f3d7c777d8dd38c3db86e6f530eed322900322d7
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/shaderobj.h"
31 #include "main/uniforms.h"
32
33 extern "C" struct gl_shader *
34 brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
35 {
36 struct brw_shader *shader;
37
38 shader = rzalloc(NULL, struct brw_shader);
39 if (shader) {
40 shader->base.Type = type;
41 shader->base.Stage = _mesa_shader_enum_to_shader_stage(type);
42 shader->base.Name = name;
43 _mesa_init_shader(ctx, &shader->base);
44 }
45
46 return &shader->base;
47 }
48
49 extern "C" void
50 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
51 unsigned surf_index)
52 {
53 assert(surf_index < BRW_MAX_SURFACES);
54
55 prog_data->binding_table.size_bytes =
56 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
57 }
58
59 enum brw_reg_type
60 brw_type_for_base_type(const struct glsl_type *type)
61 {
62 switch (type->base_type) {
63 case GLSL_TYPE_FLOAT:
64 return BRW_REGISTER_TYPE_F;
65 case GLSL_TYPE_INT:
66 case GLSL_TYPE_BOOL:
67 case GLSL_TYPE_SUBROUTINE:
68 return BRW_REGISTER_TYPE_D;
69 case GLSL_TYPE_UINT:
70 return BRW_REGISTER_TYPE_UD;
71 case GLSL_TYPE_ARRAY:
72 return brw_type_for_base_type(type->fields.array);
73 case GLSL_TYPE_STRUCT:
74 case GLSL_TYPE_SAMPLER:
75 case GLSL_TYPE_ATOMIC_UINT:
76 /* These should be overridden with the type of the member when
77 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
78 * way to trip up if we don't.
79 */
80 return BRW_REGISTER_TYPE_UD;
81 case GLSL_TYPE_IMAGE:
82 return BRW_REGISTER_TYPE_UD;
83 case GLSL_TYPE_VOID:
84 case GLSL_TYPE_ERROR:
85 case GLSL_TYPE_INTERFACE:
86 case GLSL_TYPE_DOUBLE:
87 case GLSL_TYPE_FUNCTION:
88 unreachable("not reached");
89 }
90
91 return BRW_REGISTER_TYPE_F;
92 }
93
94 enum brw_conditional_mod
95 brw_conditional_for_comparison(unsigned int op)
96 {
97 switch (op) {
98 case ir_binop_less:
99 return BRW_CONDITIONAL_L;
100 case ir_binop_greater:
101 return BRW_CONDITIONAL_G;
102 case ir_binop_lequal:
103 return BRW_CONDITIONAL_LE;
104 case ir_binop_gequal:
105 return BRW_CONDITIONAL_GE;
106 case ir_binop_equal:
107 case ir_binop_all_equal: /* same as equal for scalars */
108 return BRW_CONDITIONAL_Z;
109 case ir_binop_nequal:
110 case ir_binop_any_nequal: /* same as nequal for scalars */
111 return BRW_CONDITIONAL_NZ;
112 default:
113 unreachable("not reached: bad operation for comparison");
114 }
115 }
116
117 uint32_t
118 brw_math_function(enum opcode op)
119 {
120 switch (op) {
121 case SHADER_OPCODE_RCP:
122 return BRW_MATH_FUNCTION_INV;
123 case SHADER_OPCODE_RSQ:
124 return BRW_MATH_FUNCTION_RSQ;
125 case SHADER_OPCODE_SQRT:
126 return BRW_MATH_FUNCTION_SQRT;
127 case SHADER_OPCODE_EXP2:
128 return BRW_MATH_FUNCTION_EXP;
129 case SHADER_OPCODE_LOG2:
130 return BRW_MATH_FUNCTION_LOG;
131 case SHADER_OPCODE_POW:
132 return BRW_MATH_FUNCTION_POW;
133 case SHADER_OPCODE_SIN:
134 return BRW_MATH_FUNCTION_SIN;
135 case SHADER_OPCODE_COS:
136 return BRW_MATH_FUNCTION_COS;
137 case SHADER_OPCODE_INT_QUOTIENT:
138 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
139 case SHADER_OPCODE_INT_REMAINDER:
140 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
141 default:
142 unreachable("not reached: unknown math function");
143 }
144 }
145
146 uint32_t
147 brw_texture_offset(int *offsets, unsigned num_components)
148 {
149 if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
150
151 /* Combine all three offsets into a single unsigned dword:
152 *
153 * bits 11:8 - U Offset (X component)
154 * bits 7:4 - V Offset (Y component)
155 * bits 3:0 - R Offset (Z component)
156 */
157 unsigned offset_bits = 0;
158 for (unsigned i = 0; i < num_components; i++) {
159 const unsigned shift = 4 * (2 - i);
160 offset_bits |= (offsets[i] << shift) & (0xF << shift);
161 }
162 return offset_bits;
163 }
164
165 const char *
166 brw_instruction_name(const struct brw_device_info *devinfo, enum opcode op)
167 {
168 switch (op) {
169 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
170 assert(brw_opcode_desc(devinfo, op)->name);
171 return brw_opcode_desc(devinfo, op)->name;
172 case FS_OPCODE_FB_WRITE:
173 return "fb_write";
174 case FS_OPCODE_FB_WRITE_LOGICAL:
175 return "fb_write_logical";
176 case FS_OPCODE_PACK_STENCIL_REF:
177 return "pack_stencil_ref";
178 case FS_OPCODE_BLORP_FB_WRITE:
179 return "blorp_fb_write";
180 case FS_OPCODE_REP_FB_WRITE:
181 return "rep_fb_write";
182
183 case SHADER_OPCODE_RCP:
184 return "rcp";
185 case SHADER_OPCODE_RSQ:
186 return "rsq";
187 case SHADER_OPCODE_SQRT:
188 return "sqrt";
189 case SHADER_OPCODE_EXP2:
190 return "exp2";
191 case SHADER_OPCODE_LOG2:
192 return "log2";
193 case SHADER_OPCODE_POW:
194 return "pow";
195 case SHADER_OPCODE_INT_QUOTIENT:
196 return "int_quot";
197 case SHADER_OPCODE_INT_REMAINDER:
198 return "int_rem";
199 case SHADER_OPCODE_SIN:
200 return "sin";
201 case SHADER_OPCODE_COS:
202 return "cos";
203
204 case SHADER_OPCODE_TEX:
205 return "tex";
206 case SHADER_OPCODE_TEX_LOGICAL:
207 return "tex_logical";
208 case SHADER_OPCODE_TXD:
209 return "txd";
210 case SHADER_OPCODE_TXD_LOGICAL:
211 return "txd_logical";
212 case SHADER_OPCODE_TXF:
213 return "txf";
214 case SHADER_OPCODE_TXF_LOGICAL:
215 return "txf_logical";
216 case SHADER_OPCODE_TXL:
217 return "txl";
218 case SHADER_OPCODE_TXL_LOGICAL:
219 return "txl_logical";
220 case SHADER_OPCODE_TXS:
221 return "txs";
222 case SHADER_OPCODE_TXS_LOGICAL:
223 return "txs_logical";
224 case FS_OPCODE_TXB:
225 return "txb";
226 case FS_OPCODE_TXB_LOGICAL:
227 return "txb_logical";
228 case SHADER_OPCODE_TXF_CMS:
229 return "txf_cms";
230 case SHADER_OPCODE_TXF_CMS_LOGICAL:
231 return "txf_cms_logical";
232 case SHADER_OPCODE_TXF_CMS_W:
233 return "txf_cms_w";
234 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
235 return "txf_cms_w_logical";
236 case SHADER_OPCODE_TXF_UMS:
237 return "txf_ums";
238 case SHADER_OPCODE_TXF_UMS_LOGICAL:
239 return "txf_ums_logical";
240 case SHADER_OPCODE_TXF_MCS:
241 return "txf_mcs";
242 case SHADER_OPCODE_TXF_MCS_LOGICAL:
243 return "txf_mcs_logical";
244 case SHADER_OPCODE_LOD:
245 return "lod";
246 case SHADER_OPCODE_LOD_LOGICAL:
247 return "lod_logical";
248 case SHADER_OPCODE_TG4:
249 return "tg4";
250 case SHADER_OPCODE_TG4_LOGICAL:
251 return "tg4_logical";
252 case SHADER_OPCODE_TG4_OFFSET:
253 return "tg4_offset";
254 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
255 return "tg4_offset_logical";
256 case SHADER_OPCODE_SAMPLEINFO:
257 return "sampleinfo";
258
259 case SHADER_OPCODE_SHADER_TIME_ADD:
260 return "shader_time_add";
261
262 case SHADER_OPCODE_UNTYPED_ATOMIC:
263 return "untyped_atomic";
264 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
265 return "untyped_atomic_logical";
266 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
267 return "untyped_surface_read";
268 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
269 return "untyped_surface_read_logical";
270 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
271 return "untyped_surface_write";
272 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
273 return "untyped_surface_write_logical";
274 case SHADER_OPCODE_TYPED_ATOMIC:
275 return "typed_atomic";
276 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
277 return "typed_atomic_logical";
278 case SHADER_OPCODE_TYPED_SURFACE_READ:
279 return "typed_surface_read";
280 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
281 return "typed_surface_read_logical";
282 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
283 return "typed_surface_write";
284 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
285 return "typed_surface_write_logical";
286 case SHADER_OPCODE_MEMORY_FENCE:
287 return "memory_fence";
288
289 case SHADER_OPCODE_LOAD_PAYLOAD:
290 return "load_payload";
291
292 case SHADER_OPCODE_GEN4_SCRATCH_READ:
293 return "gen4_scratch_read";
294 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
295 return "gen4_scratch_write";
296 case SHADER_OPCODE_GEN7_SCRATCH_READ:
297 return "gen7_scratch_read";
298 case SHADER_OPCODE_URB_WRITE_SIMD8:
299 return "gen8_urb_write_simd8";
300 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
301 return "gen8_urb_write_simd8_per_slot";
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 return "gen8_urb_write_simd8_masked";
304 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
305 return "gen8_urb_write_simd8_masked_per_slot";
306 case SHADER_OPCODE_URB_READ_SIMD8:
307 return "urb_read_simd8";
308 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
309 return "urb_read_simd8_per_slot";
310
311 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
312 return "find_live_channel";
313 case SHADER_OPCODE_BROADCAST:
314 return "broadcast";
315
316 case SHADER_OPCODE_EXTRACT_BYTE:
317 return "extract_byte";
318 case SHADER_OPCODE_EXTRACT_WORD:
319 return "extract_word";
320 case VEC4_OPCODE_MOV_BYTES:
321 return "mov_bytes";
322 case VEC4_OPCODE_PACK_BYTES:
323 return "pack_bytes";
324 case VEC4_OPCODE_UNPACK_UNIFORM:
325 return "unpack_uniform";
326
327 case FS_OPCODE_DDX_COARSE:
328 return "ddx_coarse";
329 case FS_OPCODE_DDX_FINE:
330 return "ddx_fine";
331 case FS_OPCODE_DDY_COARSE:
332 return "ddy_coarse";
333 case FS_OPCODE_DDY_FINE:
334 return "ddy_fine";
335
336 case FS_OPCODE_CINTERP:
337 return "cinterp";
338 case FS_OPCODE_LINTERP:
339 return "linterp";
340
341 case FS_OPCODE_PIXEL_X:
342 return "pixel_x";
343 case FS_OPCODE_PIXEL_Y:
344 return "pixel_y";
345
346 case FS_OPCODE_GET_BUFFER_SIZE:
347 return "fs_get_buffer_size";
348
349 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
350 return "uniform_pull_const";
351 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
352 return "uniform_pull_const_gen7";
353 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
354 return "varying_pull_const";
355 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
356 return "varying_pull_const_gen7";
357
358 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
359 return "mov_dispatch_to_flags";
360 case FS_OPCODE_DISCARD_JUMP:
361 return "discard_jump";
362
363 case FS_OPCODE_SET_SAMPLE_ID:
364 return "set_sample_id";
365 case FS_OPCODE_SET_SIMD4X2_OFFSET:
366 return "set_simd4x2_offset";
367
368 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
369 return "pack_half_2x16_split";
370 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
371 return "unpack_half_2x16_split_x";
372 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
373 return "unpack_half_2x16_split_y";
374
375 case FS_OPCODE_PLACEHOLDER_HALT:
376 return "placeholder_halt";
377
378 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
379 return "interp_centroid";
380 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
381 return "interp_sample";
382 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
383 return "interp_shared_offset";
384 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
385 return "interp_per_slot_offset";
386
387 case VS_OPCODE_URB_WRITE:
388 return "vs_urb_write";
389 case VS_OPCODE_PULL_CONSTANT_LOAD:
390 return "pull_constant_load";
391 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
392 return "pull_constant_load_gen7";
393
394 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
395 return "set_simd4x2_header_gen9";
396
397 case VS_OPCODE_GET_BUFFER_SIZE:
398 return "vs_get_buffer_size";
399
400 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
401 return "unpack_flags_simd4x2";
402
403 case GS_OPCODE_URB_WRITE:
404 return "gs_urb_write";
405 case GS_OPCODE_URB_WRITE_ALLOCATE:
406 return "gs_urb_write_allocate";
407 case GS_OPCODE_THREAD_END:
408 return "gs_thread_end";
409 case GS_OPCODE_SET_WRITE_OFFSET:
410 return "set_write_offset";
411 case GS_OPCODE_SET_VERTEX_COUNT:
412 return "set_vertex_count";
413 case GS_OPCODE_SET_DWORD_2:
414 return "set_dword_2";
415 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
416 return "prepare_channel_masks";
417 case GS_OPCODE_SET_CHANNEL_MASKS:
418 return "set_channel_masks";
419 case GS_OPCODE_GET_INSTANCE_ID:
420 return "get_instance_id";
421 case GS_OPCODE_FF_SYNC:
422 return "ff_sync";
423 case GS_OPCODE_SET_PRIMITIVE_ID:
424 return "set_primitive_id";
425 case GS_OPCODE_SVB_WRITE:
426 return "gs_svb_write";
427 case GS_OPCODE_SVB_SET_DST_INDEX:
428 return "gs_svb_set_dst_index";
429 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
430 return "gs_ff_sync_set_primitives";
431 case CS_OPCODE_CS_TERMINATE:
432 return "cs_terminate";
433 case SHADER_OPCODE_BARRIER:
434 return "barrier";
435 case SHADER_OPCODE_MULH:
436 return "mulh";
437 case SHADER_OPCODE_MOV_INDIRECT:
438 return "mov_indirect";
439
440 case VEC4_OPCODE_URB_READ:
441 return "urb_read";
442 case TCS_OPCODE_GET_INSTANCE_ID:
443 return "tcs_get_instance_id";
444 case TCS_OPCODE_URB_WRITE:
445 return "tcs_urb_write";
446 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
447 return "tcs_set_input_urb_offsets";
448 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
449 return "tcs_set_output_urb_offsets";
450 case TCS_OPCODE_GET_PRIMITIVE_ID:
451 return "tcs_get_primitive_id";
452 case TCS_OPCODE_CREATE_BARRIER_HEADER:
453 return "tcs_create_barrier_header";
454 case TCS_OPCODE_SRC0_010_IS_ZERO:
455 return "tcs_src0<0,1,0>_is_zero";
456 case TCS_OPCODE_RELEASE_INPUT:
457 return "tcs_release_input";
458 case TCS_OPCODE_THREAD_END:
459 return "tcs_thread_end";
460 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
461 return "tes_create_input_read_header";
462 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
463 return "tes_add_indirect_urb_offset";
464 case TES_OPCODE_GET_PRIMITIVE_ID:
465 return "tes_get_primitive_id";
466 }
467
468 unreachable("not reached");
469 }
470
471 bool
472 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
473 {
474 union {
475 unsigned ud;
476 int d;
477 float f;
478 } imm = { reg->ud }, sat_imm = { 0 };
479
480 switch (type) {
481 case BRW_REGISTER_TYPE_UD:
482 case BRW_REGISTER_TYPE_D:
483 case BRW_REGISTER_TYPE_UW:
484 case BRW_REGISTER_TYPE_W:
485 case BRW_REGISTER_TYPE_UQ:
486 case BRW_REGISTER_TYPE_Q:
487 /* Nothing to do. */
488 return false;
489 case BRW_REGISTER_TYPE_F:
490 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
491 break;
492 case BRW_REGISTER_TYPE_UB:
493 case BRW_REGISTER_TYPE_B:
494 unreachable("no UB/B immediates");
495 case BRW_REGISTER_TYPE_V:
496 case BRW_REGISTER_TYPE_UV:
497 case BRW_REGISTER_TYPE_VF:
498 unreachable("unimplemented: saturate vector immediate");
499 case BRW_REGISTER_TYPE_DF:
500 case BRW_REGISTER_TYPE_HF:
501 unreachable("unimplemented: saturate DF/HF immediate");
502 }
503
504 if (imm.ud != sat_imm.ud) {
505 reg->ud = sat_imm.ud;
506 return true;
507 }
508 return false;
509 }
510
511 bool
512 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
513 {
514 switch (type) {
515 case BRW_REGISTER_TYPE_D:
516 case BRW_REGISTER_TYPE_UD:
517 reg->d = -reg->d;
518 return true;
519 case BRW_REGISTER_TYPE_W:
520 case BRW_REGISTER_TYPE_UW:
521 reg->d = -(int16_t)reg->ud;
522 return true;
523 case BRW_REGISTER_TYPE_F:
524 reg->f = -reg->f;
525 return true;
526 case BRW_REGISTER_TYPE_VF:
527 reg->ud ^= 0x80808080;
528 return true;
529 case BRW_REGISTER_TYPE_UB:
530 case BRW_REGISTER_TYPE_B:
531 unreachable("no UB/B immediates");
532 case BRW_REGISTER_TYPE_UV:
533 case BRW_REGISTER_TYPE_V:
534 assert(!"unimplemented: negate UV/V immediate");
535 case BRW_REGISTER_TYPE_UQ:
536 case BRW_REGISTER_TYPE_Q:
537 assert(!"unimplemented: negate UQ/Q immediate");
538 case BRW_REGISTER_TYPE_DF:
539 case BRW_REGISTER_TYPE_HF:
540 assert(!"unimplemented: negate DF/HF immediate");
541 }
542
543 return false;
544 }
545
546 bool
547 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
548 {
549 switch (type) {
550 case BRW_REGISTER_TYPE_D:
551 reg->d = abs(reg->d);
552 return true;
553 case BRW_REGISTER_TYPE_W:
554 reg->d = abs((int16_t)reg->ud);
555 return true;
556 case BRW_REGISTER_TYPE_F:
557 reg->f = fabsf(reg->f);
558 return true;
559 case BRW_REGISTER_TYPE_VF:
560 reg->ud &= ~0x80808080;
561 return true;
562 case BRW_REGISTER_TYPE_UB:
563 case BRW_REGISTER_TYPE_B:
564 unreachable("no UB/B immediates");
565 case BRW_REGISTER_TYPE_UQ:
566 case BRW_REGISTER_TYPE_UD:
567 case BRW_REGISTER_TYPE_UW:
568 case BRW_REGISTER_TYPE_UV:
569 /* Presumably the absolute value modifier on an unsigned source is a
570 * nop, but it would be nice to confirm.
571 */
572 assert(!"unimplemented: abs unsigned immediate");
573 case BRW_REGISTER_TYPE_V:
574 assert(!"unimplemented: abs V immediate");
575 case BRW_REGISTER_TYPE_Q:
576 assert(!"unimplemented: abs Q immediate");
577 case BRW_REGISTER_TYPE_DF:
578 case BRW_REGISTER_TYPE_HF:
579 assert(!"unimplemented: abs DF/HF immediate");
580 }
581
582 return false;
583 }
584
585 unsigned
586 tesslevel_outer_components(GLenum tes_primitive_mode)
587 {
588 switch (tes_primitive_mode) {
589 case GL_QUADS:
590 return 4;
591 case GL_TRIANGLES:
592 return 3;
593 case GL_ISOLINES:
594 return 2;
595 default:
596 unreachable("Bogus tessellation domain");
597 }
598 return 0;
599 }
600
601 unsigned
602 tesslevel_inner_components(GLenum tes_primitive_mode)
603 {
604 switch (tes_primitive_mode) {
605 case GL_QUADS:
606 return 2;
607 case GL_TRIANGLES:
608 return 1;
609 case GL_ISOLINES:
610 return 0;
611 default:
612 unreachable("Bogus tessellation domain");
613 }
614 return 0;
615 }
616
617 /**
618 * Given a normal .xyzw writemask, convert it to a writemask for a vector
619 * that's stored backwards, i.e. .wzyx.
