i965: perf: minimize the chances to spread queries across batchbuffers
[mesa.git] / src / mesa / drivers / dri / i965 / brw_performance_query.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_performance_query.c
26 *
27 * Implementation of the GL_INTEL_performance_query extension.
28 *
29 * Currently there are two possible counter sources exposed here:
30 *
31 * On Gen6+ hardware we have numerous 64bit Pipeline Statistics Registers
32 * that we can snapshot at the beginning and end of a query.
33 *
34 * On Gen7.5+ we have Observability Architecture counters which are
35 * covered in separate document from the rest of the PRMs. It is available at:
36 * https://01.org/linuxgraphics/documentation/driver-documentation-prms
37 * => 2013 Intel Core Processor Family => Observability Performance Counters
38 * (This one volume covers Sandybridge, Ivybridge, Baytrail, and Haswell,
39 * though notably we currently only support OA counters for Haswell+)
40 */
41
42 #include <limits.h>
43 #include <dirent.h>
44
45 /* put before sys/types.h to silence glibc warnings */
46 #ifdef MAJOR_IN_MKDEV
47 #include <sys/mkdev.h>
48 #endif
49 #ifdef MAJOR_IN_SYSMACROS
50 #include <sys/sysmacros.h>
51 #endif
52 #include <sys/types.h>
53 #include <sys/stat.h>
54 #include <fcntl.h>
55 #include <sys/mman.h>
56 #include <sys/ioctl.h>
57
58 #include <xf86drm.h>
59 #include <i915_drm.h>
60
61 #include "main/hash.h"
62 #include "main/macros.h"
63 #include "main/mtypes.h"
64 #include "main/performance_query.h"
65
66 #include "util/bitset.h"
67 #include "util/ralloc.h"
68 #include "util/hash_table.h"
69 #include "util/list.h"
70
71 #include "brw_context.h"
72 #include "brw_defines.h"
73 #include "brw_performance_query.h"
74 #include "brw_oa_hsw.h"
75 #include "intel_batchbuffer.h"
76
77 #define FILE_DEBUG_FLAG DEBUG_PERFMON
78
79 /*
80 * The largest OA format we can use on Haswell includes:
81 * 1 timestamp, 45 A counters, 8 B counters and 8 C counters.
82 */
83 #define MAX_OA_REPORT_COUNTERS 62
84
85 #define I915_PERF_OA_SAMPLE_SIZE (8 + /* drm_i915_perf_record_header */ \
86 256) /* OA counter report */
87
88 /**
89 * Periodic OA samples are read() into these buffer structures via the
90 * i915 perf kernel interface and appended to the
91 * brw->perfquery.sample_buffers linked list. When we process the
92 * results of an OA metrics query we need to consider all the periodic
93 * samples between the Begin and End MI_REPORT_PERF_COUNT command
94 * markers.
95 *
96 * 'Periodic' is a simplification as there are other automatic reports
97 * written by the hardware also buffered here.
98 *
99 * Considering three queries, A, B and C:
100 *
101 * Time ---->
102 * ________________A_________________
103 * | |
104 * | ________B_________ _____C___________
105 * | | | | | |
106 *
107 * And an illustration of sample buffers read over this time frame:
108 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
109 *
110 * These nodes may hold samples for query A:
111 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
112 *
113 * These nodes may hold samples for query B:
114 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
115 *
116 * These nodes may hold samples for query C:
117 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
118 *
119 * The illustration assumes we have an even distribution of periodic
120 * samples so all nodes have the same size plotted against time:
121 *
122 * Note, to simplify code, the list is never empty.
123 *
124 * With overlapping queries we can see that periodic OA reports may
125 * relate to multiple queries and care needs to be take to keep
126 * track of sample buffers until there are no queries that might
127 * depend on their contents.
128 *
129 * We use a node ref counting system where a reference ensures that a
130 * node and all following nodes can't be freed/recycled until the
131 * reference drops to zero.
132 *
133 * E.g. with a ref of one here:
134 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
135 *
136 * These nodes could be freed or recycled ("reaped"):
137 * [ 0 ][ 0 ]
138 *
139 * These must be preserved until the leading ref drops to zero:
140 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
141 *
142 * When a query starts we take a reference on the current tail of
143 * the list, knowing that no already-buffered samples can possibly
144 * relate to the newly-started query. A pointer to this node is
145 * also saved in the query object's ->oa.samples_head.
146 *
147 * E.g. starting query A while there are two nodes in .sample_buffers:
148 * ________________A________
149 * |
150 *
151 * [ 0 ][ 1 ]
152 * ^_______ Add a reference and store pointer to node in
153 * A->oa.samples_head
154 *
155 * Moving forward to when the B query starts with no new buffer nodes:
156 * (for reference, i915 perf reads() are only done when queries finish)
157 * ________________A_______
158 * | ________B___
159 * | |
160 *
161 * [ 0 ][ 2 ]
162 * ^_______ Add a reference and store pointer to
163 * node in B->oa.samples_head
164 *
165 * Once a query is finished, after an OA query has become 'Ready',
166 * once the End OA report has landed and after we we have processed
167 * all the intermediate periodic samples then we drop the
168 * ->oa.samples_head reference we took at the start.
169 *
170 * So when the B query has finished we have:
171 * ________________A________
172 * | ______B___________
173 * | | |
174 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
175 * ^_______ Drop B->oa.samples_head reference
176 *
177 * We still can't free these due to the A->oa.samples_head ref:
178 * [ 1 ][ 0 ][ 0 ][ 0 ]
179 *
180 * When the A query finishes: (note there's a new ref for C's samples_head)
181 * ________________A_________________
182 * | |
183 * | _____C_________
184 * | | |
185 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
186 * ^_______ Drop A->oa.samples_head reference
187 *
188 * And we can now reap these nodes up to the C->oa.samples_head:
189 * [ X ][ X ][ X ][ X ]
190 * keeping -> [ 1 ][ 0 ][ 0 ]
191 *
192 * We reap old sample buffers each time we finish processing an OA
193 * query by iterating the sample_buffers list from the head until we
194 * find a referenced node and stop.
195 *
196 * Reaped buffers move to a perfquery.free_sample_buffers list and
197 * when we come to read() we first look to recycle a buffer from the
198 * free_sample_buffers list before allocating a new buffer.
199 */
200 struct brw_oa_sample_buf {
201 struct exec_node link;
202 int refcount;
203 int len;
204 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
205 };
206
207 /**
208 * i965 representation of a performance query object.
209 *
210 * NB: We want to keep this structure relatively lean considering that
211 * applications may expect to allocate enough objects to be able to
212 * query around all draw calls in a frame.
213 */
214 struct brw_perf_query_object
215 {
216 struct gl_perf_query_object base;
217
218 const struct brw_perf_query_info *query;
219
220 /* See query->kind to know which state below is in use... */
221 union {
222 struct {
223
224 /**
225 * BO containing OA counter snapshots at query Begin/End time.
226 */
227 struct brw_bo *bo;
228
229 /**
230 * The MI_REPORT_PERF_COUNT command lets us specify a unique
231 * ID that will be reflected in the resulting OA report
232 * that's written by the GPU. This is the ID we're expecting
233 * in the begin report and the the end report should be
234 * @begin_report_id + 1.
235 */
236 int begin_report_id;
237
238 /**
239 * Reference the head of the brw->perfquery.sample_buffers
240 * list at the time that the query started (so we only need
241 * to look at nodes after this point when looking for samples
242 * related to this query)
243 *
244 * (See struct brw_oa_sample_buf description for more details)
245 */
246 struct exec_node *samples_head;
247
248 /**
249 * Storage for the final accumulated OA counters.
