6034a9df0b15adf15f662b3d079a895270f3562b
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/glheader.h"
34 #include "main/macros.h"
35 #include "main/enums.h"
36
37 #include "program/program.h"
38 #include "intel_batchbuffer.h"
39
40 #include "brw_defines.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_gs.h"
44
45 /**
46 * Allocate registers for GS.
47 *
48 * If sol_program is true, then:
49 *
50 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
51 * 1 needs to be set aside to hold the streamed vertex buffer indices.
52 *
53 * - The thread will need to use the destination_indices register.
54 */
55 static void brw_gs_alloc_regs( struct brw_gs_compile *c,
56 GLuint nr_verts,
57 bool sol_program )
58 {
59 GLuint i = 0,j;
60
61 /* Register usage is static, precompute here:
62 */
63 c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
64
65 /* Streamed vertex buffer indices */
66 if (sol_program)
67 c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
68
69 /* Payload vertices plus space for more generated vertices:
70 */
71 for (j = 0; j < nr_verts; j++) {
72 c->reg.vertex[j] = brw_vec4_grf(i, 0);
73 i += c->nr_regs;
74 }
75
76 c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
77 c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
78
79 if (sol_program) {
80 c->reg.destination_indices =
81 retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
82 }
83
84 c->prog_data.urb_read_length = c->nr_regs;
85 c->prog_data.total_grf = i;
86 }
87
88
89 /**
90 * Set up the initial value of c->reg.header register based on c->reg.R0.
91 *
92 * The following information is passed to the GS thread in R0, and needs to be
93 * included in the first URB_WRITE or FF_SYNC message sent by the GS:
94 *
95 * - DWORD 0 [31:0] handle info (Gen4 only)
96 * - DWORD 5 [7:0] FFTID
97 * - DWORD 6 [31:0] Debug info
98 * - DWORD 7 [31:0] Debug info
99 *
100 * This function sets up the above data by copying by copying the contents of
101 * R0 to the header register.
102 */
103 static void brw_gs_initialize_header(struct brw_gs_compile *c)
104 {
105 struct brw_compile *p = &c->func;
106 brw_MOV(p, c->reg.header, c->reg.R0);
107 }
108
109 /**
110 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
111 *
112 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
113 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
114 * need to be able to update on a per-vertex basis.
115 */
116 static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c,
117 unsigned dw2)
118 {
119 struct brw_compile *p = &c->func;
120 brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
121 }
122
123 /**
124 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
125 *
126 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
127 * of DWORD 2. URB_WRITE messages need the primitive type in bits 6:2 of
128 * DWORD 2. So this function extracts the primitive type field, bitshifts it
129 * appropriately, and stores it in c->reg.header.
130 */
131 static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c)
132 {
133 struct brw_compile *p = &c->func;
134 brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
135 brw_imm_ud(0x1f));
136 brw_SHL(p, get_element_ud(c->reg.header, 2),
137 get_element_ud(c->reg.header, 2), brw_imm_ud(2));
138 }
139
140 /**
141 * Apply an additive offset to DWORD 2 of c->reg.header.
142 *
143 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
144 * for each vertex.
145 */
146 static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset)
147 {
148 struct brw_compile *p = &c->func;
149 brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
150 brw_imm_d(offset));
151 }
152
153
154 /**
155 * Emit a vertex using the URB_WRITE message. Use the contents of
156 * c->reg.header for the message header, and the registers starting at \c vert
157 * for the vertex data.
158 *
159 * If \c last is true, then this is the last vertex, so no further URB space
160 * should be allocated, and this message should end the thread.
161 *
162 * If \c last is false, then a new URB entry will be allocated, and its handle
163 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
164 * message.
