intel: Add a batch flush between front-buffer downsample and X protocol.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/glheader.h"
34 #include "main/macros.h"
35 #include "main/enums.h"
36
37 #include "program/program.h"
38 #include "intel_batchbuffer.h"
39
40 #include "brw_defines.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_gs.h"
44
45 /**
46 * Allocate registers for GS.
47 *
48 * If sol_program is true, then:
49 *
50 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
51 * 1 needs to be set aside to hold the streamed vertex buffer indices.
52 *
53 * - The thread will need to use the destination_indices register.
54 */
55 static void brw_gs_alloc_regs( struct brw_gs_compile *c,
56 GLuint nr_verts,
57 bool sol_program )
58 {
59 GLuint i = 0,j;
60
61 /* Register usage is static, precompute here:
62 */
63 c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
64
65 /* Streamed vertex buffer indices */
66 if (sol_program)
67 c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
68
69 /* Payload vertices plus space for more generated vertices:
70 */
71 for (j = 0; j < nr_verts; j++) {
72 c->reg.vertex[j] = brw_vec4_grf(i, 0);
73 i += c->nr_regs;
74 }
75
76 c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
77 c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
78
79 if (sol_program) {
80 c->reg.destination_indices =
81 retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
82 }
83
84 c->prog_data.urb_read_length = c->nr_regs;
85 c->prog_data.total_grf = i;
86 }
87
88
89 /**
90 * Set up the initial value of c->reg.header register based on c->reg.R0.
91 *
92 * The following information is passed to the GS thread in R0, and needs to be
93 * included in the first URB_WRITE or FF_SYNC message sent by the GS:
94 *
95 * - DWORD 0 [31:0] handle info (Gen4 only)
96 * - DWORD 5 [7:0] FFTID
97 * - DWORD 6 [31:0] Debug info
98 * - DWORD 7 [31:0] Debug info
99 *
100 * This function sets up the above data by copying by copying the contents of
101 * R0 to the header register.
102 */
103 static void brw_gs_initialize_header(struct brw_gs_compile *c)
104 {
105 struct brw_compile *p = &c->func;
106 brw_MOV(p, c->reg.header, c->reg.R0);
107 }
108
109 /**
110 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
111 *
112 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
113 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
114 * need to be able to update on a per-vertex basis.
115 */
116 static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c,
117 unsigned dw2)
118 {
119 struct brw_compile *p = &c->func;
120 brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
121 }
122
123 /**
124 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
125 *
126 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
127 * of DWORD 2. URB_WRITE messages need the primitive type in bits 6:2 of
128 * DWORD 2. So this function extracts the primitive type field, bitshifts it
129 * appropriately, and stores it in c->reg.header.
130 */
131 static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c)
132 {
133 struct brw_compile *p = &c->func;
134 brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
135 brw_imm_ud(0x1f));
136 brw_SHL(p, get_element_ud(c->reg.header, 2),
137 get_element_ud(c->reg.header, 2), brw_imm_ud(2));
138 }
139
140 /**
141 * Apply an additive offset to DWORD 2 of c->reg.header.
142 *
143 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
144 * for each vertex.
145 */
146 static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset)
147 {
148 struct brw_compile *p = &c->func;
149 brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
150 brw_imm_d(offset));
151 }
152
153
154 /**
155 * Emit a vertex using the URB_WRITE message. Use the contents of
156 * c->reg.header for the message header, and the registers starting at \c vert
157 * for the vertex data.
158 *
159 * If \c last is true, then this is the last vertex, so no further URB space
160 * should be allocated, and this message should end the thread.
161 *
162 * If \c last is false, then a new URB entry will be allocated, and its handle
163 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
164 * message.
