glsl: move to compiler/
[mesa.git] / src / mesa / drivers / dri / i965 / brw_meta_stencil_blit.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file brw_meta_stencil_blit.c
26 *
27 * Implements upsampling, downsampling and scaling of stencil miptrees. The
28 * logic can be originally found in brw_blorp_blit.c.
29 * Implementation creates a temporary draw framebuffer object and attaches the
30 * destination stencil buffer attachment as color attachment. Source attachment
31 * is in turn treated as a stencil texture and the glsl program used for the
32 * blitting samples it using stencil-indexing.
33 *
34 * Unfortunately as the data port does not support interleaved msaa-surfaces
35 * (stencil is always IMS), the glsl program needs to handle the writing of
36 * individual samples manually. Surface is configured as if it were single
37 * sampled (with adjusted dimensions) and the glsl program extracts the
38 * sample indices from the input coordinates for correct texturing.
39 *
40 * Target surface is also configured as Y-tiled instead of W-tiled in order
41 * to support generations 6-7. Later hardware supports W-tiled as render target
42 * and the logic here could be simplified for those.
43 */
44
45 #include "brw_context.h"
46 #include "intel_batchbuffer.h"
47 #include "intel_fbo.h"
48
49 #include "main/blit.h"
50 #include "main/buffers.h"
51 #include "main/fbobject.h"
52 #include "main/uniforms.h"
53 #include "main/texparam.h"
54 #include "main/texobj.h"
55 #include "main/viewport.h"
56 #include "main/enable.h"
57 #include "main/blend.h"
58 #include "main/varray.h"
59 #include "main/shaderapi.h"
60 #include "util/ralloc.h"
61
62 #include "drivers/common/meta.h"
63 #include "brw_meta_util.h"
64
65 #define FILE_DEBUG_FLAG DEBUG_FBO
66
67 struct blit_dims {
68 int src_x0, src_y0, src_x1, src_y1;
69 int dst_x0, dst_y0, dst_x1, dst_y1;
70 bool mirror_x, mirror_y;
71 };
72
73 static const char *vs_source =
74 "#version 130\n"
75 "in vec2 position;\n"
76 "out vec2 tex_coords;\n"
77 "void main()\n"
78 "{\n"
79 " tex_coords = (position + 1.0) / 2.0;\n"
80 " gl_Position = vec4(position, 0.0, 1.0);\n"
81 "}\n";
82
83 static const struct sampler_and_fetch {
84 const char *sampler;
85 const char *fetch;
86 } samplers[] = {
87 { "uniform usampler2D texSampler;\n",
88 " out_color = texelFetch(texSampler, txl_coords, 0)" },
89 { "#extension GL_ARB_texture_multisample : enable\n"
90 "uniform usampler2DMS texSampler;\n",
91 " out_color = texelFetch(texSampler, txl_coords, sample_index)" }
92 };
93
94 /**
95 * Translating Y-tiled to W-tiled:
96 *
97 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1
98 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
99 */
100 static const char *fs_tmpl =
101 "#version 130\n"
102 "%s"
103 "uniform float src_x_scale;\n"
104 "uniform float src_y_scale;\n"
105 "uniform float src_x_off;\n" /* Top right coordinates of the source */
106 "uniform float src_y_off;\n" /* rectangle in W-tiled space. */
107 "uniform float dst_x_off;\n" /* Top right coordinates of the target */
108 "uniform float dst_y_off;\n" /* rectangle in Y-tiled space. */
