i965/fs: Replace fs_inst::regs_read with ::size_read using byte units.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_ir_fs.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010-2015 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #ifndef BRW_IR_FS_H
26 #define BRW_IR_FS_H
27
28 #include "brw_shader.h"
29
30 class fs_inst;
31
32 class fs_reg : public backend_reg {
33 public:
34 DECLARE_RALLOC_CXX_OPERATORS(fs_reg)
35
36 void init();
37
38 fs_reg();
39 fs_reg(struct ::brw_reg reg);
40 fs_reg(enum brw_reg_file file, int nr);
41 fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type);
42
43 bool equals(const fs_reg &r) const;
44 bool is_contiguous() const;
45
46 /**
47 * Return the size in bytes of a single logical component of the
48 * register assuming the given execution width.
49 */
50 unsigned component_size(unsigned width) const;
51
52 /** Smear a channel of the reg to all channels. */
53 fs_reg &set_smear(unsigned subreg);
54
55 /** Register region horizontal stride */
56 uint8_t stride;
57 };
58
59 static inline fs_reg
60 negate(fs_reg reg)
61 {
62 assert(reg.file != IMM);
63 reg.negate = !reg.negate;
64 return reg;
65 }
66
67 static inline fs_reg
68 retype(fs_reg reg, enum brw_reg_type type)
69 {
70 reg.type = type;
71 return reg;
72 }
73
74 static inline fs_reg
75 byte_offset(fs_reg reg, unsigned delta)
76 {
77 switch (reg.file) {
78 case BAD_FILE:
79 break;
80 case VGRF:
81 case ATTR:
82 case UNIFORM: {
83 const unsigned reg_size = (reg.file == UNIFORM ? 4 : REG_SIZE);
84 const unsigned suboffset = reg.offset % reg_size + delta;
85 reg.offset += ROUND_DOWN_TO(suboffset, reg_size);
86 reg.offset = ROUND_DOWN_TO(reg.offset, reg_size) + suboffset % reg_size;
87 break;
88 }
89 case MRF: {
90 const unsigned suboffset = reg.offset % REG_SIZE + delta;
91 reg.nr += suboffset / REG_SIZE;
92 reg.offset = ROUND_DOWN_TO(reg.offset, REG_SIZE) + suboffset % REG_SIZE;
93 break;
94 }
95 case ARF:
96 case FIXED_GRF: {
97 const unsigned suboffset = reg.subnr + delta;
98 reg.nr += suboffset / REG_SIZE;
99 reg.subnr = suboffset % REG_SIZE;
100 break;
101 }
102 case IMM:
103 default:
104 assert(delta == 0);
105 }
106 return reg;
107 }
108
109 static inline fs_reg
110 horiz_offset(const fs_reg &reg, unsigned delta)
111 {
112 switch (reg.file) {
113 case BAD_FILE:
114 case UNIFORM:
115 case IMM:
116 /* These only have a single component that is implicitly splatted. A
117 * horizontal offset should be a harmless no-op.
118 * XXX - Handle vector immediates correctly.
119 */
120 return reg;
121 case VGRF:
122 case MRF:
123 case ATTR:
124 return byte_offset(reg, delta * reg.stride * type_sz(reg.type));
125 case ARF:
126 case FIXED_GRF:
127 if (reg.is_null()) {
128 return reg;
129 } else {
130 const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0;
131 return byte_offset(reg, delta * stride * type_sz(reg.type));
132 }
133 }
134 unreachable("Invalid register file");
135 }
136
137 static inline fs_reg
138 offset(fs_reg reg, unsigned width, unsigned delta)
139 {
140 switch (reg.file) {
141 case BAD_FILE:
142 break;
143 case ARF:
144 case FIXED_GRF:
145 case MRF:
146 case VGRF:
147 case ATTR:
148 case UNIFORM:
149 return byte_offset(reg, delta * reg.component_size(width));
150 case IMM:
151 assert(delta == 0);
152 }
153 return reg;
154 }
155
156 /**
157 * Get the scalar channel of \p reg given by \p idx and replicate it to all
158 * channels of the result.
