i965/vec4: Drop backend_reg::in_range() in favor of regions_overlap().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/uniforms.h"
31
32 extern "C" void
33 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
34 unsigned surf_index)
35 {
36 assert(surf_index < BRW_MAX_SURFACES);
37
38 prog_data->binding_table.size_bytes =
39 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
40 }
41
42 enum brw_reg_type
43 brw_type_for_base_type(const struct glsl_type *type)
44 {
45 switch (type->base_type) {
46 case GLSL_TYPE_FLOAT:
47 return BRW_REGISTER_TYPE_F;
48 case GLSL_TYPE_INT:
49 case GLSL_TYPE_BOOL:
50 case GLSL_TYPE_SUBROUTINE:
51 return BRW_REGISTER_TYPE_D;
52 case GLSL_TYPE_UINT:
53 return BRW_REGISTER_TYPE_UD;
54 case GLSL_TYPE_ARRAY:
55 return brw_type_for_base_type(type->fields.array);
56 case GLSL_TYPE_STRUCT:
57 case GLSL_TYPE_SAMPLER:
58 case GLSL_TYPE_ATOMIC_UINT:
59 /* These should be overridden with the type of the member when
60 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
61 * way to trip up if we don't.
62 */
63 return BRW_REGISTER_TYPE_UD;
64 case GLSL_TYPE_IMAGE:
65 return BRW_REGISTER_TYPE_UD;
66 case GLSL_TYPE_DOUBLE:
67 return BRW_REGISTER_TYPE_DF;
68 case GLSL_TYPE_VOID:
69 case GLSL_TYPE_ERROR:
70 case GLSL_TYPE_INTERFACE:
71 case GLSL_TYPE_FUNCTION:
72 unreachable("not reached");
73 }
74
75 return BRW_REGISTER_TYPE_F;
76 }
77
78 enum brw_conditional_mod
79 brw_conditional_for_comparison(unsigned int op)
80 {
81 switch (op) {
82 case ir_binop_less:
83 return BRW_CONDITIONAL_L;
84 case ir_binop_greater:
85 return BRW_CONDITIONAL_G;
86 case ir_binop_lequal:
87 return BRW_CONDITIONAL_LE;
88 case ir_binop_gequal:
89 return BRW_CONDITIONAL_GE;
90 case ir_binop_equal:
91 case ir_binop_all_equal: /* same as equal for scalars */
92 return BRW_CONDITIONAL_Z;
93 case ir_binop_nequal:
94 case ir_binop_any_nequal: /* same as nequal for scalars */
95 return BRW_CONDITIONAL_NZ;
96 default:
97 unreachable("not reached: bad operation for comparison");
98 }
99 }
100
101 uint32_t
102 brw_math_function(enum opcode op)
103 {
104 switch (op) {
105 case SHADER_OPCODE_RCP:
106 return BRW_MATH_FUNCTION_INV;
107 case SHADER_OPCODE_RSQ:
108 return BRW_MATH_FUNCTION_RSQ;
109 case SHADER_OPCODE_SQRT:
110 return BRW_MATH_FUNCTION_SQRT;
111 case SHADER_OPCODE_EXP2:
112 return BRW_MATH_FUNCTION_EXP;
113 case SHADER_OPCODE_LOG2:
114 return BRW_MATH_FUNCTION_LOG;
115 case SHADER_OPCODE_POW:
116 return BRW_MATH_FUNCTION_POW;
117 case SHADER_OPCODE_SIN:
118 return BRW_MATH_FUNCTION_SIN;
119 case SHADER_OPCODE_COS:
120 return BRW_MATH_FUNCTION_COS;
121 case SHADER_OPCODE_INT_QUOTIENT:
122 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
123 case SHADER_OPCODE_INT_REMAINDER:
124 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
125 default:
126 unreachable("not reached: unknown math function");
127 }
128 }
129
130 uint32_t
131 brw_texture_offset(int *offsets, unsigned num_components)
132 {
133 if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
134
135 /* Combine all three offsets into a single unsigned dword:
136 *
137 * bits 11:8 - U Offset (X component)
138 * bits 7:4 - V Offset (Y component)
139 * bits 3:0 - R Offset (Z component)
140 */
141 unsigned offset_bits = 0;
142 for (unsigned i = 0; i < num_components; i++) {
143 const unsigned shift = 4 * (2 - i);
144 offset_bits |= (offsets[i] << shift) & (0xF << shift);
145 }
146 return offset_bits;
147 }
148
149 const char *
150 brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
151 {
152 switch (op) {
153 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
154 /* The DO instruction doesn't exist on Gen6+, but we use it to mark the
155 * start of a loop in the IR.