109 "uniform float draw_rect_w;\n" /* This is the unnormalized size of the */
110 "uniform float draw_rect_h;\n" /* drawing rectangle in Y-tiled space. */
111 "uniform int dst_x0;\n" /* This is the bounding rectangle in the W-tiled */
112 "uniform int dst_x1;\n" /* space that will be used to skip pixels lying */
113 "uniform int dst_y0;\n" /* outside. In some cases the Y-tiled rectangle */
114 "uniform int dst_y1;\n" /* is larger. */
115 "uniform int dst_num_samples;\n"
116 "in vec2 tex_coords;\n"
117 "ivec2 txl_coords;\n"
118 "int sample_index;\n"
119 "out uvec4 out_color;\n"
120 "\n"
121 "void get_unorm_target_coords()\n"
122 "{\n"
123 " txl_coords.x = int(tex_coords.x * draw_rect_w + dst_x_off);\n"
124 " txl_coords.y = int(tex_coords.y * draw_rect_h + dst_y_off);\n"
125 "}\n"
126 "\n"
127 "void translate_dst_to_src()\n"
128 "{\n"
129 " txl_coords.x = int(float(txl_coords.x) * src_x_scale + src_x_off);\n"
130 " txl_coords.y = int(float(txl_coords.y) * src_y_scale + src_y_off);\n"
131 "}\n"
132 "\n"
133 "void translate_y_to_w_tiling()\n"
134 "{\n"
135 " int X = txl_coords.x;\n"
136 " int Y = txl_coords.y;\n"
137 " txl_coords.x = (X & int(0xfff4)) >> 1;\n"
138 " txl_coords.x |= ((Y & int(0x1)) << 2);\n"
139 " txl_coords.x |= (X & int(0x1));\n"
140 " txl_coords.y = (Y & int(0xfffe)) << 1;\n"
141 " txl_coords.y |= ((X & int(0x8)) >> 2);\n"
142 " txl_coords.y |= ((X & int(0x2)) >> 1);\n"
143 "}\n"
144 "\n"
145 "void decode_msaa()\n"
146 "{\n"
147 " int X = txl_coords.x;\n"
148 " int Y = txl_coords.y;\n"
149 " switch (dst_num_samples) {\n"
150 " case 0:\n"
151 " sample_index = 0;\n"
152 " break;\n"
153 " case 2:\n"
154 " txl_coords.x = ((X & int(0xfffc)) >> 1) | (X & int(0x1));\n"
155 " sample_index = (X & 0x2) >> 1;\n"
156 " break;\n"
157 " case 4:\n"
158 " txl_coords.x = ((X & int(0xfffc)) >> 1) | (X & int(0x1));\n"
159 " txl_coords.y = ((Y & int(0xfffc)) >> 1) | (Y & int(0x1));\n"
160 " sample_index = (Y & 0x2) | ((X & 0x2) >> 1);\n"
161 " break;\n"
162 " case 8:\n"
163 " txl_coords.x = ((X & int(0xfff8)) >> 2) | (X & int(0x1));\n"
164 " txl_coords.y = ((Y & int(0xfffc)) >> 1) | (Y & int(0x1));\n"
165 " sample_index = (X & 0x4) | (Y & 0x2) | ((X & 0x2) >> 1);\n"
166 " break;\n"
167 " case 16:\n"
168 " txl_coords.x = ((X & int(0xfff8)) >> 2) | (X & int(0x1));\n"
169 " txl_coords.y = ((Y & int(0xfff8)) >> 2) | (Y & int(0x1));\n"
170 " sample_index = (((Y & 0x4) << 1) | (X & 0x4) | (Y & 0x2) |\n"
171 " ((X & 0x2) >> 1));\n"
172 " break;\n"
173 " }\n"
174 "}\n"
175 "\n"
176 "void discard_outside_bounding_rect()\n"
177 "{\n"
178 " int X = txl_coords.x;\n"
179 " int Y = txl_coords.y;\n"
180 " if (X >= dst_x1 || X < dst_x0 || Y >= dst_y1 || Y < dst_y0)\n"
181 " discard;\n"
182 "}\n"
183 "\n"
184 "void main()\n"
185 "{\n"
186 " get_unorm_target_coords();\n"
187 " translate_y_to_w_tiling();\n"
188 " decode_msaa();"
189 " discard_outside_bounding_rect();\n"
190 " translate_dst_to_src();\n"
191 " %s;\n"
192 "}\n";
193
194 /**
195 * Setup uniforms telling the coordinates of the destination rectangle in the
196 * native w-tiled space. These are needed to ignore pixels that lie outside.