250 */
251 uint64_t accumulator[MAX_OA_REPORT_COUNTERS];
252
253 /**
254 * false while in the unaccumulated_elements list, and set to
255 * true when the final, end MI_RPC snapshot has been
256 * accumulated.
257 */
258 bool results_accumulated;
259
260 } oa;
261
262 struct {
263 /**
264 * BO containing starting and ending snapshots for the
265 * statistics counters.
266 */
267 struct brw_bo *bo;
268 } pipeline_stats;
269 };
270 };
271
272 /** Downcasting convenience macro. */
273 static inline struct brw_perf_query_object *
274 brw_perf_query(struct gl_perf_query_object *o)
275 {
276 return (struct brw_perf_query_object *) o;
277 }
278
279 #define STATS_BO_SIZE 4096
280 #define STATS_BO_END_OFFSET_BYTES (STATS_BO_SIZE / 2)
281 #define MAX_STAT_COUNTERS (STATS_BO_END_OFFSET_BYTES / 8)
282
283 #define MI_RPC_BO_SIZE 4096
284 #define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2)
285
286 /******************************************************************************/
287
288 static bool
289 brw_is_perf_query_ready(struct gl_context *ctx,
290 struct gl_perf_query_object *o);
291
292 static void
293 dump_perf_query_callback(GLuint id, void *query_void, void *brw_void)
294 {
295 struct gl_context *ctx = brw_void;
296 struct gl_perf_query_object *o = query_void;
297 struct brw_perf_query_object *obj = query_void;
298
299 switch (obj->query->kind) {
300 case OA_COUNTERS:
301 DBG("%4d: %-6s %-8s BO: %-4s OA data: %-10s %-15s\n",
302 id,
303 o->Used ? "Dirty," : "New,",
304 o->Active ? "Active," : (o->Ready ? "Ready," : "Pending,"),
305 obj->oa.bo ? "yes," : "no,",
306 brw_is_perf_query_ready(ctx, o) ? "ready," : "not ready,",
307 obj->oa.results_accumulated ? "accumulated" : "not accumulated");
308 break;
309 case PIPELINE_STATS:
310 DBG("%4d: %-6s %-8s BO: %-4s\n",
311 id,
312 o->Used ? "Dirty," : "New,",
313 o->Active ? "Active," : (o->Ready ? "Ready," : "Pending,"),
314 obj->pipeline_stats.bo ? "yes" : "no");
315 break;
316 }
317 }
318
319 static void
320 dump_perf_queries(struct brw_context *brw)
321 {
322 struct gl_context *ctx = &brw->ctx;
323 DBG("Queries: (Open queries = %d, OA users = %d)\n",
324 brw->perfquery.n_active_oa_queries, brw->perfquery.n_oa_users);
325 _mesa_HashWalk(ctx->PerfQuery.Objects, dump_perf_query_callback, brw);
326 }
327
328 /******************************************************************************/
329
330 static struct brw_oa_sample_buf *
331 get_free_sample_buf(struct brw_context *brw)
332 {
333 struct exec_node *node = exec_list_pop_head(&brw->perfquery.free_sample_buffers);
334 struct brw_oa_sample_buf *buf;
335
336 if (node)
337 buf = exec_node_data(struct brw_oa_sample_buf, node, link);
338 else {
339 buf = ralloc_size(brw, sizeof(*buf));
340
341 exec_node_init(&buf->link);
342 buf->refcount = 0;
343 buf->len = 0;
344 }
345
346 return buf;
347 }
348
349 static void
350 reap_old_sample_buffers(struct brw_context *brw)
351 {
352 struct exec_node *tail_node =
353 exec_list_get_tail(&brw->perfquery.sample_buffers);
354 struct brw_oa_sample_buf *tail_buf =
355 exec_node_data(struct brw_oa_sample_buf, tail_node, link);
356
357 /* Remove all old, unreferenced sample buffers walking forward from
358 * the head of the list, except always leave at least one node in
359 * the list so we always have a node to reference when we Begin
360 * a new query.
361 */
362 foreach_list_typed_safe(struct brw_oa_sample_buf, buf, link,
363 &brw->perfquery.sample_buffers)
364 {
365 if (buf->refcount == 0 && buf != tail_buf) {
366 exec_node_remove(&buf->link);
367 exec_list_push_head(&brw->perfquery.free_sample_buffers, &buf->link);
368 } else
369 return;
370 }
371 }
372
373 static void
374 free_sample_bufs(struct brw_context *brw)
375 {
376 foreach_list_typed_safe(struct brw_oa_sample_buf, buf, link,
377 &brw->perfquery.free_sample_buffers)
378 ralloc_free(buf);
379
380 exec_list_make_empty(&brw->perfquery.free_sample_buffers);
381 }
382
383 /******************************************************************************/
384
385 /**
386 * Driver hook for glGetPerfQueryInfoINTEL().
387 */
388 static void
389 brw_get_perf_query_info(struct gl_context *ctx,
390 unsigned query_index,
391 const char **name,
392 GLuint *data_size,
393 GLuint *n_counters,
394 GLuint *n_active)
395 {
396 struct brw_context *brw = brw_context(ctx);
397 const struct brw_perf_query_info *query =
398 &brw->perfquery.queries[query_index];
399
400 *name = query->name;
401 *data_size = query->data_size;
402 *n_counters = query->n_counters;
403
404 switch (query->kind) {
405 case OA_COUNTERS:
406 *n_active = brw->perfquery.n_active_oa_queries;
407 break;
408
409 case PIPELINE_STATS:
410 *n_active = brw->perfquery.n_active_pipeline_stats_queries;
411 break;
412 }
413 }
414
415 /**
416 * Driver hook for glGetPerfCounterInfoINTEL().
417 */
418 static void
419 brw_get_perf_counter_info(struct gl_context *ctx,
420 unsigned query_index,
421 unsigned counter_index,
422 const char **name,
423 const char **desc,
424 GLuint *offset,
425 GLuint *data_size,
426 GLuint *type_enum,
427 GLuint *data_type_enum,
428 GLuint64 *raw_max)
429 {
430 struct brw_context *brw = brw_context(ctx);
431 const struct brw_perf_query_info *query =
432 &brw->perfquery.queries[query_index];
433 const struct brw_perf_query_counter *counter =
434 &query->counters[counter_index];
435
436 *name = counter->name;
437 *desc = counter->desc;
438 *offset = counter->offset;
439 *data_size = counter->size;
440 *type_enum = counter->type;
441 *data_type_enum = counter->data_type;
442 *raw_max = counter->raw_max;
443 }
444
445 /******************************************************************************/
446
447 /**
448 * Emit MI_STORE_REGISTER_MEM commands to capture all of the
449 * pipeline statistics for the performance query object.
450 */
451 static void
452 snapshot_statistics_registers(struct brw_context *brw,
453 struct brw_perf_query_object *obj,
454 uint32_t offset_in_bytes)
455 {
456 const struct brw_perf_query_info *query = obj->query;
457 const int n_counters = query->n_counters;
458
459 for (int i = 0; i < n_counters; i++) {
460 const struct brw_perf_query_counter *counter = &query->counters[i];
461
462 assert(counter->data_type == GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL);
463
464 brw_store_register_mem64(brw, obj->pipeline_stats.bo,
465 counter->pipeline_stat.reg,
466 offset_in_bytes + i * sizeof(uint64_t));
467 }
468 }
469
470 /**
471 * Add a query to the global list of "unaccumulated queries."