620 */
621 unsigned
622 writemask_for_backwards_vector(unsigned mask)
623 {
624 unsigned new_mask = 0;
625
626 for (int i = 0; i < 4; i++)
627 new_mask |= ((mask >> i) & 1) << (3 - i);
628
629 return new_mask;
630 }
631
632 backend_shader::backend_shader(const struct brw_compiler *compiler,
633 void *log_data,
634 void *mem_ctx,
635 const nir_shader *shader,
636 struct brw_stage_prog_data *stage_prog_data)
637 : compiler(compiler),
638 log_data(log_data),
639 devinfo(compiler->devinfo),
640 nir(shader),
641 stage_prog_data(stage_prog_data),
642 mem_ctx(mem_ctx),
643 cfg(NULL),
644 stage(shader->stage)
645 {
646 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
647 stage_name = _mesa_shader_stage_to_string(stage);
648 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
649 is_passthrough_shader =
650 nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
651 }
652
653 bool
654 backend_reg::equals(const backend_reg &r) const
655 {
656 return memcmp((brw_reg *)this, (brw_reg *)&r, sizeof(brw_reg)) == 0 &&
657 reg_offset == r.reg_offset;
658 }
659
660 bool
661 backend_reg::is_zero() const
662 {
663 if (file != IMM)
664 return false;
665
666 return d == 0;
667 }
668
669 bool
670 backend_reg::is_one() const
671 {
672 if (file != IMM)
673 return false;
674
675 return type == BRW_REGISTER_TYPE_F
676 ? f == 1.0
677 : d == 1;
678 }
679
680 bool
681 backend_reg::is_negative_one() const
682 {
683 if (file != IMM)
684 return false;
685
686 switch (type) {
687 case BRW_REGISTER_TYPE_F:
688 return f == -1.0;
689 case BRW_REGISTER_TYPE_D:
690 return d == -1;
691 default:
692 return false;
693 }
694 }
695
696 bool
697 backend_reg::is_null() const
698 {
699 return file == ARF && nr == BRW_ARF_NULL;
700 }
701
702
703 bool
704 backend_reg::is_accumulator() const
705 {
706 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
707 }
708
709 bool
710 backend_reg::in_range(const backend_reg &r, unsigned n) const
711 {
712 return (file == r.file &&
713 nr == r.nr &&
714 reg_offset >= r.reg_offset &&
715 reg_offset < r.reg_offset + n);
716 }
717
718 bool
719 backend_instruction::is_commutative() const
720 {
721 switch (opcode) {
722 case BRW_OPCODE_AND:
723 case BRW_OPCODE_OR:
724 case BRW_OPCODE_XOR:
725 case BRW_OPCODE_ADD:
726 case BRW_OPCODE_MUL:
727 case SHADER_OPCODE_MULH:
728 return true;
729 case BRW_OPCODE_SEL:
730 /* MIN and MAX are commutative. */
731 if (conditional_mod == BRW_CONDITIONAL_GE ||
732 conditional_mod == BRW_CONDITIONAL_L) {
733 return true;
734 }
735 /* fallthrough */
736 default:
737 return false;
738 }
739 }
740
741 bool
742 backend_instruction::is_3src(const struct brw_device_info *devinfo) const
743 {
744 return ::is_3src(devinfo, opcode);
745 }
746
747 bool
748 backend_instruction::is_tex() const
749 {
750 return (opcode == SHADER_OPCODE_TEX ||
751 opcode == FS_OPCODE_TXB ||
752 opcode == SHADER_OPCODE_TXD ||
753 opcode == SHADER_OPCODE_TXF ||
754 opcode == SHADER_OPCODE_TXF_CMS ||
755 opcode == SHADER_OPCODE_TXF_CMS_W ||
756 opcode == SHADER_OPCODE_TXF_UMS ||
757 opcode == SHADER_OPCODE_TXF_MCS ||
758 opcode == SHADER_OPCODE_TXL ||
759 opcode == SHADER_OPCODE_TXS ||
760 opcode == SHADER_OPCODE_LOD ||
761 opcode == SHADER_OPCODE_TG4 ||
762 opcode == SHADER_OPCODE_TG4_OFFSET ||
763 opcode == SHADER_OPCODE_SAMPLEINFO);
764 }
765
766 bool
767 backend_instruction::is_math() const
768 {
769 return (opcode == SHADER_OPCODE_RCP ||
770 opcode == SHADER_OPCODE_RSQ ||
771 opcode == SHADER_OPCODE_SQRT ||
772 opcode == SHADER_OPCODE_EXP2 ||
773 opcode == SHADER_OPCODE_LOG2 ||
774 opcode == SHADER_OPCODE_SIN ||
775 opcode == SHADER_OPCODE_COS ||
776 opcode == SHADER_OPCODE_INT_QUOTIENT ||
777 opcode == SHADER_OPCODE_INT_REMAINDER ||
778 opcode == SHADER_OPCODE_POW);
779 }
780
781 bool
782 backend_instruction::is_control_flow() const
783 {
784 switch (opcode) {
785 case BRW_OPCODE_DO:
786 case BRW_OPCODE_WHILE:
787 case BRW_OPCODE_IF:
788 case BRW_OPCODE_ELSE:
789 case BRW_OPCODE_ENDIF:
790 case BRW_OPCODE_BREAK:
791 case BRW_OPCODE_CONTINUE:
792 return true;
793 default:
794 return false;
795 }
796 }
797
798 bool
799 backend_instruction::can_do_source_mods() const
800 {
801 switch (opcode) {
802 case BRW_OPCODE_ADDC:
803 case BRW_OPCODE_BFE:
804 case BRW_OPCODE_BFI1:
805 case BRW_OPCODE_BFI2:
806 case BRW_OPCODE_BFREV:
807 case BRW_OPCODE_CBIT:
808 case BRW_OPCODE_FBH:
809 case BRW_OPCODE_FBL:
810 case BRW_OPCODE_SUBB:
811 return false;
812 default:
813 return true;
814 }
815 }
816
817 bool
818 backend_instruction::can_do_saturate() const
819 {
820 switch (opcode) {
821 case BRW_OPCODE_ADD:
822 case BRW_OPCODE_ASR:
823 case BRW_OPCODE_AVG:
824 case BRW_OPCODE_DP2:
825 case BRW_OPCODE_DP3:
826 case BRW_OPCODE_DP4:
827 case BRW_OPCODE_DPH:
828 case BRW_OPCODE_F16TO32:
829 case BRW_OPCODE_F32TO16:
830 case BRW_OPCODE_LINE:
831 case BRW_OPCODE_LRP:
832 case BRW_OPCODE_MAC:
833 case BRW_OPCODE_MAD:
834 case BRW_OPCODE_MATH:
835 case BRW_OPCODE_MOV:
836 case BRW_OPCODE_MUL:
837 case SHADER_OPCODE_MULH:
838 case BRW_OPCODE_PLN:
839 case BRW_OPCODE_RNDD:
840 case BRW_OPCODE_RNDE:
841 case BRW_OPCODE_RNDU:
842 case BRW_OPCODE_RNDZ:
843 case BRW_OPCODE_SEL:
844 case BRW_OPCODE_SHL:
845 case BRW_OPCODE_SHR:
846 case FS_OPCODE_LINTERP:
847 case SHADER_OPCODE_COS:
848 case SHADER_OPCODE_EXP2:
849 case SHADER_OPCODE_LOG2:
850 case SHADER_OPCODE_POW:
851 case SHADER_OPCODE_RCP:
852 case SHADER_OPCODE_RSQ:
853 case SHADER_OPCODE_SIN:
854 case SHADER_OPCODE_SQRT:
855 return true;
856 default:
857 return false;
858 }
859 }
860
861 bool
862 backend_instruction::can_do_cmod() const
863 {
864 switch (opcode) {
865 case BRW_OPCODE_ADD:
866 case BRW_OPCODE_ADDC:
867 case BRW_OPCODE_AND:
868 case BRW_OPCODE_ASR:
869 case BRW_OPCODE_AVG:
870 case BRW_OPCODE_CMP:
871 case BRW_OPCODE_CMPN:
872 case BRW_OPCODE_DP2:
873 case BRW_OPCODE_DP3:
874 case BRW_OPCODE_DP4:
875 case BRW_OPCODE_DPH:
876 case BRW_OPCODE_F16TO32:
877 case BRW_OPCODE_F32TO16:
878 case BRW_OPCODE_FRC:
879 case BRW_OPCODE_LINE:
880 case BRW_OPCODE_LRP:
881 case BRW_OPCODE_LZD:
882 case BRW_OPCODE_MAC:
883 case BRW_OPCODE_MACH:
884 case BRW_OPCODE_MAD:
885 case BRW_OPCODE_MOV:
886 case BRW_OPCODE_MUL:
887 case BRW_OPCODE_NOT:
888 case BRW_OPCODE_OR:
889 case BRW_OPCODE_PLN:
890 case BRW_OPCODE_RNDD:
891 case BRW_OPCODE_RNDE:
892 case BRW_OPCODE_RNDU:
893 case BRW_OPCODE_RNDZ:
894 case BRW_OPCODE_SAD2:
895 case BRW_OPCODE_SADA2:
896 case BRW_OPCODE_SHL:
897 case BRW_OPCODE_SHR:
898 case BRW_OPCODE_SUBB:
899 case BRW_OPCODE_XOR:
900 case FS_OPCODE_CINTERP:
901 case FS_OPCODE_LINTERP:
902 return true;
903 default:
904 return false;
905 }
906 }
907
908 bool
909 backend_instruction::reads_accumulator_implicitly() const
910 {
911 switch (opcode) {
912 case BRW_OPCODE_MAC:
913 case BRW_OPCODE_MACH:
914 case BRW_OPCODE_SADA2:
915 return true;
916 default:
917 return false;
918 }
919 }
920
921 bool
922 backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const
923 {
924 return writes_accumulator ||
925 (devinfo->gen < 6 &&
926 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
927 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
928 opcode != FS_OPCODE_CINTERP)));
929 }
930
931 bool
932 backend_instruction::has_side_effects() const
933 {
934 switch (opcode) {
935 case SHADER_OPCODE_UNTYPED_ATOMIC:
936 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
937 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
938 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
939 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
940 case SHADER_OPCODE_TYPED_ATOMIC:
941 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
942 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
943 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
944 case SHADER_OPCODE_MEMORY_FENCE:
945 case SHADER_OPCODE_URB_WRITE_SIMD8:
946 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
947 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
948 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
949 case FS_OPCODE_FB_WRITE:
950 case SHADER_OPCODE_BARRIER:
951 case TCS_OPCODE_URB_WRITE:
952 case TCS_OPCODE_RELEASE_INPUT:
953 return true;
954 default:
955 return false;
956 }
957 }
958
959 bool
960 backend_instruction::is_volatile() const
961 {
962 switch (opcode) {
963 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
964 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
965 case SHADER_OPCODE_TYPED_SURFACE_READ:
966 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
967 case SHADER_OPCODE_URB_READ_SIMD8:
968 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
969 case VEC4_OPCODE_URB_READ:
970 return true;
971 default:
972 return false;
973 }
974 }
975
976 #ifndef NDEBUG
977 static bool
978 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
979 {
980 bool found = false;
981 foreach_inst_in_block (backend_instruction, i, block) {
982 if (inst == i) {
983 found = true;
984 }
985 }
986 return found;
987 }
988 #endif
989
990 static void
991 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
992 {
993 for (bblock_t *block_iter = start_block->next();
994 block_iter;
995 block_iter = block_iter->next()) {
996 block_iter->start_ip += ip_adjustment;
997 block_iter->end_ip += ip_adjustment;
998 }
999 }
1000
1001 void
1002 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1003 {
1004 assert(this != inst);
1005
1006 if (!this->is_head_sentinel())
1007 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1008
1009 block->end_ip++;
1010
1011 adjust_later_block_ips(block, 1);
1012
1013 exec_node::insert_after(inst);
1014 }
1015
1016 void
1017 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1018 {
1019 assert(this != inst);
1020
1021 if (!this->is_tail_sentinel())
1022 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1023
1024 block->end_ip++;
1025
1026 adjust_later_block_ips(block, 1);
1027
1028 exec_node::insert_before(inst);
1029 }
1030
1031 void
1032 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1033 {
1034 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1035
1036 unsigned num_inst = list->length();
1037
1038 block->end_ip += num_inst;
1039
1040 adjust_later_block_ips(block, num_inst);
1041
1042 exec_node::insert_before(list);
1043 }
1044
1045 void
1046 backend_instruction::remove(bblock_t *block)
1047 {
1048 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1049
1050 adjust_later_block_ips(block, -1);
1051
1052 if (block->start_ip == block->end_ip) {
1053 block->cfg->remove_block(block);
1054 } else {