159 */
160 static inline fs_reg
161 component(fs_reg reg, unsigned idx)
162 {
163 reg = horiz_offset(reg, idx);
164 reg.stride = 0;
165 return reg;
166 }
167
168 /**
169 * Return an integer identifying the discrete address space a register is
170 * contained in. A register is by definition fully contained in the single
171 * reg_space it belongs to, so two registers with different reg_space ids are
172 * guaranteed not to overlap. Most register files are a single reg_space of
173 * its own, only the VGRF file is composed of multiple discrete address
174 * spaces, one for each VGRF allocation.
175 */
176 static inline uint32_t
177 reg_space(const fs_reg &r)
178 {
179 return r.file << 16 | (r.file == VGRF ? r.nr : 0);
180 }
181
182 /**
183 * Return the base offset in bytes of a register relative to the start of its
184 * reg_space().
185 */
186 static inline unsigned
187 reg_offset(const fs_reg &r)
188 {
189 return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
190 (r.file == UNIFORM ? 4 : REG_SIZE) + r.offset;
191 }
192
193 /**
194 * Return whether the register region starting at \p r and spanning \p dr
195 * bytes could potentially overlap the register region starting at \p s and
196 * spanning \p ds bytes.
197 */
198 static inline bool
199 regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
200 {
201 if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
202 fs_reg t = r;
203 t.nr &= ~BRW_MRF_COMPR4;
204 /* COMPR4 regions are translated by the hardware during decompression
205 * into two separate half-regions 4 MRFs apart from each other.
206 */
207 return regions_overlap(t, dr / 2, s, ds) ||
208 regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds);
209
210 } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
211 return regions_overlap(s, ds, r, dr);
212
213 } else {
214 return reg_space(r) == reg_space(s) &&
215 !(reg_offset(r) + dr <= reg_offset(s) ||
216 reg_offset(s) + ds <= reg_offset(r));
217 }
218 }
219
220 /**
221 * Return whether the given register region is n-periodic, i.e. whether the
222 * original region remains invariant after shifting it by \p n scalar
223 * channels.
224 */
225 static inline bool
226 is_periodic(const fs_reg &reg, unsigned n)
227 {
228 if (reg.file == BAD_FILE || reg.is_null()) {
229 return true;
230
231 } else if (reg.file == IMM) {
232 const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV ||
233 reg.type == BRW_REGISTER_TYPE_V ? 8 :
234 reg.type == BRW_REGISTER_TYPE_VF ? 4 :
235 1);
236 return n % period == 0;
237
238 } else if (reg.file == ARF || reg.file == FIXED_GRF) {
239 const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 :
240 reg.vstride == 0 ? 1 << reg.width :
241 ~0);
242 return n % period == 0;
243
244 } else {
245 return reg.stride == 0;
246 }
247 }
248
249 static inline bool
250 is_uniform(const fs_reg &reg)
251 {
252 return is_periodic(reg, 1);
253 }
254
255 /**
256 * Get the specified 8-component quarter of a register.
257 * XXX - Maybe come up with a less misleading name for this (e.g. quarter())?
258 */
259 static inline fs_reg
260 half(const fs_reg &reg, unsigned idx)
261 {
262 assert(idx < 2);
263 return horiz_offset(reg, 8 * idx);
264 }
265
266 /**
267 * Reinterpret each channel of register \p reg as a vector of values of the
268 * given smaller type and take the i-th subcomponent from each.
269 */
270 static inline fs_reg
271 subscript(fs_reg reg, brw_reg_type type, unsigned i)
272 {
273 assert((i + 1) * type_sz(type) <= type_sz(reg.type));
274
275 if (reg.file == ARF || reg.file == FIXED_GRF) {
276 /* The stride is encoded inconsistently for fixed GRF and ARF registers
277 * as the log2 of the actual vertical and horizontal strides.
