i965: Avoid int64 induced warnings
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/uniforms.h"
31
32 extern "C" void
33 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
34 unsigned surf_index)
35 {
36 assert(surf_index < BRW_MAX_SURFACES);
37
38 prog_data->binding_table.size_bytes =
39 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
40 }
41
42 enum brw_reg_type
43 brw_type_for_base_type(const struct glsl_type *type)
44 {
45 switch (type->base_type) {
46 case GLSL_TYPE_FLOAT:
47 return BRW_REGISTER_TYPE_F;
48 case GLSL_TYPE_INT:
49 case GLSL_TYPE_BOOL:
50 case GLSL_TYPE_SUBROUTINE:
51 return BRW_REGISTER_TYPE_D;
52 case GLSL_TYPE_UINT:
53 return BRW_REGISTER_TYPE_UD;
54 case GLSL_TYPE_ARRAY:
55 return brw_type_for_base_type(type->fields.array);
56 case GLSL_TYPE_STRUCT:
57 case GLSL_TYPE_SAMPLER:
58 case GLSL_TYPE_ATOMIC_UINT:
59 /* These should be overridden with the type of the member when
60 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
61 * way to trip up if we don't.
62 */
63 return BRW_REGISTER_TYPE_UD;
64 case GLSL_TYPE_IMAGE:
65 return BRW_REGISTER_TYPE_UD;
66 case GLSL_TYPE_DOUBLE:
67 return BRW_REGISTER_TYPE_DF;
68 case GLSL_TYPE_VOID:
69 case GLSL_TYPE_ERROR:
70 case GLSL_TYPE_INTERFACE:
71 case GLSL_TYPE_FUNCTION:
72 case GLSL_TYPE_UINT64:
73 case GLSL_TYPE_INT64:
74 unreachable("not reached");
75 }
76
77 return BRW_REGISTER_TYPE_F;
78 }
79
80 enum brw_conditional_mod
81 brw_conditional_for_comparison(unsigned int op)
82 {
83 switch (op) {
84 case ir_binop_less:
85 return BRW_CONDITIONAL_L;
86 case ir_binop_greater:
87 return BRW_CONDITIONAL_G;
88 case ir_binop_lequal:
89 return BRW_CONDITIONAL_LE;
90 case ir_binop_gequal:
91 return BRW_CONDITIONAL_GE;
92 case ir_binop_equal:
93 case ir_binop_all_equal: /* same as equal for scalars */
94 return BRW_CONDITIONAL_Z;
95 case ir_binop_nequal:
96 case ir_binop_any_nequal: /* same as nequal for scalars */
97 return BRW_CONDITIONAL_NZ;
98 default:
99 unreachable("not reached: bad operation for comparison");
100 }
101 }
102
103 uint32_t
104 brw_math_function(enum opcode op)
105 {
106 switch (op) {
107 case SHADER_OPCODE_RCP:
108 return BRW_MATH_FUNCTION_INV;
109 case SHADER_OPCODE_RSQ:
110 return BRW_MATH_FUNCTION_RSQ;
111 case SHADER_OPCODE_SQRT:
112 return BRW_MATH_FUNCTION_SQRT;
113 case SHADER_OPCODE_EXP2:
114 return BRW_MATH_FUNCTION_EXP;
115 case SHADER_OPCODE_LOG2:
116 return BRW_MATH_FUNCTION_LOG;
117 case SHADER_OPCODE_POW:
118 return BRW_MATH_FUNCTION_POW;
119 case SHADER_OPCODE_SIN:
120 return BRW_MATH_FUNCTION_SIN;
121 case SHADER_OPCODE_COS:
122 return BRW_MATH_FUNCTION_COS;
123 case SHADER_OPCODE_INT_QUOTIENT:
124 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
125 case SHADER_OPCODE_INT_REMAINDER:
126 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
127 default:
128 unreachable("not reached: unknown math function");
129 }
130 }
131
132 bool
133 brw_texture_offset(int *offsets, unsigned num_components, uint32_t *offset_bits)
134 {
135 if (!offsets) return false; /* nonconstant offset; caller will handle it. */
136
137 /* offset out of bounds; caller will handle it. */
138 for (unsigned i = 0; i < num_components; i++)
139 if (offsets[i] > 7 || offsets[i] < -8)
140 return false;
141
142 /* Combine all three offsets into a single unsigned dword:
143 *
144 * bits 11:8 - U Offset (X component)
145 * bits 7:4 - V Offset (Y component)
146 * bits 3:0 - R Offset (Z component)
147 */
148 *offset_bits = 0;
149 for (unsigned i = 0; i < num_components; i++) {
150 const unsigned shift = 4 * (2 - i);
151 *offset_bits |= (offsets[i] << shift) & (0xF << shift);
152 }
153 return true;
154 }
155
156 const char *
157 brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
158 {
159 switch (op) {
160 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
161 /* The DO instruction doesn't exist on Gen6+, but we use it to mark the
162 * start of a loop in the IR.
