i965: Split out per-stage dirty-bit checking into separate functions
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35
36
37 static bool
38 do_gs_prog(struct brw_context *brw,
39 struct gl_shader_program *prog,
40 struct brw_geometry_program *gp,
41 struct brw_gs_prog_key *key)
42 {
43 struct brw_stage_state *stage_state = &brw->gs.base;
44 struct brw_gs_compile c;
45 memset(&c, 0, sizeof(c));
46 c.key = *key;
47 c.gp = gp;
48
49 c.prog_data.include_primitive_id =
50 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
51
52 c.prog_data.invocations = gp->program.Invocations;
53
54 /* Allocate the references to the uniforms that will end up in the
55 * prog_data associated with the compiled program, and which will be freed
56 * by the state cache.
57 *
58 * Note: param_count needs to be num_uniform_components * 4, since we add
59 * padding around uniform values below vec4 size, so the worst case is that
60 * every uniform is a float which gets padded to the size of a vec4.
61 */
62 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
63 int param_count = gs->num_uniform_components * 4;
64
65 /* We also upload clip plane data as uniforms */
66 param_count += MAX_CLIP_PLANES * 4;
67
68 c.prog_data.base.base.param =
69 rzalloc_array(NULL, const gl_constant_value *, param_count);
70 c.prog_data.base.base.pull_param =
71 rzalloc_array(NULL, const gl_constant_value *, param_count);
72 c.prog_data.base.base.nr_params = param_count;
73
74 if (brw->gen >= 7) {
75 if (gp->program.OutputType == GL_POINTS) {
76 /* When the output type is points, the geometry shader may output data
77 * to multiple streams, and EndPrimitive() has no effect. So we
78 * configure the hardware to interpret the control data as stream ID.
79 */
80 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
81
82 /* We only have to emit control bits if we are using streams */
83 if (prog->Geom.UsesStreams)
84 c.control_data_bits_per_vertex = 2;
85 else
86 c.control_data_bits_per_vertex = 0;
87 } else {
88 /* When the output type is triangle_strip or line_strip, EndPrimitive()
89 * may be used to terminate the current strip and start a new one
90 * (similar to primitive restart), and outputting data to multiple
91 * streams is not supported. So we configure the hardware to interpret
92 * the control data as EndPrimitive information (a.k.a. "cut bits").
93 */
94 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
95
96 /* We only need to output control data if the shader actually calls
97 * EndPrimitive().
98 */
99 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
100 }
101 } else {
102 /* There are no control data bits in gen6. */
103 c.control_data_bits_per_vertex = 0;
104
105 /* If it is using transform feedback, enable it */
106 if (prog->TransformFeedback.NumVarying)
107 c.prog_data.gen6_xfb_enabled = true;
108 else
109 c.prog_data.gen6_xfb_enabled = false;
110 }
111 c.control_data_header_size_bits =
112 gp->program.VerticesOut * c.control_data_bits_per_vertex;
113
114 /* 1 HWORD = 32 bytes = 256 bits */
115 c.prog_data.control_data_header_size_hwords =
116 ALIGN(c.control_data_header_size_bits, 256) / 256;
117
118 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
119
120 /* In order for legacy clipping to work, we need to populate the clip
121 * distance varying slots whenever clipping is enabled, even if the vertex
122 * shader doesn't write to gl_ClipDistance.
123 */
124 if (c.key.base.userclip_active) {
125 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
126 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
127 }
128
129 brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
130
131 /* Compute the output vertex size.
132 *
133 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
134 * Size (p168):
135 *
136 * [0,62] indicating [1,63] 16B units
137 *
138 * Specifies the size of each vertex stored in the GS output entry
139 * (following any Control Header data) as a number of 128-bit units
140 * (minus one).
141 *
142 * Programming Restrictions: The vertex size must be programmed as a
143 * multiple of 32B units with the following exception: Rendering is
144 * disabled (as per SOL stage state) and the vertex size output by the
145 * GS thread is 16B.
146 *
147 * If rendering is enabled (as per SOL state) the vertex size must be
148 * programmed as a multiple of 32B units. In other words, the only time
149 * software can program a vertex size with an odd number of 16B units
150 * is when rendering is disabled.
151 *
152 * Note: B=bytes in the above text.