197 * The destination is drawn as Y-tiled and in some cases the Y-tiled drawing
198 * rectangle is larger than the original (for example 1x4 w-tiled requires
199 * 16x2 y-tiled).
200 */
201 static void
202 setup_bounding_rect(GLuint prog, const struct blit_dims *dims)
203 {
204 _mesa_Uniform1i(_mesa_GetUniformLocation(prog, "dst_x0"), dims->dst_x0);
205 _mesa_Uniform1i(_mesa_GetUniformLocation(prog, "dst_x1"), dims->dst_x1);
206 _mesa_Uniform1i(_mesa_GetUniformLocation(prog, "dst_y0"), dims->dst_y0);
207 _mesa_Uniform1i(_mesa_GetUniformLocation(prog, "dst_y1"), dims->dst_y1);
208 }
209
210 /**
211 * Setup uniforms telling the destination width, height and the offset. These
212 * are needed to unnormalize the input coordinates and to correctly translate
213 * between destination and source that may have differing offsets.
214 */
215 static void
216 setup_drawing_rect(GLuint prog, const struct blit_dims *dims)
217 {
218 _mesa_Uniform1f(_mesa_GetUniformLocation(prog, "draw_rect_w"),
219 dims->dst_x1 - dims->dst_x0);
220 _mesa_Uniform1f(_mesa_GetUniformLocation(prog, "draw_rect_h"),
221 dims->dst_y1 - dims->dst_y0);
222 _mesa_Uniform1f(_mesa_GetUniformLocation(prog, "dst_x_off"), dims->dst_x0);
223 _mesa_Uniform1f(_mesa_GetUniformLocation(prog, "dst_y_off"), dims->dst_y0);
224 }
225
226 /**
227 * When not mirroring a coordinate (say, X), we need:
228 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
229 * Therefore:
230 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
231 *
232 * The program uses "round toward zero" to convert the transformed floating
233 * point coordinates to integer coordinates, whereas the behaviour we actually
234 * want is "round to nearest", so 0.5 provides the necessary correction.
235 *
236 * When mirroring X we need:
237 * src_x - src_x0 = dst_x1 - dst_x - 0.5
238 * Therefore:
239 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
240 */
241 static void
242 setup_coord_coeff(GLuint prog, GLuint multiplier, GLuint offset,
243 int src_0, int src_1, int dst_0, int dst_1, bool mirror)
244 {
245 const float scale = ((float)(src_1 - src_0)) / (dst_1 - dst_0);
246
247 if (mirror) {
248 _mesa_Uniform1f(multiplier, -scale);
249 _mesa_Uniform1f(offset, src_0 + (dst_1 - 0.5f) * scale);
250 } else {
251 _mesa_Uniform1f(multiplier, scale);
252 _mesa_Uniform1f(offset, src_0 + (-dst_0 + 0.5f) * scale);
253 }
254 }
255
256 /**
257 * Setup uniforms providing relation between source and destination surfaces.
258 * Destination coordinates are in Y-tiling layout while texelFetch() expects
259 * W-tiled coordinates. Once the destination coordinates are re-interpreted by
260 * the program into the original W-tiled layout, the program needs to know the
261 * offset and scaling factors between the destination and source.
262 * Note that these are calculated in the original W-tiled space before the
263 * destination rectangle is adjusted for possible msaa and Y-tiling.