163 */
164 if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
165 return "do";
166
167 assert(brw_opcode_desc(devinfo, op)->name);
168 return brw_opcode_desc(devinfo, op)->name;
169 case FS_OPCODE_FB_WRITE:
170 return "fb_write";
171 case FS_OPCODE_FB_WRITE_LOGICAL:
172 return "fb_write_logical";
173 case FS_OPCODE_REP_FB_WRITE:
174 return "rep_fb_write";
175 case FS_OPCODE_FB_READ:
176 return "fb_read";
177 case FS_OPCODE_FB_READ_LOGICAL:
178 return "fb_read_logical";
179
180 case SHADER_OPCODE_RCP:
181 return "rcp";
182 case SHADER_OPCODE_RSQ:
183 return "rsq";
184 case SHADER_OPCODE_SQRT:
185 return "sqrt";
186 case SHADER_OPCODE_EXP2:
187 return "exp2";
188 case SHADER_OPCODE_LOG2:
189 return "log2";
190 case SHADER_OPCODE_POW:
191 return "pow";
192 case SHADER_OPCODE_INT_QUOTIENT:
193 return "int_quot";
194 case SHADER_OPCODE_INT_REMAINDER:
195 return "int_rem";
196 case SHADER_OPCODE_SIN:
197 return "sin";
198 case SHADER_OPCODE_COS:
199 return "cos";
200
201 case SHADER_OPCODE_TEX:
202 return "tex";
203 case SHADER_OPCODE_TEX_LOGICAL:
204 return "tex_logical";
205 case SHADER_OPCODE_TXD:
206 return "txd";
207 case SHADER_OPCODE_TXD_LOGICAL:
208 return "txd_logical";
209 case SHADER_OPCODE_TXF:
210 return "txf";
211 case SHADER_OPCODE_TXF_LOGICAL:
212 return "txf_logical";
213 case SHADER_OPCODE_TXF_LZ:
214 return "txf_lz";
215 case SHADER_OPCODE_TXL:
216 return "txl";
217 case SHADER_OPCODE_TXL_LOGICAL:
218 return "txl_logical";
219 case SHADER_OPCODE_TXL_LZ:
220 return "txl_lz";
221 case SHADER_OPCODE_TXS:
222 return "txs";
223 case SHADER_OPCODE_TXS_LOGICAL:
224 return "txs_logical";
225 case FS_OPCODE_TXB:
226 return "txb";
227 case FS_OPCODE_TXB_LOGICAL:
228 return "txb_logical";
229 case SHADER_OPCODE_TXF_CMS:
230 return "txf_cms";
231 case SHADER_OPCODE_TXF_CMS_LOGICAL:
232 return "txf_cms_logical";
233 case SHADER_OPCODE_TXF_CMS_W:
234 return "txf_cms_w";
235 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
236 return "txf_cms_w_logical";
237 case SHADER_OPCODE_TXF_UMS:
238 return "txf_ums";
239 case SHADER_OPCODE_TXF_UMS_LOGICAL:
240 return "txf_ums_logical";
241 case SHADER_OPCODE_TXF_MCS:
242 return "txf_mcs";
243 case SHADER_OPCODE_TXF_MCS_LOGICAL:
244 return "txf_mcs_logical";
245 case SHADER_OPCODE_LOD:
246 return "lod";
247 case SHADER_OPCODE_LOD_LOGICAL:
248 return "lod_logical";
249 case SHADER_OPCODE_TG4:
250 return "tg4";
251 case SHADER_OPCODE_TG4_LOGICAL:
252 return "tg4_logical";
253 case SHADER_OPCODE_TG4_OFFSET:
254 return "tg4_offset";
255 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
256 return "tg4_offset_logical";
257 case SHADER_OPCODE_SAMPLEINFO:
258 return "sampleinfo";
259 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
260 return "sampleinfo_logical";
261
262 case SHADER_OPCODE_SHADER_TIME_ADD:
263 return "shader_time_add";
264
265 case SHADER_OPCODE_UNTYPED_ATOMIC:
266 return "untyped_atomic";
267 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
268 return "untyped_atomic_logical";
269 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
270 return "untyped_surface_read";
271 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
272 return "untyped_surface_read_logical";
273 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
274 return "untyped_surface_write";
275 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
276 return "untyped_surface_write_logical";
277 case SHADER_OPCODE_TYPED_ATOMIC:
278 return "typed_atomic";
279 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
280 return "typed_atomic_logical";
281 case SHADER_OPCODE_TYPED_SURFACE_READ:
282 return "typed_surface_read";
283 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
284 return "typed_surface_read_logical";
285 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
286 return "typed_surface_write";
287 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
288 return "typed_surface_write_logical";
289 case SHADER_OPCODE_MEMORY_FENCE:
290 return "memory_fence";
291
292 case SHADER_OPCODE_LOAD_PAYLOAD:
293 return "load_payload";
294 case FS_OPCODE_PACK:
295 return "pack";
296
297 case SHADER_OPCODE_GEN4_SCRATCH_READ:
298 return "gen4_scratch_read";
299 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
300 return "gen4_scratch_write";
301 case SHADER_OPCODE_GEN7_SCRATCH_READ:
302 return "gen7_scratch_read";
303 case SHADER_OPCODE_URB_WRITE_SIMD8:
304 return "gen8_urb_write_simd8";
305 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
306 return "gen8_urb_write_simd8_per_slot";
307 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
308 return "gen8_urb_write_simd8_masked";
309 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
310 return "gen8_urb_write_simd8_masked_per_slot";
311 case SHADER_OPCODE_URB_READ_SIMD8:
312 return "urb_read_simd8";
313 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
314 return "urb_read_simd8_per_slot";
315
316 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
317 return "find_live_channel";
318 case SHADER_OPCODE_BROADCAST:
319 return "broadcast";
320
321 case VEC4_OPCODE_MOV_BYTES:
322 return "mov_bytes";
323 case VEC4_OPCODE_PACK_BYTES:
324 return "pack_bytes";
325 case VEC4_OPCODE_UNPACK_UNIFORM:
326 return "unpack_uniform";
327 case VEC4_OPCODE_FROM_DOUBLE:
328 return "double_to_single";