156 */
157 if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
158 return "do";
159
160 assert(brw_opcode_desc(devinfo, op)->name);
161 return brw_opcode_desc(devinfo, op)->name;
162 case FS_OPCODE_FB_WRITE:
163 return "fb_write";
164 case FS_OPCODE_FB_WRITE_LOGICAL:
165 return "fb_write_logical";
166 case FS_OPCODE_REP_FB_WRITE:
167 return "rep_fb_write";
168 case FS_OPCODE_FB_READ:
169 return "fb_read";
170 case FS_OPCODE_FB_READ_LOGICAL:
171 return "fb_read_logical";
172
173 case SHADER_OPCODE_RCP:
174 return "rcp";
175 case SHADER_OPCODE_RSQ:
176 return "rsq";
177 case SHADER_OPCODE_SQRT:
178 return "sqrt";
179 case SHADER_OPCODE_EXP2:
180 return "exp2";
181 case SHADER_OPCODE_LOG2:
182 return "log2";
183 case SHADER_OPCODE_POW:
184 return "pow";
185 case SHADER_OPCODE_INT_QUOTIENT:
186 return "int_quot";
187 case SHADER_OPCODE_INT_REMAINDER:
188 return "int_rem";
189 case SHADER_OPCODE_SIN:
190 return "sin";
191 case SHADER_OPCODE_COS:
192 return "cos";
193
194 case SHADER_OPCODE_TEX:
195 return "tex";
196 case SHADER_OPCODE_TEX_LOGICAL:
197 return "tex_logical";
198 case SHADER_OPCODE_TXD:
199 return "txd";
200 case SHADER_OPCODE_TXD_LOGICAL:
201 return "txd_logical";
202 case SHADER_OPCODE_TXF:
203 return "txf";
204 case SHADER_OPCODE_TXF_LOGICAL:
205 return "txf_logical";
206 case SHADER_OPCODE_TXF_LZ:
207 return "txf_lz";
208 case SHADER_OPCODE_TXL:
209 return "txl";
210 case SHADER_OPCODE_TXL_LOGICAL:
211 return "txl_logical";
212 case SHADER_OPCODE_TXL_LZ:
213 return "txl_lz";
214 case SHADER_OPCODE_TXS:
215 return "txs";
216 case SHADER_OPCODE_TXS_LOGICAL:
217 return "txs_logical";
218 case FS_OPCODE_TXB:
219 return "txb";
220 case FS_OPCODE_TXB_LOGICAL:
221 return "txb_logical";
222 case SHADER_OPCODE_TXF_CMS:
223 return "txf_cms";
224 case SHADER_OPCODE_TXF_CMS_LOGICAL:
225 return "txf_cms_logical";
226 case SHADER_OPCODE_TXF_CMS_W:
227 return "txf_cms_w";
228 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
229 return "txf_cms_w_logical";
230 case SHADER_OPCODE_TXF_UMS:
231 return "txf_ums";
232 case SHADER_OPCODE_TXF_UMS_LOGICAL:
233 return "txf_ums_logical";
234 case SHADER_OPCODE_TXF_MCS:
235 return "txf_mcs";
236 case SHADER_OPCODE_TXF_MCS_LOGICAL:
237 return "txf_mcs_logical";
238 case SHADER_OPCODE_LOD:
239 return "lod";
240 case SHADER_OPCODE_LOD_LOGICAL:
241 return "lod_logical";
242 case SHADER_OPCODE_TG4:
243 return "tg4";
244 case SHADER_OPCODE_TG4_LOGICAL:
245 return "tg4_logical";
246 case SHADER_OPCODE_TG4_OFFSET:
247 return "tg4_offset";
248 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
249 return "tg4_offset_logical";
250 case SHADER_OPCODE_SAMPLEINFO:
251 return "sampleinfo";
252 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
253 return "sampleinfo_logical";
254
255 case SHADER_OPCODE_SHADER_TIME_ADD:
256 return "shader_time_add";
257
258 case SHADER_OPCODE_UNTYPED_ATOMIC:
259 return "untyped_atomic";
260 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
261 return "untyped_atomic_logical";
262 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
263 return "untyped_surface_read";
264 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
265 return "untyped_surface_read_logical";
266 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
267 return "untyped_surface_write";
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
269 return "untyped_surface_write_logical";
270 case SHADER_OPCODE_TYPED_ATOMIC:
271 return "typed_atomic";
272 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
273 return "typed_atomic_logical";
274 case SHADER_OPCODE_TYPED_SURFACE_READ:
275 return "typed_surface_read";
276 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
277 return "typed_surface_read_logical";
278 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
279 return "typed_surface_write";
280 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
281 return "typed_surface_write_logical";
282 case SHADER_OPCODE_MEMORY_FENCE:
283 return "memory_fence";
284
285 case SHADER_OPCODE_LOAD_PAYLOAD:
286 return "load_payload";
287 case FS_OPCODE_PACK:
288 return "pack";
289
290 case SHADER_OPCODE_GEN4_SCRATCH_READ:
291 return "gen4_scratch_read";
292 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
293 return "gen4_scratch_write";
294 case SHADER_OPCODE_GEN7_SCRATCH_READ:
295 return "gen7_scratch_read";
296 case SHADER_OPCODE_URB_WRITE_SIMD8:
297 return "gen8_urb_write_simd8";
298 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
299 return "gen8_urb_write_simd8_per_slot";
300 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
301 return "gen8_urb_write_simd8_masked";
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
303 return "gen8_urb_write_simd8_masked_per_slot";
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 return "urb_read_simd8";
306 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
307 return "urb_read_simd8_per_slot";
308
309 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
310 return "find_live_channel";
311 case SHADER_OPCODE_BROADCAST:
312 return "broadcast";
313
314 case VEC4_OPCODE_MOV_BYTES:
315 return "mov_bytes";
316 case VEC4_OPCODE_PACK_BYTES:
317 return "pack_bytes";
318 case VEC4_OPCODE_UNPACK_UNIFORM:
319 return "unpack_uniform";
320
321 case FS_OPCODE_DDX_COARSE:
322 return "ddx_coarse";
323 case FS_OPCODE_DDX_FINE:
324 return "ddx_fine";
325 case FS_OPCODE_DDY_COARSE:
326 return "ddy_coarse";
327 case FS_OPCODE_DDY_FINE:
328 return "ddy_fine";
329
330 case FS_OPCODE_CINTERP:
331 return "cinterp";
332 case FS_OPCODE_LINTERP:
333 return "linterp";
334
335 case FS_OPCODE_PIXEL_X:
336 return "pixel_x";
337 case FS_OPCODE_PIXEL_Y:
338 return "pixel_y";
339
340 case FS_OPCODE_GET_BUFFER_SIZE:
341 return "fs_get_buffer_size";
342
343 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
344 return "uniform_pull_const";
345 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
346 return "uniform_pull_const_gen7";
347 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
348 return "varying_pull_const_gen4";
349 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
350 return "varying_pull_const_gen7";
351 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
352 return "varying_pull_const_logical";
353
354 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
355 return "mov_dispatch_to_flags";
356 case FS_OPCODE_DISCARD_JUMP:
357 return "discard_jump";
358
359 case FS_OPCODE_SET_SAMPLE_ID:
360 return "set_sample_id";
361 case FS_OPCODE_SET_SIMD4X2_OFFSET:
362 return "set_simd4x2_offset";
363
364 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
365 return "pack_half_2x16_split";
366 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
367 return "unpack_half_2x16_split_x";
368 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
369 return "unpack_half_2x16_split_y";
370
371 case FS_OPCODE_PLACEHOLDER_HALT:
372 return "placeholder_halt";
373
374 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
375 return "interp_sample";
376 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
377 return "interp_shared_offset";
378 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
379 return "interp_per_slot_offset";
380
381 case VS_OPCODE_URB_WRITE:
382 return "vs_urb_write";
383 case VS_OPCODE_PULL_CONSTANT_LOAD:
384 return "pull_constant_load";
385 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
386 return "pull_constant_load_gen7";
387
388 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
389 return "set_simd4x2_header_gen9";
390
391 case VS_OPCODE_GET_BUFFER_SIZE:
392 return "vs_get_buffer_size";
393
394 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
395 return "unpack_flags_simd4x2";
396
397 case GS_OPCODE_URB_WRITE:
398 return "gs_urb_write";
399 case GS_OPCODE_URB_WRITE_ALLOCATE:
400 return "gs_urb_write_allocate";
401 case GS_OPCODE_THREAD_END:
402 return "gs_thread_end";
403 case GS_OPCODE_SET_WRITE_OFFSET:
404 return "set_write_offset";
405 case GS_OPCODE_SET_VERTEX_COUNT:
406 return "set_vertex_count";
407 case GS_OPCODE_SET_DWORD_2:
408 return "set_dword_2";
409 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
410 return "prepare_channel_masks";
411 case GS_OPCODE_SET_CHANNEL_MASKS:
412 return "set_channel_masks";
413 case GS_OPCODE_GET_INSTANCE_ID:
414 return "get_instance_id";
415 case GS_OPCODE_FF_SYNC:
416 return "ff_sync";
417 case GS_OPCODE_SET_PRIMITIVE_ID:
418 return "set_primitive_id";
419 case GS_OPCODE_SVB_WRITE:
420 return "gs_svb_write";
421 case GS_OPCODE_SVB_SET_DST_INDEX:
422 return "gs_svb_set_dst_index";
423 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
424 return "gs_ff_sync_set_primitives";
425 case CS_OPCODE_CS_TERMINATE:
426 return "cs_terminate";
427 case SHADER_OPCODE_BARRIER:
428 return "barrier";
429 case SHADER_OPCODE_MULH:
430 return "mulh";
431 case SHADER_OPCODE_MOV_INDIRECT:
432 return "mov_indirect";
433
434 case VEC4_OPCODE_URB_READ:
435 return "urb_read";
436 case TCS_OPCODE_GET_INSTANCE_ID:
437 return "tcs_get_instance_id";
438 case TCS_OPCODE_URB_WRITE:
439 return "tcs_urb_write";
440 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
441 return "tcs_set_input_urb_offsets";
442 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
443 return "tcs_set_output_urb_offsets";
444 case TCS_OPCODE_GET_PRIMITIVE_ID:
445 return "tcs_get_primitive_id";
446 case TCS_OPCODE_CREATE_BARRIER_HEADER:
447 return "tcs_create_barrier_header";
448 case TCS_OPCODE_SRC0_010_IS_ZERO:
449 return "tcs_src0<0,1,0>_is_zero";
450 case TCS_OPCODE_RELEASE_INPUT:
451 return "tcs_release_input";
452 case TCS_OPCODE_THREAD_END:
453 return "tcs_thread_end";
454 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
455 return "tes_create_input_read_header";
456 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
457 return "tes_add_indirect_urb_offset";
458 case TES_OPCODE_GET_PRIMITIVE_ID:
459 return "tes_get_primitive_id";
460 }
461
462 unreachable("not reached");
463 }
464
465 bool
466 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
467 {
468 union {
469 unsigned ud;
470 int d;
471 float f;
472 double df;
473 } imm, sat_imm = { 0 };
474
475 const unsigned size = type_sz(type);
476
477 /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
478 * irrelevant, so just check the size of the type and copy from/to an
479 * appropriately sized field.