1055 block->end_ip--;
1056 }
1057
1058 exec_node::remove();
1059 }
1060
1061 void
1062 backend_shader::dump_instructions()
1063 {
1064 dump_instructions(NULL);
1065 }
1066
1067 void
1068 backend_shader::dump_instructions(const char *name)
1069 {
1070 FILE *file = stderr;
1071 if (name && geteuid() != 0) {
1072 file = fopen(name, "w");
1073 if (!file)
1074 file = stderr;
1075 }
1076
1077 if (cfg) {
1078 int ip = 0;
1079 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1080 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1081 fprintf(file, "%4d: ", ip++);
1082 dump_instruction(inst, file);
1083 }
1084 } else {
1085 int ip = 0;
1086 foreach_in_list(backend_instruction, inst, &instructions) {
1087 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1088 fprintf(file, "%4d: ", ip++);
1089 dump_instruction(inst, file);
1090 }
1091 }
1092
1093 if (file != stderr) {
1094 fclose(file);
1095 }
1096 }
1097
1098 void
1099 backend_shader::calculate_cfg()
1100 {
1101 if (this->cfg)
1102 return;
1103 cfg = new(mem_ctx) cfg_t(&this->instructions);
1104 }
1105
1106 /**
1107 * Sets up the starting offsets for the groups of binding table entries
1108 * commong to all pipeline stages.
1109 *
1110 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1111 * unused but also make sure that addition of small offsets to them will
1112 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1113 */
1114 void
1115 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1116 const struct brw_device_info *devinfo,
1117 const struct gl_shader_program *shader_prog,
1118 const struct gl_program *prog,
1119 struct brw_stage_prog_data *stage_prog_data,
1120 uint32_t next_binding_table_offset)
1121 {
1122 const struct gl_shader *shader = NULL;
1123 int num_textures = _mesa_fls(prog->SamplersUsed);
1124
1125 if (shader_prog)
1126 shader = shader_prog->_LinkedShaders[stage];
1127
1128 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1129 next_binding_table_offset += num_textures;
1130
1131 if (shader) {
1132 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1133 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1134 next_binding_table_offset += shader->NumUniformBlocks;
1135
1136 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1137 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1138 next_binding_table_offset += shader->NumShaderStorageBlocks;
1139 } else {
1140 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1141 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1142 }
1143
1144 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1145 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1146 next_binding_table_offset++;
1147 } else {
1148 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1149 }
1150
1151 if (prog->UsesGather) {
1152 if (devinfo->gen >= 8) {
1153 stage_prog_data->binding_table.gather_texture_start =
1154 stage_prog_data->binding_table.texture_start;
1155 } else {
1156 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1157 next_binding_table_offset += num_textures;
1158 }
1159 } else {
1160 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1161 }
1162
1163 if (shader && shader->NumAtomicBuffers) {
1164 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1165 next_binding_table_offset += shader->NumAtomicBuffers;
1166 } else {
1167 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1168 }
1169
1170 if (shader && shader->NumImages) {
1171 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1172 next_binding_table_offset += shader->NumImages;
1173 } else {
1174 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1175 }
1176
1177 /* This may or may not be used depending on how the compile goes. */
1178 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1179 next_binding_table_offset++;
1180
1181 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1182
1183 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1184 }
1185
1186 static void
1187 setup_vec4_uniform_value(const gl_constant_value **params,
1188 const gl_constant_value *values,
1189 unsigned n)
1190 {
1191 static const gl_constant_value zero = { 0 };
1192
1193 for (unsigned i = 0; i < n; ++i)
1194 params[i] = &values[i];
1195
1196 for (unsigned i = n; i < 4; ++i)
1197 params[i] = &zero;
1198 }
1199
1200 void
1201 brw_setup_image_uniform_values(gl_shader_stage stage,
1202 struct brw_stage_prog_data *stage_prog_data,
1203 unsigned param_start_index,
1204 const gl_uniform_storage *storage)
1205 {
1206 const gl_constant_value **param =
1207 &stage_prog_data->param[param_start_index];
1208
1209 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1210 const unsigned image_idx = storage->opaque[stage].index + i;
1211 const brw_image_param *image_param =
1212 &stage_prog_data->image_param[image_idx];
1213
1214 /* Upload the brw_image_param structure. The order is expected to match
1215 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1216 */
1217 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1218 (const gl_constant_value *)&image_param->surface_idx, 1);
1219 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1220 (const gl_constant_value *)image_param->offset, 2);
1221 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1222 (const gl_constant_value *)image_param->size, 3);
