPE_STRUCT:
677 for (unsigned int i = 0; i < type->length; i++) {
678 emit_assignment_writes(l, r, type->fields.structure[i].type,
679 predicated);
680 }
681 break;
682
683 case GLSL_TYPE_SAMPLER:
684 break;
685
686 default:
687 assert(!"not reached");
688 break;
689 }
690 }
691
692 /* If the RHS processing resulted in an instruction generating a
693 * temporary value, and it would be easy to rewrite the instruction to
694 * generate its result right into the LHS instead, do so. This ends
695 * up reliably removing instructions where it can be tricky to do so
696 * later without real UD chain information.
697 */
698 bool
699 fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
700 fs_reg dst,
701 fs_reg src,
702 fs_inst *pre_rhs_inst,
703 fs_inst *last_rhs_inst)
704 {
705 /* Only attempt if we're doing a direct assignment. */
706 if (ir->condition ||
707 !(ir->lhs->type->is_scalar() ||
708 (ir->lhs->type->is_vector() &&
709 ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
710 return false;
711
712 /* Make sure the last instruction generated our source reg. */
713 fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
714 last_rhs_inst,
715 src);
716 if (!modify)
717 return false;
718
719 /* If last_rhs_inst wrote a different number of components than our LHS,
720 * we can't safely rewrite it.
721 */
722 if (virtual_grf_sizes[dst.reg] != modify->regs_written())
723 return false;
724
725 /* Success! Rewrite the instruction. */
726 modify->dst = dst;
727
728 return true;
729 }
730
731 void
732 fs_visitor::visit(ir_assignment *ir)
733 {
734 fs_reg l, r;
735 fs_inst *inst;
736
737 /* FINISHME: arrays on the lhs */
738 ir->lhs->accept(this);
739 l = this->result;
740
741 fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
742
743 ir->rhs->accept(this);
744 r = this->result;
745
746 fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
747
748 assert(l.file != BAD_FILE);
749 assert(r.file != BAD_FILE);
750
751 if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
752 return;
753
754 if (ir->condition) {
755 emit_bool_to_cond_code(ir->condition);
756 }
757
758 if (ir->lhs->type->is_scalar() ||
759 ir->lhs->type->is_vector()) {
760 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
761 if (ir->write_mask & (1 << i)) {
762 inst = emit(MOV(l, r));
763 if (ir->condition)
764 inst->predicate = BRW_PREDICATE_NORMAL;
765 r.reg_offset++;
766 }
767 l.reg_offset++;
768 }
769 } else {
770 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
771 }
772 }
773
774 fs_inst *
775 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
776 fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
777 {
778 int mlen;
779 int base_mrf = 1;
780 bool simd16 = false;
781 fs_reg orig_dst;
782
783 /* g0 header. */
784 mlen = 1;
785
786 if (ir->shadow_comparitor) {
787 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
788 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
789 coordinate.reg_offset++;
790 }
791 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
792 mlen += 3;
793
794 if (ir->op == ir_tex) {
795 /* There's no plain shadow compare message, so we use shadow
796 * compare with a bias of 0.0.
797 */
798 emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
799 mlen++;
800 } else if (ir->op == ir_txb || ir->op == ir_txl) {
801 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
802 mlen++;
803 } else {
804 assert(!"Should not get here.");
805 }
806
807 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
808 mlen++;
809 } else if (ir->op == ir_tex) {
810 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
811 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
812 coordinate.reg_offset++;
813 }
814 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
815 mlen += 3;
816 } else if (ir->op == ir_txd) {
817 fs_reg &dPdx = lod;
818
819 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
820 emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
821 coordinate.reg_offset++;
822 }
823 /* the slots for u and v are always present, but r is optional */
824 mlen += MAX2(ir->coordinate->type->vector_elements, 2);
825
826 /* P = u, v, r
827 * dPdx = dudx, dvdx, drdx
828 * dPdy = dudy, dvdy, drdy
829 *
830 * 1-arg: Does not exist.
831 *
832 * 2-arg: dudx dvdx dudy dvdy
833 * dPdx.x dPdx.y dPdy.x dPdy.y
834 * m4 m5 m6 m7
835 *
836 * 3-arg: dudx dvdx drdx dudy dvdy drdy
837 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
838 * m5 m6 m7 m8 m9 m10
839 */
840 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
841 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
842 dPdx.reg_offset++;
843 }
844 mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
845
846 for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
847 emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
848 dPdy.reg_offset++;
849 }
850 mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
851 } else if (ir->op == ir_txs) {
852 /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
853 simd16 = true;
854 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
855 mlen += 2;
856 } else {
857 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
858 * instructions. We'll need to do SIMD16 here.
859 */
860 simd16 = true;
861 assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
862
863 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
864 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
865 coordinate));
866 coordinate.reg_offset++;
867 }
868
869 /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
870 * be necessary for TXF (ld), but seems wise to do for all messages.
871 */
872 for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
873 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
874 }
875
876 /* lod/bias appears after u/v/r. */
877 mlen += 6;
878
879 emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
880 mlen++;
881
882 /* The unused upper half. */
883 mlen++;
884 }
885
886 if (simd16) {
887 /* Now, since we're doing simd16, the return is 2 interleaved
888 * vec4s where the odd-indexed ones are junk. We'll need to move
889 * this weirdness around to the expected layout.
890 */
891 orig_dst = dst;
892 const glsl_type *vec_type =
893 glsl_type::get_instance(ir->type->base_type, 4, 1);
894 dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
895 dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
896 : BRW_REGISTER_TYPE_F;
897 }
898
899 fs_inst *inst = NULL;
900 switch (ir->op) {
901 case ir_tex:
902 inst = emit(SHADER_OPCODE_TEX, dst);
903 break;
904 case ir_txb:
905 inst = emit(FS_OPCODE_TXB, dst);
906 break;
907 case ir_txl:
908 inst = emit(SHADER_OPCODE_TXL, dst);
909 break;
910 case ir_txd:
911 inst = emit(SHADER_OPCODE_TXD, dst);
912 break;
913 case ir_txs:
914 inst = emit(SHADER_OPCODE_TXS, dst);
915 break;
916 case ir_txf:
917 inst = emit(SHADER_OPCODE_TXF, dst);
918 break;
919 }
920 inst->base_mrf = base_mrf;
921 inst->mlen = mlen;
922 inst->header_present = true;
923
924 if (simd16) {
925 for (int i = 0; i < 4; i++) {
926 emit(MOV(orig_dst, dst));
927 orig_dst.reg_offset++;
928 dst.reg_offset += 2;
929 }
930 }
931
932 return inst;
933 }
934
935 /* gen5's sampler has slots for u, v, r, array index, then optional
936 * parameters like shadow comparitor or LOD bias. If optional
937 * parameters aren't present, those base slots are optional and don't
938 * need to be included in the message.