480 */
481 if (size < 8)
482 imm.ud = reg->ud;
483 else
484 imm.df = reg->df;
485
486 switch (type) {
487 case BRW_REGISTER_TYPE_UD:
488 case BRW_REGISTER_TYPE_D:
489 case BRW_REGISTER_TYPE_UW:
490 case BRW_REGISTER_TYPE_W:
491 case BRW_REGISTER_TYPE_UQ:
492 case BRW_REGISTER_TYPE_Q:
493 /* Nothing to do. */
494 return false;
495 case BRW_REGISTER_TYPE_F:
496 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
497 break;
498 case BRW_REGISTER_TYPE_DF:
499 sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
500 break;
501 case BRW_REGISTER_TYPE_UB:
502 case BRW_REGISTER_TYPE_B:
503 unreachable("no UB/B immediates");
504 case BRW_REGISTER_TYPE_V:
505 case BRW_REGISTER_TYPE_UV:
506 case BRW_REGISTER_TYPE_VF:
507 unreachable("unimplemented: saturate vector immediate");
508 case BRW_REGISTER_TYPE_HF:
509 unreachable("unimplemented: saturate HF immediate");
510 }
511
512 if (size < 8) {
513 if (imm.ud != sat_imm.ud) {
514 reg->ud = sat_imm.ud;
515 return true;
516 }
517 } else {
518 if (imm.df != sat_imm.df) {
519 reg->df = sat_imm.df;
520 return true;
521 }
522 }
523 return false;
524 }
525
526 bool
527 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
528 {
529 switch (type) {
530 case BRW_REGISTER_TYPE_D:
531 case BRW_REGISTER_TYPE_UD:
532 reg->d = -reg->d;
533 return true;
534 case BRW_REGISTER_TYPE_W:
535 case BRW_REGISTER_TYPE_UW:
536 reg->d = -(int16_t)reg->ud;
537 return true;
538 case BRW_REGISTER_TYPE_F:
539 reg->f = -reg->f;
540 return true;
541 case BRW_REGISTER_TYPE_VF:
542 reg->ud ^= 0x80808080;
543 return true;
544 case BRW_REGISTER_TYPE_DF:
545 reg->df = -reg->df;
546 return true;
547 case BRW_REGISTER_TYPE_UB:
548 case BRW_REGISTER_TYPE_B:
549 unreachable("no UB/B immediates");
550 case BRW_REGISTER_TYPE_UV:
551 case BRW_REGISTER_TYPE_V:
552 assert(!"unimplemented: negate UV/V immediate");
553 case BRW_REGISTER_TYPE_UQ:
554 case BRW_REGISTER_TYPE_Q:
555 assert(!"unimplemented: negate UQ/Q immediate");
556 case BRW_REGISTER_TYPE_HF:
557 assert(!"unimplemented: negate HF immediate");
558 }
559
560 return false;
561 }
562
563 bool
564 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
565 {
566 switch (type) {
567 case BRW_REGISTER_TYPE_D:
568 reg->d = abs(reg->d);
569 return true;
570 case BRW_REGISTER_TYPE_W:
571 reg->d = abs((int16_t)reg->ud);
572 return true;
573 case BRW_REGISTER_TYPE_F:
574 reg->f = fabsf(reg->f);
575 return true;
576 case BRW_REGISTER_TYPE_DF:
577 reg->df = fabs(reg->df);
578 return true;
579 case BRW_REGISTER_TYPE_VF:
580 reg->ud &= ~0x80808080;
581 return true;
582 case BRW_REGISTER_TYPE_UB:
583 case BRW_REGISTER_TYPE_B:
584 unreachable("no UB/B immediates");
585 case BRW_REGISTER_TYPE_UQ:
586 case BRW_REGISTER_TYPE_UD:
587 case BRW_REGISTER_TYPE_UW:
588 case BRW_REGISTER_TYPE_UV:
589 /* Presumably the absolute value modifier on an unsigned source is a
590 * nop, but it would be nice to confirm.
591 */
592 assert(!"unimplemented: abs unsigned immediate");
593 case BRW_REGISTER_TYPE_V:
594 assert(!"unimplemented: abs V immediate");
595 case BRW_REGISTER_TYPE_Q:
596 assert(!"unimplemented: abs Q immediate");
597 case BRW_REGISTER_TYPE_HF:
598 assert(!"unimplemented: abs HF immediate");
599 }
600
601 return false;
602 }
603
604 unsigned
605 tesslevel_outer_components(GLenum tes_primitive_mode)
606 {
607 switch (tes_primitive_mode) {
608 case GL_QUADS:
609 return 4;
610 case GL_TRIANGLES:
611 return 3;
612 case GL_ISOLINES:
613 return 2;
614 default:
615 unreachable("Bogus tessellation domain");
616 }
617 return 0;
618 }
619
620 unsigned
621 tesslevel_inner_components(GLenum tes_primitive_mode)
622 {
623 switch (tes_primitive_mode) {
624 case GL_QUADS:
625 return 2;
626 case GL_TRIANGLES:
627 return 1;
628 case GL_ISOLINES:
629 return 0;
630 default:
631 unreachable("Bogus tessellation domain");
632 }
633 return 0;
634 }
635
636 /**
637 * Given a normal .xyzw writemask, convert it to a writemask for a vector
638 * that's stored backwards, i.e. .wzyx.