264 */
265 static void
266 setup_coord_transform(GLuint prog, const struct blit_dims *dims)
267 {
268 setup_coord_coeff(prog,
269 _mesa_GetUniformLocation(prog, "src_x_scale"),
270 _mesa_GetUniformLocation(prog, "src_x_off"),
271 dims->src_x0, dims->src_x1, dims->dst_x0, dims->dst_x1,
272 dims->mirror_x);
273
274 setup_coord_coeff(prog,
275 _mesa_GetUniformLocation(prog, "src_y_scale"),
276 _mesa_GetUniformLocation(prog, "src_y_off"),
277 dims->src_y0, dims->src_y1, dims->dst_y0, dims->dst_y1,
278 dims->mirror_y);
279 }
280
281 static GLuint
282 setup_program(struct brw_context *brw, bool msaa_tex)
283 {
284 struct gl_context *ctx = &brw->ctx;
285 struct blit_state *blit = &ctx->Meta->Blit;
286 char *fs_source;
287 const struct sampler_and_fetch *sampler = &samplers[msaa_tex];
288
289 _mesa_meta_setup_vertex_objects(&brw->ctx, &blit->VAO, &blit->buf_obj, true,
290 2, 2, 0);
291
292 GLuint *prog_id = &brw->meta_stencil_blit_programs[msaa_tex];
293
294 if (*prog_id) {
295 _mesa_UseProgram(*prog_id);
296 return *prog_id;
297 }
298
299 fs_source = ralloc_asprintf(NULL, fs_tmpl, sampler->sampler,
300 sampler->fetch);
301 _mesa_meta_compile_and_link_program(ctx, vs_source, fs_source,
302 "i965 stencil blit",
303 prog_id);
304 ralloc_free(fs_source);
305
306 return *prog_id;
307 }
308
309 /**
310 * Samples in stencil buffer are interleaved, and unfortunately the data port
311 * does not support it as render target. Therefore the surface is set up as
312 * single sampled and the program handles the interleaving.
313 * In case of single sampled stencil, the render buffer is adjusted with
314 * twice the base level height in order for the program to be able to write
315 * any mip-level. (Used to set the drawing rectangle for the hw).
316 */
317 static void
318 adjust_msaa(struct blit_dims *dims, int num_samples)
319 {
320 if (num_samples == 2) {
321 dims->dst_x0 *= 2;
322 dims->dst_x1 *= 2;
323 } else if (num_samples) {
324 const int y_num_samples = num_samples >= 16 ? 4 : 2;
325 const int x_num_samples = num_samples / y_num_samples;
326 dims->dst_x0 = ROUND_DOWN_TO(dims->dst_x0 * x_num_samples,
327 x_num_samples * 2);
328 dims->dst_y0 = ROUND_DOWN_TO(dims->dst_y0 * y_num_samples,
329 y_num_samples * 2);
330 dims->dst_x1 = ALIGN(dims->dst_x1 * x_num_samples,
331 x_num_samples * 2);
332 dims->dst_y1 = ALIGN(dims->dst_y1 * y_num_samples,
333 y_num_samples * 2);
334 }
335 }
336
337 /**
338 * Stencil is mapped as Y-tiled render target and the dimensions need to be
339 * adjusted in order for the Y-tiled rectangle to cover the entire linear
340 * memory space of the original W-tiled rectangle.
341 */
342 static void
343 adjust_tiling(struct blit_dims *dims, int num_samples)
344 {
345 const unsigned x_align = 8, y_align = num_samples > 2 ? 8 : 4;
346
347 dims->dst_x0 = ROUND_DOWN_TO(dims->dst_x0, x_align) * 2;
348 dims->dst_y0 = ROUND_DOWN_TO(dims->dst_y0, y_align) / 2;
349 dims->dst_x1 = ALIGN(dims->dst_x1, x_align) * 2;
350 dims->dst_y1 = ALIGN(dims->dst_y1, y_align) / 2;
351 }
352
353 /**
354 * When stencil is mapped as Y-tiled render target the mip-level offsets
355 * calculated for the Y-tiling do not always match the offsets in W-tiling.
356 * Therefore the sampling engine cannot be used for individual mip-level
357 * access but the program needs to do it internally. This can be achieved
358 * by shifting the coordinates of the blit rectangle here.