939 *
940 * We don't fill in the unnecessary slots regardless, which may look
941 * surprising in the disassembly.
942 */
943 fs_inst *
944 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
945 fs_reg shadow_c, fs_reg lod, fs_reg lod2)
946 {
947 int mlen = 0;
948 int base_mrf = 2;
949 int reg_width = dispatch_width / 8;
950 bool header_present = false;
951 const int vector_elements =
952 ir->coordinate ? ir->coordinate->type->vector_elements : 0;
953
954 if (ir->offset != NULL && ir->op == ir_txf) {
955 /* It appears that the ld instruction used for txf does its
956 * address bounds check before adding in the offset. To work
957 * around this, just add the integer offset to the integer texel
958 * coordinate, and don't put the offset in the header.
959 */
960 ir_constant *offset = ir->offset->as_constant();
961 for (int i = 0; i < vector_elements; i++) {
962 emit(ADD(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
963 coordinate,
964 offset->value.i[i]));
965 coordinate.reg_offset++;
966 }
967 } else {
968 if (ir->offset) {
969 /* The offsets set up by the ir_texture visitor are in the
970 * m1 header, so we can't go headerless.
971 */
972 header_present = true;
973 mlen++;
974 base_mrf--;
975 }
976
977 for (int i = 0; i < vector_elements; i++) {
978 emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
979 coordinate));
980 coordinate.reg_offset++;
981 }
982 }
983 mlen += vector_elements * reg_width;
984
985 if (ir->shadow_comparitor) {
986 mlen = MAX2(mlen, header_present + 4 * reg_width);
987
988 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
989 mlen += reg_width;
990 }
991
992 fs_inst *inst = NULL;
993 switch (ir->op) {
994 case ir_tex:
995 inst = emit(SHADER_OPCODE_TEX, dst);
996 break;
997 case ir_txb:
998 mlen = MAX2(mlen, header_present + 4 * reg_width);
999 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1000 mlen += reg_width;
1001
1002 inst = emit(FS_OPCODE_TXB, dst);
1003 break;
1004 case ir_txl:
1005 mlen = MAX2(mlen, header_present + 4 * reg_width);
1006 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1007 mlen += reg_width;
1008
1009 inst = emit(SHADER_OPCODE_TXL, dst);
1010 break;
1011 case ir_txd: {
1012 mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
1013
1014 /**
1015 * P = u, v, r
1016 * dPdx = dudx, dvdx, drdx
1017 * dPdy = dudy, dvdy, drdy
1018 *
1019 * Load up these values:
1020 * - dudx dudy dvdx dvdy drdx drdy
1021 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
1022 */
1023 for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1024 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1025 lod.reg_offset++;
1026 mlen += reg_width;
1027
1028 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1029 lod2.reg_offset++;
1030 mlen += reg_width;
1031 }
1032
1033 inst = emit(SHADER_OPCODE_TXD, dst);
1034 break;
1035 }
1036 case ir_txs:
1037 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1038 mlen += reg_width;
1039 inst = emit(SHADER_OPCODE_TXS, dst);
1040 break;
1041 case ir_txf:
1042 mlen = header_present + 4 * reg_width;
1043
1044 emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1045 lod));
1046 inst = emit(SHADER_OPCODE_TXF, dst);
1047 break;
1048 }
1049 inst->base_mrf = base_mrf;
1050 inst->mlen = mlen;
1051 inst->header_present = header_present;
1052
1053 if (mlen > 11) {
1054 fail("Message length >11 disallowed by hardware\n");
1055 }
1056
1057 return inst;
1058 }
1059
1060 fs_inst *
1061 fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1062 fs_reg shadow_c, fs_reg lod, fs_reg lod2)
1063 {
1064 int mlen = 0;
1065 int base_mrf = 2;
1066 int reg_width = dispatch_width / 8;
1067 bool header_present = false;
1068 int offsets[3];
1069
1070 if (ir->offset && ir->op != ir_txf) {
1071 /* The offsets set up by the ir_texture visitor are in the
1072 * m1 header, so we can't go headerless.
1073 */
1074 header_present = true;
1075 mlen++;
1076 base_mrf--;
1077 }
1078
1079 if (ir->shadow_comparitor) {
1080 emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
1081 mlen += reg_width;
1082 }
1083
1084 /* Set up the LOD info */
1085 switch (ir->op) {
1086 case ir_tex:
1087 break;
1088 case ir_txb:
1089 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1090 mlen += reg_width;
1091 break;
1092 case ir_txl:
1093 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1094 mlen += reg_width;
1095 break;
1096 case ir_txd: {
1097 if (dispatch_width == 16)
1098 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1099
1100 /* Load dPdx and the coordinate together:
1101 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1102 */
1103 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1104 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1105 coordinate.reg_offset++;
1106 mlen += reg_width;
1107
1108 /* For cube map array, the coordinate is (u,v,r,ai) but there are
1109 * only derivatives for (u, v, r).
1110 */
1111 if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
1112 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
1113 lod.reg_offset++;
1114 mlen += reg_width;
1115
1116 emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
1117 lod2.reg_offset++;
1118 mlen += reg_width;
1119 }
1120 }
1121 break;
1122 }
1123 case ir_txs:
1124 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
1125 mlen += reg_width;
1126 break;
1127 case ir_txf:
1128 /* It appears that the ld instruction used for txf does its
1129 * address bounds check before adding in the offset. To work
1130 * around this, just add the integer offset to the integer texel
1131 * coordinate, and don't put the offset in the header.