165 */
166 static void brw_gs_emit_vue(struct brw_gs_compile *c,
167 struct brw_reg vert,
168 bool last)
169 {
170 struct brw_compile *p = &c->func;
171 bool allocate = !last;
172
173 /* Copy the vertex from vertn into m1..mN+1:
174 */
175 brw_copy8(p, brw_message_reg(1), vert, c->nr_regs);
176
177 /* Send each vertex as a seperate write to the urb. This is
178 * different to the concept in brw_sf_emit.c, where subsequent
179 * writes are used to build up a single urb entry. Each of these
180 * writes instantiates a seperate urb entry, and a new one must be
181 * allocated each time.
182 */
183 brw_urb_WRITE(p,
184 allocate ? c->reg.temp
185 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
186 0,
187 c->reg.header,
188 allocate,
189 1, /* used */
190 c->nr_regs + 1, /* msg length */
191 allocate ? 1 : 0, /* response length */
192 allocate ? 0 : 1, /* eot */
193 1, /* writes_complete */
194 0, /* urb offset */
195 BRW_URB_SWIZZLE_NONE);
196
197 if (allocate) {
198 brw_MOV(p, get_element_ud(c->reg.header, 0),
199 get_element_ud(c->reg.temp, 0));
200 }
201 }
202
203 /**
204 * Send an FF_SYNC message to ensure that all previously spawned GS threads
205 * have finished sending primitives down the pipeline, and to allocate a URB
206 * entry for the first output vertex. Only needed on Ironlake+.
207 *
208 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
209 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
210 * the allocated URB entry (which will be needed by the URB_WRITE meesage that
211 * follows).
212 */
213 static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim)
214 {
215 struct brw_compile *p = &c->func;
216
217 brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
218 brw_ff_sync(p,
219 c->reg.temp,
220 0,
221 c->reg.header,
222 1, /* allocate */
223 1, /* response length */
224 0 /* eot */);
225 brw_MOV(p, get_element_ud(c->reg.header, 0),
226 get_element_ud(c->reg.temp, 0));
227 }
228
229
230 void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
231 {
232 struct brw_context *brw = c->func.brw;
233
234 brw_gs_alloc_regs(c, 4, false);
235 brw_gs_initialize_header(c);
236 /* Use polygons for correct edgeflag behaviour. Note that vertex 3
237 * is the PV for quads, but vertex 0 for polygons:
238 */
239 if (brw->gen == 5)
240 brw_gs_ff_sync(c, 1);
241 brw_gs_overwrite_header_dw2(
242 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
243 | URB_WRITE_PRIM_START));
244 if (key->pv_first) {
245 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
246 brw_gs_overwrite_header_dw2(
247 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
248 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
249 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
250 brw_gs_overwrite_header_dw2(
251 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
252 | URB_WRITE_PRIM_END));
253 brw_gs_emit_vue(c, c->reg.vertex[3], 1);
254 }
255 else {
256 brw_gs_emit_vue(c, c->reg.vertex[3], 0);
257 brw_gs_overwrite_header_dw2(
258 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
259 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
260 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
261 brw_gs_overwrite_header_dw2(
262 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
263 | URB_WRITE_PRIM_END));
264 brw_gs_emit_vue(c, c->reg.vertex[2], 1);
265 }
266 }
267
268 void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
269 {
270 struct brw_context *brw = c->func.brw;
271
272 brw_gs_alloc_regs(c, 4, false);
273 brw_gs_initialize_header(c);
274
275 if (brw->gen == 5)
276 brw_gs_ff_sync(c, 1);
277 brw_gs_overwrite_header_dw2(
278 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
279 | URB_WRITE_PRIM_START));
280 if (key->pv_first) {
281 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
282 brw_gs_overwrite_header_dw2(
283 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
284 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
285 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
286 brw_gs_overwrite_header_dw2(
287 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
288 | URB_WRITE_PRIM_END));
289 brw_gs_emit_vue(c, c->reg.vertex[3], 1);
290 }
291 else {
292 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
293 brw_gs_overwrite_header_dw2(
294 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
295 brw_gs_emit_vue(c, c->reg.vertex[3], 0);
296 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
297 brw_gs_overwrite_header_dw2(
298 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
299 | URB_WRITE_PRIM_END));
300 brw_gs_emit_vue(c, c->reg.vertex[1], 1);
301 }
302 }
303
304 void brw_gs_lines( struct brw_gs_compile *c )
305 {
306 struct brw_context *brw = c->func.brw;
307
308 brw_gs_alloc_regs(c, 2, false);
309 brw_gs_initialize_header(c);
310
311 if (brw->gen == 5)
312 brw_gs_ff_sync(c, 1);
313 brw_gs_overwrite_header_dw2(
314 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
315 | URB_WRITE_PRIM_START));
316 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
317 brw_gs_overwrite_header_dw2(
318 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
319 | URB_WRITE_PRIM_END));
320 brw_gs_emit_vue(c, c->reg.vertex[1], 1);
321 }
322
323 /**
324 * Generate the geometry shader program used on Gen6 to perform stream output
325 * (transform feedback).
