Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35 #include "brw_nir.h"
36
37 static void
38 assign_gs_binding_table_offsets(const struct brw_device_info *devinfo,
39 const struct gl_shader_program *shader_prog,
40 const struct gl_program *prog,
41 struct brw_gs_prog_data *prog_data)
42 {
43 /* In gen6 we reserve the first BRW_MAX_SOL_BINDINGS entries for transform
44 * feedback surfaces.
45 */
46 uint32_t reserved = devinfo->gen == 6 ? BRW_MAX_SOL_BINDINGS : 0;
47
48 brw_assign_common_binding_table_offsets(MESA_SHADER_GEOMETRY, devinfo,
49 shader_prog, prog,
50 &prog_data->base.base,
51 reserved);
52 }
53
54 bool
55 brw_compile_gs_prog(struct brw_context *brw,
56 struct gl_shader_program *prog,
57 struct brw_geometry_program *gp,
58 struct brw_gs_prog_key *key,
59 struct brw_gs_compile_output *output)
60 {
61 struct brw_gs_compile c;
62 memset(&c, 0, sizeof(c));
63 c.key = *key;
64 c.gp = gp;
65
66 /* We get the bind map as input in the output struct...*/
67 c.prog_data.base.base.map_entries = output->prog_data.base.base.map_entries;
68 memcpy(c.prog_data.base.base.bind_map, output->prog_data.base.base.bind_map,
69 sizeof(c.prog_data.base.base.bind_map));
70
71 c.prog_data.include_primitive_id =
72 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
73
74 c.prog_data.invocations = gp->program.Invocations;
75
76 assign_gs_binding_table_offsets(brw->intelScreen->devinfo, prog,
77 &gp->program.Base, &c.prog_data);
78
79 /* Allocate the references to the uniforms that will end up in the
80 * prog_data associated with the compiled program, and which will be freed
81 * by the state cache.
82 *
83 * Note: param_count needs to be num_uniform_components * 4, since we add
84 * padding around uniform values below vec4 size, so the worst case is that
85 * every uniform is a float which gets padded to the size of a vec4.
86 */
87 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
88 int param_count = gp->program.Base.nir->num_uniforms * 4;
89
90 c.prog_data.base.base.param =
91 rzalloc_array(NULL, const gl_constant_value *, param_count);
92 c.prog_data.base.base.pull_param =
93 rzalloc_array(NULL, const gl_constant_value *, param_count);
94 c.prog_data.base.base.image_param =
95 rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
96 c.prog_data.base.base.nr_params = param_count;
97 c.prog_data.base.base.nr_image_params = gs->NumImages;
98
99 brw_nir_setup_glsl_uniforms(gp->program.Base.nir, prog, &gp->program.Base,
100 &c.prog_data.base.base, false);
101
102 if (brw->gen >= 8) {
103 c.prog_data.static_vertex_count = !gp->program.Base.nir ? -1 :
104 nir_gs_count_vertices(gp->program.Base.nir);
105 }
106
107 if (brw->gen >= 7) {
108 if (gp->program.OutputType == GL_POINTS) {
109 /* When the output type is points, the geometry shader may output data
110 * to multiple streams, and EndPrimitive() has no effect. So we
111 * configure the hardware to interpret the control data as stream ID.
112 */
113 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
114
115 /* We only have to emit control bits if we are using streams */
116 if (prog->Geom.UsesStreams)
117 c.control_data_bits_per_vertex = 2;
118 else
119 c.control_data_bits_per_vertex = 0;
120 } else {
121 /* When the output type is triangle_strip or line_strip, EndPrimitive()
122 * may be used to terminate the current strip and start a new one
123 * (similar to primitive restart), and outputting data to multiple
124 * streams is not supported. So we configure the hardware to interpret
125 * the control data as EndPrimitive information (a.k.a. "cut bits").
126 */
127 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
128
129 /* We only need to output control data if the shader actually calls
130 * EndPrimitive().
131 */
132 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
133 }
134 } else {
135 /* There are no control data bits in gen6. */
136 c.control_data_bits_per_vertex = 0;
137
138 /* If it is using transform feedback, enable it */
139 if (prog->TransformFeedback.NumVarying)
140 c.prog_data.gen6_xfb_enabled = true;
141 else
142 c.prog_data.gen6_xfb_enabled = false;
143 }
144 c.control_data_header_size_bits =
145 gp->program.VerticesOut * c.control_data_bits_per_vertex;
146
147 /* 1 HWORD = 32 bytes = 256 bits */
148 c.prog_data.control_data_header_size_hwords =
149 ALIGN(c.control_data_header_size_bits, 256) / 256;
150
151 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
152
153 brw_compute_vue_map(brw->intelScreen->devinfo,
154 &c.prog_data.base.vue_map, outputs_written,
155 prog ? prog->SeparateShader : false);
156
157 /* Compute the output vertex size.
