i965/nir/vec4: Implement load_const intrinsic
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35
36
37 bool
38 brw_codegen_gs_prog(struct brw_context *brw,
39 struct gl_shader_program *prog,
40 struct brw_geometry_program *gp,
41 struct brw_gs_prog_key *key)
42 {
43 struct brw_stage_state *stage_state = &brw->gs.base;
44 struct brw_gs_compile c;
45 memset(&c, 0, sizeof(c));
46 c.key = *key;
47 c.gp = gp;
48
49 c.prog_data.include_primitive_id =
50 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
51
52 c.prog_data.invocations = gp->program.Invocations;
53
54 /* Allocate the references to the uniforms that will end up in the
55 * prog_data associated with the compiled program, and which will be freed
56 * by the state cache.
57 *
58 * Note: param_count needs to be num_uniform_components * 4, since we add
59 * padding around uniform values below vec4 size, so the worst case is that
60 * every uniform is a float which gets padded to the size of a vec4.
61 */
62 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
63 int param_count = gs->num_uniform_components * 4;
64
65 /* We also upload clip plane data as uniforms */
66 param_count += MAX_CLIP_PLANES * 4;
67
68 c.prog_data.base.base.param =
69 rzalloc_array(NULL, const gl_constant_value *, param_count);
70 c.prog_data.base.base.pull_param =
71 rzalloc_array(NULL, const gl_constant_value *, param_count);
72 c.prog_data.base.base.nr_params = param_count;
73
74 if (brw->gen >= 7) {
75 if (gp->program.OutputType == GL_POINTS) {
76 /* When the output type is points, the geometry shader may output data
77 * to multiple streams, and EndPrimitive() has no effect. So we
78 * configure the hardware to interpret the control data as stream ID.
79 */
80 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
81
82 /* We only have to emit control bits if we are using streams */
83 if (prog->Geom.UsesStreams)
84 c.control_data_bits_per_vertex = 2;
85 else
86 c.control_data_bits_per_vertex = 0;
87 } else {
88 /* When the output type is triangle_strip or line_strip, EndPrimitive()
89 * may be used to terminate the current strip and start a new one
90 * (similar to primitive restart), and outputting data to multiple
91 * streams is not supported. So we configure the hardware to interpret
92 * the control data as EndPrimitive information (a.k.a. "cut bits").
93 */
94 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
95
96 /* We only need to output control data if the shader actually calls
97 * EndPrimitive().
98 */
99 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
100 }
101 } else {
102 /* There are no control data bits in gen6. */
103 c.control_data_bits_per_vertex = 0;
104
105 /* If it is using transform feedback, enable it */
106 if (prog->TransformFeedback.NumVarying)
107 c.prog_data.gen6_xfb_enabled = true;
108 else
109 c.prog_data.gen6_xfb_enabled = false;
110 }
111 c.control_data_header_size_bits =
112 gp->program.VerticesOut * c.control_data_bits_per_vertex;
113
114 /* 1 HWORD = 32 bytes = 256 bits */
115 c.prog_data.control_data_header_size_hwords =
116 ALIGN(c.control_data_header_size_bits, 256) / 256;
117
118 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
119
120 /* In order for legacy clipping to work, we need to populate the clip
121 * distance varying slots whenever clipping is enabled, even if the vertex
122 * shader doesn't write to gl_ClipDistance.
123 */
124 if (c.key.base.userclip_active) {
125 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
126 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
127 }
128
129 brw_compute_vue_map(brw->intelScreen->devinfo,
130 &c.prog_data.base.vue_map, outputs_written);
131
132 /* Compute the output vertex size.
133 *
134 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
135 * Size (p168):
136 *
137 * [0,62] indicating [1,63] 16B units
138 *
139 * Specifies the size of each vertex stored in the GS output entry
140 * (following any Control Header data) as a number of 128-bit units
141 * (minus one).
142 *
143 * Programming Restrictions: The vertex size must be programmed as a
144 * multiple of 32B units with the following exception: Rendering is
145 * disabled (as per SOL stage state) and the vertex size output by the
146 * GS thread is 16B.
147 *
148 * If rendering is enabled (as per SOL state) the vertex size must be
149 * programmed as a multiple of 32B units. In other words, the only time
150 * software can program a vertex size with an odd number of 16B units
151 * is when rendering is disabled.