1223 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1224 (const gl_constant_value *)image_param->stride, 4);
1225 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1226 (const gl_constant_value *)image_param->tiling, 3);
1227 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1228 (const gl_constant_value *)image_param->swizzling, 2);
1229 param += BRW_IMAGE_PARAM_SIZE;
1230
1231 brw_mark_surface_used(
1232 stage_prog_data,
1233 stage_prog_data->binding_table.image_start + image_idx);
1234 }
1235 }
1236
1237 /**
1238 * Decide which set of clip planes should be used when clipping via
1239 * gl_Position or gl_ClipVertex.
1240 */
1241 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1242 {
1243 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1244 /* There is currently a GLSL vertex shader, so clip according to GLSL
1245 * rules, which means compare gl_ClipVertex (or gl_Position, if
1246 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1247 * that were stored in EyeUserPlane at the time the clip planes were
1248 * specified.
1249 */
1250 return ctx->Transform.EyeUserPlane;
1251 } else {
1252 /* Either we are using fixed function or an ARB vertex program. In
1253 * either case the clip planes are going to be compared against
1254 * gl_Position (which is in clip coordinates) so we have to clip using
1255 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1256 * core.
1257 */
1258 return ctx->Transform._ClipUserPlane;
1259 }
1260 }
1261
1262 extern "C" const unsigned *
1263 brw_compile_tes(const struct brw_compiler *compiler,
1264 void *log_data,
1265 void *mem_ctx,
1266 const struct brw_tes_prog_key *key,
1267 struct brw_tes_prog_data *prog_data,
1268 const nir_shader *src_shader,
1269 struct gl_shader_program *shader_prog,
1270 int shader_time_index,
1271 unsigned *final_assembly_size,
1272 char **error_str)
1273 {
1274 const struct brw_device_info *devinfo = compiler->devinfo;
1275 struct gl_shader *shader =
1276 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1277 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1278
1279 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1280 nir->info.inputs_read = key->inputs_read;
1281 nir->info.patch_inputs_read = key->patch_inputs_read;
1282
1283 struct brw_vue_map input_vue_map;
1284 brw_compute_tess_vue_map(&input_vue_map,
1285 nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
1286 nir->info.patch_inputs_read);
1287
1288 nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
1289 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1290 brw_nir_lower_vue_outputs(nir, is_scalar);
1291 nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
1292
1293 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1294 nir->info.outputs_written,
1295 nir->info.separate_shader);
1296
1297 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1298
1299 assert(output_size_bytes >= 1);
1300 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1301 if (error_str)
1302 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1303 return NULL;
1304 }
1305
1306 /* URB entry sizes are stored as a multiple of 64 bytes. */
1307 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1308
1309 bool need_patch_header = nir->info.system_values_read &
1310 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1311 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1312
1313 /* The TES will pull most inputs using URB read messages.
1314 *
1315 * However, we push the patch header for TessLevel factors when required,
1316 * as it's a tiny amount of extra data.
1317 */
1318 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1319
1320 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1321 fprintf(stderr, "TES Input ");
1322 brw_print_vue_map(stderr, &input_vue_map);
1323 fprintf(stderr, "TES Output ");
1324 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1325 }
1326
1327 if (is_scalar) {
1328 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1329 &prog_data->base.base, shader->Program, nir, 8,
1330 shader_time_index, &input_vue_map);
1331 if (!v.run_tes()) {
1332 if (error_str)
1333 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1334 return NULL;
1335 }
1336
1337 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1338
1339 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1340 &prog_data->base.base, v.promoted_constants, false,
1341 MESA_SHADER_TESS_EVAL);
1342 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1343 g.enable_debug(ralloc_asprintf(mem_ctx,
1344 "%s tessellation evaluation shader %s",
1345 nir->info.label ? nir->info.label
1346 : "unnamed",
1347 nir->info.name));
1348 }
1349
1350 g.generate_code(v.cfg, 8);
1351
1352 return g.get_assembly(final_assembly_size);
1353 } else {
1354 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1355 nir, mem_ctx, shader_time_index);
1356 if (!v.run()) {
1357 if (error_str)
1358 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1359 return NULL;
1360 }
1361
1362 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1363 v.dump_instructions();
1364
1365 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1366 &prog_data->base, v.cfg,
1367 final_assembly_size);
1368 }
1369 }