472 *
473 * Queries are tracked here until all the associated OA reports have
474 * been accumulated via accumulate_oa_reports() after the end
475 * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
476 */
477 static void
478 add_to_unaccumulated_query_list(struct brw_context *brw,
479 struct brw_perf_query_object *obj)
480 {
481 if (brw->perfquery.unaccumulated_elements >=
482 brw->perfquery.unaccumulated_array_size)
483 {
484 brw->perfquery.unaccumulated_array_size *= 1.5;
485 brw->perfquery.unaccumulated =
486 reralloc(brw, brw->perfquery.unaccumulated,
487 struct brw_perf_query_object *,
488 brw->perfquery.unaccumulated_array_size);
489 }
490
491 brw->perfquery.unaccumulated[brw->perfquery.unaccumulated_elements++] = obj;
492 }
493
494 /**
495 * Remove a query from the global list of unaccumulated queries once
496 * after successfully accumulating the OA reports associated with the
497 * query in accumulate_oa_reports() or when discarding unwanted query
498 * results.
499 */
500 static void
501 drop_from_unaccumulated_query_list(struct brw_context *brw,
502 struct brw_perf_query_object *obj)
503 {
504 for (int i = 0; i < brw->perfquery.unaccumulated_elements; i++) {
505 if (brw->perfquery.unaccumulated[i] == obj) {
506 int last_elt = --brw->perfquery.unaccumulated_elements;
507
508 if (i == last_elt)
509 brw->perfquery.unaccumulated[i] = NULL;
510 else {
511 brw->perfquery.unaccumulated[i] =
512 brw->perfquery.unaccumulated[last_elt];
513 }
514
515 break;
516 }
517 }
518
519 /* Drop our samples_head reference so that associated periodic
520 * sample data buffers can potentially be reaped if they aren't
521 * referenced by any other queries...
522 */
523
524 struct brw_oa_sample_buf *buf =
525 exec_node_data(struct brw_oa_sample_buf, obj->oa.samples_head, link);
526
527 assert(buf->refcount > 0);
528 buf->refcount--;
529
530 obj->oa.samples_head = NULL;
531
532 reap_old_sample_buffers(brw);
533 }
534
535 static uint64_t
536 timebase_scale(struct brw_context *brw, uint32_t u32_time_delta)
537 {
538 uint64_t tmp = ((uint64_t)u32_time_delta) * 1000000000ull;
539
540 return tmp ? tmp / brw->perfquery.sys_vars.timestamp_frequency : 0;
541 }
542
543 static void
544 accumulate_uint32(const uint32_t *report0,
545 const uint32_t *report1,
546 uint64_t *accumulator)
547 {
548 *accumulator += (uint32_t)(*report1 - *report0);
549 }
550
551 /**
552 * Given pointers to starting and ending OA snapshots, add the deltas for each
553 * counter to the results.
554 */
555 static void
556 add_deltas(struct brw_context *brw,
557 struct brw_perf_query_object *obj,
558 const uint32_t *start,
559 const uint32_t *end)
560 {
561 const struct brw_perf_query_info *query = obj->query;
562 uint64_t *accumulator = obj->oa.accumulator;
563 int i;
564
565 switch (query->oa_format) {
566 case I915_OA_FORMAT_A45_B8_C8:
567 accumulate_uint32(start + 1, end + 1, accumulator); /* timestamp */
568
569 for (i = 0; i < 61; i++)
570 accumulate_uint32(start + 3 + i, end + 3 + i, accumulator + 1 + i);
571
572 break;
573 default:
574 unreachable("Can't accumulate OA counters in unknown format");
575 }
576 }
577
578 static bool
579 inc_n_oa_users(struct brw_context *brw)
580 {
581 if (brw->perfquery.n_oa_users == 0 &&
582 drmIoctl(brw->perfquery.oa_stream_fd,
583 I915_PERF_IOCTL_ENABLE, 0) < 0)
584 {
585 return false;
586 }
587 ++brw->perfquery.n_oa_users;
588
589 return true;
590 }
591
592 static void
593 dec_n_oa_users(struct brw_context *brw)
594 {
595 /* Disabling the i915 perf stream will effectively disable the OA
596 * counters. Note it's important to be sure there are no outstanding
597 * MI_RPC commands at this point since they could stall the CS
598 * indefinitely once OACONTROL is disabled.
599 */
600 --brw->perfquery.n_oa_users;
601 if (brw->perfquery.n_oa_users == 0 &&
602 drmIoctl(brw->perfquery.oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
603 {
604 DBG("WARNING: Error disabling i915 perf stream: %m\n");
605 }
606 }
607
608 /* In general if we see anything spurious while accumulating results,
609 * we don't try and continue accumulating the current query, hoping
610 * for the best, we scrap anything outstanding, and then hope for the
611 * best with new queries.
612 */
613 static void
614 discard_all_queries(struct brw_context *brw)
615 {
616 while (brw->perfquery.unaccumulated_elements) {
617 struct brw_perf_query_object *obj = brw->perfquery.unaccumulated[0];
618
619 obj->oa.results_accumulated = true;
620 drop_from_unaccumulated_query_list(brw, brw->perfquery.unaccumulated[0]);
621
622 dec_n_oa_users(brw);
623 }
624 }
625
626 static bool
627 read_oa_samples(struct brw_context *brw)
628 {
629 while (1) {
630 struct brw_oa_sample_buf *buf = get_free_sample_buf(brw);
631 int len;
632
633 while ((len = read(brw->perfquery.oa_stream_fd, buf->buf,
634 sizeof(buf->buf))) < 0 && errno == EINTR)
635 ;
636
637 if (len <= 0) {
638 exec_list_push_tail(&brw->perfquery.free_sample_buffers, &buf->link);
639
640 if (len < 0) {
641 if (errno == EAGAIN)
642 return true;
643 else {
644 DBG("Error reading i915 perf samples: %m\n");
645 return false;
646 }
647 } else {
648 DBG("Spurious EOF reading i915 perf samples\n");
649 return false;
650 }
651 }
652
653 buf->len = len;
654 exec_list_push_tail(&brw->perfquery.sample_buffers, &buf->link);
655 }
656
657 unreachable("not reached");
658 return false;
659 }
660
661 /**
662 * Accumulate raw OA counter values based on deltas between pairs
663 * of OA reports.
664 *
665 * Accumulation starts from the first report captured via
666 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
667 * last MI_RPC report requested by brw_end_perf_query(). Between these
668 * two reports there may also some number of periodically sampled OA
669 * reports collected via the i915 perf interface - depending on the
670 * duration of the query.
671 *
672 * These periodic snapshots help to ensure we handle counter overflow
673 * correctly by being frequent enough to ensure we don't miss multiple
674 * overflows of a counter between snapshots.
675 */
676 static void
677 accumulate_oa_reports(struct brw_context *brw,
678 struct brw_perf_query_object *obj)
679 {
680 struct gl_perf_query_object *o = &obj->base;
681 uint32_t *query_buffer;
682 uint32_t *start;
683 uint32_t *last;
684 uint32_t *end;
685 struct exec_node *first_samples_node;
686
687 assert(o->Ready);
688
689 /* Collect the latest periodic OA reports from i915 perf */
690 if (!read_oa_samples(brw))
691 goto error;
692
693 query_buffer = brw_bo_map(brw, obj->oa.bo, MAP_READ);
694
695 start = last = query_buffer;
696 end = query_buffer + (MI_RPC_BO_END_OFFSET_BYTES / sizeof(uint32_t));
697
698 if (start[0] != obj->oa.begin_report_id) {
699 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
700 goto error;
701 }
702 if (end[0] != (obj->oa.begin_report_id + 1)) {
703 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
704 goto error;
705 }
706
707 /* See if we have any periodic reports to accumulate too... */
708
709 /* N.B. The oa.samples_head was set when the query began and
710 * pointed to the tail of the brw->perfquery.sample_buffers list at
711 * the time the query started. Since the buffer existed before the
712 * first MI_REPORT_PERF_COUNT command was emitted we therefore know
713 * that no data in this particular node's buffer can possibly be
714 * associated with the query - so skip ahead one...