165 */
166 static void brw_gs_emit_vue(struct brw_gs_compile *c,
167 struct brw_reg vert,
168 bool last)
169 {
170 struct brw_compile *p = &c->func;
171 bool allocate = !last;
172
173 /* Copy the vertex from vertn into m1..mN+1:
174 */
175 brw_copy8(p, brw_message_reg(1), vert, c->nr_regs);
176
177 /* Send each vertex as a seperate write to the urb. This is
178 * different to the concept in brw_sf_emit.c, where subsequent
179 * writes are used to build up a single urb entry. Each of these
180 * writes instantiates a seperate urb entry, and a new one must be
181 * allocated each time.
182 */
183 brw_urb_WRITE(p,
184 allocate ? c->reg.temp
185 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
186 0,
187 c->reg.header,
188 allocate ? BRW_URB_WRITE_ALLOCATE_COMPLETE
189 : BRW_URB_WRITE_EOT_COMPLETE,
190 c->nr_regs + 1, /* msg length */
191 allocate ? 1 : 0, /* response length */
192 0, /* urb offset */
193 BRW_URB_SWIZZLE_NONE);
194
195 if (allocate) {
196 brw_MOV(p, get_element_ud(c->reg.header, 0),
197 get_element_ud(c->reg.temp, 0));
198 }
199 }
200
201 /**
202 * Send an FF_SYNC message to ensure that all previously spawned GS threads
203 * have finished sending primitives down the pipeline, and to allocate a URB
204 * entry for the first output vertex. Only needed on Ironlake+.
205 *
206 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
207 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
208 * the allocated URB entry (which will be needed by the URB_WRITE meesage that
209 * follows).
210 */
211 static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim)
212 {
213 struct brw_compile *p = &c->func;
214
215 brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
216 brw_ff_sync(p,
217 c->reg.temp,
218 0,
219 c->reg.header,
220 1, /* allocate */
221 1, /* response length */
222 0 /* eot */);
223 brw_MOV(p, get_element_ud(c->reg.header, 0),
224 get_element_ud(c->reg.temp, 0));
225 }
226
227
228 void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
229 {
230 struct brw_context *brw = c->func.brw;
231
232 brw_gs_alloc_regs(c, 4, false);
233 brw_gs_initialize_header(c);
234 /* Use polygons for correct edgeflag behaviour. Note that vertex 3
235 * is the PV for quads, but vertex 0 for polygons:
236 */
237 if (brw->gen == 5)
238 brw_gs_ff_sync(c, 1);
239 brw_gs_overwrite_header_dw2(
240 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
241 | URB_WRITE_PRIM_START));
242 if (key->pv_first) {
243 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
244 brw_gs_overwrite_header_dw2(
245 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
246 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
247 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
248 brw_gs_overwrite_header_dw2(
249 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
250 | URB_WRITE_PRIM_END));
251 brw_gs_emit_vue(c, c->reg.vertex[3], 1);
252 }
253 else {
254 brw_gs_emit_vue(c, c->reg.vertex[3], 0);
255 brw_gs_overwrite_header_dw2(
256 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
257 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
258 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
259 brw_gs_overwrite_header_dw2(
260 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
261 | URB_WRITE_PRIM_END));
262 brw_gs_emit_vue(c, c->reg.vertex[2], 1);
263 }
264 }
265
266 void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
267 {
268 struct brw_context *brw = c->func.brw;
269
270 brw_gs_alloc_regs(c, 4, false);
271 brw_gs_initialize_header(c);
272
273 if (brw->gen == 5)
274 brw_gs_ff_sync(c, 1);
275 brw_gs_overwrite_header_dw2(
276 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
277 | URB_WRITE_PRIM_START));
278 if (key->pv_first) {
279 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
280 brw_gs_overwrite_header_dw2(
281 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
282 brw_gs_emit_vue(c, c->reg.vertex[1], 0);
283 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
284 brw_gs_overwrite_header_dw2(
285 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
286 | URB_WRITE_PRIM_END));
287 brw_gs_emit_vue(c, c->reg.vertex[3], 1);
288 }
289 else {
290 brw_gs_emit_vue(c, c->reg.vertex[2], 0);
291 brw_gs_overwrite_header_dw2(
292 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
293 brw_gs_emit_vue(c, c->reg.vertex[3], 0);
294 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
295 brw_gs_overwrite_header_dw2(
296 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
297 | URB_WRITE_PRIM_END));
298 brw_gs_emit_vue(c, c->reg.vertex[1], 1);
299 }
300 }
301
302 void brw_gs_lines( struct brw_gs_compile *c )
303 {
304 struct brw_context *brw = c->func.brw;
305
306 brw_gs_alloc_regs(c, 2, false);
307 brw_gs_initialize_header(c);
308
309 if (brw->gen == 5)
310 brw_gs_ff_sync(c, 1);
311 brw_gs_overwrite_header_dw2(
312 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
313 | URB_WRITE_PRIM_START));
314 brw_gs_emit_vue(c, c->reg.vertex[0], 0);
315 brw_gs_overwrite_header_dw2(
316 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
317 | URB_WRITE_PRIM_END));
318 brw_gs_emit_vue(c, c->reg.vertex[1], 1);
319 }
320
321 /**
322 * Generate the geometry shader program used on Gen6 to perform stream output
323 * (transform feedback).