1132 */
1133 if (ir->offset) {
1134 ir_constant *offset = ir->offset->as_constant();
1135 offsets[0] = offset->value.i[0];
1136 offsets[1] = offset->value.i[1];
1137 offsets[2] = offset->value.i[2];
1138 } else {
1139 memset(offsets, 0, sizeof(offsets));
1140 }
1141
1142 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1143 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1144 coordinate, offsets[0]));
1145 coordinate.reg_offset++;
1146 mlen += reg_width;
1147
1148 emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod));
1149 mlen += reg_width;
1150
1151 for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1152 emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
1153 coordinate, offsets[i]));
1154 coordinate.reg_offset++;
1155 mlen += reg_width;
1156 }
1157 break;
1158 }
1159
1160 /* Set up the coordinate (except for cases where it was done above) */
1161 if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1162 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1163 emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
1164 coordinate.reg_offset++;
1165 mlen += reg_width;
1166 }
1167 }
1168
1169 /* Generate the SEND */
1170 fs_inst *inst = NULL;
1171 switch (ir->op) {
1172 case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1173 case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1174 case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1175 case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1176 case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1177 case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1178 }
1179 inst->base_mrf = base_mrf;
1180 inst->mlen = mlen;
1181 inst->header_present = header_present;
1182
1183 if (mlen > 11) {
1184 fail("Message length >11 disallowed by hardware\n");
1185 }
1186
1187 return inst;
1188 }
1189
1190 fs_reg
1191 fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
1192 bool is_rect, int sampler, int texunit)
1193 {
1194 fs_inst *inst = NULL;
1195 bool needs_gl_clamp = true;
1196 fs_reg scale_x, scale_y;
1197
1198 /* The 965 requires the EU to do the normalization of GL rectangle
1199 * texture coordinates. We use the program parameter state
1200 * tracking to get the scaling factor.
1201 */
1202 if (is_rect &&
1203 (intel->gen < 6 ||
1204 (intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1205 c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1206 struct gl_program_parameter_list *params = fp->Base.Parameters;
1207 int tokens[STATE_LENGTH] = {
1208 STATE_INTERNAL,
1209 STATE_TEXRECT_SCALE,
1210 texunit,
1211 0,
1212 0
1213 };
1214
1215 if (dispatch_width == 16) {
1216 fail("rectangle scale uniform setup not supported on 16-wide\n");
1217 return coordinate;
1218 }
1219
1220 scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1221 scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1222
1223 GLuint index = _mesa_add_state_reference(params,
1224 (gl_state_index *)tokens);
1225 c->prog_data.param[c->prog_data.nr_params++] =
1226 &fp->Base.Parameters->ParameterValues[index][0].f;
1227 c->prog_data.param[c->prog_data.nr_params++] =
1228 &fp->Base.Parameters->ParameterValues[index][1].f;
1229 }
1230
1231 /* The 965 requires the EU to do the normalization of GL rectangle
1232 * texture coordinates. We use the program parameter state
1233 * tracking to get the scaling factor.
1234 */
1235 if (intel->gen < 6 && is_rect) {
1236 fs_reg dst = fs_reg(this, ir->coordinate->type);
1237 fs_reg src = coordinate;
1238 coordinate = dst;
1239
1240 emit(MUL(dst, src, scale_x));
1241 dst.reg_offset++;
1242 src.reg_offset++;
1243 emit(MUL(dst, src, scale_y));
1244 } else if (is_rect) {
1245 /* On gen6+, the sampler handles the rectangle coordinates
1246 * natively, without needing rescaling. But that means we have
1247 * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1248 * not [0, 1] like the default case below.
1249 */
1250 needs_gl_clamp = false;
1251
1252 for (int i = 0; i < 2; i++) {
1253 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1254 fs_reg chan = coordinate;
1255 chan.reg_offset += i;
1256
1257 inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1258 inst->conditional_mod = BRW_CONDITIONAL_G;
1259
1260 /* Our parameter comes in as 1.0/width or 1.0/height,
1261 * because that's what people normally want for doing
1262 * texture rectangle handling. We need width or height
1263 * for clamping, but we don't care enough to make a new
1264 * parameter type, so just invert back.
1265 */
1266 fs_reg limit = fs_reg(this, glsl_type::float_type);
1267 emit(MOV(limit, i == 0 ? scale_x : scale_y));
1268 emit(SHADER_OPCODE_RCP, limit, limit);
1269
1270 inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1271 inst->conditional_mod = BRW_CONDITIONAL_L;
1272 }
1273 }
1274 }
1275
1276 if (ir->coordinate && needs_gl_clamp) {
1277 for (unsigned int i = 0;
1278 i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1279 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1280 fs_reg chan = coordinate;
1281 chan.reg_offset += i;
1282
1283 fs_inst *inst = emit(MOV(chan, chan));
1284 inst->saturate = true;
1285 }
1286 }
1287 }
1288 return coordinate;
1289 }
1290
1291 void
1292 fs_visitor::visit(ir_texture *ir)
1293 {
1294 fs_inst *inst = NULL;
1295
1296 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1297 /* FINISHME: We're failing to recompile our programs when the sampler is
1298 * updated. This only matters for the texture rectangle scale parameters
1299 * (pre-gen6, or gen6+ with GL_CLAMP).
1300 */
1301 int texunit = fp->Base.SamplerUnits[sampler];
1302
1303 /* Should be lowered by do_lower_texture_projection */
1304 assert(!ir->projector);
1305
1306 /* Generate code to compute all the subexpression trees. This has to be
1307 * done before loading any values into MRFs for the sampler message since
1308 * generating these values may involve SEND messages that need the MRFs.