715 */
716 first_samples_node = obj->oa.samples_head->next;
717
718 foreach_list_typed_from(struct brw_oa_sample_buf, buf, link,
719 &brw->perfquery.sample_buffers,
720 first_samples_node)
721 {
722 int offset = 0;
723
724 while (offset < buf->len) {
725 const struct drm_i915_perf_record_header *header =
726 (const struct drm_i915_perf_record_header *)(buf->buf + offset);
727
728 assert(header->size != 0);
729 assert(header->size <= buf->len);
730
731 offset += header->size;
732
733 switch (header->type) {
734 case DRM_I915_PERF_RECORD_SAMPLE: {
735 uint32_t *report = (uint32_t *)(header + 1);
736
737 /* Ignore reports that come before the start marker.
738 * (Note: takes care to allow overflow of 32bit timestamps)
739 */
740 if (timebase_scale(brw, report[1] - start[1]) > 5000000000)
741 continue;
742
743 /* Ignore reports that come after the end marker.
744 * (Note: takes care to allow overflow of 32bit timestamps)
745 */
746 if (timebase_scale(brw, report[1] - end[1]) <= 5000000000)
747 goto end;
748
749 add_deltas(brw, obj, last, report);
750
751 last = report;
752
753 break;
754 }
755
756 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
757 DBG("i915 perf: OA error: all reports lost\n");
758 goto error;
759 case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
760 DBG("i915 perf: OA report lost\n");
761 break;
762 }
763 }
764 }
765
766 end:
767
768 add_deltas(brw, obj, last, end);
769
770 DBG("Marking %d accumulated - results gathered\n", o->Id);
771
772 brw_bo_unmap(obj->oa.bo);
773 obj->oa.results_accumulated = true;
774 drop_from_unaccumulated_query_list(brw, obj);
775 dec_n_oa_users(brw);
776
777 return;
778
779 error:
780
781 brw_bo_unmap(obj->oa.bo);
782 discard_all_queries(brw);
783 }
784
785 /******************************************************************************/
786
787 static bool
788 open_i915_perf_oa_stream(struct brw_context *brw,
789 int metrics_set_id,
790 int report_format,
791 int period_exponent,
792 int drm_fd,
793 uint32_t ctx_id)
794 {
795 uint64_t properties[] = {
796 /* Single context sampling */
797 DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
798
799 /* Include OA reports in samples */
800 DRM_I915_PERF_PROP_SAMPLE_OA, true,
801
802 /* OA unit configuration */
803 DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
804 DRM_I915_PERF_PROP_OA_FORMAT, report_format,
805 DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
806 };
807 struct drm_i915_perf_open_param param = {
808 .flags = I915_PERF_FLAG_FD_CLOEXEC |
809 I915_PERF_FLAG_FD_NONBLOCK |
810 I915_PERF_FLAG_DISABLED,
811 .num_properties = ARRAY_SIZE(properties) / 2,
812 .properties_ptr = (uintptr_t) properties,
813 };
814 int fd = drmIoctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
815 if (fd == -1) {
816 DBG("Error opening i915 perf OA stream: %m\n");
817 return false;
818 }
819
820 brw->perfquery.oa_stream_fd = fd;
821
822 brw->perfquery.current_oa_metrics_set_id = metrics_set_id;
823 brw->perfquery.current_oa_format = report_format;
824
825 return true;
826 }
827
828 static void
829 close_perf(struct brw_context *brw)
830 {
831 if (brw->perfquery.oa_stream_fd != -1) {
832 close(brw->perfquery.oa_stream_fd);
833 brw->perfquery.oa_stream_fd = -1;
834 }
835 }
836
837 /**
838 * Driver hook for glBeginPerfQueryINTEL().
839 */
840 static bool
841 brw_begin_perf_query(struct gl_context *ctx,
842 struct gl_perf_query_object *o)
843 {
844 struct brw_context *brw = brw_context(ctx);
845 struct brw_perf_query_object *obj = brw_perf_query(o);
846 const struct brw_perf_query_info *query = obj->query;
847
848 /* We can assume the frontend hides mistaken attempts to Begin a
849 * query object multiple times before its End. Similarly if an
850 * application reuses a query object before results have arrived
851 * the frontend will wait for prior results so we don't need
852 * to support abandoning in-flight results.
853 */
854 assert(!o->Active);
855 assert(!o->Used || o->Ready); /* no in-flight query to worry about */
856
857 DBG("Begin(%d)\n", o->Id);
858
859 /* XXX: We have to consider that the command parser unit that parses batch
860 * buffer commands and is used to capture begin/end counter snapshots isn't
861 * implicitly synchronized with what's currently running across other GPU
862 * units (such as the EUs running shaders) that the performance counters are
863 * associated with.
864 *
865 * The intention of performance queries is to measure the work associated
866 * with commands between the begin/end delimiters and so for that to be the
867 * case we need to explicitly synchronize the parsing of commands to capture
868 * Begin/End counter snapshots with what's running across other parts of the
869 * GPU.
870 *
871 * When the command parser reaches a Begin marker it effectively needs to
872 * drain everything currently running on the GPU until the hardware is idle
873 * before capturing the first snapshot of counters - otherwise the results
874 * would also be measuring the effects of earlier commands.
875 *
876 * When the command parser reaches an End marker it needs to stall until
877 * everything currently running on the GPU has finished before capturing the
878 * end snapshot - otherwise the results won't be a complete representation
879 * of the work.
880 *
881 * Theoretically there could be opportunities to minimize how much of the
882 * GPU pipeline is drained, or that we stall for, when we know what specific
883 * units the performance counters being queried relate to but we don't
884 * currently attempt to be clever here.
885 *
886 * Note: with our current simple approach here then for back-to-back queries
887 * we will redundantly emit duplicate commands to synchronize the command
888 * streamer with the rest of the GPU pipeline, but we assume that in HW the
889 * second synchronization is effectively a NOOP.
890 *
891 * N.B. The final results are based on deltas of counters between (inside)
892 * Begin/End markers so even though the total wall clock time of the
893 * workload is stretched by larger pipeline bubbles the bubbles themselves
894 * are generally invisible to the query results. Whether that's a good or a
895 * bad thing depends on the use case. For a lower real-time impact while
896 * capturing metrics then periodic sampling may be a better choice than
897 * INTEL_performance_query.
898 *
899 *
900 * This is our Begin synchronization point to drain current work on the
901 * GPU before we capture our first counter snapshot...
902 */
903 brw_emit_mi_flush(brw);
904
905 switch (query->kind) {
906 case OA_COUNTERS:
907
908 /* Opening an i915 perf stream implies exclusive access to the OA unit
909 * which will generate counter reports for a specific counter set with a
910 * specific layout/format so we can't begin any OA based queries that
911 * require a different counter set or format unless we get an opportunity
912 * to close the stream and open a new one...