278 */
279 const int delta = _mesa_logbase2(type_sz(reg.type)) -
280 _mesa_logbase2(type_sz(type));
281 reg.hstride += (reg.hstride ? delta : 0);
282 reg.vstride += (reg.vstride ? delta : 0);
283
284 } else if (reg.file == IMM) {
285 assert(reg.type == type);
286
287 } else {
288 reg.stride *= type_sz(reg.type) / type_sz(type);
289 }
290
291 return byte_offset(retype(reg, type), i * type_sz(type));
292 }
293
294 static const fs_reg reg_undef;
295
296 class fs_inst : public backend_instruction {
297 fs_inst &operator=(const fs_inst &);
298
299 void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
300 const fs_reg *src, unsigned sources);
301
302 public:
303 DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
304
305 fs_inst();
306 fs_inst(enum opcode opcode, uint8_t exec_size);
307 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst);
308 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
309 const fs_reg &src0);
310 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
311 const fs_reg &src0, const fs_reg &src1);
312 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
313 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2);
314 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
315 const fs_reg src[], unsigned sources);
316 fs_inst(const fs_inst &that);
317 ~fs_inst();
318
319 void resize_sources(uint8_t num_sources);
320
321 bool equals(fs_inst *inst) const;
322 bool overwrites_reg(const fs_reg &reg) const;
323 bool is_send_from_grf() const;
324 bool is_partial_write() const;
325 bool is_copy_payload(const brw::simple_allocator &grf_alloc) const;
326 unsigned components_read(unsigned i) const;
327 int size_read(int arg) const;
328 bool can_do_source_mods(const struct gen_device_info *devinfo);
329 bool can_change_types() const;
330 bool has_side_effects() const;
331 bool has_source_and_destination_hazard() const;
332
333 /**
334 * Return the subset of flag registers read by the instruction as a bitset
335 * with byte granularity.
336 */
337 unsigned flags_read(const gen_device_info *devinfo) const;
338
339 /**
340 * Return the subset of flag registers updated by the instruction (either
341 * partially or fully) as a bitset with byte granularity.
342 */
343 unsigned flags_written() const;
344
345 fs_reg dst;
346 fs_reg *src;
347
348 uint8_t sources; /**< Number of fs_reg sources. */
349
350 /**
351 * Execution size of the instruction. This is used by the generator to
352 * generate the correct binary for the given fs_inst. Current valid
353 * values are 1, 8, 16.
354 */
355 uint8_t exec_size;
356
357 /**
358 * Channel group from the hardware execution and predication mask that
359 * should be applied to the instruction. The subset of channel enable
360 * signals (calculated from the EU control flow and predication state)
361 * given by [group, group + exec_size) will be used to mask GRF writes and
362 * any other side effects of the instruction.
363 */
364 uint8_t group;
365
366 bool eot:1;
367 bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
368 };
369
370 /**
371 * Make the execution of \p inst dependent on the evaluation of a possibly
372 * inverted predicate.
373 */
374 static inline fs_inst *
375 set_predicate_inv(enum brw_predicate pred, bool inverse,
376 fs_inst *inst)
377 {
378 inst->predicate = pred;
379 inst->predicate_inverse = inverse;
380 return inst;
381 }
382
383 /**
384 * Make the execution of \p inst dependent on the evaluation of a predicate.
385 */
386 static inline fs_inst *
387 set_predicate(enum brw_predicate pred, fs_inst *inst)
388 {
389 return set_predicate_inv(pred, false, inst);
390 }
391
392 /**
393 * Write the result of evaluating the condition given by \p mod to a flag
394 * register.
395 */
396 static inline fs_inst *
397 set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
398 {
399 inst->conditional_mod = mod;
400 return inst;
401 }
402
403 /**
404 * Clamp the result of \p inst to the saturation range of its destination
405 * datatype.
406 */
407 static inline fs_inst *
408 set_saturate(bool saturate, fs_inst *inst)
409 {
410 inst->saturate = saturate;
411 return inst;
412 }
413
414 /**
415 * Return the number of dataflow registers written by the instruction (either
416 * fully or partially) counted from 'floor(reg_offset(inst->dst) /
417 * register_size)'. The somewhat arbitrary register size unit is 4B for the
418 * UNIFORM and IMM files and 32B for all other files.
419 */
420 inline unsigned
421 regs_written(const fs_inst *inst)
422 {
423 /* XXX - Take into account register-misaligned offsets correctly. */
424 assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
425 return DIV_ROUND_UP(inst->size_written, REG_SIZE);
426 }
427
428 /**
429 * Return the number of dataflow registers read by the instruction (either
430 * fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
431 * register_size)'. The somewhat arbitrary register size unit is 4B for the
432 * UNIFORM and IMM files and 32B for all other files.
433 */
434 inline unsigned
435 regs_read(const fs_inst *inst, unsigned i)
436 {
437 /* XXX - Take into account register-misaligned offsets correctly. */
438 const unsigned reg_size =
439 inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE;
440 return DIV_ROUND_UP(inst->size_read(i), reg_size);
441 }
442
443 #endif