152 *
153 * Note: B=bytes in the above text.
154 *
155 * It doesn't seem worth the extra trouble to optimize the case where the
156 * vertex size is 16B (especially since this would require special-casing
157 * the GEN assembly that writes to the URB). So we just set the vertex
158 * size to a multiple of 32B (2 vec4's) in all cases.
159 *
160 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
161 * budget that as follows:
162 *
163 * 512 bytes for varyings (a varying component is 4 bytes and
164 * gl_MaxGeometryOutputComponents = 128)
165 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
166 * bytes)
167 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
168 * even if it's not used)
169 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
170 * whenever clip planes are enabled, even if the shader doesn't
171 * write to gl_ClipDistance)
172 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
173 * (see below)--this causes up to 1 VUE slot to be wasted
174 * 400 bytes available for varying packing overhead
175 *
176 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
177 * per interpolation type, so this is plenty.
178 *
179 */
180 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
181 assert(brw->gen == 6 ||
182 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
183 c.prog_data.output_vertex_size_hwords =
184 ALIGN(output_vertex_size_bytes, 32) / 32;
185
186 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
187 * That divides up as follows:
188 *
189 * 64 bytes for the control data header (cut indices or StreamID bits)
190 * 4096 bytes for varyings (a varying component is 4 bytes and
191 * gl_MaxGeometryTotalOutputComponents = 1024)
192 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
193 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
194 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
195 * even if it's not used)
196 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
197 * whenever clip planes are enabled, even if the shader doesn't
198 * write to gl_ClipDistance)
199 * 4096 bytes overhead since the VUE size must be a multiple of 32
200 * bytes (see above)--this causes up to 1 VUE slot to be wasted
201 * 8128 bytes available for varying packing overhead
202 *
203 * Worst-case varying packing overhead is 3/4 of a varying slot per
204 * interpolation type, which works out to 3072 bytes, so this would allow
205 * us to accommodate 2 interpolation types without any danger of running
206 * out of URB space.
207 *
208 * In practice, the risk of running out of URB space is very small, since
209 * the above figures are all worst-case, and most of them scale with the
210 * number of output vertices. So we'll just calculate the amount of space
211 * we need, and if it's too large, fail to compile.
212 *
213 * The above is for gen7+ where we have a single URB entry that will hold
214 * all the output. In gen6, we will have to allocate URB entries for every
215 * vertex we emit, so our URB entries only need to be large enough to hold
216 * a single vertex. Also, gen6 does not have a control data header.
217 */
218 unsigned output_size_bytes;
219 if (brw->gen >= 7) {
220 output_size_bytes =
221 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
222 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
223 } else {
224 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
225 }
226
227 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
228 * which comes before the control header.
229 */
230 if (brw->gen >= 8)
231 output_size_bytes += 32;
232
233 assert(output_size_bytes >= 1);
234 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
235 if (brw->gen == 6)
236 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
237 if (output_size_bytes > max_output_size_bytes)
238 return false;
239
240
241 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
242 * a multiple of 128 bytes in gen6.
243 */
244 if (brw->gen >= 7)
245 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
246 else
247 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
248
249 c.prog_data.output_topology =
250 get_hw_prim_for_gl_prim(gp->program.OutputType);
251
252 brw_compute_vue_map(brw->intelScreen->devinfo,
253 &c.input_vue_map, c.key.input_varyings);
254
255 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
256 * need to program a URB read length of ceiling(num_slots / 2).
