i965: fix brw_abs_immediate() for doubles
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/shaderobj.h"
31 #include "main/uniforms.h"
32
33 extern "C" struct gl_shader *
34 brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
35 {
36 struct brw_shader *shader;
37
38 shader = rzalloc(NULL, struct brw_shader);
39 if (shader) {
40 shader->base.Type = type;
41 shader->base.Stage = _mesa_shader_enum_to_shader_stage(type);
42 shader->base.Name = name;
43 _mesa_init_shader(ctx, &shader->base);
44 }
45
46 return &shader->base;
47 }
48
49 extern "C" void
50 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
51 unsigned surf_index)
52 {
53 assert(surf_index < BRW_MAX_SURFACES);
54
55 prog_data->binding_table.size_bytes =
56 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
57 }
58
59 enum brw_reg_type
60 brw_type_for_base_type(const struct glsl_type *type)
61 {
62 switch (type->base_type) {
63 case GLSL_TYPE_FLOAT:
64 return BRW_REGISTER_TYPE_F;
65 case GLSL_TYPE_INT:
66 case GLSL_TYPE_BOOL:
67 case GLSL_TYPE_SUBROUTINE:
68 return BRW_REGISTER_TYPE_D;
69 case GLSL_TYPE_UINT:
70 return BRW_REGISTER_TYPE_UD;
71 case GLSL_TYPE_ARRAY:
72 return brw_type_for_base_type(type->fields.array);
73 case GLSL_TYPE_STRUCT:
74 case GLSL_TYPE_SAMPLER:
75 case GLSL_TYPE_ATOMIC_UINT:
76 /* These should be overridden with the type of the member when
77 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
78 * way to trip up if we don't.
79 */
80 return BRW_REGISTER_TYPE_UD;
81 case GLSL_TYPE_IMAGE:
82 return BRW_REGISTER_TYPE_UD;
83 case GLSL_TYPE_DOUBLE:
84 return BRW_REGISTER_TYPE_DF;
85 case GLSL_TYPE_VOID:
86 case GLSL_TYPE_ERROR:
87 case GLSL_TYPE_INTERFACE:
88 case GLSL_TYPE_FUNCTION:
89 unreachable("not reached");
90 }
91
92 return BRW_REGISTER_TYPE_F;
93 }
94
95 enum brw_conditional_mod
96 brw_conditional_for_comparison(unsigned int op)
97 {
98 switch (op) {
99 case ir_binop_less:
100 return BRW_CONDITIONAL_L;
101 case ir_binop_greater:
102 return BRW_CONDITIONAL_G;
103 case ir_binop_lequal:
104 return BRW_CONDITIONAL_LE;
105 case ir_binop_gequal:
106 return BRW_CONDITIONAL_GE;
107 case ir_binop_equal:
108 case ir_binop_all_equal: /* same as equal for scalars */
109 return BRW_CONDITIONAL_Z;
110 case ir_binop_nequal:
111 case ir_binop_any_nequal: /* same as nequal for scalars */
112 return BRW_CONDITIONAL_NZ;
113 default:
114 unreachable("not reached: bad operation for comparison");
115 }
116 }
117
118 uint32_t
119 brw_math_function(enum opcode op)
120 {
121 switch (op) {
122 case SHADER_OPCODE_RCP:
123 return BRW_MATH_FUNCTION_INV;
124 case SHADER_OPCODE_RSQ:
125 return BRW_MATH_FUNCTION_RSQ;
126 case SHADER_OPCODE_SQRT:
127 return BRW_MATH_FUNCTION_SQRT;
128 case SHADER_OPCODE_EXP2:
129 return BRW_MATH_FUNCTION_EXP;
130 case SHADER_OPCODE_LOG2:
131 return BRW_MATH_FUNCTION_LOG;
132 case SHADER_OPCODE_POW:
133 return BRW_MATH_FUNCTION_POW;
134 case SHADER_OPCODE_SIN:
135 return BRW_MATH_FUNCTION_SIN;
136 case SHADER_OPCODE_COS:
137 return BRW_MATH_FUNCTION_COS;
138 case SHADER_OPCODE_INT_QUOTIENT:
139 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
140 case SHADER_OPCODE_INT_REMAINDER:
141 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
142 default:
143 unreachable("not reached: unknown math function");
144 }
145 }
146
147 uint32_t
148 brw_texture_offset(int *offsets, unsigned num_components)
149 {
150 if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
151
152 /* Combine all three offsets into a single unsigned dword:
153 *
154 * bits 11:8 - U Offset (X component)
155 * bits 7:4 - V Offset (Y component)
156 * bits 3:0 - R Offset (Z component)
157 */
158 unsigned offset_bits = 0;
159 for (unsigned i = 0; i < num_components; i++) {
160 const unsigned shift = 4 * (2 - i);
161 offset_bits |= (offsets[i] << shift) & (0xF << shift);
162 }
163 return offset_bits;
164 }
165
166 const char *
167 brw_instruction_name(const struct brw_device_info *devinfo, enum opcode op)
168 {
169 switch (op) {
170 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
171 assert(brw_opcode_desc(devinfo, op)->name);
172 return brw_opcode_desc(devinfo, op)->name;
173 case FS_OPCODE_FB_WRITE:
174 return "fb_write";
175 case FS_OPCODE_FB_WRITE_LOGICAL:
176 return "fb_write_logical";
177 case FS_OPCODE_PACK_STENCIL_REF:
178 return "pack_stencil_ref";
179 case FS_OPCODE_BLORP_FB_WRITE:
180 return "blorp_fb_write";
181 case FS_OPCODE_REP_FB_WRITE:
182 return "rep_fb_write";
183
184 case SHADER_OPCODE_RCP:
185 return "rcp";
186 case SHADER_OPCODE_RSQ:
187 return "rsq";
188 case SHADER_OPCODE_SQRT:
189 return "sqrt";
190 case SHADER_OPCODE_EXP2:
191 return "exp2";
192 case SHADER_OPCODE_LOG2:
193 return "log2";
194 case SHADER_OPCODE_POW:
195 return "pow";
196 case SHADER_OPCODE_INT_QUOTIENT:
197 return "int_quot";
198 case SHADER_OPCODE_INT_REMAINDER:
199 return "int_rem";
200 case SHADER_OPCODE_SIN:
201 return "sin";
202 case SHADER_OPCODE_COS:
203 return "cos";
204
205 case SHADER_OPCODE_TEX:
206 return "tex";
207 case SHADER_OPCODE_TEX_LOGICAL:
208 return "tex_logical";
209 case SHADER_OPCODE_TXD:
210 return "txd";
211 case SHADER_OPCODE_TXD_LOGICAL:
212 return "txd_logical";
213 case SHADER_OPCODE_TXF:
214 return "txf";
215 case SHADER_OPCODE_TXF_LOGICAL:
216 return "txf_logical";
217 case SHADER_OPCODE_TXL:
218 return "txl";
219 case SHADER_OPCODE_TXL_LOGICAL:
220 return "txl_logical";
221 case SHADER_OPCODE_TXS:
222 return "txs";
223 case SHADER_OPCODE_TXS_LOGICAL:
224 return "txs_logical";
225 case FS_OPCODE_TXB:
226 return "txb";
227 case FS_OPCODE_TXB_LOGICAL:
228 return "txb_logical";
229 case SHADER_OPCODE_TXF_CMS:
230 return "txf_cms";
231 case SHADER_OPCODE_TXF_CMS_LOGICAL:
232 return "txf_cms_logical";
233 case SHADER_OPCODE_TXF_CMS_W:
234 return "txf_cms_w";
235 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
236 return "txf_cms_w_logical";
237 case SHADER_OPCODE_TXF_UMS:
238 return "txf_ums";
239 case SHADER_OPCODE_TXF_UMS_LOGICAL:
240 return "txf_ums_logical";
241 case SHADER_OPCODE_TXF_MCS:
242 return "txf_mcs";
243 case SHADER_OPCODE_TXF_MCS_LOGICAL:
244 return "txf_mcs_logical";
245 case SHADER_OPCODE_LOD:
246 return "lod";
247 case SHADER_OPCODE_LOD_LOGICAL:
248 return "lod_logical";
249 case SHADER_OPCODE_TG4:
250 return "tg4";
251 case SHADER_OPCODE_TG4_LOGICAL:
252 return "tg4_logical";
253 case SHADER_OPCODE_TG4_OFFSET:
254 return "tg4_offset";
255 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
256 return "tg4_offset_logical";
257 case SHADER_OPCODE_SAMPLEINFO:
258 return "sampleinfo";
259
260 case SHADER_OPCODE_SHADER_TIME_ADD:
261 return "shader_time_add";
262
263 case SHADER_OPCODE_UNTYPED_ATOMIC:
264 return "untyped_atomic";
265 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
266 return "untyped_atomic_logical";
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 return "untyped_surface_read";
269 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
270 return "untyped_surface_read_logical";
271 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
272 return "untyped_surface_write";
273 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
274 return "untyped_surface_write_logical";
275 case SHADER_OPCODE_TYPED_ATOMIC:
276 return "typed_atomic";
277 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
278 return "typed_atomic_logical";
279 case SHADER_OPCODE_TYPED_SURFACE_READ:
280 return "typed_surface_read";
281 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
282 return "typed_surface_read_logical";
283 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
284 return "typed_surface_write";
285 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
286 return "typed_surface_write_logical";
287 case SHADER_OPCODE_MEMORY_FENCE:
288 return "memory_fence";
289
290 case SHADER_OPCODE_LOAD_PAYLOAD:
291 return "load_payload";
292
293 case SHADER_OPCODE_GEN4_SCRATCH_READ:
294 return "gen4_scratch_read";
295 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
296 return "gen4_scratch_write";
297 case SHADER_OPCODE_GEN7_SCRATCH_READ:
298 return "gen7_scratch_read";
299 case SHADER_OPCODE_URB_WRITE_SIMD8:
300 return "gen8_urb_write_simd8";
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 return "gen8_urb_write_simd8_per_slot";
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
304 return "gen8_urb_write_simd8_masked";
305 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
306 return "gen8_urb_write_simd8_masked_per_slot";
307 case SHADER_OPCODE_URB_READ_SIMD8:
308 return "urb_read_simd8";
309 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
310 return "urb_read_simd8_per_slot";
311
312 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
313 return "find_live_channel";
314 case SHADER_OPCODE_BROADCAST:
315 return "broadcast";
316
317 case SHADER_OPCODE_EXTRACT_BYTE:
318 return "extract_byte";
319 case SHADER_OPCODE_EXTRACT_WORD:
320 return "extract_word";
321 case VEC4_OPCODE_MOV_BYTES:
322 return "mov_bytes";
323 case VEC4_OPCODE_PACK_BYTES:
324 return "pack_bytes";
325 case VEC4_OPCODE_UNPACK_UNIFORM:
326 return "unpack_uniform";
327
328 case FS_OPCODE_DDX_COARSE:
329 return "ddx_coarse";
330 case FS_OPCODE_DDX_FINE:
331 return "ddx_fine";
332 case FS_OPCODE_DDY_COARSE:
333 return "ddy_coarse";
334 case FS_OPCODE_DDY_FINE:
335 return "ddy_fine";
336
337 case FS_OPCODE_CINTERP:
338 return "cinterp";
339 case FS_OPCODE_LINTERP:
340 return "linterp";
341
342 case FS_OPCODE_PIXEL_X:
343 return "pixel_x";
344 case FS_OPCODE_PIXEL_Y:
345 return "pixel_y";
346
347 case FS_OPCODE_GET_BUFFER_SIZE:
348 return "fs_get_buffer_size";
349
350 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
351 return "uniform_pull_const";
352 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
353 return "uniform_pull_const_gen7";
354 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
355 return "varying_pull_const";
356 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
357 return "varying_pull_const_gen7";
358
359 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
360 return "mov_dispatch_to_flags";
361 case FS_OPCODE_DISCARD_JUMP:
362 return "discard_jump";
363
364 case FS_OPCODE_SET_SAMPLE_ID:
365 return "set_sample_id";
366 case FS_OPCODE_SET_SIMD4X2_OFFSET:
367 return "set_simd4x2_offset";
368
369 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
370 return "pack_half_2x16_split";
371 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
372 return "unpack_half_2x16_split_x";
373 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
374 return "unpack_half_2x16_split_y";
375
376 case FS_OPCODE_PLACEHOLDER_HALT:
377 return "placeholder_halt";
378
379 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
380 return "interp_centroid";
381 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
382 return "interp_sample";
383 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
384 return "interp_shared_offset";
385 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
386 return "interp_per_slot_offset";
387
388 case VS_OPCODE_URB_WRITE:
389 return "vs_urb_write";
390 case VS_OPCODE_PULL_CONSTANT_LOAD:
391 return "pull_constant_load";
392 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
393 return "pull_constant_load_gen7";
394
395 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
396 return "set_simd4x2_header_gen9";
397
398 case VS_OPCODE_GET_BUFFER_SIZE:
399 return "vs_get_buffer_size";
400
401 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
402 return "unpack_flags_simd4x2";
403
404 case GS_OPCODE_URB_WRITE:
405 return "gs_urb_write";
406 case GS_OPCODE_URB_WRITE_ALLOCATE:
407 return "gs_urb_write_allocate";
408 case GS_OPCODE_THREAD_END:
409 return "gs_thread_end";
410 case GS_OPCODE_SET_WRITE_OFFSET:
411 return "set_write_offset";
412 case GS_OPCODE_SET_VERTEX_COUNT:
413 return "set_vertex_count";
414 case GS_OPCODE_SET_DWORD_2:
415 return "set_dword_2";
416 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
417 return "prepare_channel_masks";
418 case GS_OPCODE_SET_CHANNEL_MASKS:
419 return "set_channel_masks";
420 case GS_OPCODE_GET_INSTANCE_ID:
421 return "get_instance_id";
422 case GS_OPCODE_FF_SYNC:
423 return "ff_sync";
424 case GS_OPCODE_SET_PRIMITIVE_ID:
425 return "set_primitive_id";
426 case GS_OPCODE_SVB_WRITE:
427 return "gs_svb_write";
428 case GS_OPCODE_SVB_SET_DST_INDEX:
429 return "gs_svb_set_dst_index";
430 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
431 return "gs_ff_sync_set_primitives";
432 case CS_OPCODE_CS_TERMINATE:
433 return "cs_terminate";
434 case SHADER_OPCODE_BARRIER:
435 return "barrier";
436 case SHADER_OPCODE_MULH:
437 return "mulh";
438 case SHADER_OPCODE_MOV_INDIRECT:
439 return "mov_indirect";
440
441 case VEC4_OPCODE_URB_READ:
442 return "urb_read";
443 case TCS_OPCODE_GET_INSTANCE_ID:
444 return "tcs_get_instance_id";
445 case TCS_OPCODE_URB_WRITE:
446 return "tcs_urb_write";
447 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
448 return "tcs_set_input_urb_offsets";
449 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
450 return "tcs_set_output_urb_offsets";
451 case TCS_OPCODE_GET_PRIMITIVE_ID:
452 return "tcs_get_primitive_id";
453 case TCS_OPCODE_CREATE_BARRIER_HEADER:
454 return "tcs_create_barrier_header";
455 case TCS_OPCODE_SRC0_010_IS_ZERO:
456 return "tcs_src0<0,1,0>_is_zero";
457 case TCS_OPCODE_RELEASE_INPUT:
458 return "tcs_release_input";
459 case TCS_OPCODE_THREAD_END:
460 return "tcs_thread_end";
461 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
462 return "tes_create_input_read_header";
463 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
464 return "tes_add_indirect_urb_offset";
465 case TES_OPCODE_GET_PRIMITIVE_ID:
466 return "tes_get_primitive_id";
467 }
468
469 unreachable("not reached");
470 }
471
472 bool
473 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
474 {
475 union {
476 unsigned ud;
477 int d;
478 float f;
479 double df;
480 } imm, sat_imm = { 0 };
481
482 const unsigned size = type_sz(type);
483
484 /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
485 * irrelevant, so just check the size of the type and copy from/to an
486 * appropriately sized field.