153 *
154 * It doesn't seem worth the extra trouble to optimize the case where the
155 * vertex size is 16B (especially since this would require special-casing
156 * the GEN assembly that writes to the URB). So we just set the vertex
157 * size to a multiple of 32B (2 vec4's) in all cases.
158 *
159 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
160 * budget that as follows:
161 *
162 * 512 bytes for varyings (a varying component is 4 bytes and
163 * gl_MaxGeometryOutputComponents = 128)
164 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
165 * bytes)
166 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
167 * even if it's not used)
168 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
169 * whenever clip planes are enabled, even if the shader doesn't
170 * write to gl_ClipDistance)
171 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
172 * (see below)--this causes up to 1 VUE slot to be wasted
173 * 400 bytes available for varying packing overhead
174 *
175 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
176 * per interpolation type, so this is plenty.
177 *
178 */
179 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
180 assert(brw->gen == 6 ||
181 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
182 c.prog_data.output_vertex_size_hwords =
183 ALIGN(output_vertex_size_bytes, 32) / 32;
184
185 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
186 * That divides up as follows:
187 *
188 * 64 bytes for the control data header (cut indices or StreamID bits)
189 * 4096 bytes for varyings (a varying component is 4 bytes and
190 * gl_MaxGeometryTotalOutputComponents = 1024)
191 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
192 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
193 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
194 * even if it's not used)
195 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
196 * whenever clip planes are enabled, even if the shader doesn't
197 * write to gl_ClipDistance)
198 * 4096 bytes overhead since the VUE size must be a multiple of 32
199 * bytes (see above)--this causes up to 1 VUE slot to be wasted
200 * 8128 bytes available for varying packing overhead
201 *
202 * Worst-case varying packing overhead is 3/4 of a varying slot per
203 * interpolation type, which works out to 3072 bytes, so this would allow
204 * us to accommodate 2 interpolation types without any danger of running
205 * out of URB space.
206 *
207 * In practice, the risk of running out of URB space is very small, since
208 * the above figures are all worst-case, and most of them scale with the
209 * number of output vertices. So we'll just calculate the amount of space
210 * we need, and if it's too large, fail to compile.
211 *
212 * The above is for gen7+ where we have a single URB entry that will hold
213 * all the output. In gen6, we will have to allocate URB entries for every
214 * vertex we emit, so our URB entries only need to be large enough to hold
215 * a single vertex. Also, gen6 does not have a control data header.
216 */
217 unsigned output_size_bytes;
218 if (brw->gen >= 7) {
219 output_size_bytes =
220 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
221 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
222 } else {
223 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
224 }
225
226 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
227 * which comes before the control header.
228 */
229 if (brw->gen >= 8)
230 output_size_bytes += 32;
231
232 assert(output_size_bytes >= 1);
233 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
234 if (brw->gen == 6)
235 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
236 if (output_size_bytes > max_output_size_bytes)
237 return false;
238
239
240 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
241 * a multiple of 128 bytes in gen6.
242 */
243 if (brw->gen >= 7)
244 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
245 else
246 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
247
248 c.prog_data.output_topology =
249 get_hw_prim_for_gl_prim(gp->program.OutputType);
250
251 brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
252
253 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
254 * need to program a URB read length of ceiling(num_slots / 2).