639 */
640 unsigned
641 writemask_for_backwards_vector(unsigned mask)
642 {
643 unsigned new_mask = 0;
644
645 for (int i = 0; i < 4; i++)
646 new_mask |= ((mask >> i) & 1) << (3 - i);
647
648 return new_mask;
649 }
650
651 backend_shader::backend_shader(const struct brw_compiler *compiler,
652 void *log_data,
653 void *mem_ctx,
654 const nir_shader *shader,
655 struct brw_stage_prog_data *stage_prog_data)
656 : compiler(compiler),
657 log_data(log_data),
658 devinfo(compiler->devinfo),
659 nir(shader),
660 stage_prog_data(stage_prog_data),
661 mem_ctx(mem_ctx),
662 cfg(NULL),
663 stage(shader->stage)
664 {
665 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
666 stage_name = _mesa_shader_stage_to_string(stage);
667 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
668 is_passthrough_shader =
669 nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
670 }
671
672 bool
673 backend_reg::equals(const backend_reg &r) const
674 {
675 return brw_regs_equal(this, &r) && offset == r.offset;
676 }
677
678 bool
679 backend_reg::is_zero() const
680 {
681 if (file != IMM)
682 return false;
683
684 switch (type) {
685 case BRW_REGISTER_TYPE_F:
686 return f == 0;
687 case BRW_REGISTER_TYPE_DF:
688 return df == 0;
689 case BRW_REGISTER_TYPE_D:
690 case BRW_REGISTER_TYPE_UD:
691 return d == 0;
692 default:
693 return false;
694 }
695 }
696
697 bool
698 backend_reg::is_one() const
699 {
700 if (file != IMM)
701 return false;
702
703 switch (type) {
704 case BRW_REGISTER_TYPE_F:
705 return f == 1.0f;
706 case BRW_REGISTER_TYPE_DF:
707 return df == 1.0;
708 case BRW_REGISTER_TYPE_D:
709 case BRW_REGISTER_TYPE_UD:
710 return d == 1;
711 default:
712 return false;
713 }
714 }
715
716 bool
717 backend_reg::is_negative_one() const
718 {
719 if (file != IMM)
720 return false;
721
722 switch (type) {
723 case BRW_REGISTER_TYPE_F:
724 return f == -1.0;
725 case BRW_REGISTER_TYPE_DF:
726 return df == -1.0;
727 case BRW_REGISTER_TYPE_D:
728 return d == -1;
729 default:
730 return false;
731 }
732 }
733
734 bool
735 backend_reg::is_null() const
736 {
737 return file == ARF && nr == BRW_ARF_NULL;
738 }
739
740
741 bool
742 backend_reg::is_accumulator() const
743 {
744 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
745 }
746
747 bool
748 backend_instruction::is_commutative() const
749 {
750 switch (opcode) {
751 case BRW_OPCODE_AND:
752 case BRW_OPCODE_OR:
753 case BRW_OPCODE_XOR:
754 case BRW_OPCODE_ADD:
755 case BRW_OPCODE_MUL:
756 case SHADER_OPCODE_MULH:
757 return true;
758 case BRW_OPCODE_SEL:
759 /* MIN and MAX are commutative. */
760 if (conditional_mod == BRW_CONDITIONAL_GE ||
761 conditional_mod == BRW_CONDITIONAL_L) {
762 return true;
763 }
764 /* fallthrough */
765 default:
766 return false;
767 }
768 }
769
770 bool
771 backend_instruction::is_3src(const struct gen_device_info *devinfo) const
772 {
773 return ::is_3src(devinfo, opcode);
774 }
775
776 bool
777 backend_instruction::is_tex() const
778 {
779 return (opcode == SHADER_OPCODE_TEX ||
780 opcode == FS_OPCODE_TXB ||
781 opcode == SHADER_OPCODE_TXD ||
782 opcode == SHADER_OPCODE_TXF ||
783 opcode == SHADER_OPCODE_TXF_LZ ||
784 opcode == SHADER_OPCODE_TXF_CMS ||
785 opcode == SHADER_OPCODE_TXF_CMS_W ||
786 opcode == SHADER_OPCODE_TXF_UMS ||
787 opcode == SHADER_OPCODE_TXF_MCS ||
788 opcode == SHADER_OPCODE_TXL ||
789 opcode == SHADER_OPCODE_TXL_LZ ||
790 opcode == SHADER_OPCODE_TXS ||
791 opcode == SHADER_OPCODE_LOD ||
792 opcode == SHADER_OPCODE_TG4 ||
793 opcode == SHADER_OPCODE_TG4_OFFSET ||
794 opcode == SHADER_OPCODE_SAMPLEINFO);
795 }
796
797 bool
798 backend_instruction::is_math() const
799 {
800 return (opcode == SHADER_OPCODE_RCP ||
801 opcode == SHADER_OPCODE_RSQ ||
802 opcode == SHADER_OPCODE_SQRT ||
803 opcode == SHADER_OPCODE_EXP2 ||
804 opcode == SHADER_OPCODE_LOG2 ||
805 opcode == SHADER_OPCODE_SIN ||
806 opcode == SHADER_OPCODE_COS ||
807 opcode == SHADER_OPCODE_INT_QUOTIENT ||
808 opcode == SHADER_OPCODE_INT_REMAINDER ||
809 opcode == SHADER_OPCODE_POW);
810 }
811
812 bool
813 backend_instruction::is_control_flow() const
814 {
815 switch (opcode) {
816 case BRW_OPCODE_DO:
817 case BRW_OPCODE_WHILE:
818 case BRW_OPCODE_IF:
819 case BRW_OPCODE_ELSE:
820 case BRW_OPCODE_ENDIF:
821 case BRW_OPCODE_BREAK:
822 case BRW_OPCODE_CONTINUE:
823 return true;
824 default:
825 return false;
826 }
827 }
828
829 bool
830 backend_instruction::can_do_source_mods() const
831 {
832 switch (opcode) {
833 case BRW_OPCODE_ADDC:
834 case BRW_OPCODE_BFE:
835 case BRW_OPCODE_BFI1:
836 case BRW_OPCODE_BFI2:
837 case BRW_OPCODE_BFREV:
838 case BRW_OPCODE_CBIT:
839 case BRW_OPCODE_FBH:
840 case BRW_OPCODE_FBL:
841 case BRW_OPCODE_SUBB:
842 return false;
843 default:
844 return true;
845 }
846 }
847
848 bool
849 backend_instruction::can_do_saturate() const
850 {
851 switch (opcode) {
852 case BRW_OPCODE_ADD:
853 case BRW_OPCODE_ASR:
854 case BRW_OPCODE_AVG:
855 case BRW_OPCODE_DP2:
856 case BRW_OPCODE_DP3:
857 case BRW_OPCODE_DP4:
858 case BRW_OPCODE_DPH:
859 case BRW_OPCODE_F16TO32:
860 case BRW_OPCODE_F32TO16:
861 case BRW_OPCODE_LINE:
862 case BRW_OPCODE_LRP:
863 case BRW_OPCODE_MAC:
864 case BRW_OPCODE_MAD:
865 case BRW_OPCODE_MATH:
866 case BRW_OPCODE_MOV:
867 case BRW_OPCODE_MUL:
868 case SHADER_OPCODE_MULH:
869 case BRW_OPCODE_PLN:
870 case BRW_OPCODE_RNDD:
871 case BRW_OPCODE_RNDE:
872 case BRW_OPCODE_RNDU:
873 case BRW_OPCODE_RNDZ:
874 case BRW_OPCODE_SEL:
875 case BRW_OPCODE_SHL:
876 case BRW_OPCODE_SHR:
877 case FS_OPCODE_LINTERP:
878 case SHADER_OPCODE_COS:
879 case SHADER_OPCODE_EXP2:
880 case SHADER_OPCODE_LOG2:
881 case SHADER_OPCODE_POW:
882 case SHADER_OPCODE_RCP:
883 case SHADER_OPCODE_RSQ:
884 case SHADER_OPCODE_SIN:
885 case SHADER_OPCODE_SQRT:
886 return true;
887 default:
888 return false;
889 }
890 }
891
892 bool
893 backend_instruction::can_do_cmod() const
894 {
895 switch (opcode) {
896 case BRW_OPCODE_ADD:
897 case BRW_OPCODE_ADDC:
898 case BRW_OPCODE_AND:
899 case BRW_OPCODE_ASR:
900 case BRW_OPCODE_AVG:
901 case BRW_OPCODE_CMP:
902 case BRW_OPCODE_CMPN:
903 case BRW_OPCODE_DP2:
904 case BRW_OPCODE_DP3:
905 case BRW_OPCODE_DP4:
906 case BRW_OPCODE_DPH:
907 case BRW_OPCODE_F16TO32:
908 case BRW_OPCODE_F32TO16:
909 case BRW_OPCODE_FRC:
910 case BRW_OPCODE_LINE:
911 case BRW_OPCODE_LRP:
912 case BRW_OPCODE_LZD:
913 case BRW_OPCODE_MAC:
914 case BRW_OPCODE_MACH:
915 case BRW_OPCODE_MAD:
916 case BRW_OPCODE_MOV:
917 case BRW_OPCODE_MUL:
918 case BRW_OPCODE_NOT:
919 case BRW_OPCODE_OR:
920 case BRW_OPCODE_PLN:
921 case BRW_OPCODE_RNDD:
922 case BRW_OPCODE_RNDE:
923 case BRW_OPCODE_RNDU:
924 case BRW_OPCODE_RNDZ:
925 case BRW_OPCODE_SAD2:
926 case BRW_OPCODE_SADA2:
927 case BRW_OPCODE_SHL:
928 case BRW_OPCODE_SHR:
929 case BRW_OPCODE_SUBB:
930 case BRW_OPCODE_XOR:
931 case FS_OPCODE_CINTERP:
932 case FS_OPCODE_LINTERP:
933 return true;
934 default:
935 return false;
936 }
937 }
938
939 bool
940 backend_instruction::reads_accumulator_implicitly() const
941 {
942 switch (opcode) {
943 case BRW_OPCODE_MAC:
944 case BRW_OPCODE_MACH:
945 case BRW_OPCODE_SADA2:
946 return true;
947 default:
948 return false;
949 }
950 }
951
952 bool
953 backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
954 {
955 return writes_accumulator ||
956 (devinfo->gen < 6 &&
957 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
958 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
959 opcode != FS_OPCODE_CINTERP)));
960 }
961
962 bool
963 backend_instruction::has_side_effects() const
964 {
965 switch (opcode) {
966 case SHADER_OPCODE_UNTYPED_ATOMIC:
967 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
968 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
969 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
970 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
971 case SHADER_OPCODE_TYPED_ATOMIC:
972 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
973 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
974 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
975 case SHADER_OPCODE_MEMORY_FENCE:
976 case SHADER_OPCODE_URB_WRITE_SIMD8:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
980 case FS_OPCODE_FB_WRITE:
981 case FS_OPCODE_FB_WRITE_LOGICAL:
982 case SHADER_OPCODE_BARRIER:
983 case TCS_OPCODE_URB_WRITE:
984 case TCS_OPCODE_RELEASE_INPUT:
985 return true;
986 default:
987 return false;
988 }
989 }
990
991 bool
992 backend_instruction::is_volatile() const
993 {
994 switch (opcode) {
995 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
996 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
997 case SHADER_OPCODE_TYPED_SURFACE_READ:
998 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
999 case SHADER_OPCODE_URB_READ_SIMD8:
1000 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
1001 case VEC4_OPCODE_URB_READ:
1002 return true;
1003 default:
1004 return false;
1005 }
1006 }
1007
1008 #ifndef NDEBUG
1009 static bool
1010 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
1011 {
1012 bool found = false;
1013 foreach_inst_in_block (backend_instruction, i, block) {
1014 if (inst == i) {
1015 found = true;
1016 }
1017 }
1018 return found;
1019 }
1020 #endif
1021
1022 static void
1023 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
1024 {
1025 for (bblock_t *block_iter = start_block->next();
1026 block_iter;
1027 block_iter = block_iter->next()) {
1028 block_iter->start_ip += ip_adjustment;
1029 block_iter->end_ip += ip_adjustment;
1030 }
1031 }
1032
1033 void
1034 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1035 {
1036 assert(this != inst);
1037
1038 if (!this->is_head_sentinel())
1039 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1040
1041 block->end_ip++;
1042
1043 adjust_later_block_ips(block, 1);
1044
1045 exec_node::insert_after(inst);
1046 }
1047
1048 void
1049 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1050 {
1051 assert(this != inst);
1052
1053 if (!this->is_tail_sentinel())
1054 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1055
1056 block->end_ip++;
1057
1058 adjust_later_block_ips(block, 1);
1059
1060 exec_node::insert_before(inst);
1061 }
1062
1063 void
1064 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1065 {
1066 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1067
1068 unsigned num_inst = list->length();
1069
1070 block->end_ip += num_inst;
1071
1072 adjust_later_block_ips(block, num_inst);
1073
1074 exec_node::insert_before(list);
1075 }
1076
1077 void
1078 backend_instruction::remove(bblock_t *block)
1079 {
1080 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1081
1082 adjust_later_block_ips(block, -1);
1083
1084 if (block->start_ip == block->end_ip) {
1085 block->cfg->remove_block(block);
1086 } else {
1087 block->end_ip--;
1088 }
1089
1090 exec_node::remove();
1091 }
1092
1093 void
1094 backend_shader::dump_instructions()