487 */
488 if (size < 8)
489 imm.ud = reg->ud;
490 else
491 imm.df = reg->df;
492
493 switch (type) {
494 case BRW_REGISTER_TYPE_UD:
495 case BRW_REGISTER_TYPE_D:
496 case BRW_REGISTER_TYPE_UW:
497 case BRW_REGISTER_TYPE_W:
498 case BRW_REGISTER_TYPE_UQ:
499 case BRW_REGISTER_TYPE_Q:
500 /* Nothing to do. */
501 return false;
502 case BRW_REGISTER_TYPE_F:
503 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
504 break;
505 case BRW_REGISTER_TYPE_DF:
506 sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
507 break;
508 case BRW_REGISTER_TYPE_UB:
509 case BRW_REGISTER_TYPE_B:
510 unreachable("no UB/B immediates");
511 case BRW_REGISTER_TYPE_V:
512 case BRW_REGISTER_TYPE_UV:
513 case BRW_REGISTER_TYPE_VF:
514 unreachable("unimplemented: saturate vector immediate");
515 case BRW_REGISTER_TYPE_HF:
516 unreachable("unimplemented: saturate HF immediate");
517 }
518
519 if (size < 8) {
520 if (imm.ud != sat_imm.ud) {
521 reg->ud = sat_imm.ud;
522 return true;
523 }
524 } else {
525 if (imm.df != sat_imm.df) {
526 reg->df = sat_imm.df;
527 return true;
528 }
529 }
530 return false;
531 }
532
533 bool
534 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
535 {
536 switch (type) {
537 case BRW_REGISTER_TYPE_D:
538 case BRW_REGISTER_TYPE_UD:
539 reg->d = -reg->d;
540 return true;
541 case BRW_REGISTER_TYPE_W:
542 case BRW_REGISTER_TYPE_UW:
543 reg->d = -(int16_t)reg->ud;
544 return true;
545 case BRW_REGISTER_TYPE_F:
546 reg->f = -reg->f;
547 return true;
548 case BRW_REGISTER_TYPE_VF:
549 reg->ud ^= 0x80808080;
550 return true;
551 case BRW_REGISTER_TYPE_DF:
552 reg->df = -reg->df;
553 return true;
554 case BRW_REGISTER_TYPE_UB:
555 case BRW_REGISTER_TYPE_B:
556 unreachable("no UB/B immediates");
557 case BRW_REGISTER_TYPE_UV:
558 case BRW_REGISTER_TYPE_V:
559 assert(!"unimplemented: negate UV/V immediate");
560 case BRW_REGISTER_TYPE_UQ:
561 case BRW_REGISTER_TYPE_Q:
562 assert(!"unimplemented: negate UQ/Q immediate");
563 case BRW_REGISTER_TYPE_HF:
564 assert(!"unimplemented: negate HF immediate");
565 }
566
567 return false;
568 }
569
570 bool
571 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
572 {
573 switch (type) {
574 case BRW_REGISTER_TYPE_D:
575 reg->d = abs(reg->d);
576 return true;
577 case BRW_REGISTER_TYPE_W:
578 reg->d = abs((int16_t)reg->ud);
579 return true;
580 case BRW_REGISTER_TYPE_F:
581 reg->f = fabsf(reg->f);
582 return true;
583 case BRW_REGISTER_TYPE_DF:
584 reg->df = fabs(reg->df);
585 return true;
586 case BRW_REGISTER_TYPE_VF:
587 reg->ud &= ~0x80808080;
588 return true;
589 case BRW_REGISTER_TYPE_UB:
590 case BRW_REGISTER_TYPE_B:
591 unreachable("no UB/B immediates");
592 case BRW_REGISTER_TYPE_UQ:
593 case BRW_REGISTER_TYPE_UD:
594 case BRW_REGISTER_TYPE_UW:
595 case BRW_REGISTER_TYPE_UV:
596 /* Presumably the absolute value modifier on an unsigned source is a
597 * nop, but it would be nice to confirm.
598 */
599 assert(!"unimplemented: abs unsigned immediate");
600 case BRW_REGISTER_TYPE_V:
601 assert(!"unimplemented: abs V immediate");
602 case BRW_REGISTER_TYPE_Q:
603 assert(!"unimplemented: abs Q immediate");
604 case BRW_REGISTER_TYPE_HF:
605 assert(!"unimplemented: abs HF immediate");
606 }
607
608 return false;
609 }
610
611 unsigned
612 tesslevel_outer_components(GLenum tes_primitive_mode)
613 {
614 switch (tes_primitive_mode) {
615 case GL_QUADS:
616 return 4;
617 case GL_TRIANGLES:
618 return 3;
619 case GL_ISOLINES:
620 return 2;
621 default:
622 unreachable("Bogus tessellation domain");
623 }
624 return 0;
625 }
626
627 unsigned
628 tesslevel_inner_components(GLenum tes_primitive_mode)
629 {
630 switch (tes_primitive_mode) {
631 case GL_QUADS:
632 return 2;
633 case GL_TRIANGLES:
634 return 1;
635 case GL_ISOLINES:
636 return 0;
637 default:
638 unreachable("Bogus tessellation domain");
639 }
640 return 0;
641 }
642
643 /**
644 * Given a normal .xyzw writemask, convert it to a writemask for a vector
645 * that's stored backwards, i.e. .wzyx.