329 case VEC4_OPCODE_TO_DOUBLE:
330 return "single_to_double";
331 case VEC4_OPCODE_PICK_LOW_32BIT:
332 return "pick_low_32bit";
333 case VEC4_OPCODE_PICK_HIGH_32BIT:
334 return "pick_high_32bit";
335 case VEC4_OPCODE_SET_LOW_32BIT:
336 return "set_low_32bit";
337 case VEC4_OPCODE_SET_HIGH_32BIT:
338 return "set_high_32bit";
339
340 case FS_OPCODE_DDX_COARSE:
341 return "ddx_coarse";
342 case FS_OPCODE_DDX_FINE:
343 return "ddx_fine";
344 case FS_OPCODE_DDY_COARSE:
345 return "ddy_coarse";
346 case FS_OPCODE_DDY_FINE:
347 return "ddy_fine";
348
349 case FS_OPCODE_CINTERP:
350 return "cinterp";
351 case FS_OPCODE_LINTERP:
352 return "linterp";
353
354 case FS_OPCODE_PIXEL_X:
355 return "pixel_x";
356 case FS_OPCODE_PIXEL_Y:
357 return "pixel_y";
358
359 case FS_OPCODE_GET_BUFFER_SIZE:
360 return "fs_get_buffer_size";
361
362 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
363 return "uniform_pull_const";
364 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
365 return "uniform_pull_const_gen7";
366 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
367 return "varying_pull_const_gen4";
368 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
369 return "varying_pull_const_gen7";
370 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
371 return "varying_pull_const_logical";
372
373 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
374 return "mov_dispatch_to_flags";
375 case FS_OPCODE_DISCARD_JUMP:
376 return "discard_jump";
377
378 case FS_OPCODE_SET_SAMPLE_ID:
379 return "set_sample_id";
380
381 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
382 return "pack_half_2x16_split";
383 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
384 return "unpack_half_2x16_split_x";
385 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
386 return "unpack_half_2x16_split_y";
387
388 case FS_OPCODE_PLACEHOLDER_HALT:
389 return "placeholder_halt";
390
391 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
392 return "interp_sample";
393 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
394 return "interp_shared_offset";
395 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
396 return "interp_per_slot_offset";
397
398 case VS_OPCODE_URB_WRITE:
399 return "vs_urb_write";
400 case VS_OPCODE_PULL_CONSTANT_LOAD:
401 return "pull_constant_load";
402 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
403 return "pull_constant_load_gen7";
404
405 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
406 return "set_simd4x2_header_gen9";
407
408 case VS_OPCODE_GET_BUFFER_SIZE:
409 return "vs_get_buffer_size";
410
411 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
412 return "unpack_flags_simd4x2";
413
414 case GS_OPCODE_URB_WRITE:
415 return "gs_urb_write";
416 case GS_OPCODE_URB_WRITE_ALLOCATE:
417 return "gs_urb_write_allocate";
418 case GS_OPCODE_THREAD_END:
419 return "gs_thread_end";
420 case GS_OPCODE_SET_WRITE_OFFSET:
421 return "set_write_offset";
422 case GS_OPCODE_SET_VERTEX_COUNT:
423 return "set_vertex_count";
424 case GS_OPCODE_SET_DWORD_2:
425 return "set_dword_2";
426 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
427 return "prepare_channel_masks";
428 case GS_OPCODE_SET_CHANNEL_MASKS:
429 return "set_channel_masks";
430 case GS_OPCODE_GET_INSTANCE_ID:
431 return "get_instance_id";
432 case GS_OPCODE_FF_SYNC:
433 return "ff_sync";
434 case GS_OPCODE_SET_PRIMITIVE_ID:
435 return "set_primitive_id";
436 case GS_OPCODE_SVB_WRITE:
437 return "gs_svb_write";
438 case GS_OPCODE_SVB_SET_DST_INDEX:
439 return "gs_svb_set_dst_index";
440 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
441 return "gs_ff_sync_set_primitives";
442 case CS_OPCODE_CS_TERMINATE:
443 return "cs_terminate";
444 case SHADER_OPCODE_BARRIER:
445 return "barrier";
446 case SHADER_OPCODE_MULH:
447 return "mulh";
448 case SHADER_OPCODE_MOV_INDIRECT:
449 return "mov_indirect";
450
451 case VEC4_OPCODE_URB_READ:
452 return "urb_read";
453 case TCS_OPCODE_GET_INSTANCE_ID:
454 return "tcs_get_instance_id";
455 case TCS_OPCODE_URB_WRITE:
456 return "tcs_urb_write";
457 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
458 return "tcs_set_input_urb_offsets";
459 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
460 return "tcs_set_output_urb_offsets";
461 case TCS_OPCODE_GET_PRIMITIVE_ID:
462 return "tcs_get_primitive_id";
463 case TCS_OPCODE_CREATE_BARRIER_HEADER:
464 return "tcs_create_barrier_header";
465 case TCS_OPCODE_SRC0_010_IS_ZERO:
466 return "tcs_src0<0,1,0>_is_zero";
467 case TCS_OPCODE_RELEASE_INPUT:
468 return "tcs_release_input";
469 case TCS_OPCODE_THREAD_END:
470 return "tcs_thread_end";
471 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
472 return "tes_create_input_read_header";
473 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
474 return "tes_add_indirect_urb_offset";
475 case TES_OPCODE_GET_PRIMITIVE_ID:
476 return "tes_get_primitive_id";
477 }
478
479 unreachable("not reached");
480 }
481
482 bool
483 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
484 {
485 union {
486 unsigned ud;
487 int d;
488 float f;
489 double df;
490 } imm, sat_imm = { 0 };
491
492 const unsigned size = type_sz(type);
493
494 /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
495 * irrelevant, so just check the size of the type and copy from/to an
496 * appropriately sized field.