1309 */
1310 fs_reg coordinate;
1311 if (ir->coordinate) {
1312 ir->coordinate->accept(this);
1313
1314 coordinate = rescale_texcoord(ir, this->result,
1315 ir->sampler->type->sampler_dimensionality ==
1316 GLSL_SAMPLER_DIM_RECT,
1317 sampler, texunit);
1318 }
1319
1320 fs_reg shadow_comparitor;
1321 if (ir->shadow_comparitor) {
1322 ir->shadow_comparitor->accept(this);
1323 shadow_comparitor = this->result;
1324 }
1325
1326 fs_reg lod, lod2;
1327 switch (ir->op) {
1328 case ir_tex:
1329 break;
1330 case ir_txb:
1331 ir->lod_info.bias->accept(this);
1332 lod = this->result;
1333 break;
1334 case ir_txd:
1335 ir->lod_info.grad.dPdx->accept(this);
1336 lod = this->result;
1337
1338 ir->lod_info.grad.dPdy->accept(this);
1339 lod2 = this->result;
1340 break;
1341 case ir_txf:
1342 case ir_txl:
1343 case ir_txs:
1344 ir->lod_info.lod->accept(this);
1345 lod = this->result;
1346 break;
1347 };
1348
1349 /* Writemasking doesn't eliminate channels on SIMD8 texture
1350 * samples, so don't worry about them.
1351 */
1352 fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1353
1354 if (intel->gen >= 7) {
1355 inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1356 lod, lod2);
1357 } else if (intel->gen >= 5) {
1358 inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1359 lod, lod2);
1360 } else {
1361 inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1362 lod, lod2);
1363 }
1364
1365 /* The header is set up by generate_tex() when necessary. */
1366 inst->src[0] = reg_undef;
1367
1368 if (ir->offset != NULL && ir->op != ir_txf)
1369 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1370
1371 inst->sampler = sampler;
1372
1373 if (ir->shadow_comparitor)
1374 inst->shadow_compare = true;
1375
1376 /* fixup #layers for cube map arrays */
1377 if (ir->op == ir_txs) {
1378 glsl_type const *type = ir->sampler->type;
1379 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
1380 type->sampler_array) {
1381 fs_reg depth = dst;
1382 depth.reg_offset = 2;
1383 emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
1384 }
1385 }
1386
1387 swizzle_result(ir, dst, sampler);
1388 }
1389
1390 /**
1391 * Swizzle the result of a texture result. This is necessary for
1392 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1393 */
1394 void
1395 fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1396 {
1397 this->result = orig_val;
1398
1399 if (ir->op == ir_txs)
1400 return;
1401
1402 if (ir->type == glsl_type::float_type) {
1403 /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1404 assert(ir->sampler->type->sampler_shadow);
1405 } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1406 fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1407
1408 for (int i = 0; i < 4; i++) {
1409 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1410 fs_reg l = swizzled_result;
1411 l.reg_offset += i;
1412
1413 if (swiz == SWIZZLE_ZERO) {
1414 emit(MOV(l, fs_reg(0.0f)));
1415 } else if (swiz == SWIZZLE_ONE) {
1416 emit(MOV(l, fs_reg(1.0f)));
1417 } else {
1418 fs_reg r = orig_val;
1419 r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1420 emit(MOV(l, r));
1421 }
1422 }
1423 this->result = swizzled_result;
1424 }
1425 }
1426
1427 void
1428 fs_visitor::visit(ir_swizzle *ir)
1429 {
1430 ir->val->accept(this);
1431 fs_reg val = this->result;
1432
1433 if (ir->type->vector_elements == 1) {
1434 this->result.reg_offset += ir->mask.x;
1435 return;
1436 }
1437
1438 fs_reg result = fs_reg(this, ir->type);
1439 this->result = result;
1440
1441 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1442 fs_reg channel = val;
1443 int swiz = 0;
1444
1445 switch (i) {
1446 case 0:
1447 swiz = ir->mask.x;
1448 break;
1449 case 1:
1450 swiz = ir->mask.y;
1451 break;
1452 case 2:
1453 swiz = ir->mask.z;
1454 break;
1455 case 3:
1456 swiz = ir->mask.w;
1457 break;
1458 }
1459
1460 channel.reg_offset += swiz;
1461 emit(MOV(result, channel));
1462 result.reg_offset++;
1463 }
1464 }
1465
1466 void
1467 fs_visitor::visit(ir_discard *ir)
1468 {
1469 assert(ir->condition == NULL); /* FINISHME */
1470
1471 /* We track our discarded pixels in f0.1. By predicating on it, we can
1472 * update just the flag bits that aren't yet discarded. By emitting a
1473 * CMP of g0 != g0, all our currently executing channels will get turned
1474 * off.
1475 */
1476 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1477 BRW_REGISTER_TYPE_UW));
1478 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1479 BRW_CONDITIONAL_NZ));
1480 cmp->predicate = BRW_PREDICATE_NORMAL;
1481 cmp->flag_subreg = 1;
1482
1483 if (intel->gen >= 6) {
1484 /* For performance, after a discard, jump to the end of the shader.
1485 * However, many people will do foliage by discarding based on a
1486 * texture's alpha mask, and then continue on to texture with the
1487 * remaining pixels. To avoid trashing the derivatives for those
1488 * texture samples, we'll only jump if all of the pixels in the subspan
1489 * have been discarded.
1490 */
1491 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1492 discard_jump->flag_subreg = 1;
1493 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1494 discard_jump->predicate_inverse = true;
1495 }
1496 }
1497
1498 void
1499 fs_visitor::visit(ir_constant *ir)
1500 {
1501 /* Set this->result to reg at the bottom of the function because some code
1502 * paths will cause this visitor to be applied to other fields. This will
1503 * cause the value stored in this->result to be modified.