326 */
327 void
328 gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key,
329 unsigned num_verts, bool check_edge_flags)
330 {
331 struct brw_compile *p = &c->func;
332 c->prog_data.svbi_postincrement_value = num_verts;
333
334 brw_gs_alloc_regs(c, num_verts, true);
335 brw_gs_initialize_header(c);
336
337 if (key->num_transform_feedback_bindings > 0) {
338 unsigned vertex, binding;
339 struct brw_reg destination_indices_uw =
340 vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
341
342 /* Note: since we use the binding table to keep track of buffer offsets
343 * and stride, the GS doesn't need to keep track of a separate pointer
344 * into each buffer; it uses a single pointer which increments by 1 for
345 * each vertex. So we use SVBI0 for this pointer, regardless of whether
346 * transform feedback is in interleaved or separate attribs mode.
347 *
348 * Make sure that the buffers have enough room for all the vertices.
349 */
350 brw_ADD(p, get_element_ud(c->reg.temp, 0),
351 get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
352 brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
353 get_element_ud(c->reg.temp, 0),
354 get_element_ud(c->reg.SVBI, 4));
355 brw_IF(p, BRW_EXECUTE_1);
356
357 /* Compute the destination indices to write to. Usually we use SVBI[0]
358 * + (0, 1, 2). However, for odd-numbered triangles in tristrips, the
359 * vertices come down the pipeline in reversed winding order, so we need
360 * to flip the order when writing to the transform feedback buffer. To
361 * ensure that flatshading accuracy is preserved, we need to write them
362 * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
363 * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
364 * the last provoking vertex convention.
365 *
366 * Note: since brw_imm_v can only be used in instructions in
367 * packed-word execution mode, and SVBI is a double-word, we need to
368 * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
369 * or (1, 0, 2)) to the destination_indices register, and then add SVBI
370 * using a separate instruction. Also, since the immediate constant is
371 * expressed as packed words, and we need to load double-words into
372 * destination_indices, we need to intersperse zeros to fill the upper
373 * halves of each double-word.
374 */
375 brw_MOV(p, destination_indices_uw,
376 brw_imm_v(0x00020100)); /* (0, 1, 2) */
377 if (num_verts == 3) {
378 /* Get primitive type into temp register. */
379 brw_AND(p, get_element_ud(c->reg.temp, 0),
380 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
381
382 /* Test if primitive type is TRISTRIP_REVERSE. We need to do this as
383 * an 8-wide comparison so that the conditional MOV that follows
384 * moves all 8 words correctly.
385 */
386 brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
387 get_element_ud(c->reg.temp, 0),
388 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
389
390 /* If so, then overwrite destination_indices_uw with the appropriate
391 * reordering.
392 */
393 brw_MOV(p, destination_indices_uw,
394 brw_imm_v(key->pv_first ? 0x00010200 /* (0, 2, 1) */
395 : 0x00020001)); /* (1, 0, 2) */
396 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
397 }
398 brw_ADD(p, c->reg.destination_indices,
399 c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
400
401 /* For each vertex, generate code to output each varying using the
402 * appropriate binding table entry.