497 */
498 if (size < 8)
499 imm.ud = reg->ud;
500 else
501 imm.df = reg->df;
502
503 switch (type) {
504 case BRW_REGISTER_TYPE_UD:
505 case BRW_REGISTER_TYPE_D:
506 case BRW_REGISTER_TYPE_UW:
507 case BRW_REGISTER_TYPE_W:
508 case BRW_REGISTER_TYPE_UQ:
509 case BRW_REGISTER_TYPE_Q:
510 /* Nothing to do. */
511 return false;
512 case BRW_REGISTER_TYPE_F:
513 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
514 break;
515 case BRW_REGISTER_TYPE_DF:
516 sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
517 break;
518 case BRW_REGISTER_TYPE_UB:
519 case BRW_REGISTER_TYPE_B:
520 unreachable("no UB/B immediates");
521 case BRW_REGISTER_TYPE_V:
522 case BRW_REGISTER_TYPE_UV:
523 case BRW_REGISTER_TYPE_VF:
524 unreachable("unimplemented: saturate vector immediate");
525 case BRW_REGISTER_TYPE_HF:
526 unreachable("unimplemented: saturate HF immediate");
527 }
528
529 if (size < 8) {
530 if (imm.ud != sat_imm.ud) {
531 reg->ud = sat_imm.ud;
532 return true;
533 }
534 } else {
535 if (imm.df != sat_imm.df) {
536 reg->df = sat_imm.df;
537 return true;
538 }
539 }
540 return false;
541 }
542
543 bool
544 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
545 {
546 switch (type) {
547 case BRW_REGISTER_TYPE_D:
548 case BRW_REGISTER_TYPE_UD:
549 reg->d = -reg->d;
550 return true;
551 case BRW_REGISTER_TYPE_W:
552 case BRW_REGISTER_TYPE_UW:
553 reg->d = -(int16_t)reg->ud;
554 return true;
555 case BRW_REGISTER_TYPE_F:
556 reg->f = -reg->f;
557 return true;
558 case BRW_REGISTER_TYPE_VF:
559 reg->ud ^= 0x80808080;
560 return true;
561 case BRW_REGISTER_TYPE_DF:
562 reg->df = -reg->df;
563 return true;
564 case BRW_REGISTER_TYPE_UB:
565 case BRW_REGISTER_TYPE_B:
566 unreachable("no UB/B immediates");
567 case BRW_REGISTER_TYPE_UV:
568 case BRW_REGISTER_TYPE_V:
569 assert(!"unimplemented: negate UV/V immediate");
570 case BRW_REGISTER_TYPE_UQ:
571 case BRW_REGISTER_TYPE_Q:
572 assert(!"unimplemented: negate UQ/Q immediate");
573 case BRW_REGISTER_TYPE_HF:
574 assert(!"unimplemented: negate HF immediate");
575 }
576
577 return false;
578 }
579
580 bool
581 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
582 {
583 switch (type) {
584 case BRW_REGISTER_TYPE_D:
585 reg->d = abs(reg->d);
586 return true;
587 case BRW_REGISTER_TYPE_W:
588 reg->d = abs((int16_t)reg->ud);
589 return true;
590 case BRW_REGISTER_TYPE_F:
591 reg->f = fabsf(reg->f);
592 return true;
593 case BRW_REGISTER_TYPE_DF:
594 reg->df = fabs(reg->df);
595 return true;
596 case BRW_REGISTER_TYPE_VF:
597 reg->ud &= ~0x80808080;
598 return true;
599 case BRW_REGISTER_TYPE_UB:
600 case BRW_REGISTER_TYPE_B:
601 unreachable("no UB/B immediates");
602 case BRW_REGISTER_TYPE_UQ:
603 case BRW_REGISTER_TYPE_UD:
604 case BRW_REGISTER_TYPE_UW:
605 case BRW_REGISTER_TYPE_UV:
606 /* Presumably the absolute value modifier on an unsigned source is a
607 * nop, but it would be nice to confirm.
608 */
609 assert(!"unimplemented: abs unsigned immediate");
610 case BRW_REGISTER_TYPE_V:
611 assert(!"unimplemented: abs V immediate");
612 case BRW_REGISTER_TYPE_Q:
613 assert(!"unimplemented: abs Q immediate");
614 case BRW_REGISTER_TYPE_HF:
615 assert(!"unimplemented: abs HF immediate");
616 }
617
618 return false;
619 }
620
621 /**
622 * Get the appropriate atomic op for an image atomic intrinsic.
623 */
624 unsigned
625 get_atomic_counter_op(nir_intrinsic_op op)
626 {
627 switch (op) {
628 case nir_intrinsic_atomic_counter_inc:
629 return BRW_AOP_INC;
630 case nir_intrinsic_atomic_counter_dec:
631 return BRW_AOP_PREDEC;
632 case nir_intrinsic_atomic_counter_add:
633 return BRW_AOP_ADD;
634 case nir_intrinsic_atomic_counter_min:
635 return BRW_AOP_UMIN;
636 case nir_intrinsic_atomic_counter_max:
637 return BRW_AOP_UMAX;
638 case nir_intrinsic_atomic_counter_and:
639 return BRW_AOP_AND;
640 case nir_intrinsic_atomic_counter_or:
641 return BRW_AOP_OR;
642 case nir_intrinsic_atomic_counter_xor:
643 return BRW_AOP_XOR;
644 case nir_intrinsic_atomic_counter_exchange:
645 return BRW_AOP_MOV;
646 case nir_intrinsic_atomic_counter_comp_swap:
647 return BRW_AOP_CMPWR;
648 default:
649 unreachable("Not reachable.");
650 }
651 }
652
653 backend_shader::backend_shader(const struct brw_compiler *compiler,
654 void *log_data,
655 void *mem_ctx,
656 const nir_shader *shader,
657 struct brw_stage_prog_data *stage_prog_data)
658 : compiler(compiler),
659 log_data(log_data),
660 devinfo(compiler->devinfo),
661 nir(shader),
662 stage_prog_data(stage_prog_data),
663 mem_ctx(mem_ctx),
664 cfg(NULL),
665 stage(shader->stage)
666 {
667 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
668 stage_name = _mesa_shader_stage_to_string(stage);
669 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
670 }
671
672 bool
673 backend_reg::equals(const backend_reg &r) const
674 {
675 return brw_regs_equal(this, &r) && offset == r.offset;
676 }
677
678 bool
679 backend_reg::is_zero() const
680 {
681 if (file != IMM)
682 return false;
683
684 switch (type) {
685 case BRW_REGISTER_TYPE_F:
686 return f == 0;
687 case BRW_REGISTER_TYPE_DF:
688 return df == 0;
689 case BRW_REGISTER_TYPE_D:
690 case BRW_REGISTER_TYPE_UD:
691 return d == 0;
692 default:
693 return false;
694 }
695 }
696
697 bool
698 backend_reg::is_one() const
699 {
700 if (file != IMM)
701 return false;
702
703 switch (type) {
704 case BRW_REGISTER_TYPE_F:
705 return f == 1.0f;
706 case BRW_REGISTER_TYPE_DF:
707 return df == 1.0;
708 case BRW_REGISTER_TYPE_D:
709 case BRW_REGISTER_TYPE_UD:
710 return d == 1;
711 default:
712 return false;
713 }
714 }
715
716 bool
717 backend_reg::is_negative_one() const
718 {
719 if (file != IMM)
720 return false;
721
722 switch (type) {
723 case BRW_REGISTER_TYPE_F:
724 return f == -1.0;
725 case BRW_REGISTER_TYPE_DF:
726 return df == -1.0;
727 case BRW_REGISTER_TYPE_D:
728 return d == -1;
729 default:
730 return false;
731 }
732 }
733
734 bool
735 backend_reg::is_null() const
736 {
737 return file == ARF && nr == BRW_ARF_NULL;
738 }
739
740
741 bool
742 backend_reg::is_accumulator() const
743 {
744 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
745 }
746
747 bool
748 backend_instruction::is_commutative() const
749 {
750 switch (opcode) {
751 case BRW_OPCODE_AND:
752 case BRW_OPCODE_OR:
753 case BRW_OPCODE_XOR:
754 case BRW_OPCODE_ADD:
755 case BRW_OPCODE_MUL:
756 case SHADER_OPCODE_MULH:
757 return true;
758 case BRW_OPCODE_SEL:
759 /* MIN and MAX are commutative. */
760 if (conditional_mod == BRW_CONDITIONAL_GE ||
761 conditional_mod == BRW_CONDITIONAL_L) {
762 return true;
763 }
764 /* fallthrough */
765 default:
766 return false;
767 }
768 }
769
770 bool
771 backend_instruction::is_3src(const struct gen_device_info *devinfo) const
772 {
773 return ::is_3src(devinfo, opcode);
774 }
775
776 bool
777 backend_instruction::is_tex() const
778 {
779 return (opcode == SHADER_OPCODE_TEX ||
780 opcode == FS_OPCODE_TXB ||
781 opcode == SHADER_OPCODE_TXD ||
782 opcode == SHADER_OPCODE_TXF ||
783 opcode == SHADER_OPCODE_TXF_LZ ||
784 opcode == SHADER_OPCODE_TXF_CMS ||
785 opcode == SHADER_OPCODE_TXF_CMS_W ||
786 opcode == SHADER_OPCODE_TXF_UMS ||
787 opcode == SHADER_OPCODE_TXF_MCS ||
788 opcode == SHADER_OPCODE_TXL ||
789 opcode == SHADER_OPCODE_TXL_LZ ||
790 opcode == SHADER_OPCODE_TXS ||
791 opcode == SHADER_OPCODE_LOD ||
792 opcode == SHADER_OPCODE_TG4 ||
793 opcode == SHADER_OPCODE_TG4_OFFSET ||
794 opcode == SHADER_OPCODE_SAMPLEINFO);
795 }
796
797 bool
798 backend_instruction::is_math() const
799 {
800 return (opcode == SHADER_OPCODE_RCP ||
801 opcode == SHADER_OPCODE_RSQ ||
802 opcode == SHADER_OPCODE_SQRT ||
803 opcode == SHADER_OPCODE_EXP2 ||
804 opcode == SHADER_OPCODE_LOG2 ||
805 opcode == SHADER_OPCODE_SIN ||
806 opcode == SHADER_OPCODE_COS ||
807 opcode == SHADER_OPCODE_INT_QUOTIENT ||
808 opcode == SHADER_OPCODE_INT_REMAINDER ||
809 opcode == SHADER_OPCODE_POW);
810 }
811
812 bool
813 backend_instruction::is_control_flow() const
814 {
815 switch (opcode) {
816 case BRW_OPCODE_DO:
817 case BRW_OPCODE_WHILE:
818 case BRW_OPCODE_IF:
819 case BRW_OPCODE_ELSE:
820 case BRW_OPCODE_ENDIF:
821 case BRW_OPCODE_BREAK:
822 case BRW_OPCODE_CONTINUE:
823 return true;
824 default:
825 return false;
826 }
827 }
828
829 bool
830 backend_instruction::can_do_source_mods() const
831 {
832 switch (opcode) {
833 case BRW_OPCODE_ADDC:
834 case BRW_OPCODE_BFE:
835 case BRW_OPCODE_BFI1:
836 case BRW_OPCODE_BFI2:
837 case BRW_OPCODE_BFREV:
838 case BRW_OPCODE_CBIT:
839 case BRW_OPCODE_FBH:
840 case BRW_OPCODE_FBL:
841 case BRW_OPCODE_SUBB:
842 return false;
843 default:
844 return true;
845 }
846 }
847
848 bool
849 backend_instruction::can_do_saturate() const
850 {
851 switch (opcode) {
852 case BRW_OPCODE_ADD:
853 case BRW_OPCODE_ASR:
854 case BRW_OPCODE_AVG:
855 case BRW_OPCODE_DP2:
856 case BRW_OPCODE_DP3:
857 case BRW_OPCODE_DP4:
858 case BRW_OPCODE_DPH:
859 case BRW_OPCODE_F16TO32:
860 case BRW_OPCODE_F32TO16:
861 case BRW_OPCODE_LINE:
862 case BRW_OPCODE_LRP:
863 case BRW_OPCODE_MAC:
864 case BRW_OPCODE_MAD:
865 case BRW_OPCODE_MATH:
866 case BRW_OPCODE_MOV:
867 case BRW_OPCODE_MUL:
868 case SHADER_OPCODE_MULH:
869 case BRW_OPCODE_PLN:
870 case BRW_OPCODE_RNDD:
871 case BRW_OPCODE_RNDE:
872 case BRW_OPCODE_RNDU:
873 case BRW_OPCODE_RNDZ:
874 case BRW_OPCODE_SEL:
875 case BRW_OPCODE_SHL:
876 case BRW_OPCODE_SHR:
877 case FS_OPCODE_LINTERP:
878 case SHADER_OPCODE_COS:
879 case SHADER_OPCODE_EXP2:
880 case SHADER_OPCODE_LOG2:
881 case SHADER_OPCODE_POW:
882 case SHADER_OPCODE_RCP:
883 case SHADER_OPCODE_RSQ:
884 case SHADER_OPCODE_SIN:
885 case SHADER_OPCODE_SQRT:
886 return true;
887 default:
888 return false;
889 }
890 }
891
892 bool
893 backend_instruction::can_do_cmod() const
894 {
895 switch (opcode) {
896 case BRW_OPCODE_ADD:
897 case BRW_OPCODE_ADDC:
898 case BRW_OPCODE_AND:
899 case BRW_OPCODE_ASR:
900 case BRW_OPCODE_AVG:
901 case BRW_OPCODE_CMP:
902 case BRW_OPCODE_CMPN:
903 case BRW_OPCODE_DP2:
904 case BRW_OPCODE_DP3:
905 case BRW_OPCODE_DP4:
906 case BRW_OPCODE_DPH:
907 case BRW_OPCODE_F16TO32:
908 case BRW_OPCODE_F32TO16:
909 case BRW_OPCODE_FRC:
910 case BRW_OPCODE_LINE:
911 case BRW_OPCODE_LRP:
912 case BRW_OPCODE_LZD:
913 case BRW_OPCODE_MAC:
914 case BRW_OPCODE_MACH:
915 case BRW_OPCODE_MAD:
916 case BRW_OPCODE_MOV:
917 case BRW_OPCODE_MUL:
918 case BRW_OPCODE_NOT:
919 case BRW_OPCODE_OR:
920 case BRW_OPCODE_PLN:
921 case BRW_OPCODE_RNDD:
922 case BRW_OPCODE_RNDE:
923 case BRW_OPCODE_RNDU:
924 case BRW_OPCODE_RNDZ:
925 case BRW_OPCODE_SAD2:
926 case BRW_OPCODE_SADA2:
927 case BRW_OPCODE_SHL:
928 case BRW_OPCODE_SHR:
929 case BRW_OPCODE_SUBB:
930 case BRW_OPCODE_XOR:
931 case FS_OPCODE_CINTERP:
932 case FS_OPCODE_LINTERP:
933 return true;
934 default:
935 return false;
936 }
937 }
938
939 bool
940 backend_instruction::reads_accumulator_implicitly() const
941 {
942 switch (opcode) {
943 case BRW_OPCODE_MAC:
944 case BRW_OPCODE_MACH:
945 case BRW_OPCODE_SADA2:
946 return true;
947 default:
948 return false;
949 }
950 }
951
952 bool
953 backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
954 {
955 return writes_accumulator ||
956 (devinfo->gen < 6 &&
957 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
958 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
959 opcode != FS_OPCODE_CINTERP)));
960 }
961
962 bool
963 backend_instruction::has_side_effects() const
964 {
965 switch (opcode) {
966 case SHADER_OPCODE_UNTYPED_ATOMIC:
967 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
968 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
969 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
970 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
971 case SHADER_OPCODE_TYPED_ATOMIC:
972 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
973 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
974 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
975 case SHADER_OPCODE_MEMORY_FENCE:
976 case SHADER_OPCODE_URB_WRITE_SIMD8:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
980 case FS_OPCODE_FB_WRITE:
981 case FS_OPCODE_FB_WRITE_LOGICAL:
982 case SHADER_OPCODE_BARRIER:
983 case TCS_OPCODE_URB_WRITE:
984 case TCS_OPCODE_RELEASE_INPUT:
985 return true;
986 default:
987 return false;
988 }
989 }
990
991 bool
992 backend_instruction::is_volatile() const
993 {
994 switch (opcode) {
995 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
996 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
997 case SHADER_OPCODE_TYPED_SURFACE_READ:
998 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
999 case SHADER_OPCODE_URB_READ_SIMD8:
1000 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
1001 case VEC4_OPCODE_URB_READ:
1002 return true;
1003 default:
1004 return false;
1005 }
1006 }
1007
1008 #ifndef NDEBUG
1009 static bool
1010 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
1011 {
1012 bool found = false;
1013 foreach_inst_in_block (backend_instruction, i, block) {
1014 if (inst == i) {
1015 found = true;
1016 }
1017 }
1018 return found;
1019 }
1020 #endif
1021
1022 static void
1023 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
1024 {
1025 for (bblock_t *block_iter = start_block->next();
1026 block_iter;
1027 block_iter = block_iter->next()) {
1028 block_iter->start_ip += ip_adjustment;
1029 block_iter->end_ip += ip_adjustment;
1030 }
1031 }
1032
1033 void
1034 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1035 {
1036 assert(this != inst);
1037
1038 if (!this->is_head_sentinel())
1039 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1040
1041 block->end_ip++;
1042
1043 adjust_later_block_ips(block, 1);
1044
1045 exec_node::insert_after(inst);
1046 }
1047
1048 void
1049 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1050 {
1051 assert(this != inst);
1052
1053 if (!this->is_tail_sentinel())
1054 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1055
1056 block->end_ip++;
1057
1058 adjust_later_block_ips(block, 1);
1059
1060 exec_node::insert_before(inst);
1061 }
1062
1063 void
1064 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1065 {
1066 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1067
1068 unsigned num_inst = list->length();
1069
1070 block->end_ip += num_inst;
1071
1072 adjust_later_block_ips(block, num_inst);
1073
1074 exec_node::insert_before(list);
1075 }
1076
1077 void
1078 backend_instruction::remove(bblock_t *block)
1079 {
1080 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1081
1082 adjust_later_block_ips(block, -1);
1083
1084 if (block->start_ip == block->end_ip) {
1085 block->cfg->remove_block(block);
1086 } else {
1087 block->end_ip--;
1088 }
1089
1090 exec_node::remove();
1091 }
1092
1093 void
1094 backend_shader::dump_instructions()
1095 {
1096 dump_instructions(NULL);
1097 }
1098
1099 void
1100 backend_shader::dump_instructions(const char *name)
1101 {
1102 FILE *file = stderr;
1103 if (name && geteuid() != 0) {
1104 file = fopen(name, "w");
1105 if (!file)
1106 file = stderr;
1107 }
1108
1109 if (cfg) {
1110 int ip = 0;
1111 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1112 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1113 fprintf(file, "%4d: ", ip++);
1114 dump_instruction(inst, file);
1115 }
1116 } else {
1117 int ip = 0;
1118 foreach_in_list(backend_instruction, inst, &instructions) {
1119 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1120 fprintf(file, "%4d: ", ip++);
1121 dump_instruction(inst, file);
1122 }
1123 }
1124
1125 if (file != stderr) {
1126 fclose(file);
1127 }
1128 }
1129
1130 void
1131 backend_shader::calculate_cfg()
1132 {