1504 *
1505 * Make reg constant so that it doesn't get accidentally modified along the
1506 * way. Yes, I actually had this problem. :(
1507 */
1508 const fs_reg reg(this, ir->type);
1509 fs_reg dst_reg = reg;
1510
1511 if (ir->type->is_array()) {
1512 const unsigned size = type_size(ir->type->fields.array);
1513
1514 for (unsigned i = 0; i < ir->type->length; i++) {
1515 ir->array_elements[i]->accept(this);
1516 fs_reg src_reg = this->result;
1517
1518 dst_reg.type = src_reg.type;
1519 for (unsigned j = 0; j < size; j++) {
1520 emit(MOV(dst_reg, src_reg));
1521 src_reg.reg_offset++;
1522 dst_reg.reg_offset++;
1523 }
1524 }
1525 } else if (ir->type->is_record()) {
1526 foreach_list(node, &ir->components) {
1527 ir_constant *const field = (ir_constant *) node;
1528 const unsigned size = type_size(field->type);
1529
1530 field->accept(this);
1531 fs_reg src_reg = this->result;
1532
1533 dst_reg.type = src_reg.type;
1534 for (unsigned j = 0; j < size; j++) {
1535 emit(MOV(dst_reg, src_reg));
1536 src_reg.reg_offset++;
1537 dst_reg.reg_offset++;
1538 }
1539 }
1540 } else {
1541 const unsigned size = type_size(ir->type);
1542
1543 for (unsigned i = 0; i < size; i++) {
1544 switch (ir->type->base_type) {
1545 case GLSL_TYPE_FLOAT:
1546 emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
1547 break;
1548 case GLSL_TYPE_UINT:
1549 emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
1550 break;
1551 case GLSL_TYPE_INT:
1552 emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
1553 break;
1554 case GLSL_TYPE_BOOL:
1555 emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
1556 break;
1557 default:
1558 assert(!"Non-float/uint/int/bool constant");
1559 }
1560 dst_reg.reg_offset++;
1561 }
1562 }
1563
1564 this->result = reg;
1565 }
1566
1567 void
1568 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1569 {
1570 ir_expression *expr = ir->as_expression();
1571
1572 if (expr) {
1573 fs_reg op[2];
1574 fs_inst *inst;
1575
1576 assert(expr->get_num_operands() <= 2);
1577 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1578 assert(expr->operands[i]->type->is_scalar());
1579
1580 expr->operands[i]->accept(this);
1581 op[i] = this->result;
1582
1583 resolve_ud_negate(&op[i]);
1584 }
1585
1586 switch (expr->operation) {
1587 case ir_unop_logic_not:
1588 inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
1589 inst->conditional_mod = BRW_CONDITIONAL_Z;
1590 break;
1591
1592 case ir_binop_logic_xor:
1593 case ir_binop_logic_or:
1594 case ir_binop_logic_and:
1595 goto out;
1596
1597 case ir_unop_f2b:
1598 if (intel->gen >= 6) {
1599 emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1600 } else {
1601 inst = emit(MOV(reg_null_f, op[0]));
1602 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603 }
1604 break;
1605
1606 case ir_unop_i2b:
1607 if (intel->gen >= 6) {
1608 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1609 } else {
1610 inst = emit(MOV(reg_null_d, op[0]));
1611 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1612 }
1613 break;
1614
1615 case ir_binop_greater:
1616 case ir_binop_gequal:
1617 case ir_binop_less:
1618 case ir_binop_lequal:
1619 case ir_binop_equal:
1620 case ir_binop_all_equal:
1621 case ir_binop_nequal:
1622 case ir_binop_any_nequal:
1623 resolve_bool_comparison(expr->operands[0], &op[0]);
1624 resolve_bool_comparison(expr->operands[1], &op[1]);
1625
1626 emit(CMP(reg_null_d, op[0], op[1],
1627 brw_conditional_for_comparison(expr->operation)));
1628 break;
1629
1630 default:
1631 assert(!"not reached");
1632 fail("bad cond code\n");
1633 break;
1634 }
1635 return;
1636 }
1637
1638 out:
1639 ir->accept(this);
1640
1641 fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
1642 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1643 }
1644
1645 /**
1646 * Emit a gen6 IF statement with the comparison folded into the IF
1647 * instruction.
1648 */
1649 void
1650 fs_visitor::emit_if_gen6(ir_if *ir)
1651 {
1652 ir_expression *expr = ir->condition->as_expression();
1653
1654 if (expr) {
1655 fs_reg op[2];
1656 fs_inst *inst;
1657 fs_reg temp;
1658
1659 assert(expr->get_num_operands() <= 2);
1660 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1661 assert(expr->operands[i]->type->is_scalar());
1662
1663 expr->operands[i]->accept(this);
1664 op[i] = this->result;
1665 }
1666
1667 switch (expr->operation) {
1668 case ir_unop_logic_not:
1669 case ir_binop_logic_xor:
1670 case ir_binop_logic_or:
1671 case ir_binop_logic_and:
1672 /* For operations on bool arguments, only the low bit of the bool is
1673 * valid, and the others are undefined. Fall back to the condition
1674 * code path.
1675 */
1676 break;
1677
1678 case ir_unop_f2b:
1679 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1680 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1681 return;
1682
1683 case ir_unop_i2b:
1684 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1685 return;
1686
1687 case ir_binop_greater:
1688 case ir_binop_gequal:
1689 case ir_binop_less:
1690 case ir_binop_lequal:
1691 case ir_binop_equal:
1692 case ir_binop_all_equal:
1693 case ir_binop_nequal:
1694 case ir_binop_any_nequal:
1695 resolve_bool_comparison(expr->operands[0], &op[0]);
1696 resolve_bool_comparison(expr->operands[1], &op[1]);
1697
1698 emit(IF(op[0], op[1],
1699 brw_conditional_for_comparison(expr->operation)));
1700 return;
1701 default:
1702 assert(!"not reached");
1703 emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1704 fail("bad condition\n");
1705 return;
1706 }
1707 }
1708
1709 emit_bool_to_cond_code(ir->condition);
1710 fs_inst *inst = emit(BRW_OPCODE_IF);
1711 inst->predicate = BRW_PREDICATE_NORMAL;
1712 }
1713
1714 void
1715 fs_visitor::visit(ir_if *ir)
1716 {
1717 if (intel->gen < 6 && dispatch_width == 16) {
1718 fail("Can't support (non-uniform) control flow on 16-wide\n");
1719 }
1720
1721 /* Don't point the annotation at the if statement, because then it plus
1722 * the then and else blocks get printed.