913 */
914 if (brw->perfquery.oa_stream_fd != -1 &&
915 brw->perfquery.current_oa_metrics_set_id !=
916 query->oa_metrics_set_id) {
917
918 if (brw->perfquery.n_oa_users != 0)
919 return false;
920 else
921 close_perf(brw);
922 }
923
924 /* If the OA counters aren't already on, enable them. */
925 if (brw->perfquery.oa_stream_fd == -1) {
926 __DRIscreen *screen = brw->screen->driScrnPriv;
927 int period_exponent;
928
929 /* The timestamp for HSW+ increments every 80ns
930 *
931 * The period_exponent gives a sampling period as follows:
932 * sample_period = 80ns * 2^(period_exponent + 1)
933 *
934 * The overflow period for Haswell can be calculated as:
935 *
936 * 2^32 / (n_eus * max_gen_freq * 2)
937 * (E.g. 40 EUs @ 1GHz = ~53ms)
938 *
939 * We currently sample every 42 milliseconds...
940 */
941 period_exponent = 18;
942
943 if (!open_i915_perf_oa_stream(brw,
944 query->oa_metrics_set_id,
945 query->oa_format,
946 period_exponent,
947 screen->fd, /* drm fd */
948 brw->hw_ctx))
949 return false;
950 } else {
951 assert(brw->perfquery.current_oa_metrics_set_id ==
952 query->oa_metrics_set_id &&
953 brw->perfquery.current_oa_format ==
954 query->oa_format);
955 }
956
957 if (!inc_n_oa_users(brw)) {
958 DBG("WARNING: Error enabling i915 perf stream: %m\n");
959 return false;
960 }
961
962 if (obj->oa.bo) {
963 brw_bo_unreference(obj->oa.bo);
964 obj->oa.bo = NULL;
965 }
966
967 obj->oa.bo =
968 brw_bo_alloc(brw->bufmgr, "perf. query OA MI_RPC bo",
969 MI_RPC_BO_SIZE, 64);
970 #ifdef DEBUG
971 /* Pre-filling the BO helps debug whether writes landed. */
972 void *map = brw_bo_map(brw, obj->oa.bo, MAP_WRITE);
973 memset(map, 0x80, MI_RPC_BO_SIZE);
974 brw_bo_unmap(obj->oa.bo);
975 #endif
976
977 obj->oa.begin_report_id = brw->perfquery.next_query_start_report_id;
978 brw->perfquery.next_query_start_report_id += 2;
979
980 /* Take a starting OA counter snapshot. */
981 brw->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo, 0,
982 obj->oa.begin_report_id);
983 ++brw->perfquery.n_active_oa_queries;
984
985 /* No already-buffered samples can possibly be associated with this query
986 * so create a marker within the list of sample buffers enabling us to
987 * easily ignore earlier samples when processing this query after
988 * completion.
989 */
990 assert(!exec_list_is_empty(&brw->perfquery.sample_buffers));
991 obj->oa.samples_head = exec_list_get_tail(&brw->perfquery.sample_buffers);
992
993 struct brw_oa_sample_buf *buf =
994 exec_node_data(struct brw_oa_sample_buf, obj->oa.samples_head, link);
995
996 /* This reference will ensure that future/following sample
997 * buffers (that may relate to this query) can't be freed until
998 * this drops to zero.
999 */
1000 buf->refcount++;
1001
1002 memset(obj->oa.accumulator, 0, sizeof(obj->oa.accumulator));
1003 obj->oa.results_accumulated = false;
1004
1005 add_to_unaccumulated_query_list(brw, obj);
1006 break;
1007
1008 case PIPELINE_STATS:
1009 if (obj->pipeline_stats.bo) {
1010 brw_bo_unreference(obj->pipeline_stats.bo);
1011 obj->pipeline_stats.bo = NULL;
1012 }
1013
1014 obj->pipeline_stats.bo =
1015 brw_bo_alloc(brw->bufmgr, "perf. query pipeline stats bo",
1016 STATS_BO_SIZE, 64);
1017
1018 /* Take starting snapshots. */
1019 snapshot_statistics_registers(brw, obj, 0);
1020
1021 ++brw->perfquery.n_active_pipeline_stats_queries;
1022 break;
1023 }
1024
1025 if (INTEL_DEBUG & DEBUG_PERFMON)
1026 dump_perf_queries(brw);
1027
1028 return true;
1029 }
1030
1031 /**
1032 * Driver hook for glEndPerfQueryINTEL().
1033 */
1034 static void
1035 brw_end_perf_query(struct gl_context *ctx,
1036 struct gl_perf_query_object *o)
1037 {
1038 struct brw_context *brw = brw_context(ctx);
1039 struct brw_perf_query_object *obj = brw_perf_query(o);
1040
1041 DBG("End(%d)\n", o->Id);
1042
1043 /* Ensure that the work associated with the queried commands will have
1044 * finished before taking our query end counter readings.
1045 *
1046 * For more details see comment in brw_begin_perf_query for
1047 * corresponding flush.
1048 */
1049 brw_emit_mi_flush(brw);
1050
1051 switch (obj->query->kind) {
1052 case OA_COUNTERS:
1053
1054 /* NB: It's possible that the query will have already been marked
1055 * as 'accumulated' if an error was seen while reading samples
1056 * from perf. In this case we mustn't try and emit a closing
1057 * MI_RPC command in case the OA unit has already been disabled
1058 */
1059 if (!obj->oa.results_accumulated) {
1060 /* Take an ending OA counter snapshot. */
1061 brw->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo,
1062 MI_RPC_BO_END_OFFSET_BYTES,
1063 obj->oa.begin_report_id + 1);
1064 }
1065
1066 /* We flush the batchbuffer here to minimize the chances that MI_RPC
1067 * delimiting commands end up in different batchbuffers. If that's the
1068 * case, the measurement will include the time it takes for the kernel
1069 * scheduler to load a new request into the hardware. This is manifested
1070 * in tools like frameretrace by spikes in the "GPU Core Clocks"
1071 * counter.
1072 */
1073 intel_batchbuffer_flush(brw);
1074 --brw->perfquery.n_active_oa_queries;
1075
1076 /* NB: even though the query has now ended, it can't be accumulated
1077 * until the end MI_REPORT_PERF_COUNT snapshot has been written
1078 * to query->oa.bo
1079 */
1080 break;
1081
1082 case PIPELINE_STATS:
1083 snapshot_statistics_registers(brw, obj,
1084 STATS_BO_END_OFFSET_BYTES);
1085 --brw->perfquery.n_active_pipeline_stats_queries;
1086 break;
1087 }
1088 }
1089
1090 static void
1091 brw_wait_perf_query(struct gl_context *ctx, struct gl_perf_query_object *o)
1092 {
1093 struct brw_context *brw = brw_context(ctx);
1094 struct brw_perf_query_object *obj = brw_perf_query(o);
1095 struct brw_bo *bo = NULL;
1096
1097 assert(!o->Ready);
1098
1099 switch (obj->query->kind) {
1100 case OA_COUNTERS:
1101 bo = obj->oa.bo;
1102 break;
1103
1104 case PIPELINE_STATS:
1105 bo = obj->pipeline_stats.bo;
1106 break;
1107 }
1108
1109 if (bo == NULL)
1110 return;
1111
1112 /* If the current batch references our results bo then we need to
1113 * flush first...