1133 if (this->cfg)
1134 return;
1135 cfg = new(mem_ctx) cfg_t(&this->instructions);
1136 }
1137
1138 /**
1139 * Sets up the starting offsets for the groups of binding table entries
1140 * commong to all pipeline stages.
1141 *
1142 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1143 * unused but also make sure that addition of small offsets to them will
1144 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1145 */
1146 uint32_t
1147 brw_assign_common_binding_table_offsets(const struct gen_device_info *devinfo,
1148 const struct gl_program *prog,
1149 struct brw_stage_prog_data *stage_prog_data,
1150 uint32_t next_binding_table_offset)
1151 {
1152 int num_textures = util_last_bit(prog->SamplersUsed);
1153
1154 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1155 next_binding_table_offset += num_textures;
1156
1157 if (prog->info.num_ubos) {
1158 assert(prog->info.num_ubos <= BRW_MAX_UBO);
1159 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1160 next_binding_table_offset += prog->info.num_ubos;
1161 } else {
1162 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1163 }
1164
1165 if (prog->info.num_ssbos) {
1166 assert(prog->info.num_ssbos <= BRW_MAX_SSBO);
1167 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1168 next_binding_table_offset += prog->info.num_ssbos;
1169 } else {
1170 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1171 }
1172
1173 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1174 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1175 next_binding_table_offset++;
1176 } else {
1177 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1178 }
1179
1180 if (prog->nir->info->uses_texture_gather) {
1181 if (devinfo->gen >= 8) {
1182 stage_prog_data->binding_table.gather_texture_start =
1183 stage_prog_data->binding_table.texture_start;
1184 } else {
1185 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1186 next_binding_table_offset += num_textures;
1187 }
1188 } else {
1189 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1190 }
1191
1192 if (prog->info.num_abos) {
1193 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1194 next_binding_table_offset += prog->info.num_abos;
1195 } else {
1196 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1197 }
1198
1199 if (prog->info.num_images) {
1200 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1201 next_binding_table_offset += prog->info.num_images;
1202 } else {
1203 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1204 }
1205
1206 /* This may or may not be used depending on how the compile goes. */
1207 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1208 next_binding_table_offset++;
1209
1210 /* Plane 0 is just the regular texture section */
1211 stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
1212
1213 stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
1214 next_binding_table_offset += num_textures;
1215
1216 stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
1217 next_binding_table_offset += num_textures;
1218
1219 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1220
1221 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1222 return next_binding_table_offset;
1223 }
1224
1225 static void
1226 setup_vec4_uniform_value(const gl_constant_value **params,
1227 const gl_constant_value *values,
1228 unsigned n)
1229 {
1230 static const gl_constant_value zero = { 0 };
1231
1232 for (unsigned i = 0; i < n; ++i)
1233 params[i] = &values[i];
1234
1235 for (unsigned i = n; i < 4; ++i)
1236 params[i] = &zero;
1237 }
1238
1239 void
1240 brw_setup_image_uniform_values(gl_shader_stage stage,
1241 struct brw_stage_prog_data *stage_prog_data,
1242 unsigned param_start_index,
1243 const gl_uniform_storage *storage)
1244 {
1245 const gl_constant_value **param =
1246 &stage_prog_data->param[param_start_index];
1247
1248 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1249 const unsigned image_idx = storage->opaque[stage].index + i;
1250 const brw_image_param *image_param =
1251 &stage_prog_data->image_param[image_idx];
1252
1253 /* Upload the brw_image_param structure. The order is expected to match
1254 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1255 */
1256 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1257 (const gl_constant_value *)&image_param->surface_idx, 1);
1258 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1259 (const gl_constant_value *)image_param->offset, 2);
1260 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1261 (const gl_constant_value *)image_param->size, 3);
1262 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1263 (const gl_constant_value *)image_param->stride, 4);
1264 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1265 (const gl_constant_value *)image_param->tiling, 3);
1266 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1267 (const gl_constant_value *)image_param->swizzling, 2);
1268 param += BRW_IMAGE_PARAM_SIZE;
1269
1270 brw_mark_surface_used(
1271 stage_prog_data,
1272 stage_prog_data->binding_table.image_start + image_idx);
1273 }
1274 }
1275
1276 /**
1277 * Decide which set of clip planes should be used when clipping via
1278 * gl_Position or gl_ClipVertex.