158 *
159 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
160 * Size (p168):
161 *
162 * [0,62] indicating [1,63] 16B units
163 *
164 * Specifies the size of each vertex stored in the GS output entry
165 * (following any Control Header data) as a number of 128-bit units
166 * (minus one).
167 *
168 * Programming Restrictions: The vertex size must be programmed as a
169 * multiple of 32B units with the following exception: Rendering is
170 * disabled (as per SOL stage state) and the vertex size output by the
171 * GS thread is 16B.
172 *
173 * If rendering is enabled (as per SOL state) the vertex size must be
174 * programmed as a multiple of 32B units. In other words, the only time
175 * software can program a vertex size with an odd number of 16B units
176 * is when rendering is disabled.
177 *
178 * Note: B=bytes in the above text.
179 *
180 * It doesn't seem worth the extra trouble to optimize the case where the
181 * vertex size is 16B (especially since this would require special-casing
182 * the GEN assembly that writes to the URB). So we just set the vertex
183 * size to a multiple of 32B (2 vec4's) in all cases.
184 *
185 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
186 * budget that as follows:
187 *
188 * 512 bytes for varyings (a varying component is 4 bytes and
189 * gl_MaxGeometryOutputComponents = 128)
190 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
191 * bytes)
192 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
193 * even if it's not used)
194 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
195 * whenever clip planes are enabled, even if the shader doesn't
196 * write to gl_ClipDistance)
197 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
198 * (see below)--this causes up to 1 VUE slot to be wasted
199 * 400 bytes available for varying packing overhead
200 *
201 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
202 * per interpolation type, so this is plenty.
203 *
204 */
205 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
206 assert(brw->gen == 6 ||
207 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
208 c.prog_data.output_vertex_size_hwords =
209 ALIGN(output_vertex_size_bytes, 32) / 32;
210
211 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
212 * That divides up as follows:
213 *
214 * 64 bytes for the control data header (cut indices or StreamID bits)
215 * 4096 bytes for varyings (a varying component is 4 bytes and
216 * gl_MaxGeometryTotalOutputComponents = 1024)
217 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
218 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
219 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
220 * even if it's not used)
221 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
222 * whenever clip planes are enabled, even if the shader doesn't
223 * write to gl_ClipDistance)
224 * 4096 bytes overhead since the VUE size must be a multiple of 32
225 * bytes (see above)--this causes up to 1 VUE slot to be wasted
226 * 8128 bytes available for varying packing overhead
227 *
228 * Worst-case varying packing overhead is 3/4 of a varying slot per
229 * interpolation type, which works out to 3072 bytes, so this would allow
230 * us to accommodate 2 interpolation types without any danger of running
231 * out of URB space.
232 *
233 * In practice, the risk of running out of URB space is very small, since
234 * the above figures are all worst-case, and most of them scale with the
235 * number of output vertices. So we'll just calculate the amount of space
236 * we need, and if it's too large, fail to compile.
237 *
238 * The above is for gen7+ where we have a single URB entry that will hold
239 * all the output. In gen6, we will have to allocate URB entries for every
240 * vertex we emit, so our URB entries only need to be large enough to hold
241 * a single vertex. Also, gen6 does not have a control data header.
242 */
243 unsigned output_size_bytes;
244 if (brw->gen >= 7) {
245 output_size_bytes =
246 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
247 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
248 } else {
249 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
250 }
251
252 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
253 * which comes before the control header.
254 */
255 if (brw->gen >= 8)
256 output_size_bytes += 32;
257
258 assert(output_size_bytes >= 1);
259 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
260 if (brw->gen == 6)
261 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
262 if (output_size_bytes > max_output_size_bytes)
263 return false;
264
265
266 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
267 * a multiple of 128 bytes in gen6.
268 */
269 if (brw->gen >= 7)
270 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
271 else
272 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
273
274 c.prog_data.output_topology =
275 get_hw_prim_for_gl_prim(gp->program.OutputType);
276
277 /* The GLSL linker will have already matched up GS inputs and the outputs
278 * of prior stages. The driver does extend VS outputs in some cases, but
279 * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
280 * geometry shader support. So we can safely ignore that.
281 *
282 * For SSO pipelines, we use a fixed VUE map layout based on variable
283 * locations, so we can rely on rendezvous-by-location making this work.
284 *
285 * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
286 * written by previous stages and shows up via payload magic.