1095 {
1096 dump_instructions(NULL);
1097 }
1098
1099 void
1100 backend_shader::dump_instructions(const char *name)
1101 {
1102 FILE *file = stderr;
1103 if (name && geteuid() != 0) {
1104 file = fopen(name, "w");
1105 if (!file)
1106 file = stderr;
1107 }
1108
1109 if (cfg) {
1110 int ip = 0;
1111 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1112 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1113 fprintf(file, "%4d: ", ip++);
1114 dump_instruction(inst, file);
1115 }
1116 } else {
1117 int ip = 0;
1118 foreach_in_list(backend_instruction, inst, &instructions) {
1119 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1120 fprintf(file, "%4d: ", ip++);
1121 dump_instruction(inst, file);
1122 }
1123 }
1124
1125 if (file != stderr) {
1126 fclose(file);
1127 }
1128 }
1129
1130 void
1131 backend_shader::calculate_cfg()
1132 {
1133 if (this->cfg)
1134 return;
1135 cfg = new(mem_ctx) cfg_t(&this->instructions);
1136 }
1137
1138 /**
1139 * Sets up the starting offsets for the groups of binding table entries
1140 * commong to all pipeline stages.
1141 *
1142 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1143 * unused but also make sure that addition of small offsets to them will
1144 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1145 */
1146 uint32_t
1147 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1148 const struct gen_device_info *devinfo,
1149 const struct gl_shader_program *shader_prog,
1150 const struct gl_program *prog,
1151 struct brw_stage_prog_data *stage_prog_data,
1152 uint32_t next_binding_table_offset)
1153 {
1154 const struct gl_linked_shader *shader = NULL;
1155 int num_textures = util_last_bit(prog->SamplersUsed);
1156
1157 if (shader_prog)
1158 shader = shader_prog->_LinkedShaders[stage];
1159
1160 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1161 next_binding_table_offset += num_textures;
1162
1163 if (shader) {
1164 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1165 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1166 next_binding_table_offset += shader->NumUniformBlocks;
1167
1168 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1169 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1170 next_binding_table_offset += shader->NumShaderStorageBlocks;
1171 } else {
1172 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1173 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1174 }
1175
1176 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1177 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1178 next_binding_table_offset++;
1179 } else {
1180 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1181 }
1182
1183 if (prog->UsesGather) {
1184 if (devinfo->gen >= 8) {
1185 stage_prog_data->binding_table.gather_texture_start =
1186 stage_prog_data->binding_table.texture_start;
1187 } else {
1188 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1189 next_binding_table_offset += num_textures;
1190 }
1191 } else {
1192 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1193 }
1194
1195 if (shader && shader->NumAtomicBuffers) {
1196 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1197 next_binding_table_offset += shader->NumAtomicBuffers;
1198 } else {
1199 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1200 }
1201
1202 if (shader && shader->NumImages) {
1203 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1204 next_binding_table_offset += shader->NumImages;
1205 } else {
1206 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1207 }
1208
1209 /* This may or may not be used depending on how the compile goes. */
1210 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1211 next_binding_table_offset++;
1212
1213 /* Plane 0 is just the regular texture section */
1214 stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
1215
1216 stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
1217 next_binding_table_offset += num_textures;
1218
1219 stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
1220 next_binding_table_offset += num_textures;
1221
1222 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1223
1224 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1225 return next_binding_table_offset;
1226 }
1227
1228 static void
1229 setup_vec4_uniform_value(const gl_constant_value **params,
1230 const gl_constant_value *values,
1231 unsigned n)
1232 {
1233 static const gl_constant_value zero = { 0 };
1234
1235 for (unsigned i = 0; i < n; ++i)
1236 params[i] = &values[i];
1237
1238 for (unsigned i = n; i < 4; ++i)
1239 params[i] = &zero;
1240 }
1241
1242 void
1243 brw_setup_image_uniform_values(gl_shader_stage stage,
1244 struct brw_stage_prog_data *stage_prog_data,
1245 unsigned param_start_index,
1246 const gl_uniform_storage *storage)
1247 {
1248 const gl_constant_value **param =
1249 &stage_prog_data->param[param_start_index];
1250
1251 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1252 const unsigned image_idx = storage->opaque[stage].index + i;
1253 const brw_image_param *image_param =
1254 &stage_prog_data->image_param[image_idx];
1255
1256 /* Upload the brw_image_param structure. The order is expected to match
1257 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1258 */
1259 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1260 (const gl_constant_value *)&image_param->surface_idx, 1);
1261 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1262 (const gl_constant_value *)image_param->offset, 2);