1114 */
1115 if (brw_batch_references(&brw->batch, bo))
1116 intel_batchbuffer_flush(brw);
1117
1118 brw_bo_wait_rendering(brw, bo);
1119 }
1120
1121 static bool
1122 brw_is_perf_query_ready(struct gl_context *ctx,
1123 struct gl_perf_query_object *o)
1124 {
1125 struct brw_context *brw = brw_context(ctx);
1126 struct brw_perf_query_object *obj = brw_perf_query(o);
1127
1128 if (o->Ready)
1129 return true;
1130
1131 switch (obj->query->kind) {
1132 case OA_COUNTERS:
1133 return (obj->oa.results_accumulated ||
1134 (obj->oa.bo &&
1135 !brw_batch_references(&brw->batch, obj->oa.bo) &&
1136 !brw_bo_busy(obj->oa.bo)));
1137
1138 case PIPELINE_STATS:
1139 return (obj->pipeline_stats.bo &&
1140 !brw_batch_references(&brw->batch, obj->pipeline_stats.bo) &&
1141 !brw_bo_busy(obj->pipeline_stats.bo));
1142 }
1143
1144 unreachable("missing ready check for unknown query kind");
1145 return false;
1146 }
1147
1148 static int
1149 get_oa_counter_data(struct brw_context *brw,
1150 struct brw_perf_query_object *obj,
1151 size_t data_size,
1152 uint8_t *data)
1153 {
1154 const struct brw_perf_query_info *query = obj->query;
1155 int n_counters = query->n_counters;
1156 int written = 0;
1157
1158 if (!obj->oa.results_accumulated) {
1159 accumulate_oa_reports(brw, obj);
1160 assert(obj->oa.results_accumulated);
1161 }
1162
1163 for (int i = 0; i < n_counters; i++) {
1164 const struct brw_perf_query_counter *counter = &query->counters[i];
1165 uint64_t *out_uint64;
1166 float *out_float;
1167
1168 if (counter->size) {
1169 switch (counter->data_type) {
1170 case GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL:
1171 out_uint64 = (uint64_t *)(data + counter->offset);
1172 *out_uint64 = counter->oa_counter_read_uint64(brw, query,
1173 obj->oa.accumulator);
1174 break;
1175 case GL_PERFQUERY_COUNTER_DATA_FLOAT_INTEL:
1176 out_float = (float *)(data + counter->offset);
1177 *out_float = counter->oa_counter_read_float(brw, query,
1178 obj->oa.accumulator);
1179 break;
1180 default:
1181 /* So far we aren't using uint32, double or bool32... */
1182 unreachable("unexpected counter data type");
1183 }
1184 written = counter->offset + counter->size;
1185 }
1186 }
1187
1188 return written;
1189 }
1190
1191 static int
1192 get_pipeline_stats_data(struct brw_context *brw,
1193 struct brw_perf_query_object *obj,
1194 size_t data_size,
1195 uint8_t *data)
1196
1197 {
1198 const struct brw_perf_query_info *query = obj->query;
1199 int n_counters = obj->query->n_counters;
1200 uint8_t *p = data;
1201
1202 uint64_t *start = brw_bo_map(brw, obj->pipeline_stats.bo, MAP_READ);
1203 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
1204
1205 for (int i = 0; i < n_counters; i++) {
1206 const struct brw_perf_query_counter *counter = &query->counters[i];
1207 uint64_t value = end[i] - start[i];
1208
1209 if (counter->pipeline_stat.numerator !=
1210 counter->pipeline_stat.denominator) {
1211 value *= counter->pipeline_stat.numerator;
1212 value /= counter->pipeline_stat.denominator;
1213 }
1214
1215 *((uint64_t *)p) = value;
1216 p += 8;
1217 }
1218
1219 brw_bo_unmap(obj->pipeline_stats.bo);
1220
1221 return p - data;
1222 }
1223
1224 /**
1225 * Driver hook for glGetPerfQueryDataINTEL().
1226 */
1227 static void
1228 brw_get_perf_query_data(struct gl_context *ctx,
1229 struct gl_perf_query_object *o,
1230 GLsizei data_size,
1231 GLuint *data,
1232 GLuint *bytes_written)
1233 {
1234 struct brw_context *brw = brw_context(ctx);
1235 struct brw_perf_query_object *obj = brw_perf_query(o);
1236 int written = 0;
1237
1238 assert(brw_is_perf_query_ready(ctx, o));
1239
1240 DBG("GetData(%d)\n", o->Id);
1241
1242 if (INTEL_DEBUG & DEBUG_PERFMON)
1243 dump_perf_queries(brw);
1244
1245 /* We expect that the frontend only calls this hook when it knows
1246 * that results are available.
1247 */
1248 assert(o->Ready);
1249
1250 switch (obj->query->kind) {
1251 case OA_COUNTERS:
1252 written = get_oa_counter_data(brw, obj, data_size, (uint8_t *)data);
1253 break;
1254
1255 case PIPELINE_STATS:
1256 written = get_pipeline_stats_data(brw, obj, data_size, (uint8_t *)data);
1257 break;
1258 }
1259
1260 if (bytes_written)
1261 *bytes_written = written;
1262 }
1263
1264 static struct gl_perf_query_object *
1265 brw_new_perf_query_object(struct gl_context *ctx, unsigned query_index)
1266 {
1267 struct brw_context *brw = brw_context(ctx);
1268 const struct brw_perf_query_info *query =
1269 &brw->perfquery.queries[query_index];
1270 struct brw_perf_query_object *obj =
1271 calloc(1, sizeof(struct brw_perf_query_object));
1272
1273 if (!obj)
1274 return NULL;
1275
1276 obj->query = query;
1277
1278 brw->perfquery.n_query_instances++;
1279
1280 return &obj->base;
1281 }
1282
1283 /**
1284 * Driver hook for glDeletePerfQueryINTEL().
1285 */
1286 static void
1287 brw_delete_perf_query(struct gl_context *ctx,
1288 struct gl_perf_query_object *o)
1289 {
1290 struct brw_context *brw = brw_context(ctx);
1291 struct brw_perf_query_object *obj = brw_perf_query(o);
1292
1293 /* We can assume that the frontend waits for a query to complete
1294 * before ever calling into here, so we don't have to worry about
1295 * deleting an in-flight query object.
1296 */
1297 assert(!o->Active);
1298 assert(!o->Used || o->Ready);
1299
1300 DBG("Delete(%d)\n", o->Id);
1301
1302 switch (obj->query->kind) {
1303 case OA_COUNTERS:
1304 if (obj->oa.bo) {
1305 if (!obj->oa.results_accumulated) {
1306 drop_from_unaccumulated_query_list(brw, obj);
1307 dec_n_oa_users(brw);
1308 }
1309
1310 brw_bo_unreference(obj->oa.bo);
1311 obj->oa.bo = NULL;
1312 }
1313
1314 obj->oa.results_accumulated = false;
1315 break;
1316
1317 case PIPELINE_STATS:
1318 if (obj->pipeline_stats.bo) {
1319 brw_bo_unreference(obj->pipeline_stats.bo);
1320 obj->pipeline_stats.bo = NULL;
1321 }
1322 break;
1323 }
1324
1325 free(obj);
1326
1327 /* As an indication that the INTEL_performance_query extension is no
1328 * longer in use, it's a good time to free our cache of sample
1329 * buffers and close any current i915-perf stream.
