0de36cc9af15084945f37511f8d5f3deeba7d9fd
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35
36
37 bool
38 brw_codegen_gs_prog(struct brw_context *brw,
39 struct gl_shader_program *prog,
40 struct brw_geometry_program *gp,
41 struct brw_gs_prog_key *key)
42 {
43 struct brw_stage_state *stage_state = &brw->gs.base;
44 struct brw_gs_compile c;
45 memset(&c, 0, sizeof(c));
46 c.key = *key;
47 c.gp = gp;
48
49 c.prog_data.include_primitive_id =
50 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
51
52 c.prog_data.invocations = gp->program.Invocations;
53
54 /* Allocate the references to the uniforms that will end up in the
55 * prog_data associated with the compiled program, and which will be freed
56 * by the state cache.
57 *
58 * Note: param_count needs to be num_uniform_components * 4, since we add
59 * padding around uniform values below vec4 size, so the worst case is that
60 * every uniform is a float which gets padded to the size of a vec4.
61 */
62 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
63 int param_count = gs->num_uniform_components * 4;
64
65 param_count += gs->NumImages * BRW_IMAGE_PARAM_SIZE;
66
67 c.prog_data.base.base.param =
68 rzalloc_array(NULL, const gl_constant_value *, param_count);
69 c.prog_data.base.base.pull_param =
70 rzalloc_array(NULL, const gl_constant_value *, param_count);
71 c.prog_data.base.base.image_param =
72 rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
73 c.prog_data.base.base.nr_params = param_count;
74 c.prog_data.base.base.nr_image_params = gs->NumImages;
75
76 if (brw->gen >= 8) {
77 c.prog_data.static_vertex_count = !gp->program.Base.nir ? -1 :
78 nir_gs_count_vertices(gp->program.Base.nir);
79 }
80
81 if (brw->gen >= 7) {
82 if (gp->program.OutputType == GL_POINTS) {
83 /* When the output type is points, the geometry shader may output data
84 * to multiple streams, and EndPrimitive() has no effect. So we
85 * configure the hardware to interpret the control data as stream ID.
86 */
87 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
88
89 /* We only have to emit control bits if we are using streams */
90 if (prog->Geom.UsesStreams)
91 c.control_data_bits_per_vertex = 2;
92 else
93 c.control_data_bits_per_vertex = 0;
94 } else {
95 /* When the output type is triangle_strip or line_strip, EndPrimitive()
96 * may be used to terminate the current strip and start a new one
97 * (similar to primitive restart), and outputting data to multiple
98 * streams is not supported. So we configure the hardware to interpret
99 * the control data as EndPrimitive information (a.k.a. "cut bits").
100 */
101 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
102
103 /* We only need to output control data if the shader actually calls
104 * EndPrimitive().
105 */
106 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
107 }
108 } else {
109 /* There are no control data bits in gen6. */
110 c.control_data_bits_per_vertex = 0;
111
112 /* If it is using transform feedback, enable it */
113 if (prog->TransformFeedback.NumVarying)
114 c.prog_data.gen6_xfb_enabled = true;
115 else
116 c.prog_data.gen6_xfb_enabled = false;
117 }
118 c.control_data_header_size_bits =
119 gp->program.VerticesOut * c.control_data_bits_per_vertex;
120
121 /* 1 HWORD = 32 bytes = 256 bits */
122 c.prog_data.control_data_header_size_hwords =
123 ALIGN(c.control_data_header_size_bits, 256) / 256;
124
125 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
126
127 brw_compute_vue_map(brw->intelScreen->devinfo,
128 &c.prog_data.base.vue_map, outputs_written,
129 prog ? prog->SeparateShader : false);
130
131 /* Compute the output vertex size.
132 *
133 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
134 * Size (p168):
135 *
136 * [0,62] indicating [1,63] 16B units
137 *
138 * Specifies the size of each vertex stored in the GS output entry
139 * (following any Control Header data) as a number of 128-bit units
140 * (minus one).
141 *
142 * Programming Restrictions: The vertex size must be programmed as a
143 * multiple of 32B units with the following exception: Rendering is
144 * disabled (as per SOL stage state) and the vertex size output by the
145 * GS thread is 16B.