1263 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1264 (const gl_constant_value *)image_param->size, 3);
1265 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1266 (const gl_constant_value *)image_param->stride, 4);
1267 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1268 (const gl_constant_value *)image_param->tiling, 3);
1269 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1270 (const gl_constant_value *)image_param->swizzling, 2);
1271 param += BRW_IMAGE_PARAM_SIZE;
1272
1273 brw_mark_surface_used(
1274 stage_prog_data,
1275 stage_prog_data->binding_table.image_start + image_idx);
1276 }
1277 }
1278
1279 /**
1280 * Decide which set of clip planes should be used when clipping via
1281 * gl_Position or gl_ClipVertex.
1282 */
1283 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1284 {
1285 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1286 /* There is currently a GLSL vertex shader, so clip according to GLSL
1287 * rules, which means compare gl_ClipVertex (or gl_Position, if
1288 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1289 * that were stored in EyeUserPlane at the time the clip planes were
1290 * specified.
1291 */
1292 return ctx->Transform.EyeUserPlane;
1293 } else {
1294 /* Either we are using fixed function or an ARB vertex program. In
1295 * either case the clip planes are going to be compared against
1296 * gl_Position (which is in clip coordinates) so we have to clip using
1297 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1298 * core.
1299 */
1300 return ctx->Transform._ClipUserPlane;
1301 }
1302 }
1303
1304 extern "C" const unsigned *
1305 brw_compile_tes(const struct brw_compiler *compiler,
1306 void *log_data,
1307 void *mem_ctx,
1308 const struct brw_tes_prog_key *key,
1309 struct brw_tes_prog_data *prog_data,
1310 const nir_shader *src_shader,
1311 struct gl_shader_program *shader_prog,
1312 int shader_time_index,
1313 unsigned *final_assembly_size,
1314 char **error_str)
1315 {
1316 const struct gen_device_info *devinfo = compiler->devinfo;
1317 struct gl_linked_shader *shader =
1318 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1319 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1320
1321 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1322 nir->info.inputs_read = key->inputs_read;
1323 nir->info.patch_inputs_read = key->patch_inputs_read;
1324
1325 struct brw_vue_map input_vue_map;
1326 brw_compute_tess_vue_map(&input_vue_map,
1327 nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
1328 nir->info.patch_inputs_read);
1329
1330 nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
1331 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1332 brw_nir_lower_vue_outputs(nir, is_scalar);
1333 nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
1334
1335 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1336 nir->info.outputs_written,
1337 nir->info.separate_shader);
1338
1339 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1340
1341 assert(output_size_bytes >= 1);
1342 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1343 if (error_str)
1344 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1345 return NULL;
1346 }
1347
1348 /* URB entry sizes are stored as a multiple of 64 bytes. */
1349 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1350
1351 bool need_patch_header = nir->info.system_values_read &
1352 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1353 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1354
1355 /* The TES will pull most inputs using URB read messages.
1356 *
1357 * However, we push the patch header for TessLevel factors when required,
1358 * as it's a tiny amount of extra data.
1359 */
1360 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1361
1362 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1363 fprintf(stderr, "TES Input ");
1364 brw_print_vue_map(stderr, &input_vue_map);
1365 fprintf(stderr, "TES Output ");
1366 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1367 }
1368
1369 if (is_scalar) {
1370 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1371 &prog_data->base.base, shader->Program, nir, 8,
1372 shader_time_index, &input_vue_map);
1373 if (!v.run_tes()) {
1374 if (error_str)
1375 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1376 return NULL;
1377 }
1378
1379 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
1380 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1381
1382 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1383 &prog_data->base.base, v.promoted_constants, false,
1384 MESA_SHADER_TESS_EVAL);
1385 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1386 g.enable_debug(ralloc_asprintf(mem_ctx,
1387 "%s tessellation evaluation shader %s",
1388 nir->info.label ? nir->info.label
1389 : "unnamed",
1390 nir->info.name));
1391 }
1392
1393 g.generate_code(v.cfg, 8);
1394
1395 return g.get_assembly(final_assembly_size);
1396 } else {
1397 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1398 nir, mem_ctx, shader_time_index);
1399 if (!v.run()) {
1400 if (error_str)
1401 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1402 return NULL;
1403 }
1404
1405 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1406 v.dump_instructions();
1407
1408 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1409 &prog_data->base, v.cfg,
1410 final_assembly_size);
1411 }
1412 }