646 */
647 unsigned
648 writemask_for_backwards_vector(unsigned mask)
649 {
650 unsigned new_mask = 0;
651
652 for (int i = 0; i < 4; i++)
653 new_mask |= ((mask >> i) & 1) << (3 - i);
654
655 return new_mask;
656 }
657
658 backend_shader::backend_shader(const struct brw_compiler *compiler,
659 void *log_data,
660 void *mem_ctx,
661 const nir_shader *shader,
662 struct brw_stage_prog_data *stage_prog_data)
663 : compiler(compiler),
664 log_data(log_data),
665 devinfo(compiler->devinfo),
666 nir(shader),
667 stage_prog_data(stage_prog_data),
668 mem_ctx(mem_ctx),
669 cfg(NULL),
670 stage(shader->stage)
671 {
672 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
673 stage_name = _mesa_shader_stage_to_string(stage);
674 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
675 is_passthrough_shader =
676 nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
677 }
678
679 bool
680 backend_reg::equals(const backend_reg &r) const
681 {
682 return memcmp((brw_reg *)this, (brw_reg *)&r, sizeof(brw_reg)) == 0 &&
683 reg_offset == r.reg_offset;
684 }
685
686 bool
687 backend_reg::is_zero() const
688 {
689 if (file != IMM)
690 return false;
691
692 switch (type) {
693 case BRW_REGISTER_TYPE_F:
694 return f == 0;
695 case BRW_REGISTER_TYPE_DF:
696 return df == 0;
697 case BRW_REGISTER_TYPE_D:
698 case BRW_REGISTER_TYPE_UD:
699 return d == 0;
700 default:
701 return false;
702 }
703 }
704
705 bool
706 backend_reg::is_one() const
707 {
708 if (file != IMM)
709 return false;
710
711 switch (type) {
712 case BRW_REGISTER_TYPE_F:
713 return f == 1.0f;
714 case BRW_REGISTER_TYPE_DF:
715 return df == 1.0;
716 case BRW_REGISTER_TYPE_D:
717 case BRW_REGISTER_TYPE_UD:
718 return d == 1;
719 default:
720 return false;
721 }
722 }
723
724 bool
725 backend_reg::is_negative_one() const
726 {
727 if (file != IMM)
728 return false;
729
730 switch (type) {
731 case BRW_REGISTER_TYPE_F:
732 return f == -1.0;
733 case BRW_REGISTER_TYPE_DF:
734 return df == -1.0;
735 case BRW_REGISTER_TYPE_D:
736 return d == -1;
737 default:
738 return false;
739 }
740 }
741
742 bool
743 backend_reg::is_null() const
744 {
745 return file == ARF && nr == BRW_ARF_NULL;
746 }
747
748
749 bool
750 backend_reg::is_accumulator() const
751 {
752 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
753 }
754
755 bool
756 backend_reg::in_range(const backend_reg &r, unsigned n) const
757 {
758 return (file == r.file &&
759 nr == r.nr &&
760 reg_offset >= r.reg_offset &&
761 reg_offset < r.reg_offset + n);
762 }
763
764 bool
765 backend_instruction::is_commutative() const
766 {
767 switch (opcode) {
768 case BRW_OPCODE_AND:
769 case BRW_OPCODE_OR:
770 case BRW_OPCODE_XOR:
771 case BRW_OPCODE_ADD:
772 case BRW_OPCODE_MUL:
773 case SHADER_OPCODE_MULH:
774 return true;
775 case BRW_OPCODE_SEL:
776 /* MIN and MAX are commutative. */
777 if (conditional_mod == BRW_CONDITIONAL_GE ||
778 conditional_mod == BRW_CONDITIONAL_L) {
779 return true;
780 }
781 /* fallthrough */
782 default:
783 return false;
784 }
785 }
786
787 bool
788 backend_instruction::is_3src(const struct brw_device_info *devinfo) const
789 {
790 return ::is_3src(devinfo, opcode);
791 }
792
793 bool
794 backend_instruction::is_tex() const
795 {
796 return (opcode == SHADER_OPCODE_TEX ||
797 opcode == FS_OPCODE_TXB ||
798 opcode == SHADER_OPCODE_TXD ||
799 opcode == SHADER_OPCODE_TXF ||
800 opcode == SHADER_OPCODE_TXF_CMS ||
801 opcode == SHADER_OPCODE_TXF_CMS_W ||
802 opcode == SHADER_OPCODE_TXF_UMS ||
803 opcode == SHADER_OPCODE_TXF_MCS ||
804 opcode == SHADER_OPCODE_TXL ||
805 opcode == SHADER_OPCODE_TXS ||
806 opcode == SHADER_OPCODE_LOD ||
807 opcode == SHADER_OPCODE_TG4 ||
808 opcode == SHADER_OPCODE_TG4_OFFSET ||
809 opcode == SHADER_OPCODE_SAMPLEINFO);
810 }
811
812 bool
813 backend_instruction::is_math() const
814 {
815 return (opcode == SHADER_OPCODE_RCP ||
816 opcode == SHADER_OPCODE_RSQ ||
817 opcode == SHADER_OPCODE_SQRT ||
818 opcode == SHADER_OPCODE_EXP2 ||
819 opcode == SHADER_OPCODE_LOG2 ||
820 opcode == SHADER_OPCODE_SIN ||
821 opcode == SHADER_OPCODE_COS ||
822 opcode == SHADER_OPCODE_INT_QUOTIENT ||
823 opcode == SHADER_OPCODE_INT_REMAINDER ||
824 opcode == SHADER_OPCODE_POW);
825 }
826
827 bool
828 backend_instruction::is_control_flow() const
829 {
830 switch (opcode) {
831 case BRW_OPCODE_DO:
832 case BRW_OPCODE_WHILE:
833 case BRW_OPCODE_IF:
834 case BRW_OPCODE_ELSE:
835 case BRW_OPCODE_ENDIF:
836 case BRW_OPCODE_BREAK:
837 case BRW_OPCODE_CONTINUE:
838 return true;
839 default:
840 return false;
841 }
842 }
843
844 bool
845 backend_instruction::can_do_source_mods() const
846 {
847 switch (opcode) {
848 case BRW_OPCODE_ADDC:
849 case BRW_OPCODE_BFE:
850 case BRW_OPCODE_BFI1:
851 case BRW_OPCODE_BFI2:
852 case BRW_OPCODE_BFREV:
853 case BRW_OPCODE_CBIT:
854 case BRW_OPCODE_FBH:
855 case BRW_OPCODE_FBL:
856 case BRW_OPCODE_SUBB:
857 return false;
858 default:
859 return true;
860 }
861 }
862
863 bool
864 backend_instruction::can_do_saturate() const
865 {
866 switch (opcode) {
867 case BRW_OPCODE_ADD:
868 case BRW_OPCODE_ASR:
869 case BRW_OPCODE_AVG:
870 case BRW_OPCODE_DP2:
871 case BRW_OPCODE_DP3:
872 case BRW_OPCODE_DP4:
873 case BRW_OPCODE_DPH:
874 case BRW_OPCODE_F16TO32:
875 case BRW_OPCODE_F32TO16:
876 case BRW_OPCODE_LINE:
877 case BRW_OPCODE_LRP:
878 case BRW_OPCODE_MAC:
879 case BRW_OPCODE_MAD:
880 case BRW_OPCODE_MATH:
881 case BRW_OPCODE_MOV:
882 case BRW_OPCODE_MUL:
883 case SHADER_OPCODE_MULH:
884 case BRW_OPCODE_PLN:
885 case BRW_OPCODE_RNDD:
886 case BRW_OPCODE_RNDE:
887 case BRW_OPCODE_RNDU:
888 case BRW_OPCODE_RNDZ:
889 case BRW_OPCODE_SEL:
890 case BRW_OPCODE_SHL:
891 case BRW_OPCODE_SHR:
892 case FS_OPCODE_LINTERP:
893 case SHADER_OPCODE_COS:
894 case SHADER_OPCODE_EXP2:
895 case SHADER_OPCODE_LOG2:
896 case SHADER_OPCODE_POW:
897 case SHADER_OPCODE_RCP:
898 case SHADER_OPCODE_RSQ:
899 case SHADER_OPCODE_SIN:
900 case SHADER_OPCODE_SQRT:
901 return true;
902 default:
903 return false;
904 }
905 }
906
907 bool
908 backend_instruction::can_do_cmod() const
909 {
910 switch (opcode) {
911 case BRW_OPCODE_ADD:
912 case BRW_OPCODE_ADDC:
913 case BRW_OPCODE_AND:
914 case BRW_OPCODE_ASR:
915 case BRW_OPCODE_AVG:
916 case BRW_OPCODE_CMP:
917 case BRW_OPCODE_CMPN:
918 case BRW_OPCODE_DP2:
919 case BRW_OPCODE_DP3:
920 case BRW_OPCODE_DP4:
921 case BRW_OPCODE_DPH:
922 case BRW_OPCODE_F16TO32:
923 case BRW_OPCODE_F32TO16:
924 case BRW_OPCODE_FRC:
925 case BRW_OPCODE_LINE:
926 case BRW_OPCODE_LRP:
927 case BRW_OPCODE_LZD:
928 case BRW_OPCODE_MAC:
929 case BRW_OPCODE_MACH:
930 case BRW_OPCODE_MAD:
931 case BRW_OPCODE_MOV:
932 case BRW_OPCODE_MUL:
933 case BRW_OPCODE_NOT:
934 case BRW_OPCODE_OR:
935 case BRW_OPCODE_PLN:
936 case BRW_OPCODE_RNDD:
937 case BRW_OPCODE_RNDE:
938 case BRW_OPCODE_RNDU:
939 case BRW_OPCODE_RNDZ:
940 case BRW_OPCODE_SAD2:
941 case BRW_OPCODE_SADA2:
942 case BRW_OPCODE_SHL:
943 case BRW_OPCODE_SHR:
944 case BRW_OPCODE_SUBB:
945 case BRW_OPCODE_XOR:
946 case FS_OPCODE_CINTERP:
947 case FS_OPCODE_LINTERP:
948 return true;
949 default:
950 return false;
951 }
952 }
953
954 bool
955 backend_instruction::reads_accumulator_implicitly() const
956 {
957 switch (opcode) {
958 case BRW_OPCODE_MAC:
959 case BRW_OPCODE_MACH:
960 case BRW_OPCODE_SADA2:
961 return true;
962 default:
963 return false;
964 }
965 }
966
967 bool
968 backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const
969 {
970 return writes_accumulator ||
971 (devinfo->gen < 6 &&
972 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
973 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
974 opcode != FS_OPCODE_CINTERP)));
975 }
976
977 bool
978 backend_instruction::has_side_effects() const
979 {
980 switch (opcode) {
981 case SHADER_OPCODE_UNTYPED_ATOMIC:
982 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
983 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
984 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
985 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
986 case SHADER_OPCODE_TYPED_ATOMIC:
987 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
988 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
989 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
990 case SHADER_OPCODE_MEMORY_FENCE:
991 case SHADER_OPCODE_URB_WRITE_SIMD8:
992 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
993 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
994 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
995 case FS_OPCODE_FB_WRITE:
996 case SHADER_OPCODE_BARRIER:
997 case TCS_OPCODE_URB_WRITE:
998 case TCS_OPCODE_RELEASE_INPUT:
999 return true;
1000 default:
1001 return false;
1002 }
1003 }
1004
1005 bool
1006 backend_instruction::is_volatile() const
1007 {
1008 switch (opcode) {
1009 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1010 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
1011 case SHADER_OPCODE_TYPED_SURFACE_READ:
1012 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
1013 case SHADER_OPCODE_URB_READ_SIMD8:
1014 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
1015 case VEC4_OPCODE_URB_READ:
1016 return true;
1017 default:
1018 return false;
1019 }
1020 }
1021
1022 #ifndef NDEBUG
1023 static bool
1024 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
1025 {
1026 bool found = false;
1027 foreach_inst_in_block (backend_instruction, i, block) {
1028 if (inst == i) {
1029 found = true;
1030 }
1031 }
1032 return found;
1033 }
1034 #endif
1035
1036 static void
1037 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
1038 {
1039 for (bblock_t *block_iter = start_block->next();
1040 block_iter;
1041 block_iter = block_iter->next()) {
1042 block_iter->start_ip += ip_adjustment;
1043 block_iter->end_ip += ip_adjustment;
1044 }
1045 }
1046
1047 void
1048 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1049 {
1050 assert(this != inst);
1051
1052 if (!this->is_head_sentinel())
1053 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1054
1055 block->end_ip++;
1056
1057 adjust_later_block_ips(block, 1);
1058
1059 exec_node::insert_after(inst);
1060 }
1061
1062 void
1063 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1064 {
1065 assert(this != inst);
1066
1067 if (!this->is_tail_sentinel())
1068 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1069
1070 block->end_ip++;
1071
1072 adjust_later_block_ips(block, 1);
1073
1074 exec_node::insert_before(inst);
1075 }
1076
1077 void
1078 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1079 {
1080 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1081
1082 unsigned num_inst = list->length();
1083
1084 block->end_ip += num_inst;
1085
1086 adjust_later_block_ips(block, num_inst);
1087
1088 exec_node::insert_before(list);
1089 }
1090
1091 void