146 *
147 * If rendering is enabled (as per SOL state) the vertex size must be
148 * programmed as a multiple of 32B units. In other words, the only time
149 * software can program a vertex size with an odd number of 16B units
150 * is when rendering is disabled.
151 *
152 * Note: B=bytes in the above text.
153 *
154 * It doesn't seem worth the extra trouble to optimize the case where the
155 * vertex size is 16B (especially since this would require special-casing
156 * the GEN assembly that writes to the URB). So we just set the vertex
157 * size to a multiple of 32B (2 vec4's) in all cases.
158 *
159 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
160 * budget that as follows:
161 *
162 * 512 bytes for varyings (a varying component is 4 bytes and
163 * gl_MaxGeometryOutputComponents = 128)
164 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
165 * bytes)
166 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
167 * even if it's not used)
168 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
169 * whenever clip planes are enabled, even if the shader doesn't
170 * write to gl_ClipDistance)
171 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
172 * (see below)--this causes up to 1 VUE slot to be wasted
173 * 400 bytes available for varying packing overhead
174 *
175 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
176 * per interpolation type, so this is plenty.
177 *
178 */
179 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
180 assert(brw->gen == 6 ||
181 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
182 c.prog_data.output_vertex_size_hwords =
183 ALIGN(output_vertex_size_bytes, 32) / 32;
184
185 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
186 * That divides up as follows:
187 *
188 * 64 bytes for the control data header (cut indices or StreamID bits)
189 * 4096 bytes for varyings (a varying component is 4 bytes and
190 * gl_MaxGeometryTotalOutputComponents = 1024)
191 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
192 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
193 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
194 * even if it's not used)
195 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
196 * whenever clip planes are enabled, even if the shader doesn't
197 * write to gl_ClipDistance)
198 * 4096 bytes overhead since the VUE size must be a multiple of 32
199 * bytes (see above)--this causes up to 1 VUE slot to be wasted
200 * 8128 bytes available for varying packing overhead
201 *
202 * Worst-case varying packing overhead is 3/4 of a varying slot per
203 * interpolation type, which works out to 3072 bytes, so this would allow
204 * us to accommodate 2 interpolation types without any danger of running
205 * out of URB space.
206 *
207 * In practice, the risk of running out of URB space is very small, since
208 * the above figures are all worst-case, and most of them scale with the
209 * number of output vertices. So we'll just calculate the amount of space
210 * we need, and if it's too large, fail to compile.
211 *
212 * The above is for gen7+ where we have a single URB entry that will hold
213 * all the output. In gen6, we will have to allocate URB entries for every
214 * vertex we emit, so our URB entries only need to be large enough to hold
215 * a single vertex. Also, gen6 does not have a control data header.
216 */
217 unsigned output_size_bytes;
218 if (brw->gen >= 7) {
219 output_size_bytes =
220 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
221 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
222 } else {
223 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
224 }
225
226 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
227 * which comes before the control header.
228 */
229 if (brw->gen >= 8)
230 output_size_bytes += 32;
231
232 assert(output_size_bytes >= 1);
233 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
234 if (brw->gen == 6)
235 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
236 if (output_size_bytes > max_output_size_bytes)
237 return false;
238
239
240 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
241 * a multiple of 128 bytes in gen6.
242 */
243 if (brw->gen >= 7)
244 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
245 else
246 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
247
248 c.prog_data.output_topology =
249 get_hw_prim_for_gl_prim(gp->program.OutputType);
250
251 /* The GLSL linker will have already matched up GS inputs and the outputs
252 * of prior stages. The driver does extend VS outputs in some cases, but
253 * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
254 * geometry shader support. So we can safely ignore that.
255 *
256 * For SSO pipelines, we use a fixed VUE map layout based on variable
257 * locations, so we can rely on rendezvous-by-location making this work.
258 *
259 * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
260 * written by previous stages and shows up via payload magic.
261 */
262 GLbitfield64 inputs_read =
263 gp->program.Base.InputsRead & ~VARYING_BIT_PRIMITIVE_ID;
264 brw_compute_vue_map(brw->intelScreen->devinfo,
265 &c.input_vue_map, inputs_read,
266 prog->SeparateShader);
267
268 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
269 * need to program a URB read length of ceiling(num_slots / 2).