359 */
360 static void
361 adjust_mip_level(const struct intel_mipmap_tree *mt,
362 unsigned level, unsigned layer, struct blit_dims *dims)
363 {
364 unsigned x_offset;
365 unsigned y_offset;
366
367 intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
368
369 dims->dst_x0 += x_offset;
370 dims->dst_y0 += y_offset;
371 dims->dst_x1 += x_offset;
372 dims->dst_y1 += y_offset;
373 }
374
375 static void
376 prepare_vertex_data(struct gl_context *ctx, struct gl_buffer_object *buf_obj)
377 {
378 static const struct vertex verts[] = {
379 { .x = -1.0f, .y = -1.0f },
380 { .x = 1.0f, .y = -1.0f },
381 { .x = 1.0f, .y = 1.0f },
382 { .x = -1.0f, .y = 1.0f } };
383
384 _mesa_buffer_sub_data(ctx, buf_obj, 0, sizeof(verts), verts, __func__);
385 }
386
387 static bool
388 set_read_rb_tex_image(struct gl_context *ctx, struct fb_tex_blit_state *blit,
389 GLenum *target)
390 {
391 const struct gl_renderbuffer_attachment *att =
392 &ctx->ReadBuffer->Attachment[BUFFER_STENCIL];
393 struct gl_renderbuffer *rb = att->Renderbuffer;
394 struct gl_texture_object *tex_obj;
395 unsigned level = 0;
396
397 /* If the renderbuffer is already backed by an tex image, use it. */
398 if (att->Texture) {
399 tex_obj = att->Texture;
400 *target = tex_obj->Target;
401 level = att->TextureLevel;
402 } else {
403 if (!_mesa_meta_bind_rb_as_tex_image(ctx, rb, &blit->tempTex, &tex_obj,
404 target)) {
405 return false;
406 }
407 }
408
409 blit->baseLevelSave = tex_obj->BaseLevel;
410 blit->maxLevelSave = tex_obj->MaxLevel;
411 blit->stencilSamplingSave = tex_obj->StencilSampling;
412 blit->samp_obj = _mesa_meta_setup_sampler(ctx, tex_obj, *target,
413 GL_NEAREST, level);
414 return true;
415 }
416
417 static void
418 brw_meta_stencil_blit(struct brw_context *brw,
419 struct intel_mipmap_tree *dst_mt,
420 unsigned dst_level, unsigned dst_layer,
421 const struct blit_dims *orig_dims)
422 {
423 struct gl_context *ctx = &brw->ctx;
424 struct blit_dims dims = *orig_dims;
425 struct fb_tex_blit_state blit;
426 GLuint prog, fbo, rbo;
427 GLenum target;
428
429 _mesa_meta_fb_tex_blit_begin(ctx, &blit);
430 /* XXX: Pretend to support stencil textures so _mesa_base_tex_format()
431 * returns a valid format. When we properly support the extension, we
432 * should remove this.
433 */
434 assert(ctx->Extensions.ARB_texture_stencil8 == false);
435 ctx->Extensions.ARB_texture_stencil8 = true;
436
437 _mesa_GenFramebuffers(1, &fbo);
438 /* Force the surface to be configured for level zero. */
439 rbo = brw_get_rb_for_slice(brw, dst_mt, 0, dst_layer, true);
440 adjust_msaa(&dims, dst_mt->num_samples);
441 adjust_tiling(&dims, dst_mt->num_samples);
442
443 _mesa_BindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
444 _mesa_FramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
445 GL_RENDERBUFFER, rbo);
446 _mesa_DrawBuffer(GL_COLOR_ATTACHMENT0);
447 ctx->DrawBuffer->_Status = GL_FRAMEBUFFER_COMPLETE;
448
449 if (!set_read_rb_tex_image(ctx, &blit, &target)) {
450 goto error;
451 }
452
453 _mesa_TexParameteri(target, GL_DEPTH_STENCIL_TEXTURE_MODE,
454 GL_STENCIL_INDEX);
455
456 prog = setup_program(brw, target != GL_TEXTURE_2D);
457 setup_bounding_rect(prog, orig_dims);