1330 */
1331 if (--brw->perfquery.n_query_instances == 0) {
1332 free_sample_bufs(brw);
1333 close_perf(brw);
1334 }
1335 }
1336
1337 /******************************************************************************/
1338
1339 static struct brw_perf_query_info *
1340 append_query_info(struct brw_context *brw)
1341 {
1342 brw->perfquery.queries =
1343 reralloc(brw, brw->perfquery.queries,
1344 struct brw_perf_query_info, ++brw->perfquery.n_queries);
1345
1346 return &brw->perfquery.queries[brw->perfquery.n_queries - 1];
1347 }
1348
1349 static void
1350 add_stat_reg(struct brw_perf_query_info *query,
1351 uint32_t reg,
1352 uint32_t numerator,
1353 uint32_t denominator,
1354 const char *name,
1355 const char *description)
1356 {
1357 struct brw_perf_query_counter *counter;
1358
1359 assert(query->n_counters < MAX_STAT_COUNTERS);
1360
1361 counter = &query->counters[query->n_counters];
1362 counter->name = name;
1363 counter->desc = description;
1364 counter->type = GL_PERFQUERY_COUNTER_RAW_INTEL;
1365 counter->data_type = GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL;
1366 counter->size = sizeof(uint64_t);
1367 counter->offset = sizeof(uint64_t) * query->n_counters;
1368 counter->pipeline_stat.reg = reg;
1369 counter->pipeline_stat.numerator = numerator;
1370 counter->pipeline_stat.denominator = denominator;
1371
1372 query->n_counters++;
1373 }
1374
1375 static void
1376 add_basic_stat_reg(struct brw_perf_query_info *query,
1377 uint32_t reg, const char *name)
1378 {
1379 add_stat_reg(query, reg, 1, 1, name, name);
1380 }
1381
1382 static void
1383 init_pipeline_statistic_query_registers(struct brw_context *brw)
1384 {
1385 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1386 struct brw_perf_query_info *query = append_query_info(brw);
1387
1388 query->kind = PIPELINE_STATS;
1389 query->name = "Pipeline Statistics Registers";
1390 query->n_counters = 0;
1391 query->counters =
1392 rzalloc_array(brw, struct brw_perf_query_counter, MAX_STAT_COUNTERS);
1393
1394 add_basic_stat_reg(query, IA_VERTICES_COUNT,
1395 "N vertices submitted");
1396 add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
1397 "N primitives submitted");
1398 add_basic_stat_reg(query, VS_INVOCATION_COUNT,
1399 "N vertex shader invocations");
1400
1401 if (devinfo->gen == 6) {
1402 add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1,
1403 "SO_PRIM_STORAGE_NEEDED",
1404 "N geometry shader stream-out primitives (total)");
1405 add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1,
1406 "SO_NUM_PRIMS_WRITTEN",
1407 "N geometry shader stream-out primitives (written)");
1408 } else {
1409 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1,
1410 "SO_PRIM_STORAGE_NEEDED (Stream 0)",
1411 "N stream-out (stream 0) primitives (total)");
1412 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1,
1413 "SO_PRIM_STORAGE_NEEDED (Stream 1)",
1414 "N stream-out (stream 1) primitives (total)");
1415 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1,
1416 "SO_PRIM_STORAGE_NEEDED (Stream 2)",
1417 "N stream-out (stream 2) primitives (total)");
1418 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1,
1419 "SO_PRIM_STORAGE_NEEDED (Stream 3)",
1420 "N stream-out (stream 3) primitives (total)");
1421 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1,
1422 "SO_NUM_PRIMS_WRITTEN (Stream 0)",
1423 "N stream-out (stream 0) primitives (written)");
1424 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1,
1425 "SO_NUM_PRIMS_WRITTEN (Stream 1)",
1426 "N stream-out (stream 1) primitives (written)");
1427 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1,
1428 "SO_NUM_PRIMS_WRITTEN (Stream 2)",
1429 "N stream-out (stream 2) primitives (written)");
1430 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1,
1431 "SO_NUM_PRIMS_WRITTEN (Stream 3)",
1432 "N stream-out (stream 3) primitives (written)");
1433 }
1434
1435 add_basic_stat_reg(query, HS_INVOCATION_COUNT,
1436 "N TCS shader invocations");
1437 add_basic_stat_reg(query, DS_INVOCATION_COUNT,
1438 "N TES shader invocations");
1439
1440 add_basic_stat_reg(query, GS_INVOCATION_COUNT,
1441 "N geometry shader invocations");
1442 add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
1443 "N geometry shader primitives emitted");
1444
1445 add_basic_stat_reg(query, CL_INVOCATION_COUNT,
1446 "N primitives entering clipping");
1447 add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
1448 "N primitives leaving clipping");
1449
1450 if (devinfo->is_haswell || devinfo->gen == 8)
1451 add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
1452 "N fragment shader invocations",
1453 "N fragment shader invocations");
1454 else
1455 add_basic_stat_reg(query, PS_INVOCATION_COUNT,
1456 "N fragment shader invocations");
1457
1458 add_basic_stat_reg(query, PS_DEPTH_COUNT, "N z-pass fragments");
1459
1460 if (devinfo->gen >= 7)
1461 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
1462 "N compute shader invocations");
1463
1464 query->data_size = sizeof(uint64_t) * query->n_counters;
1465 }
1466
1467 static bool
1468 read_file_uint64(const char *file, uint64_t *val)
1469 {
1470 char buf[32];
1471 int fd, n;
1472
1473 fd = open(file, 0);
1474 if (fd < 0)
1475 return false;
1476 n = read(fd, buf, sizeof (buf) - 1);
1477 close(fd);
1478 if (n < 0)
1479 return false;
1480
1481 buf[n] = '\0';
1482 *val = strtoull(buf, NULL, 0);
1483
1484 return true;
1485 }
1486
1487 static void
1488 enumerate_sysfs_metrics(struct brw_context *brw, const char *sysfs_dev_dir)
1489 {
1490 char buf[256];
1491 DIR *metricsdir = NULL;
1492 struct dirent *metric_entry;
1493 int len;
1494
1495 len = snprintf(buf, sizeof(buf), "%s/metrics", sysfs_dev_dir);
1496 if (len < 0 || len >= sizeof(buf)) {
1497 DBG("Failed to concatenate path to sysfs metrics/ directory\n");
1498 return;
1499 }
1500
1501 metricsdir = opendir(buf);
1502 if (!metricsdir) {
1503 DBG("Failed to open %s: %m\n", buf);
1504 return;
1505 }
1506
1507 while ((metric_entry = readdir(metricsdir))) {
1508 struct hash_entry *entry;
1509
1510 if ((metric_entry->d_type != DT_DIR &&
1511 metric_entry->d_type != DT_LNK) ||
1512 metric_entry->d_name[0] == '.')