1723 */
1724 this->base_ir = ir->condition;
1725
1726 if (intel->gen == 6) {
1727 emit_if_gen6(ir);
1728 } else {
1729 emit_bool_to_cond_code(ir->condition);
1730
1731 emit(IF(BRW_PREDICATE_NORMAL));
1732 }
1733
1734 foreach_list(node, &ir->then_instructions) {
1735 ir_instruction *ir = (ir_instruction *)node;
1736 this->base_ir = ir;
1737
1738 ir->accept(this);
1739 }
1740
1741 if (!ir->else_instructions.is_empty()) {
1742 emit(BRW_OPCODE_ELSE);
1743
1744 foreach_list(node, &ir->else_instructions) {
1745 ir_instruction *ir = (ir_instruction *)node;
1746 this->base_ir = ir;
1747
1748 ir->accept(this);
1749 }
1750 }
1751
1752 emit(BRW_OPCODE_ENDIF);
1753 }
1754
1755 void
1756 fs_visitor::visit(ir_loop *ir)
1757 {
1758 fs_reg counter = reg_undef;
1759
1760 if (intel->gen < 6 && dispatch_width == 16) {
1761 fail("Can't support (non-uniform) control flow on 16-wide\n");
1762 }
1763
1764 if (ir->counter) {
1765 this->base_ir = ir->counter;
1766 ir->counter->accept(this);
1767 counter = *(variable_storage(ir->counter));
1768
1769 if (ir->from) {
1770 this->base_ir = ir->from;
1771 ir->from->accept(this);
1772
1773 emit(MOV(counter, this->result));
1774 }
1775 }
1776
1777 this->base_ir = NULL;
1778 emit(BRW_OPCODE_DO);
1779
1780 if (ir->to) {
1781 this->base_ir = ir->to;
1782 ir->to->accept(this);
1783
1784 emit(CMP(reg_null_d, counter, this->result,
1785 brw_conditional_for_comparison(ir->cmp)));
1786
1787 fs_inst *inst = emit(BRW_OPCODE_BREAK);
1788 inst->predicate = BRW_PREDICATE_NORMAL;
1789 }
1790
1791 foreach_list(node, &ir->body_instructions) {
1792 ir_instruction *ir = (ir_instruction *)node;
1793
1794 this->base_ir = ir;
1795 ir->accept(this);
1796 }
1797
1798 if (ir->increment) {
1799 this->base_ir = ir->increment;
1800 ir->increment->accept(this);
1801 emit(ADD(counter, counter, this->result));
1802 }
1803
1804 this->base_ir = NULL;
1805 emit(BRW_OPCODE_WHILE);
1806 }
1807
1808 void
1809 fs_visitor::visit(ir_loop_jump *ir)
1810 {
1811 switch (ir->mode) {
1812 case ir_loop_jump::jump_break:
1813 emit(BRW_OPCODE_BREAK);
1814 break;
1815 case ir_loop_jump::jump_continue:
1816 emit(BRW_OPCODE_CONTINUE);
1817 break;
1818 }
1819 }
1820
1821 void
1822 fs_visitor::visit(ir_call *ir)
1823 {
1824 assert(!"FINISHME");
1825 }
1826
1827 void
1828 fs_visitor::visit(ir_return *ir)
1829 {
1830 assert(!"FINISHME");
1831 }
1832
1833 void
1834 fs_visitor::visit(ir_function *ir)
1835 {
1836 /* Ignore function bodies other than main() -- we shouldn't see calls to
1837 * them since they should all be inlined before we get to ir_to_mesa.
1838 */
1839 if (strcmp(ir->name, "main") == 0) {
1840 const ir_function_signature *sig;
1841 exec_list empty;
1842
1843 sig = ir->matching_signature(&empty);
1844
1845 assert(sig);
1846
1847 foreach_list(node, &sig->body) {
1848 ir_instruction *ir = (ir_instruction *)node;
1849 this->base_ir = ir;
1850
1851 ir->accept(this);
1852 }
1853 }
1854 }
1855
1856 void
1857 fs_visitor::visit(ir_function_signature *ir)
1858 {
1859 assert(!"not reached");
1860 (void)ir;
1861 }
1862
1863 fs_inst *
1864 fs_visitor::emit(fs_inst inst)
1865 {
1866 fs_inst *list_inst = new(mem_ctx) fs_inst;
1867 *list_inst = inst;
1868 emit(list_inst);
1869 return list_inst;
1870 }
1871
1872 fs_inst *
1873 fs_visitor::emit(fs_inst *inst)
1874 {
1875 if (force_uncompressed_stack > 0)
1876 inst->force_uncompressed = true;
1877 else if (force_sechalf_stack > 0)
1878 inst->force_sechalf = true;
1879
1880 inst->annotation = this->current_annotation;
1881 inst->ir = this->base_ir;
1882
1883 this->instructions.push_tail(inst);
1884
1885 return inst;
1886 }
1887
1888 void
1889 fs_visitor::emit(exec_list list)
1890 {
1891 foreach_list_safe(node, &list) {
1892 fs_inst *inst = (fs_inst *)node;
1893 inst->remove();
1894 emit(inst);
1895 }
1896 }
1897
1898 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1899 void
1900 fs_visitor::emit_dummy_fs()
1901 {
1902 int reg_width = dispatch_width / 8;
1903
1904 /* Everyone's favorite color. */
1905 emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
1906 emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
1907 emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
1908 emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
1909
1910 fs_inst *write;
1911 write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1912 write->base_mrf = 2;
1913 write->mlen = 4 * reg_width;
1914 write->eot = true;
1915 }
1916
1917 /* The register location here is relative to the start of the URB
1918 * data. It will get adjusted to be a real location before
1919 * generate_code() time.
1920 */
1921 struct brw_reg
1922 fs_visitor::interp_reg(int location, int channel)
1923 {
1924 int regnr = urb_setup[location] * 2 + channel / 2;
1925 int stride = (channel & 1) * 4;
1926
1927 assert(urb_setup[location] != -1);
1928
1929 return brw_vec1_grf(regnr, stride);
1930 }
1931
1932 /** Emits the interpolation for the varying inputs. */
1933 void
1934 fs_visitor::emit_interpolation_setup_gen4()
1935 {
1936 this->current_annotation = "compute pixel centers";
1937 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1938 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1939 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1940 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1941
1942 emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1943 emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1944
1945 this->current_annotation = "compute pixel deltas from v0";
1946 if (brw->has_pln) {
1947 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1948 fs_reg(this, glsl_type::vec2_type);
1949 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1950 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1951 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1952 } else {
1953 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1954 fs_reg(this, glsl_type::float_type);
1955 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1956 fs_reg(this, glsl_type::float_type);
1957 }
1958 emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1959 this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
1960 emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1961 this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
1962
1963 this->current_annotation = "compute pos.w and 1/pos.w";
1964 /* Compute wpos.w. It's always in our setup, since it's needed to
1965 * interpolate the other attributes.