1279 */
1280 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1281 {
1282 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1283 /* There is currently a GLSL vertex shader, so clip according to GLSL
1284 * rules, which means compare gl_ClipVertex (or gl_Position, if
1285 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1286 * that were stored in EyeUserPlane at the time the clip planes were
1287 * specified.
1288 */
1289 return ctx->Transform.EyeUserPlane;
1290 } else {
1291 /* Either we are using fixed function or an ARB vertex program. In
1292 * either case the clip planes are going to be compared against
1293 * gl_Position (which is in clip coordinates) so we have to clip using
1294 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1295 * core.
1296 */
1297 return ctx->Transform._ClipUserPlane;
1298 }
1299 }
1300
1301 extern "C" const unsigned *
1302 brw_compile_tes(const struct brw_compiler *compiler,
1303 void *log_data,
1304 void *mem_ctx,
1305 const struct brw_tes_prog_key *key,
1306 const struct brw_vue_map *input_vue_map,
1307 struct brw_tes_prog_data *prog_data,
1308 const nir_shader *src_shader,
1309 struct gl_program *prog,
1310 int shader_time_index,
1311 unsigned *final_assembly_size,
1312 char **error_str)
1313 {
1314 const struct gen_device_info *devinfo = compiler->devinfo;
1315 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1316
1317 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1318 nir->info->inputs_read = key->inputs_read;
1319 nir->info->patch_inputs_read = key->patch_inputs_read;
1320
1321 nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
1322 brw_nir_lower_tes_inputs(nir, input_vue_map);
1323 brw_nir_lower_vue_outputs(nir, is_scalar);
1324 nir = brw_postprocess_nir(nir, compiler, is_scalar);
1325
1326 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1327 nir->info->outputs_written,
1328 nir->info->separate_shader);
1329
1330 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1331
1332 assert(output_size_bytes >= 1);
1333 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1334 if (error_str)
1335 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1336 return NULL;
1337 }
1338
1339 prog_data->base.clip_distance_mask =
1340 ((1 << nir->info->clip_distance_array_size) - 1);
1341 prog_data->base.cull_distance_mask =
1342 ((1 << nir->info->cull_distance_array_size) - 1) <<
1343 nir->info->clip_distance_array_size;
1344
1345 /* URB entry sizes are stored as a multiple of 64 bytes. */
1346 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1347 prog_data->base.urb_read_length = 0;
1348
1349 STATIC_ASSERT(BRW_TESS_PARTITIONING_INTEGER == TESS_SPACING_EQUAL - 1);
1350 STATIC_ASSERT(BRW_TESS_PARTITIONING_ODD_FRACTIONAL ==
1351 TESS_SPACING_FRACTIONAL_ODD - 1);
1352 STATIC_ASSERT(BRW_TESS_PARTITIONING_EVEN_FRACTIONAL ==
1353 TESS_SPACING_FRACTIONAL_EVEN - 1);
1354
1355 prog_data->partitioning =
1356 (enum brw_tess_partitioning) (nir->info->tess.spacing - 1);
1357
1358 switch (nir->info->tess.primitive_mode) {
1359 case GL_QUADS:
1360 prog_data->domain = BRW_TESS_DOMAIN_QUAD;
1361 break;
1362 case GL_TRIANGLES:
1363 prog_data->domain = BRW_TESS_DOMAIN_TRI;
1364 break;
1365 case GL_ISOLINES:
1366 prog_data->domain = BRW_TESS_DOMAIN_ISOLINE;
1367 break;
1368 default:
1369 unreachable("invalid domain shader primitive mode");
1370 }
1371
1372 if (nir->info->tess.point_mode) {
1373 prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_POINT;
1374 } else if (nir->info->tess.primitive_mode == GL_ISOLINES) {
1375 prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_LINE;
1376 } else {
1377 /* Hardware winding order is backwards from OpenGL */
1378 prog_data->output_topology =
1379 nir->info->tess.ccw ? BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW
1380 : BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW;
1381 }
1382
1383 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1384 fprintf(stderr, "TES Input ");
1385 brw_print_vue_map(stderr, input_vue_map);
1386 fprintf(stderr, "TES Output ");
1387 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1388 }
1389
1390 if (is_scalar) {
1391 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1392 &prog_data->base.base, NULL, nir, 8,
1393 shader_time_index, input_vue_map);
1394 if (!v.run_tes()) {
1395 if (error_str)
1396 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1397 return NULL;
1398 }
1399
1400 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
1401 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1402
1403 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1404 &prog_data->base.base, v.promoted_constants, false,
1405 MESA_SHADER_TESS_EVAL);
1406 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1407 g.enable_debug(ralloc_asprintf(mem_ctx,
1408 "%s tessellation evaluation shader %s",
1409 nir->info->label ? nir->info->label
1410 : "unnamed",
1411 nir->info->name));
1412 }
1413
1414 g.generate_code(v.cfg, 8);
1415
1416 return g.get_assembly(final_assembly_size);
1417 } else {
1418 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1419 nir, mem_ctx, shader_time_index);
1420 if (!v.run()) {
1421 if (error_str)
1422 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1423 return NULL;
1424 }
1425
1426 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1427 v.dump_instructions();
1428
1429 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1430 &prog_data->base, v.cfg,
1431 final_assembly_size);
1432 }
1433 }