324 */
325 void
326 gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key,
327 unsigned num_verts, bool check_edge_flags)
328 {
329 struct brw_compile *p = &c->func;
330 c->prog_data.svbi_postincrement_value = num_verts;
331
332 brw_gs_alloc_regs(c, num_verts, true);
333 brw_gs_initialize_header(c);
334
335 if (key->num_transform_feedback_bindings > 0) {
336 unsigned vertex, binding;
337 struct brw_reg destination_indices_uw =
338 vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
339
340 /* Note: since we use the binding table to keep track of buffer offsets
341 * and stride, the GS doesn't need to keep track of a separate pointer
342 * into each buffer; it uses a single pointer which increments by 1 for
343 * each vertex. So we use SVBI0 for this pointer, regardless of whether
344 * transform feedback is in interleaved or separate attribs mode.
345 *
346 * Make sure that the buffers have enough room for all the vertices.
347 */
348 brw_ADD(p, get_element_ud(c->reg.temp, 0),
349 get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
350 brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
351 get_element_ud(c->reg.temp, 0),
352 get_element_ud(c->reg.SVBI, 4));
353 brw_IF(p, BRW_EXECUTE_1);
354
355 /* Compute the destination indices to write to. Usually we use SVBI[0]
356 * + (0, 1, 2). However, for odd-numbered triangles in tristrips, the
357 * vertices come down the pipeline in reversed winding order, so we need
358 * to flip the order when writing to the transform feedback buffer. To
359 * ensure that flatshading accuracy is preserved, we need to write them
360 * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
361 * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
362 * the last provoking vertex convention.
363 *
364 * Note: since brw_imm_v can only be used in instructions in
365 * packed-word execution mode, and SVBI is a double-word, we need to
366 * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
367 * or (1, 0, 2)) to the destination_indices register, and then add SVBI
368 * using a separate instruction. Also, since the immediate constant is
369 * expressed as packed words, and we need to load double-words into
370 * destination_indices, we need to intersperse zeros to fill the upper
371 * halves of each double-word.
372 */
373 brw_MOV(p, destination_indices_uw,
374 brw_imm_v(0x00020100)); /* (0, 1, 2) */
375 if (num_verts == 3) {
376 /* Get primitive type into temp register. */
377 brw_AND(p, get_element_ud(c->reg.temp, 0),
378 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
379
380 /* Test if primitive type is TRISTRIP_REVERSE. We need to do this as
381 * an 8-wide comparison so that the conditional MOV that follows
382 * moves all 8 words correctly.
383 */
384 brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
385 get_element_ud(c->reg.temp, 0),
386 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
387
388 /* If so, then overwrite destination_indices_uw with the appropriate
389 * reordering.