1513 continue;
1514
1515 DBG("metric set: %s\n", metric_entry->d_name);
1516 entry = _mesa_hash_table_search(brw->perfquery.oa_metrics_table,
1517 metric_entry->d_name);
1518 if (entry) {
1519 struct brw_perf_query_info *query;
1520 uint64_t id;
1521
1522 len = snprintf(buf, sizeof(buf), "%s/metrics/%s/id",
1523 sysfs_dev_dir, metric_entry->d_name);
1524 if (len < 0 || len >= sizeof(buf)) {
1525 DBG("Failed to concatenate path to sysfs metric id file\n");
1526 continue;
1527 }
1528
1529 if (!read_file_uint64(buf, &id)) {
1530 DBG("Failed to read metric set id from %s: %m", buf);
1531 continue;
1532 }
1533
1534 query = append_query_info(brw);
1535 *query = *(struct brw_perf_query_info *)entry->data;
1536 query->oa_metrics_set_id = id;
1537
1538 DBG("metric set known by mesa: id = %" PRIu64"\n",
1539 query->oa_metrics_set_id);
1540 } else
1541 DBG("metric set not known by mesa (skipping)\n");
1542 }
1543
1544 closedir(metricsdir);
1545 }
1546
1547 static bool
1548 read_sysfs_drm_device_file_uint64(struct brw_context *brw,
1549 const char *sysfs_dev_dir,
1550 const char *file,
1551 uint64_t *value)
1552 {
1553 char buf[512];
1554 int len;
1555
1556 len = snprintf(buf, sizeof(buf), "%s/%s", sysfs_dev_dir, file);
1557 if (len < 0 || len >= sizeof(buf)) {
1558 DBG("Failed to concatenate sys filename to read u64 from\n");
1559 return false;
1560 }
1561
1562 return read_file_uint64(buf, value);
1563 }
1564
1565 static bool
1566 init_oa_sys_vars(struct brw_context *brw, const char *sysfs_dev_dir)
1567 {
1568 uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
1569
1570 if (!read_sysfs_drm_device_file_uint64(brw, sysfs_dev_dir,
1571 "gt_min_freq_mhz",
1572 &min_freq_mhz))
1573 return false;
1574
1575 if (!read_sysfs_drm_device_file_uint64(brw, sysfs_dev_dir,
1576 "gt_max_freq_mhz",
1577 &max_freq_mhz))
1578 return false;
1579
1580 brw->perfquery.sys_vars.gt_min_freq = min_freq_mhz * 1000000;
1581 brw->perfquery.sys_vars.gt_max_freq = max_freq_mhz * 1000000;
1582
1583 if (brw->is_haswell) {
1584 const struct gen_device_info *info = &brw->screen->devinfo;
1585
1586 brw->perfquery.sys_vars.timestamp_frequency = 12500000;
1587
1588 if (info->gt == 1) {
1589 brw->perfquery.sys_vars.n_eus = 10;
1590 brw->perfquery.sys_vars.n_eu_slices = 1;
1591 brw->perfquery.sys_vars.subslice_mask = 0x1;
1592 } else if (info->gt == 2) {
1593 brw->perfquery.sys_vars.n_eus = 20;
1594 brw->perfquery.sys_vars.n_eu_slices = 1;
1595 brw->perfquery.sys_vars.subslice_mask = 0x3;
1596 } else if (info->gt == 3) {
1597 brw->perfquery.sys_vars.n_eus = 40;
1598 brw->perfquery.sys_vars.n_eu_slices = 2;
1599 brw->perfquery.sys_vars.subslice_mask = 0xf;
1600 } else
1601 unreachable("not reached");
1602
1603 return true;
1604 } else
1605 return false;
1606 }
1607
1608 static bool
1609 get_sysfs_dev_dir(struct brw_context *brw,
1610 char *path_buf,
1611 int path_buf_len)
1612 {
1613 __DRIscreen *screen = brw->screen->driScrnPriv;
1614 struct stat sb;
1615 int min, maj;
1616 DIR *drmdir;
1617 struct dirent *drm_entry;
1618 int len;
1619
1620 assert(path_buf);
1621 assert(path_buf_len);
1622 path_buf[0] = '\0';
1623
1624 if (fstat(screen->fd, &sb)) {
1625 DBG("Failed to stat DRM fd\n");
1626 return false;
1627 }
1628
1629 maj = major(sb.st_rdev);
1630 min = minor(sb.st_rdev);
1631
1632 if (!S_ISCHR(sb.st_mode)) {
1633 DBG("DRM fd is not a character device as expected\n");
1634 return false;
1635 }
1636
1637 len = snprintf(path_buf, path_buf_len,
1638 "/sys/dev/char/%d:%d/device/drm", maj, min);
1639 if (len < 0 || len >= path_buf_len) {
1640 DBG("Failed to concatenate sysfs path to drm device\n");
1641 return false;
1642 }
1643
1644 drmdir = opendir(path_buf);
1645 if (!drmdir) {
1646 DBG("Failed to open %s: %m\n", path_buf);
1647 return false;
1648 }
1649
1650 while ((drm_entry = readdir(drmdir))) {
1651 if ((drm_entry->d_type == DT_DIR ||
1652 drm_entry->d_type == DT_LNK) &&
1653 strncmp(drm_entry->d_name, "card", 4) == 0)
1654 {
1655 len = snprintf(path_buf, path_buf_len,
1656 "/sys/dev/char/%d:%d/device/drm/%s",
1657 maj, min, drm_entry->d_name);
1658 closedir(drmdir);
1659 if (len < 0 || len >= path_buf_len)
1660 return false;
1661 else
1662 return true;
1663 }
1664 }
1665
1666 closedir(drmdir);
1667
1668 DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n",
1669 maj, min);
1670
1671 return false;
1672 }
1673
1674 static unsigned
1675 brw_init_perf_query_info(struct gl_context *ctx)
1676 {
1677 struct brw_context *brw = brw_context(ctx);
1678 struct stat sb;
1679 char sysfs_dev_dir[128];
1680
1681 if (brw->perfquery.n_queries)
1682 return brw->perfquery.n_queries;
1683
1684 init_pipeline_statistic_query_registers(brw);
1685
1686 /* The existence of this sysctl parameter implies the kernel supports
1687 * the i915 perf interface.
1688 */
1689 if (brw->is_haswell &&
1690 stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0 &&
1691 get_sysfs_dev_dir(brw, sysfs_dev_dir, sizeof(sysfs_dev_dir)) &&
1692 init_oa_sys_vars(brw, sysfs_dev_dir))
1693 {
1694 brw->perfquery.oa_metrics_table =
1695 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
1696 _mesa_key_string_equal);
1697
1698 /* Index all the metric sets mesa knows about before looking to
1699 * see what the kernel is advertising.
1700 */
1701 brw_oa_register_queries_hsw(brw);
1702
1703 enumerate_sysfs_metrics(brw, sysfs_dev_dir);
1704 }
1705
1706 brw->perfquery.unaccumulated =
1707 ralloc_array(brw, struct brw_perf_query_object *, 2);
1708 brw->perfquery.unaccumulated_elements = 0;
1709 brw->perfquery.unaccumulated_array_size = 2;
1710
1711 exec_list_make_empty(&brw->perfquery.sample_buffers);
1712 exec_list_make_empty(&brw->perfquery.free_sample_buffers);
1713
1714 /* It's convenient to guarantee that this linked list of sample
1715 * buffers is never empty so we add an empty head so when we
1716 * Begin an OA query we can always take a reference on a buffer
1717 * in this list.
1718 */
1719 struct brw_oa_sample_buf *buf = get_free_sample_buf(brw);
1720 exec_list_push_head(&brw->perfquery.sample_buffers, &buf->link);
1721
1722 brw->perfquery.oa_stream_fd = -1;
1723
1724 brw->perfquery.next_query_start_report_id = 1000;
1725
1726 return brw->perfquery.n_queries;
1727 }
1728
1729 void
1730 brw_init_performance_queries(struct brw_context *brw)
1731 {
1732 struct gl_context *ctx = &brw->ctx;
1733
1734 ctx->Driver.InitPerfQueryInfo = brw_init_perf_query_info;
1735 ctx->Driver.GetPerfQueryInfo = brw_get_perf_query_info;
1736 ctx->Driver.GetPerfCounterInfo = brw_get_perf_counter_info;
1737 ctx->Driver.NewPerfQueryObject = brw_new_perf_query_object;
1738 ctx->Driver.DeletePerfQuery = brw_delete_perf_query;
1739 ctx->Driver.BeginPerfQuery = brw_begin_perf_query;
1740 ctx->Driver.EndPerfQuery = brw_end_perf_query;
1741 ctx->Driver.WaitPerfQuery = brw_wait_perf_query;
1742 ctx->Driver.IsPerfQueryReady = brw_is_perf_query_ready;
1743 ctx->Driver.GetPerfQueryData = brw_get_perf_query_data;
1744 }