1092 backend_instruction::remove(bblock_t *block)
1093 {
1094 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1095
1096 adjust_later_block_ips(block, -1);
1097
1098 if (block->start_ip == block->end_ip) {
1099 block->cfg->remove_block(block);
1100 } else {
1101 block->end_ip--;
1102 }
1103
1104 exec_node::remove();
1105 }
1106
1107 void
1108 backend_shader::dump_instructions()
1109 {
1110 dump_instructions(NULL);
1111 }
1112
1113 void
1114 backend_shader::dump_instructions(const char *name)
1115 {
1116 FILE *file = stderr;
1117 if (name && geteuid() != 0) {
1118 file = fopen(name, "w");
1119 if (!file)
1120 file = stderr;
1121 }
1122
1123 if (cfg) {
1124 int ip = 0;
1125 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1126 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1127 fprintf(file, "%4d: ", ip++);
1128 dump_instruction(inst, file);
1129 }
1130 } else {
1131 int ip = 0;
1132 foreach_in_list(backend_instruction, inst, &instructions) {
1133 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1134 fprintf(file, "%4d: ", ip++);
1135 dump_instruction(inst, file);
1136 }
1137 }
1138
1139 if (file != stderr) {
1140 fclose(file);
1141 }
1142 }
1143
1144 void
1145 backend_shader::calculate_cfg()
1146 {
1147 if (this->cfg)
1148 return;
1149 cfg = new(mem_ctx) cfg_t(&this->instructions);
1150 }
1151
1152 /**
1153 * Sets up the starting offsets for the groups of binding table entries
1154 * commong to all pipeline stages.
1155 *
1156 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1157 * unused but also make sure that addition of small offsets to them will
1158 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1159 */
1160 void
1161 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1162 const struct brw_device_info *devinfo,
1163 const struct gl_shader_program *shader_prog,
1164 const struct gl_program *prog,
1165 struct brw_stage_prog_data *stage_prog_data,
1166 uint32_t next_binding_table_offset)
1167 {
1168 const struct gl_shader *shader = NULL;
1169 int num_textures = _mesa_fls(prog->SamplersUsed);
1170
1171 if (shader_prog)
1172 shader = shader_prog->_LinkedShaders[stage];
1173
1174 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1175 next_binding_table_offset += num_textures;
1176
1177 if (shader) {
1178 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1179 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1180 next_binding_table_offset += shader->NumUniformBlocks;
1181
1182 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1183 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1184 next_binding_table_offset += shader->NumShaderStorageBlocks;
1185 } else {
1186 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1187 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1188 }
1189
1190 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1191 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1192 next_binding_table_offset++;
1193 } else {
1194 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1195 }
1196
1197 if (prog->UsesGather) {
1198 if (devinfo->gen >= 8) {
1199 stage_prog_data->binding_table.gather_texture_start =
1200 stage_prog_data->binding_table.texture_start;
1201 } else {
1202 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1203 next_binding_table_offset += num_textures;
1204 }
1205 } else {
1206 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1207 }
1208
1209 if (shader && shader->NumAtomicBuffers) {
1210 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1211 next_binding_table_offset += shader->NumAtomicBuffers;
1212 } else {
1213 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1214 }
1215
1216 if (shader && shader->NumImages) {
1217 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1218 next_binding_table_offset += shader->NumImages;
1219 } else {
1220 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1221 }
1222
1223 /* This may or may not be used depending on how the compile goes. */
1224 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1225 next_binding_table_offset++;
1226
1227 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1228
1229 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1230 }
1231
1232 static void
1233 setup_vec4_uniform_value(const gl_constant_value **params,
1234 const gl_constant_value *values,
1235 unsigned n)
1236 {
1237 static const gl_constant_value zero = { 0 };
1238
1239 for (unsigned i = 0; i < n; ++i)
1240 params[i] = &values[i];
1241
1242 for (unsigned i = n; i < 4; ++i)
1243 params[i] = &zero;
1244 }
1245
1246 void
1247 brw_setup_image_uniform_values(gl_shader_stage stage,
1248 struct brw_stage_prog_data *stage_prog_data,
1249 unsigned param_start_index,
1250 const gl_uniform_storage *storage)
1251 {
1252 const gl_constant_value **param =
1253 &stage_prog_data->param[param_start_index];
1254
1255 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1256 const unsigned image_idx = storage->opaque[stage].index + i;
1257 const brw_image_param *image_param =
1258 &stage_prog_data->image_param[image_idx];
1259
1260 /* Upload the brw_image_param structure. The order is expected to match
1261 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1262 */
1263 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1264 (const gl_constant_value *)&image_param->surface_idx, 1);
1265 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1266 (const gl_constant_value *)image_param->offset, 2);