270 */
271 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
272
273 void *mem_ctx = ralloc_context(NULL);
274 unsigned program_size;
275 const unsigned *program =
276 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
277 if (program == NULL) {
278 ralloc_free(mem_ctx);
279 return false;
280 }
281
282 /* Scratch space is used for register spilling */
283 if (c.prog_data.base.base.total_scratch) {
284 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
285 c.prog_data.base.base.total_scratch *
286 brw->max_gs_threads);
287 }
288
289 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
290 &c.key, sizeof(c.key),
291 program, program_size,
292 &c.prog_data, sizeof(c.prog_data),
293 &stage_state->prog_offset, &brw->gs.prog_data);
294 ralloc_free(mem_ctx);
295
296 return true;
297 }
298
299 static bool
300 brw_gs_state_dirty(struct brw_context *brw)
301 {
302 return brw_state_dirty(brw,
303 _NEW_TEXTURE,
304 BRW_NEW_GEOMETRY_PROGRAM |
305 BRW_NEW_TRANSFORM_FEEDBACK);
306 }
307
308 static void
309 brw_gs_populate_key(struct brw_context *brw,
310 struct brw_gs_prog_key *key)
311 {
312 struct gl_context *ctx = &brw->ctx;
313 struct brw_stage_state *stage_state = &brw->gs.base;
314 struct brw_geometry_program *gp =
315 (struct brw_geometry_program *) brw->geometry_program;
316 struct gl_program *prog = &gp->program.Base;
317
318 memset(key, 0, sizeof(*key));
319
320 key->program_string_id = gp->id;
321
322 /* _NEW_TEXTURE */
323 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
324 &key->tex);
325 }
326
327 void
328 brw_upload_gs_prog(struct brw_context *brw)
329 {
330 struct gl_context *ctx = &brw->ctx;
331 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
332 struct brw_stage_state *stage_state = &brw->gs.base;
333 struct brw_gs_prog_key key;
334 /* BRW_NEW_GEOMETRY_PROGRAM */
335 struct brw_geometry_program *gp =
336 (struct brw_geometry_program *) brw->geometry_program;
337
338 if (!brw_gs_state_dirty(brw))
339 return;
340
341 if (gp == NULL) {
342 /* No geometry shader. Vertex data just passes straight through. */
343 if (brw->gen == 6 &&
344 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
345 gen6_brw_upload_ff_gs_prog(brw);
346 return;
347 }
348
349 /* Other state atoms had better not try to access prog_data, since
350 * there's no GS program.
351 */
352 brw->gs.prog_data = NULL;
353 brw->gs.base.prog_data = NULL;
354
355 return;
356 }
357
358 brw_gs_populate_key(brw, &key);
359
360 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
361 &key, sizeof(key),
362 &stage_state->prog_offset, &brw->gs.prog_data)) {
363 bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
364 gp, &key);
365 assert(success);
366 (void)success;
367 }
368 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
369 }
370
371 bool
372 brw_gs_precompile(struct gl_context *ctx,
373 struct gl_shader_program *shader_prog,
374 struct gl_program *prog)
375 {
376 struct brw_context *brw = brw_context(ctx);
377 struct brw_gs_prog_key key;
378 uint32_t old_prog_offset = brw->gs.base.prog_offset;
379 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
380 bool success;
381
382 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
383 struct brw_geometry_program *bgp = brw_geometry_program(gp);
384
385 memset(&key, 0, sizeof(key));
386
387 brw_setup_tex_for_precompile(brw, &key.tex, prog);
388 key.program_string_id = bgp->id;
389
390 success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
391
392 brw->gs.base.prog_offset = old_prog_offset;
393 brw->gs.prog_data = old_prog_data;
394
395 return success;
396 }
397
398
399 bool
400 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
401 {
402 const struct brw_gs_prog_data *a = in_a;
403 const struct brw_gs_prog_data *b = in_b;
404
405 /* Compare the base structure. */
406 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
407 return false;
408
409 /* Compare the rest of the struct. */
410 const unsigned offset = sizeof(struct brw_stage_prog_data);
411 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
412 sizeof(struct brw_gs_prog_data) - offset)) {
413 return false;
414 }
415
416 return true;
417 }