390 */
391 brw_MOV(p, destination_indices_uw,
392 brw_imm_v(key->pv_first ? 0x00010200 /* (0, 2, 1) */
393 : 0x00020001)); /* (1, 0, 2) */
394 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
395 }
396 brw_ADD(p, c->reg.destination_indices,
397 c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
398
399 /* For each vertex, generate code to output each varying using the
400 * appropriate binding table entry.
401 */
402 for (vertex = 0; vertex < num_verts; ++vertex) {
403 /* Set up the correct destination index for this vertex */
404 brw_MOV(p, get_element_ud(c->reg.header, 5),
405 get_element_ud(c->reg.destination_indices, vertex));
406
407 for (binding = 0; binding < key->num_transform_feedback_bindings;
408 ++binding) {
409 unsigned char varying =
410 key->transform_feedback_bindings[binding];
411 unsigned char slot = c->vue_map.varying_to_slot[varying];
412 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
413 *
414 * "Prior to End of Thread with a URB_WRITE, the kernel must
415 * ensure that all writes are complete by sending the final
416 * write as a committed write."
417 */
418 bool final_write =
419 binding == key->num_transform_feedback_bindings - 1 &&
420 vertex == num_verts - 1;
421 struct brw_reg vertex_slot = c->reg.vertex[vertex];
422 vertex_slot.nr += slot / 2;
423 vertex_slot.subnr = (slot % 2) * 16;
424 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
425 vertex_slot.dw1.bits.swizzle = varying == VARYING_SLOT_PSIZ
426 ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
427 brw_set_access_mode(p, BRW_ALIGN_16);
428 brw_MOV(p, stride(c->reg.header, 4, 4, 1),
429 retype(vertex_slot, BRW_REGISTER_TYPE_UD));
430 brw_set_access_mode(p, BRW_ALIGN_1);
431 brw_svb_write(p,
432 final_write ? c->reg.temp : brw_null_reg(), /* dest */
433 1, /* msg_reg_nr */
434 c->reg.header, /* src0 */
435 SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */
436 final_write); /* send_commit_msg */
437 }
438 }
439 brw_ENDIF(p);
440
441 /* Now, reinitialize the header register from R0 to restore the parts of
442 * the register that we overwrote while streaming out transform feedback
443 * data.
444 */
445 brw_gs_initialize_header(c);
446
447 /* Finally, wait for the write commit to occur so that we can proceed to
448 * other things safely.
449 *
450 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
451 *
452 * The write commit does not modify the destination register, but
453 * merely clears the dependency associated with the destination
454 * register. Thus, a simple “mov” instruction using the register as a
455 * source is sufficient to wait for the write commit to occur.
456 */
457 brw_MOV(p, c->reg.temp, c->reg.temp);
458 }
459
460 brw_gs_ff_sync(c, 1);
461
462 brw_gs_overwrite_header_dw2_from_r0(c);
463 switch (num_verts) {
464 case 1:
465 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
466 brw_gs_emit_vue(c, c->reg.vertex[0], true);
467 break;
468 case 2:
469 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
470 brw_gs_emit_vue(c, c->reg.vertex[0], false);
471 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
472 brw_gs_emit_vue(c, c->reg.vertex[1], true);
473 break;
474 case 3:
475 if (check_edge_flags) {
476 /* Only emit vertices 0 and 1 if this is the first triangle of the
477 * polygon. Otherwise they are redundant.
478 */
479 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
480 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
481 get_element_ud(c->reg.R0, 2),
482 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
483 brw_IF(p, BRW_EXECUTE_1);
484 }
485 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
486 brw_gs_emit_vue(c, c->reg.vertex[0], false);
487 brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
488 brw_gs_emit_vue(c, c->reg.vertex[1], false);
489 if (check_edge_flags) {
490 brw_ENDIF(p);
491 /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
492 * of the polygon. Otherwise leave the primitive incomplete because
493 * there are more polygon vertices coming.
494 */
495 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
496 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
497 get_element_ud(c->reg.R0, 2),
498 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
499 brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
500 }
501 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
502 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
503 brw_gs_emit_vue(c, c->reg.vertex[2], true);
504 break;
505 }
506 }