1267 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1268 (const gl_constant_value *)image_param->size, 3);
1269 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1270 (const gl_constant_value *)image_param->stride, 4);
1271 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1272 (const gl_constant_value *)image_param->tiling, 3);
1273 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1274 (const gl_constant_value *)image_param->swizzling, 2);
1275 param += BRW_IMAGE_PARAM_SIZE;
1276
1277 brw_mark_surface_used(
1278 stage_prog_data,
1279 stage_prog_data->binding_table.image_start + image_idx);
1280 }
1281 }
1282
1283 /**
1284 * Decide which set of clip planes should be used when clipping via
1285 * gl_Position or gl_ClipVertex.
1286 */
1287 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1288 {
1289 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1290 /* There is currently a GLSL vertex shader, so clip according to GLSL
1291 * rules, which means compare gl_ClipVertex (or gl_Position, if
1292 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1293 * that were stored in EyeUserPlane at the time the clip planes were
1294 * specified.
1295 */
1296 return ctx->Transform.EyeUserPlane;
1297 } else {
1298 /* Either we are using fixed function or an ARB vertex program. In
1299 * either case the clip planes are going to be compared against
1300 * gl_Position (which is in clip coordinates) so we have to clip using
1301 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1302 * core.
1303 */
1304 return ctx->Transform._ClipUserPlane;
1305 }
1306 }
1307
1308 extern "C" const unsigned *
1309 brw_compile_tes(const struct brw_compiler *compiler,
1310 void *log_data,
1311 void *mem_ctx,
1312 const struct brw_tes_prog_key *key,
1313 struct brw_tes_prog_data *prog_data,
1314 const nir_shader *src_shader,
1315 struct gl_shader_program *shader_prog,
1316 int shader_time_index,
1317 unsigned *final_assembly_size,
1318 char **error_str)
1319 {
1320 const struct brw_device_info *devinfo = compiler->devinfo;
1321 struct gl_shader *shader =
1322 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1323 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1324
1325 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1326 nir->info.inputs_read = key->inputs_read;
1327 nir->info.patch_inputs_read = key->patch_inputs_read;
1328
1329 struct brw_vue_map input_vue_map;
1330 brw_compute_tess_vue_map(&input_vue_map,
1331 nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
1332 nir->info.patch_inputs_read);
1333
1334 nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
1335 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1336 brw_nir_lower_vue_outputs(nir, is_scalar);
1337 nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
1338
1339 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1340 nir->info.outputs_written,
1341 nir->info.separate_shader);
1342
1343 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1344
1345 assert(output_size_bytes >= 1);
1346 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1347 if (error_str)
1348 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1349 return NULL;
1350 }
1351
1352 /* URB entry sizes are stored as a multiple of 64 bytes. */
1353 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1354
1355 bool need_patch_header = nir->info.system_values_read &
1356 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1357 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1358
1359 /* The TES will pull most inputs using URB read messages.
1360 *
1361 * However, we push the patch header for TessLevel factors when required,
1362 * as it's a tiny amount of extra data.
1363 */
1364 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1365
1366 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1367 fprintf(stderr, "TES Input ");
1368 brw_print_vue_map(stderr, &input_vue_map);
1369 fprintf(stderr, "TES Output ");
1370 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1371 }
1372
1373 if (is_scalar) {
1374 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1375 &prog_data->base.base, shader->Program, nir, 8,
1376 shader_time_index, &input_vue_map);
1377 if (!v.run_tes()) {
1378 if (error_str)
1379 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1380 return NULL;
1381 }
1382
1383 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1384
1385 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1386 &prog_data->base.base, v.promoted_constants, false,
1387 MESA_SHADER_TESS_EVAL);
1388 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1389 g.enable_debug(ralloc_asprintf(mem_ctx,
1390 "%s tessellation evaluation shader %s",
1391 nir->info.label ? nir->info.label
1392 : "unnamed",
1393 nir->info.name));
1394 }
1395
1396 g.generate_code(v.cfg, 8);
1397
1398 return g.get_assembly(final_assembly_size);
1399 } else {
1400 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1401 nir, mem_ctx, shader_time_index);
1402 if (!v.run()) {
1403 if (error_str)
1404 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1405 return NULL;
1406 }
1407
1408 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1409 v.dump_instructions();
1410
1411 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1412 &prog_data->base, v.cfg,
1413 final_assembly_size);
1414 }
1415 }