1966 */
1967 this->wpos_w = fs_reg(this, glsl_type::float_type);
1968 emit(FS_OPCODE_LINTERP, wpos_w,
1969 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1970 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1971 interp_reg(FRAG_ATTRIB_WPOS, 3));
1972 /* Compute the pixel 1/W value from wpos.w. */
1973 this->pixel_w = fs_reg(this, glsl_type::float_type);
1974 emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1975 this->current_annotation = NULL;
1976 }
1977
1978 /** Emits the interpolation for the varying inputs. */
1979 void
1980 fs_visitor::emit_interpolation_setup_gen6()
1981 {
1982 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1983
1984 /* If the pixel centers end up used, the setup is the same as for gen4. */
1985 this->current_annotation = "compute pixel centers";
1986 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1987 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1988 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1989 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1990 emit(ADD(int_pixel_x,
1991 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1992 fs_reg(brw_imm_v(0x10101010))));
1993 emit(ADD(int_pixel_y,
1994 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1995 fs_reg(brw_imm_v(0x11001100))));
1996
1997 /* As of gen6, we can no longer mix float and int sources. We have
1998 * to turn the integer pixel centers into floats for their actual
1999 * use.
2000 */
2001 this->pixel_x = fs_reg(this, glsl_type::float_type);
2002 this->pixel_y = fs_reg(this, glsl_type::float_type);
2003 emit(MOV(this->pixel_x, int_pixel_x));
2004 emit(MOV(this->pixel_y, int_pixel_y));
2005
2006 this->current_annotation = "compute pos.w";
2007 this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
2008 this->wpos_w = fs_reg(this, glsl_type::float_type);
2009 emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
2010
2011 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
2012 uint8_t reg = c->barycentric_coord_reg[i];
2013 this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
2014 this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
2015 }
2016
2017 this->current_annotation = NULL;
2018 }
2019
2020 void
2021 fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
2022 {
2023 int reg_width = dispatch_width / 8;
2024 fs_inst *inst;
2025 fs_reg color = outputs[target];
2026 fs_reg mrf;
2027
2028 /* If there's no color data to be written, skip it. */
2029 if (color.file == BAD_FILE)
2030 return;
2031
2032 color.reg_offset += index;
2033
2034 if (dispatch_width == 8 || intel->gen >= 6) {
2035 /* SIMD8 write looks like:
2036 * m + 0: r0
2037 * m + 1: r1
2038 * m + 2: g0
2039 * m + 3: g1
2040 *
2041 * gen6 SIMD16 DP write looks like:
2042 * m + 0: r0
2043 * m + 1: r1
2044 * m + 2: g0
2045 * m + 3: g1
2046 * m + 4: b0
2047 * m + 5: b1
2048 * m + 6: a0
2049 * m + 7: a1
2050 */
2051 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
2052 color.type),
2053 color));
2054 inst->saturate = c->key.clamp_fragment_color;
2055 } else {
2056 /* pre-gen6 SIMD16 single source DP write looks like:
2057 * m + 0: r0
2058 * m + 1: g0
2059 * m + 2: b0
2060 * m + 3: a0
2061 * m + 4: r1
2062 * m + 5: g1
2063 * m + 6: b1
2064 * m + 7: a1
2065 */
2066 if (brw->has_compr4) {
2067 /* By setting the high bit of the MRF register number, we
2068 * indicate that we want COMPR4 mode - instead of doing the
2069 * usual destination + 1 for the second half we get
2070 * destination + 4.
2071 */
2072 inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2073 color.type),
2074 color));
2075 inst->saturate = c->key.clamp_fragment_color;
2076 } else {
2077 push_force_uncompressed();
2078 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
2079 color));
2080 inst->saturate = c->key.clamp_fragment_color;
2081 pop_force_uncompressed();
2082
2083 push_force_sechalf();
2084 color.sechalf = true;
2085 inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
2086 color));
2087 inst->saturate = c->key.clamp_fragment_color;
2088 pop_force_sechalf();
2089 color.sechalf = false;
2090 }
2091 }
2092 }
2093
2094 void
2095 fs_visitor::emit_fb_writes()
2096 {
2097 this->current_annotation = "FB write header";
2098 bool header_present = true;
2099 /* We can potentially have a message length of up to 15, so we have to set
2100 * base_mrf to either 0 or 1 in order to fit in m0..m15.
2101 */
2102 int base_mrf = 1;
2103 int nr = base_mrf;
2104 int reg_width = dispatch_width / 8;
2105 bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2106 bool src0_alpha_to_render_target = false;
2107
2108 if (dispatch_width == 16 && do_dual_src) {
2109 fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2110 do_dual_src = false;
2111 }
2112
2113 /* From the Sandy Bridge PRM, volume 4, page 198:
2114 *
2115 * "Dispatched Pixel Enables. One bit per pixel indicating
2116 * which pixels were originally enabled when the thread was
2117 * dispatched. This field is only required for the end-of-
2118 * thread message and on all dual-source messages."
2119 */
2120 if (intel->gen >= 6 &&
2121 !this->fp->UsesKill &&
2122 !do_dual_src &&
2123 c->key.nr_color_regions == 1) {
2124 header_present = false;
2125 }
2126
2127 if (header_present) {
2128 src0_alpha_to_render_target = intel->gen >= 6 &&
2129 !do_dual_src &&
2130 c->key.nr_color_regions > 1 &&
2131 c->key.sample_alpha_to_coverage;
2132 /* m2, m3 header */
2133 nr += 2;
2134 }
2135
2136 if (c->aa_dest_stencil_reg) {
2137 push_force_uncompressed();
2138 emit(MOV(fs_reg(MRF, nr++),
2139 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2140 pop_force_uncompressed();
2141 }
2142
2143 /* Reserve space for color. It'll be filled in per MRT below. */
2144 int color_mrf = nr;
2145 nr += 4 * reg_width;
2146 if (do_dual_src)
2147 nr += 4;
2148 if (src0_alpha_to_render_target)
2149 nr += reg_width;
2150
2151 if (c->source_depth_to_render_target) {
2152 if (intel->gen == 6 && dispatch_width == 16) {
2153 /* For outputting oDepth on gen6, SIMD8 writes have to be
2154 * used. This would require 8-wide moves of each half to
2155 * message regs, kind of like pre-gen5 SIMD16 FB writes.