287 */
288 GLbitfield64 inputs_read =
289 gp->program.Base.InputsRead & ~VARYING_BIT_PRIMITIVE_ID;
290 brw_compute_vue_map(brw->intelScreen->devinfo,
291 &c.input_vue_map, inputs_read,
292 prog->SeparateShader);
293
294 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
295 * need to program a URB read length of ceiling(num_slots / 2).
296 */
297 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
298
299 void *mem_ctx = ralloc_context(NULL);
300 unsigned program_size;
301 const unsigned *program =
302 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
303 if (program == NULL) {
304 ralloc_free(mem_ctx);
305 return false;
306 }
307
308 output->mem_ctx = mem_ctx;
309 output->program = program;
310 output->program_size = program_size;
311 memcpy(&output->prog_data, &c.prog_data,
312 sizeof(output->prog_data));
313
314 return true;
315 }
316
317 bool
318 brw_codegen_gs_prog(struct brw_context *brw,
319 struct gl_shader_program *prog,
320 struct brw_geometry_program *gp,
321 struct brw_gs_prog_key *key)
322 {
323 struct brw_gs_compile_output output;
324 struct brw_stage_state *stage_state = &brw->gs.base;
325
326 if (brw_compile_gs_prog(brw, prog, gp, key, &output))
327 return false;
328
329 if (output.prog_data.base.base.total_scratch) {
330 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
331 output.prog_data.base.base.total_scratch *
332 brw->max_gs_threads);
333 }
334
335 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
336 key, sizeof(*key),
337 output.program, output.program_size,
338 &output.prog_data, sizeof(output.prog_data),
339 &stage_state->prog_offset, &brw->gs.prog_data);
340 ralloc_free(output.mem_ctx);
341
342 return true;
343 }
344
345 static bool
346 brw_gs_state_dirty(struct brw_context *brw)
347 {
348 return brw_state_dirty(brw,
349 _NEW_TEXTURE,
350 BRW_NEW_GEOMETRY_PROGRAM |
351 BRW_NEW_TRANSFORM_FEEDBACK);
352 }
353
354 static void
355 brw_gs_populate_key(struct brw_context *brw,
356 struct brw_gs_prog_key *key)
357 {
358 struct gl_context *ctx = &brw->ctx;
359 struct brw_stage_state *stage_state = &brw->gs.base;
360 struct brw_geometry_program *gp =
361 (struct brw_geometry_program *) brw->geometry_program;
362 struct gl_program *prog = &gp->program.Base;
363
364 memset(key, 0, sizeof(*key));
365
366 key->program_string_id = gp->id;
367
368 /* _NEW_TEXTURE */
369 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
370 &key->tex);
371 }
372
373 void
374 brw_upload_gs_prog(struct brw_context *brw)
375 {
376 struct gl_context *ctx = &brw->ctx;
377 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
378 struct brw_stage_state *stage_state = &brw->gs.base;
379 struct brw_gs_prog_key key;
380 /* BRW_NEW_GEOMETRY_PROGRAM */
381 struct brw_geometry_program *gp =
382 (struct brw_geometry_program *) brw->geometry_program;
383
384 if (!brw_gs_state_dirty(brw))
385 return;
386
387 if (gp == NULL) {
388 /* No geometry shader. Vertex data just passes straight through. */
389 if (brw->gen == 6 &&
390 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
391 gen6_brw_upload_ff_gs_prog(brw);
392 return;
393 }
394
395 /* Other state atoms had better not try to access prog_data, since
396 * there's no GS program.
397 */
398 brw->gs.prog_data = NULL;
399 brw->gs.base.prog_data = NULL;
400
401 return;
402 }
403
404 brw_gs_populate_key(brw, &key);
405
406 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
407 &key, sizeof(key),
408 &stage_state->prog_offset, &brw->gs.prog_data)) {
409 bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
410 gp, &key);
411 assert(success);
412 (void)success;
413 }
414 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
415 }
416
417 bool
418 brw_gs_precompile(struct gl_context *ctx,
419 struct gl_shader_program *shader_prog,
420 struct gl_program *prog)
421 {
422 struct brw_context *brw = brw_context(ctx);
423 struct brw_gs_prog_key key;
424 uint32_t old_prog_offset = brw->gs.base.prog_offset;
425 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
426 bool success;
427
428 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
429 struct brw_geometry_program *bgp = brw_geometry_program(gp);
430
431 memset(&key, 0, sizeof(key));
432
433 brw_setup_tex_for_precompile(brw, &key.tex, prog);
434 key.program_string_id = bgp->id;
435
436 success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
437
438 brw->gs.base.prog_offset = old_prog_offset;
439 brw->gs.prog_data = old_prog_data;
440
441 return success;
442 }