257 */
258 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
259
260 void *mem_ctx = ralloc_context(NULL);
261 unsigned program_size;
262 const unsigned *program =
263 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
264 if (program == NULL) {
265 ralloc_free(mem_ctx);
266 return false;
267 }
268
269 /* Scratch space is used for register spilling */
270 if (c.prog_data.base.base.total_scratch) {
271 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
272 c.prog_data.base.base.total_scratch *
273 brw->max_gs_threads);
274 }
275
276 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
277 &c.key, sizeof(c.key),
278 program, program_size,
279 &c.prog_data, sizeof(c.prog_data),
280 &stage_state->prog_offset, &brw->gs.prog_data);
281 ralloc_free(mem_ctx);
282
283 return true;
284 }
285
286 static bool
287 brw_gs_state_dirty(struct brw_context *brw)
288 {
289 return brw_state_dirty(brw,
290 _NEW_TEXTURE,
291 BRW_NEW_GEOMETRY_PROGRAM |
292 BRW_NEW_TRANSFORM_FEEDBACK |
293 BRW_NEW_VUE_MAP_VS);
294 }
295
296 static void
297 brw_gs_populate_key(struct brw_context *brw,
298 struct brw_gs_prog_key *key)
299 {
300 struct gl_context *ctx = &brw->ctx;
301 struct brw_stage_state *stage_state = &brw->gs.base;
302 struct brw_geometry_program *gp =
303 (struct brw_geometry_program *) brw->geometry_program;
304 struct gl_program *prog = &gp->program.Base;
305
306 memset(key, 0, sizeof(*key));
307
308 key->base.program_string_id = gp->id;
309 brw_setup_vue_key_clip_info(brw, &key->base,
310 gp->program.Base.UsesClipDistanceOut);
311
312 /* _NEW_TEXTURE */
313 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
314 &key->base.tex);
315
316 /* BRW_NEW_VUE_MAP_VS */
317 key->input_varyings = brw->vue_map_vs.slots_valid;
318 }
319
320 void
321 brw_upload_gs_prog(struct brw_context *brw)
322 {
323 struct gl_context *ctx = &brw->ctx;
324 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
325 struct brw_stage_state *stage_state = &brw->gs.base;
326 struct brw_gs_prog_key key;
327 /* BRW_NEW_GEOMETRY_PROGRAM */
328 struct brw_geometry_program *gp =
329 (struct brw_geometry_program *) brw->geometry_program;
330
331 if (!brw_gs_state_dirty(brw))
332 return;
333
334 if (gp == NULL) {
335 /* No geometry shader. Vertex data just passes straight through. */
336 if (brw->ctx.NewDriverState & BRW_NEW_VUE_MAP_VS) {
337 brw->vue_map_geom_out = brw->vue_map_vs;
338 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
339 }
340
341 if (brw->gen == 6 &&
342 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
343 gen6_brw_upload_ff_gs_prog(brw);
344 return;
345 }
346
347 /* Other state atoms had better not try to access prog_data, since
348 * there's no GS program.
349 */
350 brw->gs.prog_data = NULL;
351 brw->gs.base.prog_data = NULL;
352
353 return;
354 }
355
356 brw_gs_populate_key(brw, &key);
357
358 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
359 &key, sizeof(key),
360 &stage_state->prog_offset, &brw->gs.prog_data)) {
361 bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
362 gp, &key);
363 assert(success);
364 (void)success;
365 }
366 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
367
368 if (memcmp(&brw->gs.prog_data->base.vue_map, &brw->vue_map_geom_out,
369 sizeof(brw->vue_map_geom_out)) != 0) {
370 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
371 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
372 }
373 }
374
375 bool
376 brw_gs_precompile(struct gl_context *ctx,
377 struct gl_shader_program *shader_prog,
378 struct gl_program *prog)
379 {
380 struct brw_context *brw = brw_context(ctx);
381 struct brw_gs_prog_key key;
382 uint32_t old_prog_offset = brw->gs.base.prog_offset;
383 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
384 bool success;
385
386 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
387 struct brw_geometry_program *bgp = brw_geometry_program(gp);
388
389 memset(&key, 0, sizeof(key));
390
391 brw_vue_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
392
393 /* Assume that the set of varyings coming in from the vertex shader exactly
394 * matches what the geometry shader requires.
395 */
396 key.input_varyings = gp->Base.InputsRead;
397
398 success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
399
400 brw->gs.base.prog_offset = old_prog_offset;
401 brw->gs.prog_data = old_prog_data;
402
403 return success;
404 }
405
406
407 bool
408 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
409 {
410 const struct brw_gs_prog_data *a = in_a;
411 const struct brw_gs_prog_data *b = in_b;
412
413 /* Compare the base structure. */
414 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
415 return false;
416
417 /* Compare the rest of the struct. */
418 const unsigned offset = sizeof(struct brw_stage_prog_data);
419 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
420 sizeof(struct brw_gs_prog_data) - offset)) {
421 return false;
422 }
423
424 return true;
425 }