255 */
256 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
257
258 void *mem_ctx = ralloc_context(NULL);
259 unsigned program_size;
260 const unsigned *program =
261 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
262 if (program == NULL) {
263 ralloc_free(mem_ctx);
264 return false;
265 }
266
267 /* Scratch space is used for register spilling */
268 if (c.base.last_scratch) {
269 perf_debug("Geometry shader triggered register spilling. "
270 "Try reducing the number of live vec4 values to "
271 "improve performance.\n");
272
273 c.prog_data.base.base.total_scratch
274 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
275
276 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
277 c.prog_data.base.base.total_scratch *
278 brw->max_gs_threads);
279 }
280
281 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
282 &c.key, sizeof(c.key),
283 program, program_size,
284 &c.prog_data, sizeof(c.prog_data),
285 &stage_state->prog_offset, &brw->gs.prog_data);
286 ralloc_free(mem_ctx);
287
288 return true;
289 }
290
291 static bool
292 brw_gs_state_dirty(struct brw_context *brw)
293 {
294 return brw_state_dirty(brw,
295 _NEW_TEXTURE,
296 BRW_NEW_GEOMETRY_PROGRAM |
297 BRW_NEW_TRANSFORM_FEEDBACK |
298 BRW_NEW_VUE_MAP_VS);
299 }
300
301 static void
302 brw_gs_populate_key(struct brw_context *brw,
303 struct brw_gs_prog_key *key)
304 {
305 struct gl_context *ctx = &brw->ctx;
306 struct brw_stage_state *stage_state = &brw->gs.base;
307 struct brw_geometry_program *gp =
308 (struct brw_geometry_program *) brw->geometry_program;
309 struct gl_program *prog = &gp->program.Base;
310
311 memset(key, 0, sizeof(*key));
312
313 key->base.program_string_id = gp->id;
314 brw_setup_vue_key_clip_info(brw, &key->base,
315 gp->program.Base.UsesClipDistanceOut);
316
317 /* _NEW_TEXTURE */
318 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
319 &key->base.tex);
320
321 /* BRW_NEW_VUE_MAP_VS */
322 key->input_varyings = brw->vue_map_vs.slots_valid;
323 }
324
325 void
326 brw_upload_gs_prog(struct brw_context *brw)
327 {
328 struct gl_context *ctx = &brw->ctx;
329 struct brw_stage_state *stage_state = &brw->gs.base;
330 struct brw_gs_prog_key key;
331 /* BRW_NEW_GEOMETRY_PROGRAM */
332 struct brw_geometry_program *gp =
333 (struct brw_geometry_program *) brw->geometry_program;
334
335 if (!brw_gs_state_dirty(brw))
336 return;
337
338 if (gp == NULL) {
339 /* No geometry shader. Vertex data just passes straight through. */
340 if (brw->ctx.NewDriverState & BRW_NEW_VUE_MAP_VS) {
341 brw->vue_map_geom_out = brw->vue_map_vs;
342 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
343 }
344
345 if (brw->gen == 6 &&
346 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
347 gen6_brw_upload_ff_gs_prog(brw);
348 return;
349 }
350
351 /* Other state atoms had better not try to access prog_data, since
352 * there's no GS program.
353 */
354 brw->gs.prog_data = NULL;
355 brw->gs.base.prog_data = NULL;
356
357 return;
358 }
359
360 brw_gs_populate_key(brw, &key);
361
362 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
363 &key, sizeof(key),
364 &stage_state->prog_offset, &brw->gs.prog_data)) {
365 bool success =
366 do_gs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY], gp,
367 &key);
368 assert(success);
369 (void)success;
370 }
371 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
372
373 if (memcmp(&brw->gs.prog_data->base.vue_map, &brw->vue_map_geom_out,
374 sizeof(brw->vue_map_geom_out)) != 0) {
375 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
376 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
377 }
378 }
379
380 bool
381 brw_gs_precompile(struct gl_context *ctx,
382 struct gl_shader_program *shader_prog,
383 struct gl_program *prog)
384 {
385 struct brw_context *brw = brw_context(ctx);
386 struct brw_gs_prog_key key;
387 uint32_t old_prog_offset = brw->gs.base.prog_offset;
388 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
389 bool success;
390
391 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
392 struct brw_geometry_program *bgp = brw_geometry_program(gp);
393
394 memset(&key, 0, sizeof(key));
395
396 brw_vue_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
397
398 /* Assume that the set of varyings coming in from the vertex shader exactly
399 * matches what the geometry shader requires.
400 */
401 key.input_varyings = gp->Base.InputsRead;
402
403 success = do_gs_prog(brw, shader_prog, bgp, &key);
404
405 brw->gs.base.prog_offset = old_prog_offset;
406 brw->gs.prog_data = old_prog_data;
407
408 return success;
409 }
410
411
412 bool
413 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
414 {
415 const struct brw_gs_prog_data *a = in_a;
416 const struct brw_gs_prog_data *b = in_b;
417
418 /* Compare the base structure. */
419 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
420 return false;
421
422 /* Compare the rest of the struct. */
423 const unsigned offset = sizeof(struct brw_stage_prog_data);
424 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
425 sizeof(struct brw_gs_prog_data) - offset)) {
426 return false;
427 }
428
429 return true;
430 }