403 */
404 for (vertex = 0; vertex < num_verts; ++vertex) {
405 /* Set up the correct destination index for this vertex */
406 brw_MOV(p, get_element_ud(c->reg.header, 5),
407 get_element_ud(c->reg.destination_indices, vertex));
408
409 for (binding = 0; binding < key->num_transform_feedback_bindings;
410 ++binding) {
411 unsigned char varying =
412 key->transform_feedback_bindings[binding];
413 unsigned char slot = c->vue_map.varying_to_slot[varying];
414 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
415 *
416 * "Prior to End of Thread with a URB_WRITE, the kernel must
417 * ensure that all writes are complete by sending the final
418 * write as a committed write."
419 */
420 bool final_write =
421 binding == key->num_transform_feedback_bindings - 1 &&
422 vertex == num_verts - 1;
423 struct brw_reg vertex_slot = c->reg.vertex[vertex];
424 vertex_slot.nr += slot / 2;
425 vertex_slot.subnr = (slot % 2) * 16;
426 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
427 vertex_slot.dw1.bits.swizzle = varying == VARYING_SLOT_PSIZ
428 ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
429 brw_set_access_mode(p, BRW_ALIGN_16);
430 brw_MOV(p, stride(c->reg.header, 4, 4, 1),
431 retype(vertex_slot, BRW_REGISTER_TYPE_UD));
432 brw_set_access_mode(p, BRW_ALIGN_1);
433 brw_svb_write(p,
434 final_write ? c->reg.temp : brw_null_reg(), /* dest */
435 1, /* msg_reg_nr */
436 c->reg.header, /* src0 */
437 SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */
438 final_write); /* send_commit_msg */
439 }
440 }
441 brw_ENDIF(p);
442
443 /* Now, reinitialize the header register from R0 to restore the parts of
444 * the register that we overwrote while streaming out transform feedback
445 * data.
446 */
447 brw_gs_initialize_header(c);
448
449 /* Finally, wait for the write commit to occur so that we can proceed to
450 * other things safely.
451 *
452 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
453 *
454 * The write commit does not modify the destination register, but
455 * merely clears the dependency associated with the destination
456 * register. Thus, a simple “mov” instruction using the register as a
457 * source is sufficient to wait for the write commit to occur.
458 */
459 brw_MOV(p, c->reg.temp, c->reg.temp);
460 }
461
462 brw_gs_ff_sync(c, 1);
463
464 brw_gs_overwrite_header_dw2_from_r0(c);
465 switch (num_verts) {
466 case 1:
467 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
468 brw_gs_emit_vue(c, c->reg.vertex[0], true);
469 break;
470 case 2:
471 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
472 brw_gs_emit_vue(c, c->reg.vertex[0], false);
473 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
474 brw_gs_emit_vue(c, c->reg.vertex[1], true);
475 break;
476 case 3:
477 if (check_edge_flags) {
478 /* Only emit vertices 0 and 1 if this is the first triangle of the
479 * polygon. Otherwise they are redundant.
480 */
481 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
482 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
483 get_element_ud(c->reg.R0, 2),
484 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
485 brw_IF(p, BRW_EXECUTE_1);
486 }
487 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
488 brw_gs_emit_vue(c, c->reg.vertex[0], false);
489 brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
490 brw_gs_emit_vue(c, c->reg.vertex[1], false);
491 if (check_edge_flags) {
492 brw_ENDIF(p);
493 /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
494 * of the polygon. Otherwise leave the primitive incomplete because
495 * there are more polygon vertices coming.
496 */
497 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
498 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
499 get_element_ud(c->reg.R0, 2),
500 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
501 brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
502 }
503 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
504 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
505 brw_gs_emit_vue(c, c->reg.vertex[2], true);
506 break;
507 }
508 }