2156 * Just bail on doing so for now.
2157 */
2158 fail("Missing support for simd16 depth writes on gen6\n");
2159 }
2160
2161 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
2162 /* Hand over gl_FragDepth. */
2163 assert(this->frag_depth.file != BAD_FILE);
2164 emit(MOV(fs_reg(MRF, nr), this->frag_depth));
2165 } else {
2166 /* Pass through the payload depth. */
2167 emit(MOV(fs_reg(MRF, nr),
2168 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2169 }
2170 nr += reg_width;
2171 }
2172
2173 if (c->dest_depth_reg) {
2174 emit(MOV(fs_reg(MRF, nr),
2175 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2176 nr += reg_width;
2177 }
2178
2179 if (do_dual_src) {
2180 fs_reg src0 = this->outputs[0];
2181 fs_reg src1 = this->dual_src_output;
2182
2183 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2184 "FB write src0");
2185 for (int i = 0; i < 4; i++) {
2186 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
2187 src0.reg_offset++;
2188 inst->saturate = c->key.clamp_fragment_color;
2189 }
2190
2191 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2192 "FB write src1");
2193 for (int i = 0; i < 4; i++) {
2194 fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
2195 src1));
2196 src1.reg_offset++;
2197 inst->saturate = c->key.clamp_fragment_color;
2198 }
2199
2200 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2201 inst->target = 0;
2202 inst->base_mrf = base_mrf;
2203 inst->mlen = nr - base_mrf;
2204 inst->eot = true;
2205 inst->header_present = header_present;
2206
2207 c->prog_data.dual_src_blend = true;
2208 this->current_annotation = NULL;
2209 return;
2210 }
2211
2212 for (int target = 0; target < c->key.nr_color_regions; target++) {
2213 this->current_annotation = ralloc_asprintf(this->mem_ctx,
2214 "FB write target %d",
2215 target);
2216 /* If src0_alpha_to_render_target is true, include source zero alpha
2217 * data in RenderTargetWrite message for targets > 0.
2218 */
2219 int write_color_mrf = color_mrf;
2220 if (src0_alpha_to_render_target && target != 0) {
2221 fs_inst *inst;
2222 fs_reg color = outputs[0];
2223 color.reg_offset += 3;
2224
2225 inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
2226 color));
2227 inst->saturate = c->key.clamp_fragment_color;
2228 write_color_mrf = color_mrf + reg_width;
2229 }
2230
2231 for (unsigned i = 0; i < this->output_components[target]; i++)
2232 emit_color_write(target, i, write_color_mrf);
2233
2234 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2235 inst->target = target;
2236 inst->base_mrf = base_mrf;
2237 if (src0_alpha_to_render_target && target == 0)
2238 inst->mlen = nr - base_mrf - reg_width;
2239 else
2240 inst->mlen = nr - base_mrf;
2241 if (target == c->key.nr_color_regions - 1)
2242 inst->eot = true;
2243 inst->header_present = header_present;
2244 }
2245
2246 if (c->key.nr_color_regions == 0) {
2247 /* Even if there's no color buffers enabled, we still need to send
2248 * alpha out the pipeline to our null renderbuffer to support
2249 * alpha-testing, alpha-to-coverage, and so on.
2250 */
2251 emit_color_write(0, 3, color_mrf);
2252
2253 fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2254 inst->base_mrf = base_mrf;
2255 inst->mlen = nr - base_mrf;
2256 inst->eot = true;
2257 inst->header_present = header_present;
2258 }
2259
2260 this->current_annotation = NULL;
2261 }
2262
2263 void
2264 fs_visitor::resolve_ud_negate(fs_reg *reg)
2265 {
2266 if (reg->type != BRW_REGISTER_TYPE_UD ||
2267 !reg->negate)
2268 return;
2269
2270 fs_reg temp = fs_reg(this, glsl_type::uint_type);
2271 emit(MOV(temp, *reg));
2272 *reg = temp;
2273 }
2274
2275 void
2276 fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2277 {
2278 if (rvalue->type != glsl_type::bool_type)
2279 return;
2280
2281 fs_reg temp = fs_reg(this, glsl_type::bool_type);
2282 emit(AND(temp, *reg, fs_reg(1)));
2283 *reg = temp;
2284 }
2285
2286 fs_visitor::fs_visitor(struct brw_context *brw,
2287 struct brw_wm_compile *c,
2288 struct gl_shader_program *prog,
2289 struct gl_fragment_program *fp,
2290 unsigned dispatch_width)
2291 : dispatch_width(dispatch_width)
2292 {
2293 this->c = c;
2294 this->brw = brw;
2295 this->fp = fp;
2296 this->prog = prog;
2297 this->intel = &brw->intel;
2298 this->ctx = &intel->ctx;
2299 this->mem_ctx = ralloc_context(NULL);
2300 if (prog)
2301 shader = (struct brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2302 else
2303 shader = NULL;
2304 this->failed = false;
2305 this->variable_ht = hash_table_ctor(0,
2306 hash_table_pointer_hash,
2307 hash_table_pointer_compare);
2308
2309 memset(this->outputs, 0, sizeof(this->outputs));
2310 memset(this->output_components, 0, sizeof(this->output_components));
2311 this->first_non_payload_grf = 0;
2312 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2313
2314 this->current_annotation = NULL;
2315 this->base_ir = NULL;
2316
2317 this->virtual_grf_sizes = NULL;
2318 this->virtual_grf_count = 0;
2319 this->virtual_grf_array_size = 0;
2320 this->virtual_grf_def = NULL;
2321 this->virtual_grf_use = NULL;
2322 this->live_intervals_valid = false;
2323
2324 this->force_uncompressed_stack = 0;
2325 this->force_sechalf_stack = 0;
2326
2327 memset(&this->param_size, 0, sizeof(this->param_size));
2328 }
2329
2330 fs_visitor::~fs_visitor()
2331 {
2332 ralloc_free(this->mem_ctx);
2333 hash_table_dtor(this->variable_ht);
2334 }