458 setup_drawing_rect(prog, &dims);
459 setup_coord_transform(prog, orig_dims);
460
461 _mesa_Uniform1i(_mesa_GetUniformLocation(prog, "dst_num_samples"),
462 dst_mt->num_samples);
463
464 prepare_vertex_data(ctx, ctx->Meta->Blit.buf_obj);
465 _mesa_set_viewport(ctx, 0, dims.dst_x0, dims.dst_y0,
466 dims.dst_x1 - dims.dst_x0, dims.dst_y1 - dims.dst_y0);
467 _mesa_ColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
468 _mesa_set_enable(ctx, GL_DEPTH_TEST, false);
469
470 _mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
471
472 error:
473 ctx->Extensions.ARB_texture_stencil8 = false;
474 _mesa_meta_fb_tex_blit_end(ctx, target, &blit);
475 _mesa_meta_end(ctx);
476
477 _mesa_DeleteRenderbuffers(1, &rbo);
478 _mesa_DeleteFramebuffers(1, &fbo);
479 }
480
481 void
482 brw_meta_fbo_stencil_blit(struct brw_context *brw,
483 struct gl_framebuffer *read_fb,
484 struct gl_framebuffer *draw_fb,
485 GLfloat src_x0, GLfloat src_y0,
486 GLfloat src_x1, GLfloat src_y1,
487 GLfloat dst_x0, GLfloat dst_y0,
488 GLfloat dst_x1, GLfloat dst_y1)
489 {
490 struct gl_context *ctx = &brw->ctx;
491 struct gl_renderbuffer *draw_rb =
492 draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
493 const struct intel_renderbuffer *dst_irb = intel_renderbuffer(draw_rb);
494 struct intel_mipmap_tree *dst_mt = dst_irb->mt;
495
496 if (!dst_mt)
497 return;
498
499 if (dst_mt->stencil_mt)
500 dst_mt = dst_mt->stencil_mt;
501
502 bool mirror_x, mirror_y;
503 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
504 &src_x0, &src_y0, &src_x1, &src_y1,
505 &dst_x0, &dst_y0, &dst_x1, &dst_y1,
506 &mirror_x, &mirror_y))
507 return;
508
509 struct blit_dims dims = { .src_x0 = src_x0, .src_y0 = src_y0,
510 .src_x1 = src_x1, .src_y1 = src_y1,
511 .dst_x0 = dst_x0, .dst_y0 = dst_y0,
512 .dst_x1 = dst_x1, .dst_y1 = dst_y1,
513 .mirror_x = mirror_x, .mirror_y = mirror_y };
514 adjust_mip_level(dst_mt, dst_irb->mt_level, dst_irb->mt_layer, &dims);
515
516 brw_emit_mi_flush(brw);
517 _mesa_meta_begin(ctx, MESA_META_ALL);
518 brw_meta_stencil_blit(brw,
519 dst_mt, dst_irb->mt_level, dst_irb->mt_layer, &dims);
520 brw_emit_mi_flush(brw);
521 }
522
523 void
524 brw_meta_stencil_updownsample(struct brw_context *brw,
525 struct intel_mipmap_tree *src,
526 struct intel_mipmap_tree *dst)
527 {
528 struct gl_context *ctx = &brw->ctx;
529 struct blit_dims dims = {
530 .src_x0 = 0, .src_y0 = 0,
531 .src_x1 = src->logical_width0, .src_y1 = src->logical_height0,
532 .dst_x0 = 0, .dst_y0 = 0,
533 .dst_x1 = dst->logical_width0, .dst_y1 = dst->logical_height0,
534 .mirror_x = 0, .mirror_y = 0 };
535 GLuint fbo, rbo;
536
537 if (dst->stencil_mt)
538 dst = dst->stencil_mt;
539
540 brw_emit_mi_flush(brw);
541 _mesa_meta_begin(ctx, MESA_META_ALL);
542
543 _mesa_GenFramebuffers(1, &fbo);
544 rbo = brw_get_rb_for_slice(brw, src, 0, 0, false);
545
546 _mesa_BindFramebuffer(GL_READ_FRAMEBUFFER, fbo);
547 _mesa_FramebufferRenderbuffer(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
548 GL_RENDERBUFFER, rbo);
549
550 brw_meta_stencil_blit(brw, dst, 0, 0, &dims);
551 brw_emit_mi_flush(brw);
552
553 _mesa_DeleteRenderbuffers(1, &rbo);
554 _mesa_DeleteFramebuffers(1, &fbo);
555 }